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Dominance and epistatic genetic 
variances for litter size in pigs using genomic 
models
Zulma G. Vitezica1*  , Antonio Reverter2, William Herring3 and Andres Legarra4

Abstract 

Background:  Epistatic genomic relationship matrices for interactions of any-order can be constructed using the 
Hadamard products of orthogonal additive and dominance genomic relationship matrices and standardization based 
on the trace of the resulting matrices. Variance components for litter size in pigs were estimated by Bayesian meth-
ods for five nested models with additive, dominance, and pairwise epistatic effects in a pig dataset, and including 
genomic inbreeding as a covariate.

Results:  Estimates of additive and non-additive (dominance and epistatic) variance components were obtained 
for litter size. The variance component estimates were empirically orthogonal, i.e. they did not change when fitting 
increasingly complex models. Most of the genetic variance was captured by non-epistatic effects, as expected. In the 
full model, estimates of dominance and total epistatic variances (additive-by-additive plus additive-by-dominance 
plus dominance-by-dominance), expressed as a proportion of the total phenotypic variance, were equal to 0.02 and 
0.04, respectively. The estimate of broad-sense heritability for litter size (0.15) was almost twice that of the narrow-
sense heritability (0.09). Ignoring inbreeding depression yielded upward biased estimates of dominance variance, 
while estimates of epistatic variances were only slightly affected.

Conclusions:  Epistatic variance components can be easily computed using genomic relationship matrices. Cor-
rect orthogonal definition of the relationship matrices resulted in orthogonal partition of genetic variance into 
additive, dominance, and epistatic components, but obtaining accurate variance component estimates remains an 
issue. Genomic models that include non-additive effects must also consider inbreeding depression in order to avoid 
upward bias of estimates of dominance variance. Inclusion of epistasis did not improve the accuracy of prediction of 
breeding values.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomics provides tools to understand the effects of 
genes and their interactions and new approaches for 
genetic improvement [1]. In quantitative genetics, parti-
tioning genetic variance for a trait into statistical compo-
nents due to additivity, dominance, and epistasis is useful 
for prediction and selection, even if it does not reflect the 
biological (or functional) effect of the underlying genes 
[2]. Additive, dominance and epistatic genetic variances 

of quantitative traits are required to estimate breeding 
values and for making optimal selection decisions.

Within-breed non-additive effects, and in particular 
epistasis, are often ignored in genetic improvement pro-
grams. However, the total genetic value of an animal is 
a function of both additive and non-additive effects and, 
taken together, these effects could result in better predic-
tors of future phenotypes [3] and inform mate allocation. 
Indeed, assortative mating can improve the performance 
of livestock when dominance [4] and/or epistasis are/is 
present [5]. Evidence of non-additive variance in com-
mercially important traits (e.g. for body depth in fish, 
[6]) has opened opportunities for specialized breed-
ing schemes. To take the effects of dominance and/or 
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epistasis into account, it is necessary to refine the estima-
tion of non-additive variance components from pheno-
typic data.

The additive genetic effect is the part of an individual’s 
total genetic effect that is transmissible across genera-
tions from parents to offspring. In contrast, non-additive 
genetic effects (dominance and epistasis) can be seen as 
the residual genetic effect after fitting additive substi-
tution effects. Although most of the genetic variance is 
additive [1, 7] and captures most of the functional epi-
static action of genes, the epistatic variance should not 
be neglected. Knowing its magnitude in real data and 
exploring the predictive ability of a model that accounts 
for epistatic effects are of great relevance. It is also of 
interest to know how much gene-by-gene (G × G) inter-
action exists (e.g. to determine the effect of the same 
allele in different breeds) or to account for the contribu-
tion of epistasis to the creation of “new” additive variance 
over time [8].

Several authors have proposed the inclusion of domi-
nance and epistatic effects in genetic evaluation using 
high-density marker genotypes (genomic evaluation) 
[5, 9–12]. Most epistatic models consider only additive-
by-additive epistatic interactions (e.g. [9, 12]), although 
dominance-by-dominance and dominance-by-addi-
tive interactions may play a major role in heterosis and 
in inbreeding and outbreeding depression (see [13] 
p. 223). Recently, Vitezica et  al. [14] proposed a flex-
ible and general approach to construct “genomic” rela-
tionship matrices for populations that are or are not in 
Hardy–Weinberg equilibrium (HWE), e.g. F1 crosses. 
They proved that epistatic genomic relationship matrices 
for two or higher order interactions can be constructed 
using Hadamard products of additive and dominance 
genomic orthogonal relationships, regardless of the exist-
ence of HWE. They also pointed out that, nevertheless, 
standardization of genomic relationship matrices based 
on the trace of the relationship matrices is needed. How-
ever to date, models that use these relationship matrices 
have not been applied to real data.

