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We present a full characterization of Hopf bifurcations ruling self-pulsing of spatially varying
fields in a Bragg grating with Kerr nonlinear response. Our analysis permits, inside the stopband,
to distinguish between the fully unstable region and the region where stable high transmission
mediated by localized waves is achievable dynamically. Outside the stop-band, it reveals a complex
behavior where islands of stability are interspersed between regions of self-pulsing and bistability.
Beam propagation simulations validate our linear stability analysis and illustrate the dynamics.

I. INTRODUCTION

Bragg gratings are key elements in several fiber-optics
and waveguide applications. The nonlinear response of
the costituent materials induces, at high intensities, a
whole range of intriguing behaviors that are also charac-
teristics of more complicated nonlinear photonics crystals
and spatially periodic structures working at high inten-
sities [1, 2]. In particular when the frequency lies inside
(or in the proximity of) one of the bangaps that open
up around Bragg resonances, the Bragg grating exhibits
different form of competing instabilities encompassing
bistability [3] or limiting (frustrated bistability) [4, 5],
ordered and disordered self-pulsing (SP) [6–10], modula-
tional instability [11, 12], as well as the possibility of lo-
calizing the e.m. field in the form of dispersionless pulses,
namely gap solitons [13, 14] (see also Refs. [15, 16] and
references therein), which allows for slow-light applica-
tions [17] and enable spatial chaos to develop under the
action of perturbation that breaks (stationary) integra-
bility [18].

In this work we focus our attention on the temporal
stability of generic spatial-dependent stationary solutions
in a finite grating, with specific emphasis on the onset of
SP and its competition with bistability. The mechanism
that underlies SP is the occurrence of a Hopf bifurcation
that destabilizes a stationary solution in favour of a stable
(in the supercritical case) limit cycle. This is quite com-
mon in the nonlinear dynamics of structures that involve
feedback either in local form (due to an external mirror or
a resonator structure) or distributed (counterpropagating
waves coupled linearly or nonlinearly) [19–22]. While SP
has been observed in the former case [20, 21], to the best
of our knowledge, no clear observations have been re-
ported in purely passive distributed feedback structures
with fast nonlinearities structures (preliminar evidence
have been reported in Ref. [23] making use of slow non-
linearities). Therefore it is still of paramount importance
to characterize the phenomenon theoretically. Previous
results based on coupled-mode theory [6–8] as well as

FDTD simulations [10] confirm indeed that, in a Bragg
grating, SP must be expected in a wide range of param-
eter values. However, its thorough investigation in the
parameter space is still lacking. The aim of this paper
is to present a systematic study of SP that allows us to
draw a complete stability map, i.e. to determine power
and detuning values that lead to the onset of observ-
able SP (versus stable or bistable behaviour) under most
common illumination conditions, and to evaluate the fre-
quency of the limit cycle near threshold. Our analysis al-
lows us to establish the region of the gap where localized
field solutions (reminiscent of stationary gap solitons) are
stable and can be observed by exploiting hysteresis cy-
cles [7], which might necessarily involve, depending on
the parameters, spontaneous damping of SP oscillations.
For negative out-gap detunings the same stability map
reveals an extremely rich behavior where small islands
of stability can emerge in between unstable regions. In
this region, our approach addresses for the first time the
problem of the temporal stability of those stationary evo-
lutions that turn out to be spatially unstable correspond-
ing in phase-space to separatrix crossing [4]. In this case
we show that limiting action can be temporally stable
for large variations of input power. We validate all the
results of the stability analysis with time-dependent sim-
ulations of the CMT model and the stationary field pat-
tern by means of transfer matrix approach.

