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Abstract 

Background: Since goat was domesticated 10,000 years ago, many factors have contributed to the differentiation 
of goat breeds and these are classified mainly into two types: (i) adaptation to different breeding systems and/or 
purposes and (ii) adaptation to different environments. As a result, approximately 600 goat breeds have developed 
worldwide; they differ considerably from one another in terms of phenotypic characteristics and are adapted to a 
wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data 
from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals 
were partitioned into groups based on geographical area, production uses, available records on solid coat color and 
environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or 
artificial selection in shaping the genome of goat breeds.

Results: Several signatures of selection on different chromosomal regions were detected across the different breeds, 
sub‑geographical clusters, phenotypic and climatic groups. These regions contain genes that are involved in impor‑
tant biological processes, such as milk‑, meat‑ or fiber‑related production, coat color, glucose pathway, oxidative stress 
response, size, and circadian clock differences. Our results confirm previous findings in other species on adaptation 
to extreme environments and human purposes and provide new genes that could explain some of the differences 
between goat breeds according to their geographical distribution and adaptation to different environments.

Conclusions: These analyses of signatures of selection provide a comprehensive first picture of the global domesti‑
cation process and adaptation of goat breeds and highlight possible genes that may have contributed to the differen‑
tiation of this species worldwide.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  fbert@iastate.edu; franb@dtu.dk 
1 Department of Animal Science, Iowa State University, Ames, IA 50011, 
USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4181-3895
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-018-0421-y&domain=pdf


Page 2 of 24Bertolini et al. Genet Sel Evol           (2018) 50:57 

Background
The goat (Capra hircus) is considered one of the earli-
est domesticated livestock species. The domestication 
process started around 10,000  years ago in the Fertile 
Crescent area from a unique wild and still living ances-
tor, the bezoar or Capra aegagrus [1]. At present, there 
are more than one billion of goats that inhabit all types 
of ecological areas across the globe [2]. Compared with 
the other major livestock species such as pigs, cattle 
and sheep, goats have undergone the largest increase 
(+34%) in population since 2000, i.e. larger than pigs 
(+15%), cattle (+14%) and sheep (+14%) (http://www.
fao.org/faost at/en/). Today, over 90% of the goats are 
distributed across Asia and Africa, followed by the 
Americas, Europe, and Oceania [3]. In the most rural 
areas of the world, goats are often considered the poor 
person’s cow. In fact, goats can be used for milk, meat, 
fiber, and leather production [4], as well as transport. 
Moreover, they are easy to house and manage; goats can 
be raised by small families, women, and children and 
provide a fundamental source of food for millions of 
people. Several factors have contributed to the differen-
tiation of goat breeds, which are classified mainly into 
two types: (i) adaptation to different breeding systems 
and/or purposes, i.e. in some countries, breeds have 
been selected for specific production traits such as milk 
(e.g. Saanen and Alpine), meat (e.g. Landrace and Boer) 
and fiber (e.g. Angora and Cashmere); and (ii) adapta-
tion to different environments, i.e. goats have adapted 
to various agro-climatic conditions. In addition, goat 
breeds have undergone differentiation through founder 
effects, and the processes of admixture and genetic 
drift. Thus, about 600 breeds have been developed and 
are distributed worldwide [5]. They differ from one 
another in terms of many phenotypic characteristics 
such as size, color, horn shape and dimension, repro-
ductive and productive traits and are adapted to a wide 
range of bioclimatic conditions. Directional natural and 
artificial selection events have left footprints across 
the genome, which are known as signatures of selec-
tion. Signatures of selection are defined as the reduc-
tion, elimination or change of genetic variation in 
genomic regions that are adjacent to causative variants 
in response to natural or artificial selective pressure. 
Such variants usually affect several traits and contrib-
ute to shaping a breed [6]. The process by which the 
frequency of a selectively favored variant increases in 
a population is termed a selective sweep. The recent 
development of species-specific genomic tools (such 
as single nucleotide polymorphism (SNP) arrays) have 
allowed researchers to extend whole-genome analy-
ses to livestock species, which cover many aspects of 

genetic diversity, including signatures left by selection 
processes [7].

In spite of the major economic importance of goats, 
high-throughput genomic resources for this species 
have become available only recently. In 2011, the Inter-
national Goat Genome Consortium developed and 
released the first high-throughput SNP chip with more 
than 50,000 SNPs (Illumina CaprineSNP50 BeadChip), 
which was built using 10 biologically and geographi-
cally different breeds [8]. The first complete assembly 
of the goat genome was released in 2013 by Dong et al. 
[9] and a second version of the reference genome that 
exploits single-molecule long read sequencing (PacBio) 
has just been released (ARS1; [10]). With this new ver-
sion, gene annotation has improved considerably and the 
position of the SNPs on the CaprineSNP50 BeadChip has 
been updated. With the availability of genomic and high-
throughput SNP tools, there is an increased interest in 
identifying and exploring signatures of selection and the 
genomic diversity resulting from adaptation to environ-
ment and human selective pressure. These genomic tools 
were used to identify signatures of selection in circum-
scribed datasets. The CaprineSNP50 BeadChip was used 
to investigate and compare several Swiss goat breeds and 
genomic signatures of selection were detected in regions 
that affect variation in coat color, growth, and milk com-
position [11]. The combination of analyses of runs of 
homozygosity (ROH), FST (fixation index), XP-EHH 
(cross population extended haplotype homozygosity), 
and the use of Bayesian methods allowed the detection 
of signatures of selection in a region that contains genes 
related to the immune system in another mountain breed 
raised in the North of Italy, the Valdostana Italian goat 
breed [12]. Other analyses of signatures of selection were 
performed in a reduced number of breeds, thus detecting 
regions that are  linked to production and reproduction 
traits [13] and in the Barki Egyptian goat breed, which is 
raised and adapted to hot/dry environments [14]. In the 
latter study, analyses of iHS (integrated haplotype score) 
and pairwise FST that identified selective sweeps led to 
the identification of genes related to thermotolerance, 
body size, energy metabolism and nervous and auto-
immune response [14]. Furthermore, signatures of selec-
tion that were linked to dry and hot conditions and to 
metabolic traits were identified by using whole-genome 
sequence (WGS) data from Moroccan goat breeds 
through XP-CLR analysis [15]. WGS information was 
also successfully used to detect regions that are under 
different selection pressures in Chinese and Mongolian 
goats and are related to breeding or reproductive traits 
[16, 17].

Genomic changes that result from climate changes and 
are linked to adaptation to different environments can be 

http://www.fao.org/faostat/en/
http://www.fao.org/faostat/en/
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analyzed with a landscape genomic approach, which was 
successfully applied in other livestock species, for exam-
ple in Ugandan cattle [18]. To date in goats, this approach 
was applied only on a reduced number of SNPs or ampli-
fied fragment length polymorphism (AFLP) markers [19, 
20]. However, it would be interesting to apply it at the 
genomic level since it provides useful information on the 
environmental factors that shaped the genome.