Xiang et  al. [15] proved analytically that, in the pres-
ence of directional dominance, inclusion of genomic 
inbreeding as a covariate is necessary to obtain correct 
estimates of dominance variance. Genomic inbreeding 
of an individual was shown to be correctly defined as 
the proportion of genotyped single nucleotide polymor-
phisms (SNPs) at which the individual is homozygous 
[16]. This was confirmed in real data by Xiang et al. [15] 
and Aliloo et  al. [4]. The effect of fitting or not fitting 
genomic inbreeding on estimates of epistatic variance 
components is unknown.

In current pig production systems, the number of pigs 
weaned is a key factor to increase productivity, and litter 

size (e.g., total number of piglets born per litter) is one of 
the most important traits under selection, in maternal line 
breeding programs [17]. Although litter size in pigs has a 
low narrow-sense heritability [17–19], non-additive vari-
ance could still be abundant and should be ascertained. 
This is particularly important because the estimation of 
non-additive effects (dominance and epistasis) for litter 
size is of increasing interest since it can be used to define 
mate allocation strategies between selection candidates for 
developing new crossbreeding or even purebred breeding 
schemes.

The objectives of this work were to estimate additive and 
non-additive (dominance and epistasis) variance compo-
nents for litter size for a real pig population, by considering 
or not inbreeding depression and to determine whether the 
accuracy of prediction of breeding values and total genetic 
values increases with the inclusion of dominance and epi-
static effects.

Methods
Phenotypic and genomic data
Data for this study were provided by Genus plc (Hender-
sonville, TN, USA). Animal Care and Use Committee 
approval was not necessary for this study because the data 
were obtained from an existing database. Data on litter size 
(total number of piglets born per litter) were from a pig 
pure line. The average litter size was equal to 12.7 ± 3.1 and 
13,369 records were available for 3619 sows. Genotypes for 
all sows were generated using the Illumina PorcineSNP60 
BeadChip (Illumina, San Diego, CA). After quality control 
using default parameters by preGSf90 [20] (HWE, minor 
allele frequency, SNP call rate and animal call rate), 38,779 
autosomal SNPs remained and were used to build genomic 
relationship matrices.

Genomic evaluation models
Phenotypes were analyzed using a genomic best linear 
unbiased prediction (GBLUP) (mixed) model. Parity num-
ber and the combined effect farm-year-month of farrowing 
were included as fixed effects. The model also included a 
random permanent environmental effect for each sow. The 
linear model including additive, dominant and interaction 
terms can be written as:

where y is the vector of phenotypic records, β is the fixed 
effect vector, fb models the inbreeding depression, where 
f  is the vector of genomic inbreeding coefficients based 
on the proportion of homozygous SNPs and b is the 
inbreeding depression parameter per unit of inbreeding, 
gA is a vector of breeding values of the sows, gD is a 

y = Xβ+ fb+ ZgA + ZgD + Z
∑

i=A,D

∑

j = A,D
i ≥ j

gij + Zpe+ e,
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vector of dominance deviations, gij is a vector of epistatic 
genetic values, pe is the permanent environmental effect 
vector 

(
Var(pe) = Iσ 2

pe

)
 , e is a residual vector (

Var(e) = Iσ 2
e

)
 , and X and Z are design matrices relating 

records to fixed effects and genetic and permanent envi-
ronmental effects, respectively. The epistatic genetic 
effects can be partitioned into additive-by-additive (gAA) , 
additive-by-dominance (gAD) , and dominance-by-domi-
nance (gDD) effects. Higher order epistasis interactions 
were not considered as they were deemed to be negligible 
[21] or too difficult to estimate. Covariance matrices of 
genetic effects were as follows:

where the covariance matrices GA and GD for additive 
and dominance effects, which are involved in the con-
struction of covariance matrices GAA , GAD and GDD for 
epistatic effects, were constructed assuming HWE. The 
additive relationship matrix was calculated as in Van-
Raden [22]: GA = MM′

