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Spectroscopic imaging is expanding thanks to new instrumental concepts, technological developments, easier use and lower costs. This leads to collect and to handle huge hyperspectral databases. Among data providing useful information, there may also be unwanted information (i.e., either biased or irrelevant with respect to the information one wants to retrieve from the analysis). The classical approach aims at building a spectra library, which contains both informative spectra and outliers, so as to train learning algorithms. However, reference spectra cannot always be acquired, especially for samples prone to ageing or changes when exposed to humidity, temperature... Thus, building a library with reference spectra is not always possible.

To handle this issue, a new supervised method (SSMS for Supervised Selective Method based on SIMPLISMA) has been designed and is described in this article, to identify and exclude unwanted spectra from the resolution process when no library is available. SSMS relies on a supervised exclusion of the unwanted spectra. It ensures both a quick treatment and an accurate

Introduction

Recent developments in advanced techniques for material analysis, such as characterizations in 3D [START_REF] Maire | X-ray tomography and three-dimensional image analysis of epoxy-glass syntactic foams[END_REF][START_REF]Development of optical models and non-supervised methods to solve bilinear problems: application to vibrationnal mapping[END_REF] or in complex environments [START_REF] Xiao | Analysis of liquid suspensions using Scanning Electron Microscopy in transmission: estimation of the water film thickness using Monte Carlo simulations[END_REF], and an easier access to cutting-edge techniques lead to deal with a larger and larger amount of data (large scanned areas and volumes, monitoring of the evolution of a sample vs. time, large number of replicates...). In particular, the use of spectroscopy techniques (e.g., Raman [START_REF] Bannerman | Visualising phase change in a brushite-based calcium phosphate ceramic[END_REF], NMR [START_REF] Puig-Castellví | 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis[END_REF] or terahertz [START_REF] Yamaguchi | Brain tumor imaging of rat fresh tissue using terahertz spectroscopy[END_REF]) requires to handle hyperspectral databases. More specifically, Fourier-Transform Infrared (FT-IR) microscopy is employed to obtain chemical mapping of ma-terials and has known very interesting developments in the past few years [START_REF] Offroy | Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept[END_REF][START_REF] Nasse | High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams[END_REF][START_REF] Amarie | Nano-FTIR chemical mapping of minerals in biological materials[END_REF].

Along with spectra providing useful information on the samples composition, these hyperspectral databases may also contain biased data (outof-measurement ranges, noise, artifacts. . . ) or unwanted information (e.g., linked to mounting resin or stand). Therefore, such big data analysis requires a thorough pre-processing stage to exclude non useful information and keep only the relevant spectra. Data, which are out-of-range or characterized by a too low signal-to-noise ratio, are relatively easily removed from databases.

However, the identification of misinformative or unwanted information is based on preconceptions on their spectral characteristics or on their detection by learning algorithms (e.g. Random Forest classifier, Support Vector Machines, artificial Neural Networks). The latter approach is highly efficient but requires the algorithms to be trained on an available database. Such IR spectral libraries including relevant spectra and outliers are scarce, especially for inorganic materials.

In this work, a home made selective robust method, called SSMS (Supervised Selective Method based on SIMPLISMA), has been developed to eliminate non useful spectra based on statistical considerations without needing any training database. SSMS enables to identify irrelevant spectra without any a priori knowledge of the material. Such an automatic treatment becomes essential to enable the analysis of large databases. SSMS algorithm is detailed and illustrated on the obtaining of chemi-cal maps issued from FT-IR microscopy acquisitions. The use of a particular set-up, called static attenuated total reflection (s-ATR), is shown to be an efficient tool for the mapping of inorganic materials. A granular composite used for construction applications, containing a very sensitive ettringite binder, was successfully studied avoiding cross-contamination and surface degradation issues. SSMS permitted to exclude spectra related to artifacts linked to the s-ATR set-up without any preconceptions on the material. Chemical maps were obtained using a Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) procedure. It is shown how SSMS can be used as an efficient pre-processing step in the analysis of any type of hyperspectral database.

Theoretical background

FT-IR spectroscopy

Infrared spectra can be obtained from different acquisition modes measuring reflected beam, transmitted beam or a combination of both [START_REF] Bassan | Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells[END_REF]. The intensity I of these measured beams is then compared to the intensity I 0 of the incident beam. To do so, absorbance A and reflectance R are defined as A(ω) = log 10 (I 0 (ω)/I(ω)) = -log 10 (R(ω)), ω being the wavenumber.

The transmission mode is not applicable for most minerals since they are dense and absorbent. Focusing on the reflective mode, three different optical phenomena have been exploited for FT-IR spectra acquisitions: specular, diffuse and total reflections, the latter one occurring when the incident angle is larger than the critical angle of the studied material.