In this work, we used different approaches to iden-
tify regions under artificial and environmental selection 
across the AdaptMap goat dataset, which is composed 
of data from more than 3000 animals that were collected 
worldwide and genotyped with the CaprineSNP50 Bead-
Chip. For this purpose, we considered several groups 
of animals that were partitioned based on geographi-
cal area, as done in Colli et  al. [21], production uses, 
available records on solid coat color and environmental 
variables in relation to the geographical coordinates of 
sampling. For the first time, we applied FLK and hapFLK 
analyses on goat data, which have been successfully used 
in analyses of high-throughput data from sheep [22, 23]. 
These methods increase the power of detection for sig-
natures of selection, and they enable detection of soft 
or incomplete selective sweeps. Finally, we also applied 
landscape genomic approaches to this large goat dataset, 
to investigate the role of natural selection in shaping the 
goat genome.

Methods
Prior to the application of methods for detecting signa-
tures of selection, we applied several filtering steps to 
the AdaptMap goat dataset, which originally contained 
4563 animals from 144 breeds that were collected world-
wide and genotyped with the CaprineSNP50 Bead-
Chip. This dataset was first edited by removing mixed 
breeds, related animals, SNPs that were monomorphic, 
unmapped, mapped to sex chromosomes or with low call 
rate, which resulted in a working dataset of 46,654 SNPs 
and 3197 animals [21].

Additional filtering steps were applied depending on 
the analysis performed, as described below. The main 
analyses are summarized as follows: (1) detection of 
signatures of selection based on the genetic diversity of 
subcontinental populations or breeds, and (2) detection 
of signatures of selection associated with specific phe-
notypes, traits or external variables (e.g. annual mean 
temperature based on global positioning system (GPS) 
coordinates). In general, each investigation was con-
ducted using two complementary approaches. For each 
analysis, genes within selected regions or nearby detected 
SNPs (± 100  kb) were identified using the Bedtools 

software [24] and the most recent version of the goat 
genome assembly (ARS1; [10]).

Signatures of selection based on genetic diversity 
of subcontinental populations or breeds
Signatures between and within subcontinental groups
To detect signatures of major differentiation between 
populations, we used the FLK [25] and hapFLK [26] 
approaches. Briefly, these methods account for popu-
lation structure and differences in effective population 
size by modelling the genetic divergence between pop-
ulations as derived from drift and population division. 
Because these methods are not completely robust to 
strong bottlenecks and large admixture events, subsets 
of populations were selected starting from the work-
ing dataset, removing admixed animals and strongly 
inbred populations. This was done first by identify-
ing genetic sub-structure in the initial diversity analy-
sis which defined sub-continental groups [21]. Then, 
an admixture analysis was carried out to identify and 
remove admixed populations within each sub-conti-
nental group, which generated sub-continental filtered 
groups. This last step was performed using the Treemix 
software [27], allowing for up to three migration events 
within each group. Graphical representations of the 
results of all Treemix analyses are in Additional file 1. 
The number of animals included in each sub-continen-
tal group is in Table 1. The final dataset comprised 2481 
individuals that are grouped into 62 (61 Capra hir-
cus + one Capra aegagrus) populations.

Following filtering of the data, FLK and hapFLK analy-
ses were carried out on each of the sub-continental fil-
tered groups, using the wild ancestor of domestic goat 
(Bezoar, Capra aegagrus) as an outgroup to root popu-
lation trees. For hapFLK, the cross-validation procedure 
was performed with the fastPHASE software [28], which 
determined that 30 haplotype clusters were needed to 
capture haplotype diversity. For both hapFLK and FLK 
analyses, p-values were computed as explained in the 
hapFLK software documentation. False discovery rates 
(FDR) were estimated using the qvalue R package [29] 
and SNPs corresponding to an FDR of 0.15 or less were 
considered significant.

A genome scan for signatures of selection between 
sub-continental groups was also performed using FLK 
analysis as described by Fariello et  al. [22]. Briefly, the 
frequency of the ancestral allele of each group was esti-
mated from the within-group analysis. These ancestral 
alleles were then used to perform a new genome scan 
using FLK analysis. Frequencies of Bezoar alleles were 
used to root the population tree. Only the groups that 
corresponded to clear geographical clustering of goat 
populations were considered for this ancestral analysis, 
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i.e. the Southwestern, Southeastern, Northern and 
Alpine European groups, the Central Asian group and 
the Northwestern, Easter and Southern African groups.

Signatures of selection within breeds
The above-mentioned filtered dataset that was used for 
FLK and hapFLK analyses was also used to detect signa-
tures of selection within the breeds using: (i) ROH and 
(ii) iHS statistic [30]. ROH analyses were performed 
using the Zanardi software [31] by considering a mini-
mum of 15 SNPs per ROH, a minimum ROH length of 
1 Mb and allowing for one heterozygous SNP within an 
ROH to account for the possibility of genotyping errors. 
For each SNP, the proportion of animals that displayed 
a homozygous region at that SNP was calculated. Then, 
this measure was transformed by its empirical quantile 
for all SNPs across the genome (i.e. the proportion of all 
SNPs with a higher or equal proportion of homozygous 
animals in the breed considered). The iHS analyses were 
performed in populations with at least 10 genotyped 
individuals. Within each population, phasing of individu-
als was performed using SHAPEIT2 [32]. For SNPs with 
a minor allele frequency higher than 0.05, the ancestral 
alleles were randomly assigned. The iHS statistics were 
calculated using the rehh v2.0 R package [33]. Standard-
ized iHS values were computed in allele frequency bins of 
0.05 and then further corrected using robust estimations 
of their mean and variance using the rlm function from 
the MASS R package [34]. Because assessing significance 
of ROH and iHS values is less robust, ROH and iHS sig-
nals were reported only for significant FLK or hapFLK 
signatures of selection.

Signatures of selection associated with specific traits 
or external covariates
External phenotypes and production traits
Reduced subsets of the dataset were investigated to 
detect genomic regions associated with specific phe-
notypes. Reductions were performed according to the 
availability of the information for each animal or breed 
included in the dataset. Therefore, two reduced panels 
were created corresponding to differences related to pro-
duction purposes and phenotypes (solid coat colors).

Panel 1: production purposes A questionnaire that con-
tained four possible production assignments (milk, meat, 
fiber, and leather) was circulated to all AdaptMap mem-
bers who provided the samples, to obtain information on 
the main purpose of each breed. Pre-filtering was per-
formed by considering only breeds with known and prev-
alent purposes. Since none of the breeds was described 

Table 1 Number of  animals and  breeds that  composed 
the sub-continental groups after filtering steps

Groups Breed code Breed name 
(Country)

Number

Alpines ALP_FR Alpine (France) 50

BIO Bionda dell’Adamello 24

FSS Fosses 24

ORO Orobica 22

PTV Poitevine 27

SAA_FR Saanen (France) 50

VAL Valdostana 24

VSS Valpassiria 24

Angoras ANG_AR Angora (Argentina) 50

ANG_FR Angora (France) 26

ANG_ZA Angora (South Africa) 48

ANK Ankara 18

IRA Iranian goat (unknown) 9

KIL Kil 23

Boers BOE_AU Boer (Australia) 32

BOE_CH Boer (Switzerland) 50

BOE_US Boer (United States) 29

BOE_ZW Boer (Zimbawe) 17

Central Asia THA Thari 16

TED Teddi 47

PAH Pahari 19

KAC Kachan 19

DDP DDP 20

East Africa ABR Abergelle 49

GAL Galla 23

GUM Gumez 39

KAR Karamonja 19

KEF Keffa 44

MAA Maasai 18

PRW Pare White 19

SEA Small East African 50

SEB Sebei 21

SNJ Sonjo 20

WYG Woyito Guji 39

Egypt BRK Barki 50

NBN_EG Nubian (Egypt) 50

OSS Oasis 50

SID Saidi 50

Northern Europe LNR_DK Landrace (Denmark) 50

LNR_FI Landrace (Finland) 20

NRW Norwegian 17

North west Africa CAM Cameroon goat 37

GUE Malagueña 16

PEU Peulh 22

RSK Red Sokoto 19

SAH Sahel 15

TAR Targui 19

WAD West African Dwarf 50
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as being solely raised for leather production, this purpose 
was excluded from subsequent analyses.