2
∑

piqi
 , where matrix M has elements 

that are equal to (2− 2pi), (1− 2pi),−2pi for genotypes 
A1A1 , A1A2 and A2A2 , respectively, where pi is the fre-
quency of allele A1 at SNP i . The dominance relationship 
matrix was computed as GD = WW′

4
∑

i
p2i q

2
i

 where W has ele-
ments equal to −2q2i , 2piqi,−2p2i  for genotypes A1A1 , 
A1A2 and A2A2 , respectively [10]. Covariance matrices 
for epistatic effects were computed using the Hadamard 
products and traces as GAA =

GA⊙GA
tr(GA⊙GA)/n

 , 
GAD =

GA⊙GD
tr(GA⊙GD)/n

 , and GDD =
GD⊙GD

tr(GD⊙GD)/n
 [14].

In these analyses, we implicitly assume that allele sub-
stitution effects of quantitative trait loci (QTL) are dis-
tributed as α∼N

(
0, Iσ 2

α

)
 , dominance effects as 

d∼N
(
0, Iσ 2

d

)
 , additive-by-additive epistatic effects as 

(αα)∼N
(
0, Iσ 2

(αα)

)
 , and similarly for additive-by-domi-

nant (αd) and dominant-by-dominant (dd) effects. Note 
that under the assumption of HWE, the GBLUP “breed-
ing” model in Vitezica et al. [10] that accounts for addi-
tive and dominance effects is a particular case of the 
model to analyze epistasis in Vitezica et al. [14], which in 
turn is an extension of the NOIA (natural orthogonal 
interactions) QTL analysis model by Alvarez-Castro and 
Carlborg [23]. Note that a “statistical” or “breeding” 
model implies that the covariance between breeding val-
ues and dominance deviations is zero [24]. The NOIA 
model is orthogonal, which means that genetic effects are 
defined in such a way that the addition of other genetic 
effects (e.g. dominance) to a model does not change the 
definitions of genetic effects (e.g. additive) that were 
already included in the model [23]. For instance, the 

Var
(
gA

)
= GAσ

2
A, Var

(
gD

)
= GDσ

2
D,

Var
(
gAA

)
= GAAσ

2
AA, Var

(
gAD

)
= GADσ

2
AD,

Var
(
gDD

)
= GDDσ

2
DD

additive effect is always the regression of genotypic value 
on gene content; the dominance effect is a regression of 
the remainder on a measure of heterozygosity or identity 
at the genotype, and so on. The NOIA model of Alvarez-
Castro and Carlborg [23] achieves orthogonality auto-
matically due to its construction of the incidence 
matrices M and W and their Kronecker products; Vite-
zica et al. [14] proved that, for analyses at the individual 
level, these Kronecker products can be reformulated as 
Hadamard products.

Statistically, orthogonality means that inclusion of 
new terms in the model does not change estimates of 
already included effects in an infinitely large popula-
tion. For instance, in practice, going from an additive to 
an additive plus dominant model should not change the 
estimates of additive variance components much. The 
advantage of using orthogonality in genetics and breed-
ing is that it is the only way to carry out the estimation 
of breeding values (additive “statistical” effects) in an 
unambiguous manner i.e. such that they do not depend 
on other genetic terms that are fitted in the model.

Variance components were estimated for five nested 
models that added, in succession, additive effects ( A ), 
dominance effects ( A+ D ), additive-by-additive genetic 
effects ( A+ D + AA ), additive-by-dominance genetic 
effects ( A+ D + AA+ AD ), and dominance-by-domi-
nance genetic effects ( A+ D + AA+ AD + DD ). Genetic 
variances ( σ 2

A , σ 2
D , σ 2

AA , σ 2
AD and σ 2

DD ) were estimated by 
Bayesian methods using Gibbs sampling in the software 
gibbs2f90 [25], available at http://nce.ads.uga.edu/wiki/. 
In total, 200,000 iterations were run, discarding the first 
10,000 and keeping every 100th sample. Convergence 
was checked by visual inspection of trace plots for the 
chains. Post-Gibbs analysis included estimation of the 
effective sample size and the deviance information crite-
ria (DIC) as a goodness-of-fit criterion [26].