II. THE TIME-DEPENDENT MODEL

We consider a uniform (without any tapering or
apodization) Bragg grating or layered dielectric medium
characterized by a periodic index modulation ∆n(Z)
with period Λ = 2π/βg and grating wavenumber βg. At
nonlinear level the medium has a nonlinear Kerr coeffi-
cient n2I (∆n = n2II, with I the field intensity). Around
the m-th order Bragg pulsation ωBm, the evolution of
the forward and backward complex envelopes u±(z, t) is
governed by the standard non-stationary coupled-mode
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equations [15, 16], that we write conveniently in the fol-
lowing dimensionless form
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where we define the following normalized detuning and
coupling parameters

δβ =

(

β(ω) −m
βg

2

)

L, κ = ΓmL = k0∆npcmL. (2)

where k0 = 2π/λ0 = ω/c, β(ω) is the propagation

constant of the mode, β(ωBm) = m
βg

2 , L is the grat-
ing length, and we have assumed an index corrugation
∆n(Z) = ∆npf(z), where ∆np = nmax − nmin is the
peak index contrast and we have assumed that only terms
s = ±m in the Fourier expansion of the periodic function
f(z) =

∑

s cs exp(isβgZ), max|f(z)| = 1, are assumed to
be effective (i.e., resonant) in the spirit of the rotating-
wave approximation. For instance in a square-wave with
50 % duty cycle, we find at first-order c1 = 1/π, and
Γ1 = k0∆np/π ≃ 2∆np/λB1, where λB1 = 2Λn0 is the
first-order Bragg wavelength in vacuum. Positive (neg-
ative) detunings correspond to blue(red)-shifted wave-
lengths with respect to Bragg wavelength, with the stop-
band (gap) given by |δβ| < κ.

From the solutions of Eqs. (1) we calculate the total
normalized electric field envelope u = u(z, t) as follows
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2
z
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(3)
Though the use of dimensionless quantities is convenient
for the following analysis, it is useful to recall the link
with real-world variables: z = Z/L and t = T/Ts are
distance and time in units of grating length L and transit
time Ts = L/Vgm, where Vgm = dβ/dω−1 ≃ c/n0 is the
group-velocity calculated at m-th order Bragg frequency.
Furthermore the real-world powers of the counterprop-
agating beams as well as the total power are given by
γL|u±|2 and γL|u|2, respectively, where γ = k0n2I/Aeff

is the overall nonlinear coefficient in [m−1 W−1], Aeff

being the effective area of the mode (for plane waves in
a bulk layered medium [24], γ = k0n2I , and γL|u|2 or
γL|u±|2 are intensities). Although we consider only fo-
cusing nonlinearities inducing a red-shift of the stopband,
the conclusions of the paper hold true also for defocusing
nonlinearities when the sign of the detuning is reversed
(δβ → −δβ).

Stationary solutions of Eqs. (1) describe the spatial
evolution of the two interacting fields in the interval z =
[0, zL = 1], subject to general boundary conditions (note
that the absolute phase of u+(z = 0) can be set to zero
without loss of generality due to invariance of Eqs. (1)

under the transformation u± → u± exp(iψ))

u+(z = 0) =
√

P+
in ; , u−(zL = 1) =

√

P−
in exp(iφ0),

(4)
Eqs. (1) with ∂/∂t = 0 constitute a well-defined ODE
boundary value problem, which can be solved numeri-
cally. by means of, e.g. shooting method.

III. THE LINEAR STABILITY ANALYSIS

In the non-stationary case, time-dependent perturba-
tions can grow on top of the (stationary) spatially varying
fields, thus destabilizing the device. A typical scenario, in
systems with feedback, involves the occurence of a Hopf
bifurcation which is responsible for SP. The latter can be
characterized by standard stability analysis starting from
perturbed steady-state solutions of the kind

u±(z, t) = a± (z) + p± (z, t) , (5)

where the stationary solutions a± obey Eqs. (1) with
∂t = 0, or explicitly

∓i∂a±
∂z

= δβ a± + κa∓ +
(

|a±|2 + 2 |a∓|2
)

a±, (6)

whereas the perturbations p± obey the following lin-
earized system, obtained by inserting Eq. (5) in Eqs.
(1), and dropping nonlinear terms in p± (in the standard
hypothesis |p±| ≪ |a±|)

∂p±
∂t

+
∂p±
∂z

= iδβp± + iκp∓ + i
(

a2
±p± + 2|a±|2p±

)