The amount of light detected by the sensor is the key parameter to obtain exploitable spectra (i.e., bands relative to covalent bonds are predominant in the spectra). It can be influenced by material parameter as 1) the roughness of material surface and 2) the material nature. 1) An increase of the sample roughness leads to an increase of the scattered light and to a decrease of the signal-to-noise ratio [START_REF] Macdonald | Dispersion analysis of FTIR reection measurements in silicate glasses[END_REF]. 2) The imaginary refractive index influences the spatial distribution of the light scattered by the material [START_REF] Bassan | Resonant Mie scattering in infrared spectroscopy of biological materialsunderstanding the 'dispersion artefact[END_REF][START_REF] Bassan | Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells[END_REF]. This may result in modulations and distortions in spectra [START_REF] Miljković | Line shape distortion effects in infrared spectroscopy[END_REF]. Moreover, in a quantitative study, a minimal number of photons has to be detected to obtain a measurement included in the linearity range of the sensor. This may be achieved by increasing the number of scans or by minimizing the roughness of the material. Acquiring a spectrum using the specular reflection is the easiest technique to implement, as it does not require any specific set-up: the infrared beam is directly projected through the ambient air at the surface of the sample. A sensor placed above the sample then records the reflected beam (Fig. 1.a).

Crystals, which are used to achieve Attenuated Total Reflection ATR, have no absorption in the infrared range and a much higher refractive index than the studied material. The incident infrared beam travels through the ambient air and then through the ATR crystal before reaching the surface of the sample beyond the critical angle. Thus, total internal reflection occurs, maximizing the amount of reflected light. Practically, a vertical load is ap- 

FT-IR microscopy

To obtain a 2D FT-IR map (( x, y) plane), the sample is placed on a micrometric (x, y, z) motorized stage to scan its surface, which enables the acquisition of FT-IR spectra at different locations.

The spatial resolution of the resulting map is theoretically limited by the diffraction limit described by the Rayleigh criterion r:

r = 0.61.λ N A ( 1 
)
Where λ is the wavelength and N A is the numerical aperture of the optical system. The numerical aperture is defined by N A = n. sin θ and depends on the incident medium (n: refractive index of incident medium: air or ATR crystal) through which the light travels. It also depends on θ, the half angle of the cone of incident light [START_REF] Chan | Attenuated total reflection Fouriertransform infrared (ATR-FTIR) imaging of tissues and live cells[END_REF]. The spatial resolution is the minimal distance for which two adjacent points can be separated and is theoretically equal to 2r. In practice, optical aberrations lead to a worse spatial resolution [START_REF] Chan | New opportunities in micro-and macroattenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility[END_REF]. Thus, the actual spatial resolution has to be experimentally measured.

Methods based on optical reference targets are often used [START_REF] Offroy | Infrared chemical imaging: Spatial resolution evaluation and super-resolution concept[END_REF][START_REF] Offroy | Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization[END_REF] but Kazarian [START_REF] Kazarian | Micro-and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging[END_REF] recently suggested a more accurate method when ATR crystals are involved in the acquisition process.

Finally, a distinction has to be made between the spatial discretization arisen from the step of the motorized stage and the actual spatial resolution [START_REF] Chan | Attenuated total reflection Fouriertransform infrared (ATR-FTIR) imaging of tissues and live cells[END_REF].

To acquire a FT-IR map in specular reflection, no additional set-up is required (Fig. 1.a).

For ATR, the crystal, located above the sample, is motionless. The stage moves vertically up (z direction) to make the contact between the sample and the crystal. Then, the stage keeps going up until a specified stress (∼ 10 N ) ensures a good contact between the sample and the crystal: a spectrum is recorded. Then the stage moves down before switching to the next location (( x, y) plane) (Fig. 1.b).

The crystal focuses the incident beam and ensures a higher spatial resolution.

However, cross-contamination may be induced by the (x, y) displacements.

Moreover, with a crystal diameter of few hundreds of microns, localized loads of about 80 M P a are generated. They may lead to residual imprints in case of sample with weak mechanical properties [START_REF] Bonnal | Towards chemical imaging: Fourier transform infrared mapping on organo-mineral materials[END_REF]. Caution should be taken for sensitive material to avoid or check for such artifacts.