Predictive ability
GBLUP was used to obtain estimated breeding values 
(EBV) by fixing the variance components that were esti-
mated. Predictive ability of total genetic values for lowly 
heritable traits is difficult to ascertain, thus for the com-
parison of models, we proceeded as follows. EBV 

(
ĝwA

)
 

were obtained from the “whole” dataset (13,369 records 
from 3619 sows), which included litters from 2000 to 
2014. EBV 

(
ĝ
p
A

)
 were also computed for a “partial” data-

set that included only litters prior to 2010 (10,002 records 
from 2440 sows). No sow farrowed both before and after 
2010 (such sows were excluded from the data set). The 
three models: A , A+ D , and A+ D + AA+ AD + DD 
were used to estimate ĝwA and ĝpA . The models were com-
pared using the following three statistics of cross-vali-
dation based on method R approaches [27, 28] to detect 

http://nce.ads.uga.edu/wiki/
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bias in subsequent genetic evaluations, and as more 
recently suggested by [29]:

where b0 = 0 is referred to as the bias and should be 
equal to 0 under unbiasedness; b1 is a measure of dis-
persion of EBV, obtained as the slope of the regression 
of EBV obtained with the whole data on EBV estimated 
with the partial data, and should be 1; and ρ measures the 
relative increase of accuracies of EBV from partial data to 
whole data and was computed as the correlation of partial 
data on whole (among two models with different values 
of ρ , the model with the highest ρ was chosen). EBV of 
only “new” sows that farrowed after 2010 were included 
in the statistics. These sows have no own or progeny phe-
notypic information in the partial data and thus, they can 
be seen as selection candidates at birth.

For comparison purposes, we also investigated the pre-
dicted ability of phenotypes of “new” sows for the three 
models as the correlation cor

(
y∗, ŷ

)
 [30] where y∗ is the cor-

rected phenotypic observation obtained from the “whole” 
dataset 

(
y∗ = y− X β̂ − f b̂

)
 , and ŷ is the predicted cor-

rected observation from the “partial” dataset, which is equal 
to the sum of the estimated genetic values 

(
ĝ
)
 and the esti-

mated permanent environmental effect 
(
p̂e
)
 . The estimated 

genetic value included the estimated additive genetic effects 
( A model), the sum of estimated additive and dominant 
genetic effects ( ̂g = ĝA + ĝD) in the A+ D model, and the 
sum of all genetic effects (ĝ = ĝA + ĝD + ĝAA + ĝAD + ĝDD ), 
in the A+ D + AA+ AD + DD model. The regression 
coefficients of y∗ on ŷ were also estimated.

Results and discussion
Estimates of additive and dominance genetic variances 
for litter size ranged from 0.81 ± 0.12 to 0.84 ± 0.12, 
and from 0.17 ± 0.11 to 0.20 ± 0.11, respectively for 
all models ( A , A+ D , A+ D + AA , A+ D + AA+ AD 
and A+ D + AA+ AD + DD ). Variance component 
estimates did not differ among the models (Fig.  1), 
which empirically illustrates the orthogonality in the 
partition of the total genetic variance, a property that 
holds under HWE (which holds in this dataset) and 
under linkage equilibrium (which holds approximately). 
Under orthogonality, allele substitution effects con-
tribute to the additive variance, dominance deviations 
contribute to the dominance variance, etc. and there is 

b0 =
(
1
′ĝwA − 1

′ĝ
p
A

)
/n,

b1 =
Cov

(
ĝwA , ĝ

p
A

)

Var
(
ĝ
p
A

) ,

ρ =
Cov

(
ĝwA , ĝ

p
A

)
√

Var
(
ĝwA

)
Var

(
ĝ
p
A

) ,

no covariance between the genetic effects. If the model 
used is not orthogonal (e.g. “genotypic” model in Su 
et  al. [9]), estimates of additive genetic variance may 
be biased downward when the model is expanded from 
additive to include dominance and epistatic effects (e.g. 
Su et al. [9] and Muñoz et al. [31]), and many others). 
Not using orthogonal models leads to views that are too 
optimistic on the role of dominance on breeding.

Estimates of epistatic variance ranged from 
0.11 ± 0.11 to 0.14 ± 0.12 for the additive-by-additive 
component, from 0.11 ± 0.09 to 0.12 ± 0.09 for the 
additive-by-dominant component, and were equal to 
0.09 ± 0.09 for the dominant-by-dominant component. 
As explained in many previous papers [1, 7], the mag-
nitude of the epistatic variances is trivial compared to 
that of the additive variance. However, non-orthogonal 
models can result in exaggerated estimates of epistatic 
variances (e.g. Su et al. [9] and Muñoz et al. [31]). Esti-
mates of epistatic variances had a large standard error 
in all models ( A+ D + AA , A+ D + AA+ AD and 
A+ D + AA+ AD + AA ), which illustrates the difficul-
ties in obtaining good estimates of epistatic variances 
also from genomic information, even when there are 
only two-way interactions.