Then, another filtering step was performed on the 
working dataset to remove breeds that are raised for 
more than one purpose by using an in-house script 
that discarded animals belonging to different purpose 
groups that shared the same coordinates of the first 
component ± 1.5 of the overall quantile distribution (ee 
Additional file  2: Figure S1). The final filtered dataset 
included 192 animals (three breeds) for fiber, 241 ani-
mals (12 breeds) for meat and 818 animals (23 breeds) for 
milk. Details on breeds and sample sizes are in Table 2a. 
Three types of analyses were carried out on the final fil-
tered dataset: ROH, FST and XP-EHH. ROH analyses 
were performed for each separate purpose group using 
the Zanardi software [31] by considering a minimum of 
15 SNPs per ROH, a minimum ROH length of 1 Mb and 
allowing for one heterozygous SNP within an ROH to 
account for the possibility of genotyping errors, as pre-
viously mentioned. The FST and XP-EHH analyses were 
carried out by comparing each group against all the oth-
ers and using the script described by Talenti et  al. [12] 
in which 1-Mb windows with an overlap of 500 kb were 
considered for window-based FST and the Selscan soft-
ware [35] for XP-EHH. The results were normalized with 
the norm normalization tool included in the software 
suite.

For all three analyses (ROH, window-based FST and 
XP-EHH), the top 0.5% of SNPs based on marker or win-
dow distribution was retained as relevant. The Bedtools 
software [24] was used to find consensus regions between 
two or all three approaches. Only regions detected by 

at least two approaches were considered for further 
analyses.

Panel 2: solid coat colors Pictures representative of the 
breeds for each animal of the working dataset were pro-
vided by the AdaptMap members and were inspected 
to find common and unique patterns across each breed. 
Considering the high variability of patterns and the lack 
of availability of high-quality pictures for some breeds, 
only those with confident solid coat colors were con-
sidered. Three groups were created: a Black group (79 
animals and three breeds), a White group (375 animals 
and six breeds), and a Red group (93 animals and three 
breeds). Breeds and samples sizes are in Table  2b. For 
each group, a FST analysis was carried out by consider-
ing the following pairwise comparisons: White vs. Black 
and Red, Black vs. White and Red vs. White. These 
comparisons were performed using the script described 
by Talenti et  al. [12] for which 500-kb windows with 
overlaps of 250 kb were considered. For each compari-
son, the top four windows that contained at least four 
SNPs, corresponding to the 0.9996 percentile of the 
overall distribution were considered. The genes within 
these windows were screened using the coat color gene 
website of the International Federation of Pigment Cell 
Society (http://www.espcr .org/micem ut) to investigate 
their direct or indirect associations with coat colors in 
mice and shades of skin color in humans.

SNPs that were located on either side of candi-
date genes for both purpose and coat color panels 
(± 5  Mb = short and ± 10  Mb = long) were used as sets 
of variables with the same animals for canonical discri-
minant analysis (CDA), which was performed with the 
CANDISC procedure implemented in SAS-stat software 
(SAS Institute, Inc., vers.9.4). These analyses allowed 
the identification of the SNPs that contributed most to 
the discrimination between groups. These contributions 
were summarized as canonical functions (CAN), which 
were linear combinations of the original variables (discri-
minant SNPs). Visual inspection of the CAN1 vs. CAN2 
scatter plot of the CAN1 and CAN2 values for each SNP 
was used to pinpoint the precise regions associated with 
the separation between groups.

Signatures of selection associated with bioclimatic 
environmental variables
To study the influence of the environment on the distri-
bution of adaptive genetic variation, a landscape genomic 
approach using the Samβada software [36] and FST 
analyses were applied to identify genotypes that are sig-
nificantly associated with environmental variables. For 
this purpose, we used a reduced subset of samples with 

Country is indicated when necessary for the analysis

Table 1 (continued)

Groups Breed code Breed name 
(Country)

Number

South Africa DZD Dedza 15

LND Landin 29

MSH Mashona 22

South eastern Europe ARG Argentata 24

CCG Ciociara Grigia 16

DIT Di Teramo 19

GAR Garganica 15

GGT Girgentana 24

South western Europe BEY Bermeya 23

MAL Mallorquina 18

MLG Malaguena 40

MUG Murciano‑Granadina 20

PYR Pyrenean 26

RAS Blanca de Rasquera 20

http://www.espcr.org/micemut
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known geographic coordinates of the sampling point. 
This reduced dataset contained 2661 animals from 28 
countries (Table  3). Finally, an additional filtering step 
was applied before performing the FST analyses (see 
below).

Landscape genomic analyses The environmental condi-
tions were characterized using the bioclimatic variables 
from the WorldClim database (http://www.world clim.
org/) (see Additional file  3: Table  S1). These data were 
available worldwide at a resolution of one arc-second and 
represented an average of the conditions from years 1950 
to 2000. The values of these variables were extracted for 
the coordinates of each sampling point using the QGIS 

2.14.7 software and were centered-reduced. A buffer area 
around each sampling point was generated to integrate, 
into the model, the environmental variability of the area 
that could influence an individual. Here, a radius of 5 km 
was selected which assumed that the goat could move in 
a circular area of 10 km in diameter, centered on the sam-
pling point. Within that area, in order to consider only 
the area corresponding to the potential home range of the 
goats, a land cover discrimination based on the Global 
Land Cover 2000 classification was applied [37]. On this 
basis, the areas corresponding to artificial surfaces (urban 
land cover) and water bodies were removed. For the 
remaining areas, the bioclimatic variables were retrieved 
and for each one, seven statistical measures (minimum, 

Table 2 List of  filtered animals and  breeds for  comparisons of  breeds with  different production  purposesa and  coat 
 colorsb

Purposea Breed code Breed name Number Coat  colorb Breed code Breed name Number

Milk ALP Alpine (Camosciata delle Alpi) 150 White ANG Angora 131

ARG Argentata 24 ANK Ankara 18

ASP Aspromontana 23 CAS Nicastrese 44

BIO Bionda dell’Adamello 24 CRP Carpathian 14

CCG Ciociara Grigia 16 GAL Galla 23

CRS Corse 29 SAA Saanen 145

DIT Di Teramo 19 Black DDP DDP 20

GAR Garganica 15 KIL Kil 23

LNR Landrace 85 KLS Kilis 36

MLG Malagueña 40 Red BEY Bermeya 23

MLS Maltese Sarda 12 RME Rossa Mediter-
ranea

30

MLT Maltese 16 MLG Malaguena 40

MUG Murciano‑Granadina 20

NIC Nicastrese 20

NRW Norwegian 17

ORO Moroccan 22

PTV Poitevine 27

PVC Provencale 17

RME Rossa Mediterranea 30

SAA Saanen 142

SAR Sarda 27

TOG Toggenburg 19

VSS Valpassiria 24

Meat BOE Boer 138

BRI Bari 25

LOP Local_Pothohari 13

RAN Murciano‑Granadina 2

TED Teddi 47

THA Thari 16

Fiber ANG Angora 131

ANK Ankara 18

CAS Cashmere 43

http://www.worldclim.org/
http://www.worldclim.org/


Page 7 of 24Bertolini et al. Genet Sel Evol           (2018) 50:57 

maximum, mean, standard deviation, range, median and 
mode) were computed.