The static-ATR (s-ATR) set-up enables performing ATR without applying successive localized loads onto the sample. The crystal has a conical shape with a half-sphere on its top (Fig. 1.c). The bottom flat surface is about ten times larger than usual ATR crystals and is put in contact with the sample only once for the whole acquisition process. The resulting block {crystal + sample} is fixed on the motorized stage. When the stage moves, the location of the incident beam on the upper base of the crystal is changed (Fig. 1.c), enabling the acquisition of FT-IR microscopy maps. This minimizes damage at the surface, avoids potential cross contamination issues and prevents any pressure loss between the crystal and the sample. However, this technique is seriously affected by surface imperfections: a high roughness can lead to signal loss for some areas. In addition, a lack of parallelism between the two sample faces can hinder the contact between the crystal and the sample. This contact is ensured by applying a localized load, which may lead to one residual imprint (Fig. 2).

Finally, some of the spectra acquired with this set-up are aberrant (i.e., to the authors' knowledge, not corresponding to the actual material). These artifacts will be further denoted 's-ATR artifacts' and discussed later in the manuscript.

Spatial resolutions and other comparative items of the different set-ups are summarized in Table 1, while their schematic views are displayed in Fig. 1.

Actual spatial resolutions have been provided by the manufacturer of the mi-croscope used in this study. 

Obtaining a FT-IR map from acquired spectra: bilinear modelling

First of all, the following hypotheses have to be made to obtain a FT-IR map: (i) the studied material is made of p compounds, (ii) each compound is isotropic and (iii) its characteristics remain unchanged versus time. It is important to note that a compound may be composed by a mixture of several chemical phases.

The Beer-Lambert law links absorbance values A(ω) for a wavenumber ω with the molar attenuation coefficient , the concentration of absorbing species c and the path length l: A(ω) = (ω).l(ω).c.

Working on relative quantities of a mixture of p compounds, this law can also be expressed by:

A(ω) = p i=1 s i (ω).c i (2) 
with s i and c i the spectrum and the relative concentration related to each

compound i ∈ [1; p], respectively. Acquiring one FT-IR spectrum per loca- tion, a 3D data matrix D 3D of dimensions [x × y × m] is constructed [19]. x
and y are the numbers of acquisitions in the two spatial directions ( x, y). m is the number of wavenumbers for which absorbance values are recorded. As most chemometrics tools are not designed to directly handle 3D matrices, the two spatial indexes are combined to store the data in a 2D matrix:

[x, y, m] → [n, m], n ∈ [1; x × y] (3) 
D 3D [x×y×m] → D [n×m] (4) 
Finally, the application of the Beer-Lambert law to the matrix of data leads to consider the following bilinear problem:

D [n×m] = C [n×p] . S t [p×m] + E [n×m] (5) 
S is the matrix of spectra relative to each compound, C the matrix of concentrations and E the matrix of residual errors [START_REF] De Juan | Multivariate Curve Resolution (MCR). Solving the mixture analysis problem[END_REF].

Material and methods

Material

A construction material has been fabricated to illustrate the method developed in this work. A cylinder (diameter: 30 mm, height: 50 mm) of granular composite has been prepared with equal weights of ground silica and limestone filler. Their granular size distribution was comprised in the range [0.3; 300] µm, the carbonate filler being smaller than the siliceous one.

They were binded together with an ettringite binder, based on calcium aluminate cement and anhydrite. This granular composite with ettringite binder was elaborated according to Michel et al. [START_REF] Michel | Développement de composites à matrice minérale et à renfort textile[END_REF]. This material includes non stable ettringite hydrates. Carbonate groups may be incorporated over time, which drastically influences the composition and the properties of the material. The phases, which are formed in small amounts during this process, are poorly crystalline. Thus, their identification and characterization are challenging.

For FT-IR microscopy observations, a 4×4×4 mm 3 cube was extracted from the core of the cylindrical sample. One surface of the cube was resurfaced using a target surfacing system EM TCP (Leica microsystems, Germany) with a milling step of 1µm, followed by a polishing (Fig. 2.a). array sensor cooled with liquid nitrogen was used, leading to an effective pixel size of 6.25 µm × 6.25 µm. Its inferior limit of linearity corresponds to 5 % of the incident beam. Actual spatial resolutions of the set-ups (Table 1) were evaluated by the manufacturer using a USAF 1951 spatial resolution target. The stage moved by a (( x, y) plane) step of 25 µm. The scanned area was about 300 × 515 µm 2 leading to a map composed of 48 × 82 pixels.

FT-IR microscopy equipment and acquisition parameters

Spectra were collected with a spectral resolution of 8 cm -1 in the Infrared range between 717 and 4000 cm -1 , with 16 scans per spectrum. Omnic Picta T M software was used to acquire FT-IR maps.

Description of the resolution process

The resolution process developed in the following sections aims at obtaining relevant chemical maps describing the spatial distribution of each compound at the surface of the material.