Estimates of narrow-sense heritability for the total 
number of piglets born per litter were similar between 
models (Table 1), close to 0.09, and consistent with esti-
mates reported by Varona et  al. [32], Nielsen et  al. [17] 
and Guo et al. [18]. Dominance variance expressed as a 

A A+D

G
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Fig. 1  Estimates of additive (Var.A), dominance (Var.D), 
additive-by-additive (Var.AA), additive-by-dominance (Var.AD), and 
dominance-by-dominance (Var.DD) genetic variances for five models 
that included genomic inbreeding and successively added additive 
effects ( A ), dominance effects ( A+ D ), additive-by-additive effects 
( A+ D + AA ), additive-by-dominance effects ( A+ D + AA+ AD ), 
and dominance-by-dominance effects ( A+ D + AA+ AD + DD)
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proportion of phenotypic variance, d2 , was about 0.02, 
as in Misztal et  al. [33]. The total epistatic variance 
(additive-by-additive plus additive-by-dominance plus 
dominance-by-dominance) expressed as a proportion 
of phenotypic variance, i2 , was 0.04. The latter estimates 
need to be considered with caution due to the low pre-
cision of the estimates of epistatic effects. The estimated 
broad-sense heritability for litter size 

(
h2 + d2 + i2

)
 was 

0.15, i.e. almost twice the narrow-sense heritability.
The joint posterior distribution of heritability and d2 

or i2 (Fig. 2) shows that there is no dependency between 
variance component estimates and thus, the partition 
of additive and non-additive effects was empirically 
orthogonal.

Inclusion of non-additive (dominance and epista-
sis) effects in the model did not have a large effect on 
estimates of residual variance, but they reduced the 

permanent environmental variance (Table  1), which 
shows that non-additive genetic effects are captured 
by the permanent environmental effects if they are 
not included explicitly in the model. Similar results 
were observed by Aliloo et  al. [4] when dominance was 
included in an additive model.

Only second-order epistatic effects (e.g. additive-
by-additive) were included in this study. Although it is 
tempting to fit high-order epistasis terms given the rela-
tive ease of computing the Hadamar products of rela-
tionship matrices, caution is needed. First, the products 
G⊙G⊙G . . . quickly tend to the identity matrix, in 
which case there is no hope of distinguishing genetic 
components from residual effects. Second, partitioning 
genetic variance into additive and non-additive statistical 
components does not indicate the importance of additive 
versus non-additive gene actions [2].

Table 1  Estimates (and posterior standard deviation) of  narrow sense heritability and  of  variance components 
for  models that  included genomic inbreeding and  successively added additive effects ( A ), dominance effects ( A+ D ), 
additive-by-additive effects ( A+ D + AA ), additive-by-dominance effects ( A+ D + AA+ AD ), and  dominance-by-
dominance effects ( A+ D + AA+ AD + DD)

* d2 = σ 2
D/σ

2
P  , ** i2 = σ 2

AA/σ
2
P  for the A+ D + AA model, i2 =

(
σ 2
AA + σ 2

AD

)
/σ 2

P  for the A+ D + AA+ AD model, and i2 =
(
σ 2
AA + σ 2

AD + σ 2
DD

)
/σ 2

P  for the 
A+ D + AA+ AD + DD model

Model h2 d2* i2** σ
2
pe σ

2
e

A 0.095 (0.013) 0.931 (0.110) 7.049 (0.116)

A+ D 0.093 (0.013) 0.022 (0.013) 0.755 (0.143) 7.053 (0.117)

A+ D + AA 0.093 (0.013) 0.020 (0.010) 0.016 (0.015) 0.633 (0.178) 7.052 (0.117)

A+ D + AA+ AD 0.092 (0.013) 0.020 (0.011) 0.024 (0.014) 0.572 (0.179) 7.051 (0.118)