The Samβada software [36] was used to compute 
the parallel processing of multiple univariate logistic 
regressions between each genotype versus each envi-
ronmental variable. All univariate models were com-
puted and filtered considering a significance threshold 
of 0.05 before Bonferroni correction. Then, a second 
step of filtering was applied to retrieve only the SNPs 

for which at least two genotypes were significantly 
associated with an environmental variable and showed 
simultaneously: (1) a very strong effect of the environ-
ment on the genotype (absolute value of the β1 regres-
sion coefficient higher than the 0.99 percentile of all 
absolute values of β1 of the significant models), (2) a 
high statistical significance of the association (G and 
Wald scores higher than the 0.95 percentile of all G and 
Wald scores of the significant models) and (3) a strong 

Table 3 List of breeds (name, code and number of animals per breed) with available GPS coordinates used for landscape 
genomic analysis

Breed code Breed name Number Breed code Breed name Number Breed code Breed name Number

ABR Abergelle 49 GHA Ghazalia 4 NSJ Nsanje 6

ALB Alpine x Boer 5 GOG Gogo 12 OIG Old Irish Goat 11

ALP Alpine (Camosciata delle Alpi) 146 GUE Guera 16 ORO Orobica 22

AND Nganda 6 GUM Gumez 39 OSS Oasis 50

ANG Angora 80 IRA Iranian goat 9 PAF Pafuri 4

ARG Argentata 24 JAT Jattan 15 PAH Pahari 19

ARR Traditional Arran 8 JON Jonica 11 PAL Palmera 14

ASP Aspromontana 23 KAC Kachan 19 PAT Pateri 27

BAB Barbari 16 KAM Kamori 38 PEU Peulh 22

BAR Barcha 4 KAR Karamonja 19 PRW Pare White 19

BAW Balaka‑Ulongwe 12 KEF Keffa 44 PTV Poitevine 27

BEY Bermeya 23 KES Koh‑e‑sulmani 13 PVC Provençale 15

BEZ Bezoar 7 KIG Kigezi 4 PYR Pyrenean 26

BIO Bionda dell’Adamello 24 LGW Lilongwe 3 RAN Rangeland 50

BLB Bilberry 10 LND Landin 29 RAS Blanca de Rasquera 20

BOE Boer 108 LNR Landrace 50 RME Rossa Mediterranea 30

BRI Bari 25 LOH Lohri 17 RSK Red Sokoto 19

BRK Barki 50 LOP Local Pothohari 13 SAA Saanen 106

BUT Bugituri 31 MAA Maasai 18 SAH Sahel 15

CAM Cameroon goat 37 MAL Mallorquina 18 SDN Soudanaise 22

CAN Caninde 23 MAN LaMancha 3 SEA Small East African 50

CAS Cashmere 44 MAU Maure 13 SEB Sebei 21

CCG Ciociara Grigia 1 MEN San Clemente 19 SHL Sahel 19

CHA Chappar 9 MLG Malagueña 24 SID Saidi 50

CRE Creole 49 MLY Malya 11 SNJ Sonjo 20

CRO Local Cross 5 MOR Moroccan goat 10 SOF Sofia 22

CRP Carpathian 14 MOX Moxoto’ 23 SOU SudOuest 8

CRS Corse 29 MSH Mashona 22 TAP Tapri 22

DDP DDP 20 MTB Matebele 22 TAR Targui 19

DIA Diana 14 MUB Mubende 18 TED Teddi 47

DJA Djallonke 10 MUG Murciano‑Granadina 20 THA Thari 16

DRA Draa 4 NAI Naine 14 THY Thyolo 9

DZD Dedza 15 NBN Nubian 63 TOG Toggenburg 20

FSS Fosses 24 NDA Noire de l’Atlas 4 TUN Tunisian 21

GAL Galla 23 NGD Nganda 11 VAL Valdostana 24

GAR Garganica 15 NOR Nord 4 WAD West African Dwarf 49

GAZ Gaza 4 NRW Norwegian 17 WYG Woyito Guji 39
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goodness of fit of the models, with an Akaike’s infor-
mation criterion (AIC) lower than the 0.10 percentile 
of all AIC of the significant models. The Enrichr data-
base [38, 39] was used for the genes detected with the 
Samβada analyses to identify the major biological pro-
cesses that involved the identified genes (GO biologi-
cal process) by considering significant clusters with a P 
value lower than 0.05.

FST analyses Each animal of the working dataset with a 
known GPS geographic location was assigned to a Köp-
pen climate group (Tropical, Dry, Temperate, and Cold; 
[40]) through the website climate-data.org. Then, we 
applied the following filters: (i) for each climate group, 
only breeds with at least 10 animals allocated were con-
sidered, and (ii) if the same breed was in two or more 
groups only the animals that belonged to the groups of 
known breed origin were considered and the others were 
discarded. The assignment of each individual to a Köppen 
group and the subsequent filtering of animals provided a 
dataset of 1689 animals (141 for the Tropical group, 796 
for the Dry group, 632 for the Temperate group and 120 
for the Continental group), with no redundant breeds 
across the groups; assignments are summarized in Table 4. 
MDS (multidimensional scaling) of the filtered animals 
was performed using the Plink 1.9 software [41]. Single 
SNP FST was performed by comparing each group to the 
remaining groups merged together. The top 20 SNPs of 
each comparison, corresponding to the 0.9995 percentile 
of the distribution were considered and compared with 
the previous results of the landscape genomics analysis 
that had been filtered based on a significance threshold of 
0.05 before Bonferroni correction. Only the selected FST 
SNPs with a G score or Wald score and β1 regression coef-
ficient higher than 0.99 quantile were retained for further 
analysis. Allele frequencies of the SNPs that were shared 
by different groups were calculated and compared using 
the Plink 1.9 software [41].