A schematic view of the preprocessing steps is shown in figure 3. As detailed in section 2.3, once one FT-IR spectrum has been acquired per location, a 3D data matrix of dimensions [x × y × m] is built (Fig. 3, Step 1 ). Finally, the bilinear problem is described by equation ( 5):

D [n×m] = C [n×p] . S t [p×m] + E [n×m]
S is the matrix of spectra relative to each compound, C the matrix of concentrations and E the matrix of residual errors.

In our application, the number of compounds (and their related spectra) is a priori unknown leading to an under-determined system of equations. Thus, a first step is needed to determine the number of compounds and their relative spectra. The resolution of this step will be described in section 4.1. It permits to obtain an over-determined system, which can then be solved to find the maps of relative concentrations, as detailed in section 4.2.

In this work, all data preprocessing and resolution techniques were implemented in a home-made algorithm encoded with Matlab R2015a using Curve Fitting, Global Optimization and Statistics & Machine Learning toolboxes.

Initialization of the iterative process

• Data preprocessing Before solving the bilinear problem, outlier spectra had to be excluded from the resolution process in order to avoid chemically non-meaningful solutions. Spectra with values out of the linearity range of the MCT sensor (linearity threshold of 1.3 in absorbance) were therefore removed from the data (Fig. 3, Step 2 : deep blue). Spectra with a too low signal-to-noise ra- tio (highest absorbance value lower than 0.4 for this study) were also removed (Fig. 3, Step 3 : blue).

• Supervised Selection Method for Spectra (SSMS)

After the exclusion of outlier spectra by the previous data preprocessing stage, a classical approach would consist in two more steps: (i) determining of p, the number of compounds, and (ii) first guess for the matrix S.

However, the use of the s-ATR set-up induces artifacts (Table 1), resulting in biased spectra, which would not be identified using this classical approach.

Due to their singularity, these biased spectra would be assimilated to fictive compounds. This could lead to misjudge the number of compounds p and hence the matrix S of spectra.

To deal with this problem, the algorithm Supervised Selection Method for Spectra (SSMS) was developed to solve the whole issue at once: solving the two steps (i) and (ii) all together including the detection of s-ATR artifacts and the exclusion of related spectra.

SSMS uses SIMPLISMA, an iterative algorithm designed by Windig et Guilment [START_REF] Windig | Interactive self-modeling mixture analysis[END_REF] to select the most singular spectra out of a database. In SIM-PLISMA, at each iteration, the purest spectrum is selected as the one which forms the "most orthogonal" hypercube with the spectra already selected.

For more details about the SIMPLISMA algorithm, see [START_REF] Windig | Interactive self-modeling mixture analysis[END_REF][START_REF] Windig | Self-modeling mixture analysis of categorized pyrolysis mass spectral data with the SIM-PLISMA approach[END_REF][START_REF] Sánchez | Application of SIMPLISMA for the assessment of peak purity in liquid chromatography with diode array detection[END_REF].

SSMS consists in the following steps:

i First evaluation of the number of compounds P all based on a Principal Component Analysis (PCA). Then, a threshold has to be set to determine the number of compounds. In this work, the Kaiser's criterion (intensity of components higher than 1) was used to give a first estimation of P all [START_REF] Rencher | Principal Component Analysis[END_REF][START_REF] Wold | Principal component analysis[END_REF](Fig. 3, Step 4 : green). As a validation for this estimation of P all , a second criterion was based on the slope change in the plot of component intensity vs. component index (obtained from PCA). Segregation methods could also have been used but, as for PCA, they would also require a criterion or a threshold to be fixed.

Since spectra containing s-ATR artifacts are singular, they may be considered as pure spectra by SIMPLISMA and contained in P all .

ii Application of SIMPLISMA to select a number P 0 ≈ αP all of spectra out of the preprocessed database (i.e., initial database -outlier spectra) (Fig. 3, Step 5 : purple). The coefficient α ensures that the number P 0 of selected spectra is small enough to be easily and accurately checked by the operator, but large enough to contain at least one spectrum representative of each actual compound and of each unwanted spectrum.

iii Examination of the P 0 spectra, supervised selection and exclusion of the P 1 spectra presenting s-ATR artifacts among P 0 (Fig. 3, Step 6 : half light blue, half purple symbolizing the spectra first selected within P 0 (purple ones) and then excluded by the operator). At this stage, it is also possible to select and exclude spectra, which do not present any interest for a specific study (e.g., those of a mounting resin).

iv Back to the preprocessed data matrix (i.e., initial database -outlier spectra): all unwanted spectra, presenting a correlation coefficient > 0.95 with the aforementioned P 1 spectra are identified by statistical considerations in the preprocessed data matrix (i.e., initial database -outlier spectra) and excluded from the bilinear problem (Fig. 3, Step 7 : light blue). At this stage, a reduced matrix is obtained, which only contains relevant spectra with respect to the study.

v PCA on the reduced database (i.e., obtained after Step 7 ) to find p (Fig. 3, Step 8 : green).

vi Selection of the p most different spectra using SIMPLISMA on the remaining P 0 -P 1 spectra (Fig. 3, Step 9 ).

vii The p spectra selected previously form the first estimation of the matrix of spectra S ((Fig. 3, Step 10 : red, yellow and orange).