+

2i
(

a∓a
∗
±p± + a∓a±p

∗
∓ + a∗∓a±p∓

)

. (7)

Even if Eqs. (7) are linear, they are still partial differ-
ential equations and stability properties cannot be eas-
ily assessed. However, following the approach outlined
in Ref. [22], we reduce them to N ordinary differen-
tial equations (ODEs) by discretizing the interval [0, zL]
with N equally spaced points, obtaining a uniform grid

zj, j = 1, . . . , N , with step-size h =
zL

N − 1
. By doing so,

and by splitting complex quantities into real/imaginary
parts as p± = pr

± + ipi
± and a± = ar

± + iai
± and finally

approximating spatial derivatives with finite differences,
we cast Eqs. (7) in the following form

ṗ(t) = M p (t) , (8)

where the dot stand for d/dt, M = M
[

P±
in, φ0, δβ, κ

]

is a 4N × 4N matrix that depends on both the
parameters and stationary boundary values (see Ap-
pendix A), and the real perturbation 4N vector is

p(t) =
[

pr
+(t), pi

+(t), pr
−(t), pi

−(t)
]T

with pr,i
± (t) =

[

pr,i
± (z1, t) , . . . , p

r,i
± (zN , t)

]T

.

Instability occurs when one (or more) eigenvalue of
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Figure 1: Hopf bifurcation: the leading pair of complex con-
jugate eigenvalues λ± = λr ± iλi crosses the plane λr = 0
as the control parameter P is increased. Here δβ = 1.5 and
κ = 2.5.

the matrix M crosses the imaginary axis entering the
right-half complex plane, thereby entailing exponential
growth of the perturbation. A Hopf bifurcation oc-
curs whenever a pair of complex conjugate eigenvalues
λ± = λr ± iλi cross into the right-half plane λr > 0.
This corresponds to the stationary solution undergoing
SP or self-oscillation with (normalized) temporal period

tSP =
2π

λi

, (9)

above the marginal condition (instability threshold)
determined by the condition λr = 0.

In principle the onset of SP can be characterized
by studying the bifurcations of Eq. (8), i.e. how eigen-
values move in the five dimensional parameter space
P, P−, φ0, δβ, κ. Although we find that, with external
parameters δβ, κ fixed, the Hopf bifurcation occurs
under general illumination conditions (P±

in, φ0 6= 0),
its observability in a real experiment would require a
coherent control of the relative phase of counterpropa-
gating beams, which introduces inessential complication.
Viceversa the simplest experimental arrangement in-
volves unidirectional illumination, i.e. P−

in = 0 for which
the dynamics is phase-insensitive (φ0 plays no longer
any role). Therefore, in view of discussing the most
favourable conditions, we restrict ourselves to discuss
this case.

IV. RESULTS (UNI-DIRECTIONAL
ILLUMINATION)

In the case of uni-directional forward illumination,
the evolutions depends only on two external parameters,
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Figure 2: (a) Temporal evolution of transmitted (Pt) and re-
flected (Pr) powers of a SP-unstable solution, for δβ = 1, κ =
2.5, P = 0.7); (b) phase-space portrait.

namely δβ, κ, and input power P+
in = Pin (we drop su-

perscript + henceforth). However, because of bistabil-
ity, neither the transmission nor the reflection are single-
value functions of Pin. Therefore it is more convenient
to use as a parameter the power flux

P = |a+(z)|2 − |a−(z)|2 , (10)

which is a steady-state invariant of Eqs. (6). In the
case of uni-directional illumination |a−(zL)|2 = 0 and

so P = |a+(zL)|2 represents the steady-state transmit-
ted power. By tracking the leading (largest real part)
eigenvalues of Eq. 8 against variation of P (with fixed
κ and δβ), our algorithm yields a clear picture of the
Hopf bifurcation, as exemplified in Fig. 1 for δβ = 1,
κ = 2.5: in this case a leading pair of complex conjugate
eigenvalues bifurcate at P = PHopf ≃ 0.8. The result of
the linear stability analysis can be checked by integrating
numerically Eqs. (1) and looking at measurable quanti-
ties, namely the temporal behavior of transmitted power
Pt = |u+(0, t)|2 and reflected power Pr = |u−(0, t)|2.
Slightly above the threshold predicted by the stability
analysis we find that transmitted and reflected powers
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Figure 3: (a) Phase space evolution for initial conditions sit-
ting on the negative slope branch of the bistable response
(here δβ = 1, κ = 2.5, P = 0.25). (b) Corresponding tempo-
ral evolutions of transmitted and reflected powers.