Results
Selection of goat populations for the analysis of signatures 
of selection based on worldwide genetic diversity
A dataset of goat breeds ensuring robust modelling was 
developed prior to FLK and hapFLK analyses. This data-
set included 61 breeds, which overall represented all the 
genetic diversity present in the complete dataset (Fig. 1). 
The genetic diversity in this set of breeds mirrored their 
geographical origin and was consistent with a radiation 
from the domestication center. Thus, each population 
was assigned to one of the 11 sub-continental groups, and 
each sub-continental group was analyzed independently. 
In Fig. 1, the root of the population tree, which is located 
at the center, corresponded to the ancestral population 

Table 4 Breed composition and  number of  animals 
according to the Köppen group classification

Köppen group Breed code Breed name Number

Tropical CAM Cameroon goat 11

NAI Naine 14

WAD West African Dwarf 15

SEA Small East African 16

CAN Caninde 23

MOX Moxoto’ 23

GUM Gumez 39

Dry CHA Chappar 9

KES Koh‑e‑sulmani 13

LOP Local Pothohari 13

MAU Maure 13

JAT Jattan 15

SAH Sahel 15

BAB Barbari 16

GUE Guera 16

THA Thari 16

LOH Lohri 17

MUG Murciano‑Granadina 17

KAC Kachan 19

PAH Pahari 19

TAR Targui 19

DDP DDP 20

MTB Matebele 22

PEU Peulh 22

SDN Soudanaise 22

TAP Tapri 22

BRI Bari 25

PAT Pateri 27

BUT Bugituri 31

KAM Kamori 38

TED Teddi 47

ABR Abergelle 49

BRK Barki 50

OSS Oasis 50

RAN Rangeland 50

SID Saidi 50

NBN Nubian 54

Temperate BLB Bilberry 10

TOG Toggenburg 10

JON Jonica 11

MAL Mallorquina 12

MLS Maltese sarda 12

NRW Norwegian 12

PAL Palmera (Canaria breed) 12

LNR Landrace 13

OIG Old Irish Goat 13
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of all goat breeds, i.e. the ancestral domesticated popu-
lation. Extant populations radiated from this ancestral 
population with populations that were geographically 
closer to the domestication center also usually genetically 
closer. The populations that were closest to the ancestor 
belonged to the “Angora” group, which originated from 
Turkey. A little further, in their own sub-group, there was 
a set of breeds from Pakistan (“Central Asia” group). The 
other two large sub-trees consisted of populations from 
Africa and Europe, which were split further into sub-con-
tinental groups.

Signatures of selection participating in the adaptive 
differentiation of goat populations
The FLK and hapFLK analyses detected 67 signatures of 
selection among the 10 population groups. Figures  S2 
and S3 (see Additional file  2: Figures S2 and S3) show 
the Manhattan plots for the FLK and hapFLK analyses 
and Figure S4 (see Additional file  2: Figure S4) shows 
the overview of the genomic distribution of all signa-
tures of selection. The complete list of signatures of 
selection is in Table S2 (see Additional file 3: Table S2). 
Graphical representations of FLK, hapFLK, ROH and 
iHS signals for all signatures of selection are in Addi-
tional file 4. The northern European group was the only 
group for which no significant signatures of selection 
were detected. The populations that constitute this 
group display long terminal branches in the population 
tree (Fig. 1), which indicates that they have all experi-
enced a strong reduction in population size. Such a 
reduction in size creates extensive genetic drift, which 
alone can explain the genetic differentiation of these 
populations. Hence, such extensive genetic drift makes 
the detection of signatures of selection difficult, which 
can explain the lack of power observed for the northern 
European group.

Most of the signatures detected were specific to one 
population. A total of 13 genomic regions were shared 
between at least two groups (see Additional file  3: 
Table S2). These regions were annotated by (i) listing the 
genes that were located ± 10 0  kb near the highest FLK 
or hapFLK signal and (ii) identifying the populations that 
showed an elevated ROH and/or iHS signal within the 
region.

A signature of selection on chromosome 5 between 30 
and 40  Mb encompasses the ADAMTS20 (ADAM met-
allopeptidase with thrombospondin type 1 motif 20) gene 
(see Additional file  2: Figure S5 and Additional file  4). 
This genomic region matched with a ROH signal in the 
Pyrenean goat population of the southwestern European 
group and with an iHS signal in the Argentata dell’Etna 
breed of the southeastern European group. It also 
matched with ROH and iHS signals in the Sahel, Peulh 
and Thari breeds of the northwestern Africa group. These 
breeds were genetically quite homogeneous and clus-
tered within the same population in the genetic diversity 
study, thus, they were combined for the ROH analysis. 
An iHS signal was present in the Murciano-Granadina 
population, but did not match with the position of the 
ADAMTS20 gene, thus it may represent another selec-
tion target.

A second signature selection on chromosome 6 har-
bors the KIT (KIT proto-oncogene receptor tyrosine 
kinase) gene in three population groups (see Additional 
file 2: Figure S6 and Additional file 4). A ROH signal was 

Table 4 (continued)

Köppen group Breed code Breed name Number

MLT Maltese 14

BEY Bermeya 15

GAR Garganica 15

CCG Ciociara Grigia 16

MSH Mashona 16

PVC Provençale 16

ASP Aspromontana 17

NIC Nicastrese 17

DIT Di Teramo 19

TUN Tunisian 21

VAL Valdostana 21

ORO Orobica 22

VSS Valpassiria 22

GGT Girgentana 23

ARG Argentata 24

FSS Fosses 24

ANG Angora 25

PYR Pyrenean 26

PTV Poitevine 27

SAR Sarda 27

CRS Corse 28

MLG Malagueña 29

RME Rossa Mediterranea 30

BOE Boer 33

Continental CRP Carpathian 10

BIO Bionda dell’Adamello 17

SAA Saanen 46

ALP Alpine (Camosciata delle Alpi) 47
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detected in the Kacchan breed of the central European 
group, the Abergelle breed of the east European group 
and the Argentata dell’Etna breed of the southeastern 
European group.

A third selection signature on chromosome 13 
matched with the position of the ASIP (Agouti signaling 
protein) gene (see Additional file 2: Figure S7 and Addi-
tional file  4). In Pakistani breeds, a clear ROH signal, 

corresponding to a large fixed haplotype was detected 
in the Kacchan population sample from Pakistan and 
in several breeds of the Alpine group (Alpine, Poitevine 
and Valdostana). The most significant FLK signal in the 
Alpine group corresponded to the SNP that was closest 
to ASIP, however, the highest FLK signal in central Asian 
breeds did not correspond to the same SNP and the 
region spanned several genes.

Fig. 1 Populations used to detect signatures of selection. Populations are color‑coded according to their identified geographical groups. 
Populations in black were not considered in the analyses signatures of selection (see details in the text)
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Another relevant signal was detected on chromosome 
1 between 110 and 130  Mb in the Alpine and south-
western European groups (see Additional file  2: Figure 
S8 and Additional file  4). This region seemed to match 
with an FLK signal in the Alpine Valdostana breed, which 
presents a high proportion of homozygous individu-
als for this region. An iHS signal also on chromosome 
1, at ~ 108  Mb was found in the Ciociara Grigia Italian 
breed of the southeastern European group (see Addi-
tional file  2: Figure S26). Another signal was detected 
on chromosome 6 close to the cluster of casein genes 
CSN1S1, CSN1S2 and CSN2, in the groups of Alpine 
breeds and Eastern African populations (see Additional 
file  2: Figure S9 and Additional file  4). The signature of 
selection detected for the Alpine populations clearly 
points to the casein genes while for the Eastern African 
populations, the FLK signals seem to point to a differ-
ent cluster of genes that encode glucuronosyltransferase 
enzymes.

A complex signature of selection on chromosome 6 
was identified between 25 and 50  Mb (see Additional 
file  2: Figure S10 and Additional file  4) and probably 
results from multiple signals in different genes and dif-
ferent groups. In the Egyptian group, the gene closest to 
the highest hapFLK signal was LCORL (ligand depend-
ent nuclear receptor corepressor like). This region clearly 
matched with an extended region of shared ROH in the 
Nubian goat population from Egypt (see Additional 
file  4). Among the southwestern European popula-
tions, the Bermeya population presented an iHS signal 
at the same locus. This region in Egyptian populations 
overlaps with other signals detected in the southwest-
ern and southeastern European groups. It contains the 
ABCG2 (ATP binding cassette subfamily G member 2) 

gene and matched with an iHS signal in the Murciano-
Granadina breed of the southwestern European group 
and in the Argentata dell’Etna breed of the southeast-
ern European group. In both population groups, the 
hapFLK signal is much stronger than the FLK signal 
and no clear ROH signal was observed in the breeds of 
these two groups. A possible explanation for these two 
observations is that the signature of selection is due to 
a soft selective sweep rather than a hard sweep.