At this point, SSMS gives a first guess of p, the number of compounds, and of S their relative spectra. Like for every other statistical methods, the process of resolution has then to be applied with different numbers of compounds around this first estimation ( [...p -1, p, p + 1, ...]) (see [START_REF]Development of optical models and non-supervised methods to solve bilinear problems: application to vibrationnal mapping[END_REF]: chapter 2, section 3 for further details).

Multivariate Curve Resolution -Alternating Least Squares (MCR-ALS)

With a first estimation of the matrix S, it is now possible to solve the bilinear problem with a regular ALS method. Constraints and iterative process are detailed thereafter.

Constraints:

To obtain chemically acceptable solutions, different kinds of constraints can be taken into account:

Physical constraints Non-negativity of spectra and concentrations, normalization of spectra or sum of relative concentrations equal to one (closure) are quite easy to handle with an ALS process [START_REF] Tauler | Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution[END_REF][START_REF] De Juan | Multivariate Curve Resolution (MCR). Solving the mixture analysis problem[END_REF].

Model constraints When an evolutive process is studied with a known physicochemical model, specific constraints arising from this model can be applied [START_REF] Juan | Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications[END_REF].

Statistical constraints From statistical considerations, such as local rank analysis [START_REF] Juan | Local rank analysis for exploratory spectroscopic image analysis[END_REF][START_REF] Juan | Use of local rankbased spatial information for resolution of spectroscopic images[END_REF], the number of compounds can be imposed in the resolution process.

Spectra normalization and closure cannot be used together [START_REF] Tauler | Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution[END_REF]. In this study, spectra have been normalized ( D i D i ) before ALS process but closure was applied during ALS to remain in a linear resolution. In addition, tolerances k were included in all the constraints, leading to the following inequalities:

• All absorbance values in the range [0, L sensor ], 0 -1 ≤ S ij ≤ L sensor + 1 (6)
With L sensor the upper limit of linearity of the sensor (the upper limit in absorbance corresponds to the inferior limit in transmittance).

• Non-negativity of concentrations and local rank constraints,

0 -2 ≤ C ij ≤ C local rank,ij + 2 (7) 
Fixed Size Image Window-EFA algorithm (FSIW-EFA) [START_REF] Juan | Use of local rankbased spatial information for resolution of spectroscopic images[END_REF] was used to evaluate C local rank , which was a matrix only composed of 1 and 0 (absence of a compound was marked by a 0).

• Closure.

1

-3 ≤ p j=1 C ij ≤ 1 + 3 (8)
As the number of compounds was considered to be well-defined, the sum of relative concentrations was closed to one in all acquisitions.

Iterative process:

Under these constraints, the iterative process consisted in successive evaluations of C and S until convergence was achieved:

• Evaluation of C:

min C D -C.S t    0 -2 ≤ C ij ≤ C local rank,ij + 2 1 -3 ≤ p j=1 C ij ≤ 1 + 3 (9) 
• Evaluation of S:

min S D -C.S t 0 -1 S ij L sensor + 1 (10) 
• Evaluation of the quality of the reconstructed data (Lack of Fit):

LoF = D -C.S t 2 D 2 (11) 
In this study, the function lsqlin in Matlab R2015a was used to deal with the constrained linear least-squares problem. If spectra normalization had been chosen instead of imposing closure, the function fmincon could have been used to deal with non linear constraints.