A+ D + AA+ AD + DD 0.092 (0.013) 0.019 (0.012) 0.038 (0.017) 0.450 (0.184) 7.054 (0.117)
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Fig. 2  Bivariate density plot of the posterior distribution (1900 samples) of narrow sense heritability 
(
h
2
)
 , dominance variance as a proportion 

of phenotypic variance 
(
d
2
= σ 2

D
/σ 2

P

)
 , and total epistatic variance as a proportion of phenotypic variance 

(
i
2
=

(
σ 2

AA
+ σ 2

AD
+ σ 2

DD

)
/σ 2

P

)
 for the 

A+ D + AA+ AD + DD model
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The estimate of inbreeding depression, based on the 
inbreeding coefficient calculated as the proportion 
of homozygosity, was equal to − 12.33 ± 2.29 piglets 
born per litter for this population. Inbreeding depres-
sion expressed as a change in phenotypic mean per 10% 
increase in inbreeding was equal to − 1.23 piglets born. 
This result shows the importance of inbreeding depres-
sion in fitness traits such as total number of piglets born. 
Estimates of non-additive variance components when 
inbreeding depression is not fitted in the model are rarely 
reported but, in our analyses, yielded an upward biased 
estimate of the dominance variance (i.e. GDI model in 
Fig.  3). The estimate of dominance variance increased 
from 0.18 in the GDIF model (including inbreeding) to 
0.38 in the GDI model. The estimate of epistatic variance 

was slightly affected by inclusion of inbreeding depres-
sion in the model. Estimates of additive variance were 
not affected. Similar results for dominance variance 
were obtained by Xiang et  al. [15] and Aliloo et  al. [4]. 
To take directional dominance into account, inbreeding 
depression must be included in genetic evaluation mod-
els, which has long been known for pedigree analysis (e.g. 
DeBoer and Hoeschele [34]).

The global fit of the models was studied using 
DIC. Models with smaller DIC exhibit a better 
fit after accounting for model complexity. Differ-
ences in DIC between models of less than 7 units 
are considered as irrelevant [35]. The values of DIC 
were 68,365, 68,370, 68,367, 68,370 and 68,375 for 
the A , A+ D , A+ D + AA , A+ D + AA+ AD and 
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A+ D + AA+ AD + AA models, respectively, i.e. they 
were similar across models, and models that included 
dominance and epistasis do not appear to fit the data 
better than the simplest model.

The predictive ability of the models for selection can-
didates was assessed using two approaches: the three 
statistics based on method R and by conventional 
cross-validation. The method R statistics of bias (b0) , 
slope (b1) , and correlation (ρ) were based on compari-
son of EBV obtained from the whole data (up to 2014) 
and model A with EBV obtained from the partial data 
and models A , A+ D and A+ D + AA+ AD + AA . 
Similar results (not shown here) were obtained when 
using the A+ D and A+ D + AA+ AD + DD models 
in the whole dataset. For the correct models, b0 = 0 
and b1 = 1 are expected. The estimate of b0 was equal 
to 0.019σA across the models and the estimate of b1 was 
equal to 1.01, 1.04 and 1.09 in models A , A+ D and 
A+ D + AA+ AD + DD , respectively. These estimates 
near zero for b0 and near to 1 for b1 , suggest that the 
model is empirically unbiased. The statistic ρ (accu-
racy), measured as the correlation between the EBV 
of selection candidates based on “whole” and “partial” 
data, was around 0.73 for all models.

Based on conventional cross-validation (Table  2), 
models A , A+ D and A+ D + AA+ AD + DD showed 
similar predictive ability of phenotypes. Estimates of 
the regression coefficient of y∗ on ŷ were close to 1 for 
all three models, which all achieved very similar levels 
of inflation of total genetic values. No differences in the 
accuracy of predicting future records for young animals 
were observed between the three models.

Conclusions
Using orthogonal relationship matrices, empirically 
orthogonal estimates of additive, dominance and epi-
static variances were obtained for litter size in a pig 
dataset. The broad-sense heritability for litter size was 
almost twice the narrow-sense heritability. Genomic 
models that include non-additive effects must con-
sider simultaneously inbreeding depression based on 

inbreeding in order to obtain unbiased estimates of var-
iance components. Inclusion of epistasis or dominance 
did not improve the accuracy of prediction of breeding 
or genotypic values.
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* G is for the additive model, **GD is for the A+ D model, *** GDI is for the 
A+ D + AA+ AD + DD model

Model G* GD** GDI***

cor
(
y
∗
, ŷ
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