exhibit regular out of phase oscillations as shown in Fig.
2(a). Fourier transforming these temporal series we ob-
tain a normalized period tSP = 5.7 (i.e., 5.7Ts in real-
world units) in good agreement with the linear estimate
2π/λi = 5.6. Close to the bifurcation point we always
find the representative point of the nonlinear mixing to
evolve, after a short transient, along a limit cycle [see
Fig. 2(b)], thus proving the supercritical character of
the bifurcation. We find that, only far from threshold,
the limit cycle destabilizes [6, 7] leading eventually to
temporal chaos, a regime that we will not consider any
further here.

However, for given values of the parameters, our lin-
earized system (8) yields also real positive eigenvalues.
This is found to be always the case when the steady-state
lies on the negative-slope branch of the bistable response.
In this case the system destabilizes without undergoing
to self-oscillation. As illustrated in the example of Fig. 3
corresponding to δβ = 1, κ = 2.5, P = 0.25, the system
evolves asymptotically towards a new steady-state char-
acterized by different spatial profiles of the fields. In this
case the final status is found to be on the (stable) lower
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BRANCH
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Figure 4: Stability map in the parameter plane δβ−P (detun-
ing - transmitted power), for κ = 2.5 (gap edges δβ = ±2.5
shown as vertical lines). The white and hatched areas cor-
respond to temporally stable and unstable regions, respec-
tively. Merging of bistable and SP domains occuring at criti-
cal detuning δβc is highlighted by a square mark. The curve
P = Pc(δβ) (solid, red) gives basically the level of the trans-
mission plateau for negative out-gap detunings (see text).

branch of the bistable response.
We are able to discriminate between temporally stable

behaviors and the two aforementioned competing mech-
anisms of instability by drawing a map of the leading
eigenvalues in the control parameter plane δβ − P , with
fixed coupling coefficient κ. A typical result obtained
for κ = 2.5 (other values of the coupling parameter give
qualitatively similar results) is shown in Fig. 4. In the
following we discuss separately the three regions corre-
sponding to in-gap (|δβ| < κ) and positive or negative
out-gap detunings.

A. In-gap detuning

For detunings within the gap (|δβ| < κ), the linear sta-
bility analysis yields a region of stability (all eigenvalues
have negative real part) at low values of P , followed by
a region of real unstable eigenvalues (intermediate values
of P ), and a region of SP (complex conjugate eigenval-
ues, large values of P ). Importantly, our analysis shows
that there is a critical value of detuning (δβc ∼ −0.4
in Fig. 4, highlighted by a square) below which the do-
main of bistability and SP merge. In this regime, i.e. for
δβ < δβc, only the lower branch of the bistable response
is temporally stable, and no stable dynamics or nonlinear
switching to the upper branch (including transparency)
can ever be observed.

Interestingly enough, however, for positive detunings a
window of stability appears, separating bistability from
SP domains. This means that a portion of the upper
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Figure 5: (a) Steady-state input-output characteristic P vs.
Pin for grating parameters δβ = 1.75 and κ = 2.5. The
solid line indicates stable portions, whereas unstable por-
tions are dashed (SP, complex conjugate eigenvalues), or dot-
dashed (bistability, real eigenvalues). (b) Real (solid line)
and imaginary (dashed line) part of the leading eigenvalues
vs. P . Points A,B,C denote bifurcation points where eigen-
values with positive real parts appear (A,C) or disappear (B).
Pin(1, 2) are excitation levels employed in the simulations of
Fig. 6.

branch with positive slope turns out to be stable, as il-
lustrated in the steady state response reported in Fig.
5(a). The results of the linear stability analysis, shown
in Fig. 5(b), indicate that the two knees (points A and
B) of the response have one to one correspondence with
the bifurcation points where the leading real eigenvalue
appears and disappears, respectively. The stable portion
of the response corresponds to values of P in between the
points B and C, where all eigenvalues have negative real
part. The point C denotes the Hopf bifurcation point
above which SP is expected (at threshold tSP ∼ 4).