Results and discussion

SSMS applied on a granular composite with an ettringite binder

The new methodology developed in this work is illustrated step by step on a s-ATR map (48 X 82 pixels, i.e. 3936 spectra) acquired on a mineral It has also led to exclude 1654 spectra (42.02% of the database) because of a too low signal to noise ratio (Fig. 3 step 3 , Fig. 4.g). Then, using a PCA study on the remaining spectra, P all was found to be equal to 4 (Fig. 3 step 4 ). To make sure that at least one spectrum for each actual compound and one spectrum for each possible artifact was selected, α was set to 4. Hence, using SIMPLISMA, P 0 = 16 spectra have been selected in the database (Fig. 3 step 5 ). Thus, with α equal 4 (same order of magnitude as P all ), it became possible for the operator to accurately examine each of the P 0 = 16 spectra out of the 3936 initial spectra. As a result, P 1 = 1 spectrum presenting s-ATR artifacts has been identified by the operator among the P 0 spectra (Fig. 3 step 6 , Fig. 5.a). 54 spectra (1.37% of the database) were correlated to the previous spectrum and were therefore excluded from the bilinear problem (Fig. 3 step 7 , Fig. 4.f). Then, a PCA was used to find the number of compounds on the reduced database. Similarly to the previous estimation, p = 4 compounds were found (Fig. 3 step 8 ). Thus, the number of compounds defined before and after SSMS (i.e., before and after excluding the irrelevant spectra from the database) was the same (Fig. 6.a). In this case, SSMS led to exclude only 1.37% of the database, which explains why it did not impact on the number of compounds found by a PCA. However, if SSMS had been used to remove more spectra (e.g., all the spectra corresponding to a mounting resin), the number of compounds found after SSMS In an IR spectrum, each band is representative of the vibration of a covalent bond within its environment in the material. Thus, the four compounds could be clearly identified thanks to their characteristic bands, well described in literature (Table 2). The first compound was identified as silica (Fig. 7.a).

The second compound was identified as crystalline calcium carbonate with the presence around 1400 cm -1 and around 740 cm -1 of characteristic vibration bands of carbonate group (Fig. 7.b). The combination of compounds 1 and 2 formed the granular structure. The third compound was associated to the ettringite binder thanks to the OH bonds around 3630 cm -1 and to the sulfate bonds at 1088 cm -1 [START_REF] Olphen | Data Handbook for Clay Materials and Other Nonmetallic Minerals[END_REF]. The small shoulder at 1020 cm -1 (Fig. 7.c) may be assigned to Al -O bonds, due to the presence of gibbsite in the material.

Gibbsite is a classical phase formed simultaneously with ettringite. Due to its poor crystallinity, very few techniques are able to track gibbsite. This highlights the important role played by infrared analysis in phase identification. Compound 4 was identified as ettringite containing carbonate groups (Fig.

7.d).

The combination of compounds 3 and 4 formed the binder phase.

From the matrix C, chemical mapping of each compound may also be displayed (Fig. 8). The maps highlight the presence of different areas: zones where one compound was highly predominant (relative concentration close to 1, red to brown colours), zones where several compounds were present (green to yellow colours) and zones where spectra have been excluded from the resolution by SSMS (grey).

The main part of these grey zones, blue areas in Fig. 4.g, corresponds to spectra with a too low signal to noise ratio. This was due to an insufficient contact between the s-ATR crystal and the sample. This may have arisen from an insufficient planarity of the sample surface, from the sample roughness (including open pores) or from the presence of phases with different mechanical properties. In addition, the possible creep of the sample during long acquisitions should not completely be excluded. Indeed, as summarized in Table 1, the use of a s-ATR crystal requires a very flat and even surface.

Surprisingly, the remaining grey areas, deep and light blue in Fig. 4, are located in the middle of closed zones where one compound was highly predominant. Comparing Fig. 4 and Fig. 8, spectra in these areas were excluded from the analysis for two different reasons:

• absorbance values out of the linearity range of the sensor (Fig. 4.h,

6.06% of the database)

A high absorbance, thus a low reflectance (A ∼ 1/R) implies that there was an insufficient number of photons hitting the sensor during the acquisition.

This occurred in zones assigned to granular silica (compound 1). For such absorbent materials, a higher number of scans would permit to reduce the signal to noise ratio; a longer duration of acquisition (per scan) would permit to collect more photons and perform a reliable measurement.

• occurrence of s-ATR artifacts (Fig. 4.f, 1.37% of the database) Spectra assigned to these artifacts were only found right in the middle of zones where carbonate ettringite (compound 4) was predominant. Looking at one of the spectra excluded from the resolution process by SSMS (Fig. 5.a)

and at the spectrum corresponding to carbonate ettringite (compound 4, Fig. 7.d), the unique band of the first one (at 786 cm -1 ) matches perfectly with the main band of the latter (Si -O -Si vibration).

However, all the values displayed by the spectrum presented in Fig. 5.a are: (i)

within the linearity range of the sensor and (ii) above the defined threshold for the signal-to-noise ratio (higher absorbance value > 0.4). This implies that (i) the acquisition parameters (duration and scans number) were adapted and (ii) the local contact between the s-ATR crystal and the material was properly done. Therefore, the relative intensities displayed by the s-ATR artifacts spectrum can be considered as correct: there is no other hidden band in the spectrum (for instance due to a scale effect). Thus, it was considered that this spectrum really contained only one band, which is physically non possible for any material. Finally, it was hard to determine the physical origin of such s-ATR artifacts spectra. One explanation could arise from the occurrence of distortions in spectra acquired in reflection modes due to Mie scattering effect as shown by Bassan et al. [START_REF] Bassan | Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells[END_REF]. Another comprehensive study on distortion effects occuring in reflection [START_REF]Development of optical models and non-supervised methods to solve bilinear problems: application to vibrationnal mapping[END_REF] showed that they also may stem from material dispersion.