Another signature of selection was found on chromo-
some 12 in the southwestern European group and the 
central Asian group (see Additional file  2: Figure S11 
and Additional file 4). This region contained the RXFP2 
(relaxin/insulin like family peptide receptor 2) gene. 
The two populations that showed a clear signature of 
selection in this region were the Thari goat from Cen-
tral Asia (iHS signal) and the Blanca de Rasquera Span-
ish breed (ROH signal).

Finally, a region on chromosome 25 (35.50-35.88 Mb) 
was detected in the FLK analysis in the Angora group 
and confirmed by ROH and iHS analyses (Fig. 2).

Signatures of early adaptation
FLK analysis on the filtered geographical dataset based 
on the estimated ancestral allele frequency of geograph-
ical groups detected 62 SNPs with evidence for outlying 
differentiation among groups (Fig.  3) and (see Addi-
tional file  3: Table  S3). The phylogenetic tree seemed 
to confirm the relationship between sub-continental 
blocks. Among the 62 SNPs, two signatures of selec-
tion were found on chromosome 1 close to the SOX14 
(SRY-box 14) gene and on chromosome 16 close to the 
NOCT (nocturnin) gene. Another signature of selection 

Fig. 2 Signatures of selection on chromosome 25 in the Angora group. Left panel: FLK (points) and hapFLK (line) signals. Middle panel: ROH signals. 
Right panel: iHS signals
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on chromosome 5 is located within the HOXC (home-
obox C) gene cluster (see Additional file 3: Table S3).

Signatures of selection associated with external phenotypes 
and production traits
Production purposes The analyses performed on the 
group of “fiber-producing” goat breeds detected 18 
regions on 11 chromosomes with ROH, 88 regions and/or 
SNPs on 27 chromosomes with XP-EHH and 24 regions 

on 11 chromosomes with FST (Fig.  4). Among these, 
six regions on chromosomes 6, 18 and 25, including 34 
genes, were detected by all three methods (see Additional 
file  3: Table  S4). The region on chromosome 25 (34.69-
36.43  Mb) showed the highest values in all the three 
analyses (Fig. 4a). Among the three breeds that compose 
the “fiber-producing” goat breed group, only Angora and 
Ankara showed a signature of selection in this region with 
none being detectable in Cashmere (Fig. 4b). This signa-

Fig. 3 Genome scans for early adaptation based on differentiation between geographical groups. Left: Population tree built from the estimates 
of ancestral allele frequency in each continental group. Right: Manhattan plot of FLK p‑values computed from the estimates of ancestral allele 
frequency and accounting for the ancestral tree structure

Fig. 4 ROH, FST and XP‑EHH for fiber (a), and detail of the ROH analyses on chromosome 25 for the breeds that compose the group of 
“fiber‑producing” goat breeds: Angora, Ankara and Cashmere (b). (a) The three analyses are shown with different plot colors, within the most 
external squared‑based circle, where each color represent a chromosome (chromosome number outside the squares): green (external) = ROH; 
blue (middle) = FST; violet (internal): XP‑EHH. For the three analyses, the regions above the threshold are marked in red. The region of high 
homozygosity (chromosome 25: 35,240,726‑36,394,939 bp) is highlighted in red. (b) The three different breeds are labelled with different colors: 
green (external) = Angora; blue (middle) = Ankara; violet (internal): Cashmere. For the three breeds, the part corresponding to the 35‑36 Mb region 
is marked in red when above the threshold
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ture of selection overlapped with the regions detected by 
FLK/hapFLK, ROH and iHS analyses within the Angora 
group (Fig.  2) and contained 24 genes, including the 
CUX1 (cut like homeobox 1) and the PLOD3 (procollagen-
lysine,2-oxoglutarate 5-dioxygenase 3) genes. The win-
dow-based FST analysis between Cashmere and Angora 
breeds pointed out several regions on chromosomes 2, 5, 
6, 8, 9, 12, 13, 14, 17, 20, 25, 28 (data not shown). The ROH 
analyses on the Cashmere individuals highlighted several 
major regions on chromosomes 2, 10, 22 (47-48 Mb), 3, 5 
and 8 (data not shown).

The analyses performed on the group of “meat-
producing” goat breeds detected 25 regions on eight 
chromosomes with ROH, 121 regions and/or SNPs on 
27 chromosomes with XP-EHH and 24 regions on 16 
chromosomes with FST (see Additional file  2: Figure 
S12]. Among these regions, two regions on chromo-
somes 3 and 18 were detected by at least two of the 
three methods and contained 18 genes [see Additional 
file  3: Table  S5), including TSHB (thyroid stimulating 
hormone beta), NRAS (neuroblastoma RAS viral onco-
gene homolog) and AMPD1 (adenosine monophosphate 
deaminase 1), all on chromosome 3.

The analyses performed for the group of “milk-pro-
ducing” goat breeds detected 11 regions on eight chro-
mosomes with ROH, 286 regions and/or SNPs in all 
autosomes with XP-EHH and 24 regions on 15 chro-
mosomes with FST (see Additional file  2: Figure S13). 
Among these regions, four were on chromosomes 11, 
13 and 14, which included 20 genes that were detected 
by at least two of the three methods (see Additional 
file 3: Table S6), among which the EFEMP1 (EGF con-
taining fibulin like extracellular matrix protein 1) 
gene on chromosome 11. The ROH analysis revealed a 
region on chromosome 6 (75-120 Mb) that contains the 
cluster of casein genes, although it was not confirmed 
by the FST and XP-EHH analyses (data not shown).

The CDA, which was performed on the chromo-
somal regions surrounding the genes previously identi-
fied for the three groups, confirmed the results found 
in previous analyses. The region on chromosome 25 
(34.69-36.43 Mb) that contained the CUX1 and PLOD3 
genes could separate individuals in the group of “fiber-
producing” goat breeds from the other two groups on 
the CAN1 variable, and the SNPs that best separate the 
three groups were in the middle of these regions (see 
Additional file  2: Figure S14). The region on chromo-
some 3 that included the TSHB, NRAS and AMPD1 
genes could separate the group of “meat-producing” 
goat breeds from the remaining two groups on the 
CAN2 variable when considering the highest peak in 
the middle of the region (see Additional file  2: Figure 
S15). Finally, the region on chromosome 6 that contains 

the casein cluster could separate the “milk-producing” 
breeds from the other two groups on the CAN1 vari-
able, with a high peak near to the CSN1S1 (alpha S1 
casein) gene (see Additional file 2: Figure S16).