When the window of stability includes the trans-
parency point on the upper branch of the steady-state
(i.e., P = Pin), a localized field reminiscent of a gap soli-
ton can be excited dynamically by exploiting hysteresis
and spontaneous damping of SP oscillations that occurs

when the device is driven with Pin > Pin(C). An ex-
ample of the underlying temporal dynamics is reported
in Fig. 6. We first raise the input power by following
the simple exponential law shown by the dashed curve
in Fig. 6(a) up to the level Pin = Pin(1) lying on the
upper branch above the Hopf bifurcation point C [see in
Fig. 5(a)]. The input power is initially strongly reflected,
until Pin reaches the first knee (point A) causing the re-
flected power to drop and the transmitted power to in-
crease abruptly. However, immediately after the switch-
ing point the onset of SP makes stable high-amplitude
oscillations visible in both reflection [Fig. 6(a)] and trans-
mission [Fig. 6(b)]. From this regime, we stabilize the
system on the upper branch by decreasing Pin up to the
transparency level Pin(2). In fact, when crossing the bi-
furcation point C, both the reflected and tramsmitted
powers settle down to steady-state levels, while the field
is strongly localized (as a strict gap soliton, except for the
tails that do not tend asymptotically to zero), as shown
in Fig. 6(c). Decreasing further Pin up to the knee point
B, the field remains stable and localized, though in a less
transmissive state. Decreasing further Pin leads to down-
switching (not shown). We point out that, when working
closer to the critical detuning δβc, the stable portion of
the upper branch shrinks until its location stands entirely
on the left of the knee point A. In this case up-switching
involves necessarily SP regardless of the input power level
used to drive the up-switching. Moreover, our analysis
permits to conclude that fields with stronger properties
of localization which are obtained when operating close
to the red edge of the gap, cannot be observed because
the device is fully unstable.

B. Positive out-gap detunings

This is the least interesting region because the linear
transmissive behavior of the grating is marginally altered
by the nonlinear response, which tends to detune further
the structure from resonance. As a consequence, bista-
bility disappears, and SP occurs only at very large values
of P , in turn requiring very high input powers.

C. Negative out-gap detunings

The region of large (out-gap) negative detunings is
interesting because our intuition tells us that, at suffi-
ciently high power (the larger the detuning, the higher
the power), the red-shift of the stopband can alter lin-
ear transmissive properties, making the device reflective
(somehow the opposite of what happens when operating
inside the stopband). Although this picture is basically
correct, the nonlinear switching to the reflective state is
less simple than that and turns out to be mediated by
the occurence of spatial instabilities. While we present a
detailed discussion of the latter phenomenon in terms of
phase-space analysis in Appendix B, here it is sufficient to
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Figure 6: (a) Transmitted power Pt(t) vs. time t (solid line) in
response to the excitation Pin(t) (dashed line); (b) Reflected
power Pr(t), with inset showing a detail of the damped oscil-
lations; (c-d) Spatial profiles of the total power |u(z)|2 after
reaching steady-state at transparency point [(c), t = 600] and
at knee point B [(d), t = 1000] Parameters are as in Fig. 5.