Implications of the use of SSMS and s-ATR acquisitions

All in all, a new supervised method has been developed in this work:

SSMS combined with ALS. This method permitted to handle a set of 3936 FT-IR spectra to obtain a relevant chemical mapping of compounds present in an ettringite binder.

In this work, a PCA on the hyperspectral database led to the same number of compounds with or without the exclusion of the s-ATR artifacts spectra thanks to SSMS. But, without SSMS, the 4 selected spectra and their related maps had no chemical meaning. Moreover, as already discussed, SSMS can also be used to exclude spectra of no interest for a specific study. In this case, the number of compounds found by a PCA would be changed after SSMS.

In SSMS, thresholds and a correlation coefficient have to be adjusted for each study. Since the operator has to intervene in the process, SSMS requires the operator to have enough hindsight and expertise for his study. However, such a requirement holds true for all statistical methods applied on physical problems.

On the other hand, the main interest of SSMS lies precisely in the fact that it is based on statistical considerations. Thus, SSMS can be used to identify all kinds of artifacts in all kinds of database without any restriction on material nature and characterization mean; more generally, SSMS may be used for all types of problems with few adaptations.

The s-ATR crystal is an interesting set-up for the acquisition of valuable data to map the relative concentrations of compounds in a material. Thanks to this set-up, no relative motion occurred between the s-ATR crystal and the sample all along the acquisition: cross-contamination and successive stamps, experienced in previous studies on materials with similar properties [START_REF] Bonnal | Towards chemical imaging: Fourier transform infrared mapping on organo-mineral materials[END_REF], were avoided here. However, the s-ATR crystal left one unique imprint of around 500 µm in diameter in the sample (Fig. 2.b). Noteworthy, this mark could be used to easily find the imaged zone for complementary characterizations (such as SEM-EDX).

In addition, and as discussed in the previous section, some of the acquired spectra presented s-ATR artifacts, which remain unexplained until now.

As highlighted in Table 1, using the s-ATR set-up also requires the sample to have a very low roughness and a very flat surface for the contact between the crystal and the sample to be perfect on a relatively large surface area (around 1 mm 2 ). This requires a meticulous preparation and polishing of the surface of the sample prior to analysis. On this aspect, one very interesting feature of the SSMS approach is illustrated on the granular composite with ettringite binder in Fig. 4: this new method enables to highlight zones of the sample, where the surface state has to be improved (Fig. 4.g), as well as zones where the acquisition parameters have to be optimized (Fig. 4.h) to map more completely the sample. In other words, SSMS proved to be very efficient to identify issues in specific zones: in addition to permit to obtain relevant chemical maps of a material, SSMS can also be used as a powerful tool to adapt one's method (sample preparation, acquisition parameters) for the specific zones one wants to map.

Conclusions

A new supervised method, called SSMS, has been developed to deal with the analysis of hyperspectral data.

Experimental acquisitions may lead to unexpected biased information, which can have different origins, such as the acquisition technique, the environment, the analyzed sample. To obtain relevant information from the database, it is fundamental to be able to exclude all of these biased data without impacting on the informative ones. This selection is easily carried out with classical filtering methods when the origin and the characteristics of the biased data are known. SSMS is a powerful tool to handle this problem in the general case and exclude biased data when all their sources cannot be predicted.

Moreover, SSMS is a preprocessing method, and thus can be coupled with a reliable physical model to obtain quantitative chemical information. In addition, the combined use of SSMS and of a physical model permits to identify the sources of the biased data. Thus, it becomes possible to improve the experimental method (sample preparation, acquisition parameters...).

All steps involved in SSMS are described and justified in this article. The interest and the gain provided by SSMS is illustrated on the analysis of data acquired with a FT-IR microscope using a disregarded set-up (static-ATR).

Relevant chemical maps of a complex inorganic material are obtained coupling FT-IR microscopy data with the Beer Lambert law. Maps are analyzed, sources of biased data are identified thanks to SSMS and discussed.