Coat color The distribution on the MDS plot of the 
single breeds using the medium-density SNP chip over-
lapped partially between the three groups of coat color. 
This probably reflects geography rather than coat color, 
with the Middle Eastern, Asian (Pakistan) and African 
goats being separated from all European goats on the first 
component (see Additional file 2: Figure S17). The Angora 
and Ankara (White) breeds and the Kil and Kilis (Black) 
breeds, which all originate from Turkey formed two clus-
ters. For the “coat color” groups, we detected regions 
on chromosomes 5 (70.0–70.5  Mb), 13 (53.0–53.5  Mb), 
and 18 (15.50–16.25  Mb) in the Black vs. White com-
parison, regions on chromosomes 5 (36.25–36.75 Mb), 9 
(11.5–12 Mb), and 13 (53–53.5 Mb and 62.75–63.25 Mb) 
in the White vs. Black and Red comparison, and regions 
on chromosomes 8 (27.0–27.5 Mb), 22 (2.25–3.0 Mb) and 
29 (39.25–39.75  Mb) in the Red vs. White comparison. 
The list of genes within these regions is in Table S7 (see 
Additional file 3: Table S7) and includes ADAMTS20 and 
TIMP3 (TIMP metallopeptidase inhibitor 3) on chromo-
some 5, SOX18 (SRY-box 18) and ASIP on chromosome 
13, and MC1R (melanocortin 1 receptor) on chromosome 
18. CDA on the MC1R gene showed that SNPs present 
on either side of this gene could distinguish the solid 
Red goats from the solid Black and White animals that 
were close on the CAN1 (see Additional file  2: Figure 
S18), which disagrees with the above result that indicated 
that MC1R could separate black and white individuals. 
Similarly, SNPs located near the ASIP gene seemed to be 
able to distinguish the solid Red from the solid black and 
white groups (see Additional file  2: Figure S19). In the 
CDA, SNPs in the region surrounding the ADAMTS20 
gene could distinguish and separate all three groups on 
the CAN1 variable, and particularly the white group (see 
Additional file 2: Figures S20).

Adaptation to environment
Landscape genomics analysis
The Samβada results showed that more than 80% of 
the SNPs appear in at least one significant associa-
tion between a genotype and a bioclimatic variable. In 
addition, 57 SNPs were involved in associations that 
respected the second series of filtering criteria (values 
for the β1 coefficient, G score, Wald score > 0.99 quan-
tile, AIC criterion < 0.1 quantile, and at least two geno-
types associated with at least one environmental variable) 
(see Additional file  3: Table  S8). The most significant 
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associations (highest G score) obtained with these SNPs 
involved the environmental variable related to annual 
mean temperature (bio1) for 49 SNPs, mean temperature 
of the coldest quarter (bio11) for three SNPs, mean diur-
nal range (bio2) for three SNPs, precipitation of the driest 
month (bio14) for one SNP and isothermality (bio3) for 
one SNP. The results obtained with the sampling point 
variables were very similar to those obtained with mode, 
maximum, mean and median values computed within the 
buffer area, whereas the associations with range, mini-
mum and standard deviation were less significant. One of 
the strongest associations was observed between the CC 
genotype of SNP snp24965-scaffold2564-131990 located 
on chromosome 3:1091508 and the mean annual temper-
ature (bio1). This association had the highest G and Wald 
scores of the models filtered using the criteria above and 
the highest Efron score of all significant models (using a 
threshold 0.05 before Bonferroni correction). The spatial 
distribution of the genotypes for this SNP showed that 
the AA genotype is only present in Europe or in southern 
regions of high altitude. The AC genotype showed a simi-
lar trend, even if it is slightly more frequent in the south-
ern regions, while the CC genotype was observed in the 

whole area of study (Fig. 5). This SNP is located close to 
the pre-B cell leukemia homeobox 1 (PBX1) gene. The list 
of genes that are located near (± 100 kb) each of the 57 
SNPs is in Additional file 3: Table S9 and the geographi-
cal distribution of the genotypes for the  remaining 56 
SNPs is in the Additional file 5. Analysis of the biologi-
cal processes of the genes located in the vicinity of these 
SNPs (see Additional file 3: Table S10) highlighted genes 
that are linked to several pathways, such as the insulin 
and glucose signaling pathway and metabolism [(IGF2 
(insulin-like growth factor 2)], glycogen metabolism, lipid 
biosynthetic processes, oxidative stress [GPR37L1 (prosa-
posin receptor GPR37L1) and INS (insulin) genes] and 
regulation of vasodilation. Two genes are involved in cir-
cadian rhythms regulation: RAI1 (retinoic acid induced 1) 
and TH (tyrosine hydroxylase).

FST and landscape genomic analyses of climatic associations
The MDS analysis (see Additional file  2: Figure S21) 
showed an overlap between the Köppen climate groups, 
with Tropical and Continental being the smallest and 
most clustered groups. The FST plots are in Fig.  6 and 
Figures S22 to S24 (see Additional file 2: Figures S22, S23 

Fig. 5 Map of the worldwide distribution of genotypes for the snp24965‑scaffold2564‑131990 (3:1091508)
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and S24) and indicate for each analysis the number of 
SNPs above the selected threshold. Twenty SNPs for each 
comparison met the threshold of the quantile > 0.9995, 
among which, 13 are shared between the Dry and Tem-
perate/Continental groups with opposite major alleles 
between these groups (see Additional file  3: Table  S11). 
Interestingly, the Tropical group did not have any com-
mon SNPs with the other groups, which reduced the list 
from 80 to 65 SNPs. When these 65 SNPs were compared 
with the Samβada results, they all showed either high G 
scores, Wald scores or β1 regression coefficients (quan-
tile values considering only those obtained from the sig-
nificant models > 0.99 of the empirical distribution) for 
at least one genotype in several environmental variables. 
These SNPs are summarized in Table  S12 (see Addi-
tional file 3: Table S12). In the landscape genomic anal-
ysis, nine of these SNPs showed G scores, Wald scores 
and β1 regression coefficients that were all higher than 
the 0.999 quantile. In total, 197 genes were detected in 
the regions (± 100 kb) close to these 65 SNPs (see Addi-
tional file  3: Table  S13). For the Tropical group, a clus-
ter of HOXC genes (HOXC4, HOXC5, HOXC6, HOXC8, 
HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13) 
that are located near the three SNPs on chromosome 5 
was detected. Analysis of the genes for the four Köppen 
climate groups revealed several genes such as SOX17 
(transcription factor SOX-17) for the Dry and Temperate 
groups, CLYBL (citrate lyase subunit beta-like protein) 

for the Dry and Continental groups, LYPLA1 (lysophos-
pholipase 1), ATP6V1H (vacuolar ATPase) and RGS20 
(regulator of G-protein signaling 20) for the Dry and Tem-
perate groups and, with a different SNP, also in the Tropi-
cal group, CAPN10 (calpain 10) and RNPEPL1 (arginyl 
aminopeptidase (aminopeptidase B)-like 1) were found 
for the Continental group only but also detected in the 
landscape genomic analyses and in the FLK analyses for 
signature of early adaptation.

Discussion
Detection of signatures of selection from genotype data 
alone is possible either by searching for genomic regions 
that show high levels of differentiation between popula-
tions or by looking for regions of low genetic diversity 
within a population. In this work, both approaches were 
used because they detect different kinds of selection 
events. Selection events that lead to the rapid fixation of 
an initially rare variant, i.e. hard sweeps, should lead to 
signals that can be detected by both approaches. How-
ever, in this case, within-population methods are more 
powerful than differentiation-based methods, but differ-
entiation-based approaches can detect a greater diversity 
of selection signals, such as selection on standing varia-
tion (soft sweeps) or diversifying selection.