recall briefly how spatial instabilities affect the behavior
of the device. Since the detuning is out-gap, for relatively
low input powers the device is substantially transparent
and the fields experience small spatial oscillations. In this
regime, only tiny bistability cycles can take place caused
by fact that the spatial period of the small oscillations
increases with power. However, when the input power
reaches a critical value (corresponding to a given critical
value of output power P = Pc), the period tends to in-
finity and the evolution becomes asymptotic. Very large
increase of input power above this value results in very

small changes of transmitted power above the value Pc,
the power being mainly reflected. Therefore the output
power remains nearly clamped to a transmitted plateau
P ∼ Pc and the device acts as a limiter in transmission, as
shown by the typical input-output response reported in
Fig. 7(a). While the extension of the plateau depends on
the coupling strength (it extends to higher input powers
with κ increasing) the clamping power Pc depends only
on the detuning (see Appendix B for its calculation). Im-
portantly, we find that the curve Pc = Pc(δβ) falls in the
temporally stable region of the stability map in Fig. 4.
The map suggests indeed that, for relatively small de-
tunings (|δβ| < 6), the transmission plateau (which cor-
responds to P slightly above Pc, in turn corresponding
to large increase of input powers) is entirely contained in
the stable region, and hence limiting action is temporally
stable and hence fully observable. The system destabi-
lizes only at values of P entering the bistable domain in
Fig. 4 in turn correponding to the wide negative slope
branch of the bistable response in Fig. 7(a). Finally,
the higher branches with positive slope are found to be
all SP unstable. Conversely, the situation is more in-
triguing for large detunings (|δβ| > 6), because the curve
Pc = Pc(δβ) is still in the stable region, but interspersed
between a small island of bistability and a tiny portion
(labeled SP in Fig. 4) embedded in the fully unstable re-
gion. While the island can be understood to correspond
to the negative slope branch of the small bistable cycle
that precedes the plateau in Fig. 7(a), temporal stabil-
ity on the endmost portion of the transmission plateau
[dashed part in Fig. 7(a)] is lost via SP, owing to the tiny
region that precedes the large bistable domain in Fig. 4.

These results are validated by integration of Eqs. (1).
Fig. 7(b) shows the temporal evolution of transmit-
ted and reflected powers when the input power is raised
monotonically up to the peak level Pin(1) right below the
onset of SP. As shown the curves reach the steady-state
in a quasi-mononotonic way (small features at early times
t ≃ 20 are due to the small bistability cycle present in
the transparent region, and discussed above]. Viceversa,
when the peak is set to Pin(2) slightly above threshold,
the system clearly exhibits large-scale temporal oscilla-
tions characteristic of SP.

Finally, one can naturally wonder whether the spatial
instabilities and the underlying dynamics can be an arti-
fact of the coupled-mode theory, whose validity is known
to be limited to shallow and weakly nonlinear gratings.
In order to show that this is not so, we have employed
the transfer matrix method (TMM) [10, 26, 27]. Even
considering an index contrast as high as ∆np = 0.2 (all
other parameters are such to give the same normalized
parameters of the couped-mode theory), the steady-state
response given by the latter method shows a transmissive
plateau, which presents only a small quantitative discrep-
ancy, mainly in terms of estimating the clamping power
Pc, with the result of the coupled-mode theory (see Fig.
8). This descrepancy vanishes in the limit of shallow
gratings.
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Figure 7: (a) Steady-state transmission characteristic: P vs.
Pin for δβ = −7, κ = 2.5. (b) Stable temporal evolution of Pt

and Pr corresponding to an input power raised monotonically
up to the value Pin(1) in the stable domain. (c) Onset of SP
when the input power is raised up to the value Pin(2) in the
unstable domain.

V. CONCLUSIONS

In summary, we have presented a systematic analysis of
SP instabilities in a Bragg grating. We have found that,
inside the stopband, the upper branch of the bistable re-
sponse can be partially stable above a critical detuning.
When the stable portion includes the transparency point,
localized fields reminescent of gap solitons can be stably
excited by means of hysteresis cycles that might involve
spontaneous damping of SP oscillations. We have also
assessed the temporal stability of the large transmission
plateau (limiting caused by the onset of spatial instabil-
ities) in the region of out-gap negative detunings.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

P
in

P

Figure 8: Steady-state transmission characteristic: coupled-
mode theory (solid blue) against transfer matrix method
(dashed red). The transfer matrix results is obtained for grat-
ing parameters Λ = 250nm, n0 = 2, ∆np = 0.2, n2I = 10−20

m2/W, and all other parameters such to fit the normalized
parameters (δβ = −7, κ = 5) and powers used in Eq. (1).