Finally, such a supervised preprocessing opens a new route to obtain more reliable quantitative information and to improve the experimental protocols.
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 1 Figure 1: Schematic view of FT-IR microscopy set-ups: a) Specular Reflection, b) ATR Crystal and c) Static ATR.

  plied on the crystal to ensure a neat material/crystal interface. This induces stresses at the interface (Fig.1.b).
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Figure 2 :

 2 Figure 2: Optical micrography of the granular composite with ettringite binder: a) surface state before acquisition, and b) s-ATR crystal imprint in the material after s-ATR acquisition.

A

  FT-IR microscope Nicolet T M iN 10 from ThermoFisher Scientific (USA) has been used. The only set-up used in this study was the static-ATR, using a Germanium crystal (refractive index: 4, top diameter: 9.525 mm, bottom diameter: 0.350 mm). The aperture was 100 µm × 100 µm. The focus of the beam due to combined use of the Cassegrain reflector and of the Ge crystal led to a projected size of the IR beam of 25 µm × 25 µm. A Mercury Cadmium Telluride (MCT)

Figure 3 :

 3 Figure 3: Schematic view of data preprocessing (steps 1 to 3) and initialization with SSMS (steps 4 to 10). x, y, m and p are the numbers of acquisitions in the two spatial directions ( x, y), the number of wavenumbers and the number of compounds respectively. Step numbers and color code defined here are recalled in the text to explain the whole process. The figure shows how irrelevant spectra (in color) are excluded from the database, step after step. The color code is consistent with colors used in Fig.4 & Fig. 5.

Figure 4 :

 4 Figure 4: Spatial distribution after SSMS method of spectra assigned to: a) compound 1 in yellow, b) compound 2 in orange, c) compound 3 in red, d) compound 4 in brown, e) a mixture of several compounds in green, f) s-ATR artifacts in light blue. Spectra with: g) a too low signal to noise ratio and h) values above linearity range are represented in and deep blue respectively. A pixel is assigned to one of the previous items if their spectra match (correlation coefficient > 0.95). The projected pixel size is about 6.25 × 6.25 µm 2 per pixel, the map is composed of 48 × 82 pixels.

Figure 5 :

 5 Figure 5: Infrared spectra of the granular composite with s-ATR set-up. a) Spectrum identified by the operator among the P 0 spectra as corresponding to s-ATR artifacts (step 6; in this example only P 1 = 1 spectrum was excluded from the P 0 spectra) and b) first estimation of the matrix S obtained by SSMS prior to MCR-ALS, as schemed in Fig.3, Step 10: compound 1 in yellow, compound 2 in orange, compound 3 in red and compound 4 in brown.21
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 6 Figure 6: a) Intensities of the first components (PCA) before and after SSMS b) evolution of the Lack of Fit criterion vs. ALS iteration.

Figure 7 :

 7 Figure 7: Normalized spectra obtained after SSMS coupled with ALS resolution: a) compound 1, b) compound 2, c) compound 3, and d) compound 4.

Figure 8 :

 8 Figure 8: Maps of relative concentrations obtained by a s-ATR acquisition coupled with SSMS-ALS resolution for the granular composite with an ettringite binder: a) compound 1 assigned to silica, b) compound 2 -calcium carbonate, c) compound 3 -silicate ettringite + gibbsite, and d) compound 4 -carbonated ettringite. Analysed surface area was 300 × 515 µm 2 . contourf function on Matlab R2015a has been used to obtain smoothed representations in the mapping.
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 1 Summary of FT-IR microscopy set-ups to obtain FT-IR maps in reflection
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would have been different than the one found before. In addition, more than the determined number of compounds, SSMS brought a real benefit in the determining of the spectra of S: without SSMS, the spectrum of the second compound obtained with SIMPLISMA was an artifact spectrum (data not shown); whereas using SSMS, the first four spectra corresponding to the p = 4 compounds were all chemically meaningful (Fig. 5.b).

To save time, SIMPLISMA was performed on the P 0 -P 1 = 15 purest spectra rather than on the reduced database (Fig. 3 step 9 ). Finally, the matrix S was built (Fig. 3 In a first approximation, the spatial distribution of the four compounds was found with a correlation coefficient higher than 0.95 (Fig. 4.a,.b,.c & .d).

Chemical maps: computation and analysis

The linearity limit of the MCT sensor has been taken equal to L sensor = 1.3 in absorbance in the ALS resolution. To release the constraints, 1 2 and 3 were fixed equal to 10 -4 . The evolution of the iterative process is illustrated by the Lack of Fit criterion. As shown in Fig. 6.b, convergence of the iterative process was achieved after 13 iterations. During the convergence, spectra selected by SSMS evolved (band shifts, band intensities, smoothing).

After the 13 th iteration, only non-significant modifications occurred.

Once the bilinear problem was solved, matrices S and C were obtained.

The matrix S contained spectra corresponding to the p = 4 compounds (Fig. 7).