VI. APPENDIX A: TEMPORAL STABILITY
PROBLEM

The matrix of the linearized system (8) has the struc-
ture of a 4 × 4 matrix M = {Mij}, i, j = 1, 2, 3, 4, where
the single blocks Mij are in turn N ×N matrices of the
following form

M11 = −AB − 2R+I+;

M12 = −δβIN −R2
+ − 3I2

+ − 2R2
− − 2I2

−;

M13 = −4R−I+;

M14 = −κIN − 4I−I+;

M21 = δβIN − 2R2
− + 2I2

− + I2
+ + 3R2

+;

M22 = −AB + 2R+I+;

M23 = κIN + 4R−R+; (11)

M24 = 4I−R+;

M31 = −4R+I−;

M32 = −κIN − 4I+I−;

M33 = AF − 2I−R−;

M34 = −δβIN −R2
− − 3I2

− − 2R2
+;

M41 = κIN − 4R+R−;

M42 = 4I+R−;

M43 = δβIN + I2
− + 2R2

+ + 2I2
+ + 3R2

−;

M44 = AF + 2I−R−.

Here AF [which has nonvanishing elements
AF (j, j) = 1/h, j = 1, . . . , N and AF (j, j − 1) = −1/h,
j = 2, . . . , N ], and AB [which has nonvanishing elements
AB(j, j) = −1/h, j = 1, . . . , N and AB(j − 1, j) = 1/h,
j = 2, . . . , N ] stand for forward and backward finite-
differences matrices, respectively, R± (I±), are N × N
diagonal matrices whose elements consist of the real
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(imaginary) parts of the stationary solutions a± eval-
uated at the grid points zj [i.e., R± (j, j) = ar

± (zj),

I± (j, j) = ai
± (zj)], while IN is the unit matrix.

VII. APPENDIX B: STEADY-STATE SPATIAL
INSTABILITIES

In this appendix we discuss bifurcations and spatial
instabilities of the stationary model [Eqs. (6)] originat-
ing from the existence unstable eigenmodes, i.e. particu-
lar combinations of forward and backward phase-locked
waves that correspond to saddle point in phase space.
The analysis can be conveniently carried out by exploit-
ing the conservative structure of Eqs. (6) cast in the form

∓ida±
dz

=
∂H

∂a∗±
, (12)

where the z-invariant Hamiltonian is H =
δβ

(

|a+|2 + |a−|2
)

+ κ
(

a+a
∗
− + a−a

∗
+

)

+
(

|a+|4/2 + |a−|4/2 + 2|a+a−|2
)

. The Hamiltonian
structure, together with Poynting conservation
|a+|2 − |a−|2 = P , can be easily exploited as fol-
lows. First, by expressing the complex amplitudes in
terms of intensity and phase as a− =

√
η exp(iφ−),

a+ =
√
P + η exp(iφ+) we obtain, by direct substitution

in H or equivalently in Eqs. (6), the following reduced
system of two real equations

dη

dz
= −∂Hr

∂φ
;
dφ

dz
=
∂Hr

∂η
, (13)

Hr = 2δβ η + 2κ
√

η(η + P ) cosφ+ 3η(η + P ) (14)

where φ = φ+ − φ− is the effective phase, and Hr =
Hr(η, φ) is the reduced Hamiltonian, whose (constant)
value of interest is constrained by the boundary condition
ηL = η(zL) = 0 to be Hr = Hr(ηL, φ) = 0. The latter
condition allows us to express the first of Eqs. (13) as
a self-consistent equation in η only [eliminating φ in the
RHS of the equation by means of Eq. (14)], which can
be integrated in the backward direction to obtain the
solution for η(z) ≡ |a−(z)|2 in terms of the following
quadrature integral

z − zL =

∫ η(z)

0

dη
√

f(η)
, (15)

where f(η) = 4η(P + η) − η2[2δβ + 3(1 + η)]2. Knowing
η(z) = |a−(z)|2 one obtains also |a+(z)|2 = P+η(z). Ex-
plicit form of the solutions can be obtained by inverting
the integral (15) in terms of Jacobian elliptic functions
[3, 4].

Eigenmodes η = ηe, φ = φe correspond to equilibrium
points of Eqs. (14), and follow the bifurcation struc-
ture shown in Fig. 9. As shown in Fig. 9a, at P = 0,
the system presents two transcritical bifurcations where
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Figure 9: Bifurcation structure (κ = 2.5): equilibrium points
ηe as a function of (a) detuning δβ for P = 0 (thin lines) and
P = 1 (thick lines); (b) power P for a fixed detuning δβ = −8.
Solid and dashed lines stand for stable points (centers) and
unstable points (saddles), respectively. Physical solutions are
those contained in the semi-plane ηe ≥ 0 (ηe is a power).
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Figure 10: Bifurcation and clamping powers Pbif , Pc (see text
for their definition) vs. detuning δβ (κ = 2.5).

two branches of phase-locked eigenmodes φe = π
2 ± π

2 ,
ηe = (δβ ∓ κ)/3, exchange stability with the eigensolu-
tion ηe = 0 exactly at the gap edges (bifurcation points
δβ = ±κ). Incidentally the separatrices that emanate
from the origin (ηe = 0) and from the phase-locked sad-
dle point φe = 0, ηe = (δβ + κ)/3 correspond to sta-
tionary (zero velocity) bright in-gap solitons and dark-
antidark out-gap soliton pairs, respectively, as discussed
thoroughly in Ref. [16]. As well known, however, bright
still solitons are not accessible physically because they
corresponds to zero field on both boundaries, whereas
dark-antidark pairs cannot be excited with zero backward
illumination. Nevertheless a deformation of the latter
type of separatrices affect the dynamics deeply for P 6= 0
(implying non-zero transmitted power). In this case the
bifurcation diagram turns out to be a deformation of the
one at P = 0, in which the transcritical bifurcation occur-
ing at δβ = −κ becomes a saddle-center [see Fig. 9(a)],
while the one at δβ = κ disappears leaving an isolated
stable branch. Importantly, the saddle-center feature
appears also by drawing the diagram against power P
at fixed (negative and out-gap) detunings, as shown in
Fig. 9(b). In this case, the saddle-center pair exists for
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Figure 11: Spatial evolution of the field intensities for δβ =
−7, κ = 2.5, and different values of P . The right frames show
the corresponding phase-space pictures, with the followed tra-
jectory reported in bold.

P < Pbif , where the bifurcation power Pbif is a function
of the detuning as shown explicitly in Fig. 10. In par-
ticular, the existence of a saddle P < Pbif implies that

small changes of initial conditions or parameters can lead
to cross the separatrix that emanates from the saddle
point, thus leading to qualitatively different behaviors.
In the case of interest here, separatrix-crossing occurs by
changing P at fixed δβ and leads to limiting action in
transmission, as first discussed in Ref. [4] (see also Ref.
[18, 25]). The underlying dynamics is illustrated in Fig.
11: trajectories emanating from the point η = η(zL) = 0
can be of the weak-coupling type (small oscillations, for
small values of power P < Pc) or strong-coupling case
(large values of powers P > Pc). In the latter regime, tiny
changes of output powers P above Pc give rise to large
increase of input powers, or reversing the argument, large
changes of input power produces tiny changes of output
power and hence limiting action. The critical value of
output power P = Pc that discriminates between the two
regimes corresponds to a separatrix evolution on which,
going in the backward direction, the intensity evolutions
proceed asymptotically from their output values towards
the constant value corresponding to the saddle point. Ba-
sically the output power remains clamped to P ≃ Pc for
large changes of input power. At fixed detuning, the
value Pc can be calculated by imposing the constraint
H(η = 0) = H(ηe, φe|Pc), arising from the conservation
of the Hamiltonian between the point η(zL) = 0 and the
saddle η = ηe, φe = 0 corresponding to the value of the
parameter P = Pc. The outcome of this calculation as a
function of the detuning is reported in Fig. 10.
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