Our analyses were not limited to searching for sig-
nals of selection within or among populations. We also 
exploited other available information, such as differences 

Fig. 6 FST plot of the comparison of the Tropical group vs. the other groups. The threshold line in red represents the 0.995 of the percentile 
distribution (FST = 0.391)
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in production purposes, phenotypes, and geographical/
bioclimatic coordinates to elucidate the mechanisms of 
selection. The detection of adaptive loci in the genome 
is an essential part of studies on environmental adap-
tation, since it can help understanding which regions 
of a genome and therefore which genes have been or 
are being shaped by natural selection. Spatial analysis 
with geographical information systems (GIS) and envi-
ronmental variables, along with molecular data, were 
included in the landscape genomic analysis to uncover 
the genomic regions under selection and identify candi-
date environmental factors that cause this selection. Mul-
tiple univariate logistic regressions were carried out to 
test for association between allele frequencies at marker 
loci and environmental variables. The analyses consid-
ered variables that can be summarized by differences in 
temperature and precipitation, which could be indirectly 
correlated to water availability. The Samβada analy-
ses showed that more significant associations and more 
selected SNPs were associated with differences in tem-
perature than with differences in precipitation. Therefore, 
temperature appears to have played a bigger role in the 
adaptation processes of goat breeds.

In addition, our analyses examined the signals that 
were detected in the genome after a detailed modeling 
of genetic divergence and population structure. Complex 
admixture and strong population bottlenecks can mimic 
the effect of selection by reducing local variability consid-
erably. Therefore, to detect these signals, we applied the 
FLK and hapFLK approaches to individuals with a unique 
genetic background, without recent admixture or popu-
lation bottlenecks. Finally, signatures of selection left 
by recent human selection on goat populations that are 
linked to production purposes or phenotypic standardi-
zation were analyzed.

Taken together, these analyses contributed to provide a 
genome-wide picture of the genes and genomic regions 
that have been subject to selection and led to signatures 
of selection that concern different biological pathways 
or group of genes, which were detected by one or more 
types of analyses.

Genes related to milk production
Among all the genes that can contribute to milk yield, 
quality and processing, the casein genes are one of the 
most important gene families in ruminants, since they 
have a major role in the production of cheese products 
from milk. In the goat genome, this gene cluster is located 
on chromosome 6 between 85.95 and 86.25 Mb. Analysis 
of the ROH scores of the breeds selected for milking pur-
poses showed that the longest region with loss of vari-
ability coincides with the casein region on chromosome 6 
between 85.9 and 86.2 Mb. The goat breeds used for milk 

and cheese production belong mainly to the European 
breeds, particularly from Italy and France, which suggests 
that the signals identified are related to a common direc-
tion of selection within these breeds, i.e. that they are 
used mainly to produce whole milk (20% of production) 
and cheeses (80% of production) [42]. Many dairy goat 
breeds of Europe have been developed through breeding 
with the two most specialized dairy breeds, i.e. Saanen 
and Alpine from Switzerland [21]. Due to its popularity 
as a dairy breed, Saanen goats are distributed across more 
than 80 countries worldwide [5]. The genomic region that 
contains the cluster of casein genes was also detected by 
FLK analysis, which identified a region containing this 
gene cluster in the group of Alpine breeds and a region 
close to this cluster in the group of Eastern African popu-
lations. The different analyses and particularly the FLK 
and hapFLK analyses also detected other regions related 
to milk production. Chromosome 6 carries several genes 
that are related to milk production and found in several 
ruminant species. Another region on chromosome 6 that 
contains the ABCG2 gene was detected in the Egyptian, 
southwestern and southeastern European groups, which 
was further confirmed by the iHS signal detected for the 
Murciano-Granadina and Argentata dell’Etna breeds. The 
ABCG2 gene matched with a previously identified signa-
ture of selection in sheep [22] and polymorphisms in this 
gene have been associated with milk yield and composi-
tion in cattle and sheep [43, 44]. The ROH/Fst/XP_EHH 
analyses detected another consensus region on chromo-
some 11 that contains the EFEMP1 gene, which is associ-
ated with conjugated linoleic lipid contents in the meat 
of Wagyu Angus cattle breed [45]. A region on chromo-
some 1 between 110 and 130 Mb that was detected in the 
Alpine and southwestern European groups is homolo-
gous to a genomic region in dairy cattle for which selec-
tive pressure was previously reported [46]. A separate 
signature of selection approximately 5 Mb away from this 
region was also found in the Italian local breed Ciociara 
Grigia, which is used for milk production. Brito et al. [13] 
recently identified other genomic regions that may be 
associated with milk production, using a partially over-
lapping subset of breeds [13]. This difference may be due 
to a different breed composition of the dataset used and 
underlines the fact that there may be some breed-specific 
regions related to milk composition. Therefore, more tai-
lored experiments are needed to decipher the genetics 
behind milk production in goat.

Genes related to fiber production
For the group of “fiber-producing” goat breeds, the 
strongest signature of selection in all three types of analy-
ses (ROH, XP-EHH and FST) was detected in the genomic 
regions containing the CUX1 and PLOD3 genes. The 
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detected regions in Angora and Ankara were confirmed 
by the FLK and hapFLK analyses. These genes are asso-
ciated with hair development: CUX1 is associated with 
wavy hairs and curly whiskers in mouse [47] and PLOD3 
may play a role in the formation of hairs or in their tex-
ture [48]. The roles of these genes are consistent with 
the presence of a signature of selection only in the two 
Angora breeds (Angora and Ankara), which have curly 
hairs, and not in the Cashmere breed, which has long and 
wavy hairs. For the Cashmere breed, Brito et al. [13] pro-
posed several alternative genomic regions. The FST analy-
ses comparing the Cashmere vs. the Angora and Ankara 
breeds that revealed a signature of selection on chromo-
some 25 did not show any overlapping regions with those 
reported in [13], probably because the approach used 
in [13] highlighted other genomic regions. The ROH 
analyses carried out on the data for the Cashmere breed 
revealed a region on chromosome 22 that overlapped 
with one of the regions reported by Brito et al. [13] and 
was identified by a FST analysis of Cashmere against 
several other breeds. Thus, this may be an interesting 
region to investigate further for fiber production in the 
Cashmere breed. In addition, it suggests that different 
genomic regions are involved with fiber production in 
Cashmere and Angora/Ankara breeds.

Genes related to meat production
In the analyses comparing breeds for meat production, 
some of the detected regions contain genes associated 
with muscle formation. On chromosome 3, we identi-
fied a region that includes the AMPD1 and NRAS genes, 
in agreement with previous findings in cattle and mice. 
AMPD1 is involved in the deamination of AMP in skel-
etal muscles [49] and its disruption was reported to influ-
ence the expression of neighboring genes, such as NRAS, 
in mice [50]. In addition, allelic variants of the AMPD1 
gene are associated with traits such as heart girth and 
body weight in Chinese beef cattle [51]. Another gene 
within the same region, TSHB may also be associated 
with muscular functionality. TSHB encodes a subunit of 
the thyroid stimulating hormone (TSH), which plays a 
pivotal role in regulating thyroid activity, stimulating col-
loid reabsorption and in the release of the  T4 hormone 
[52]. The role of thyroid function in growth is known, and 
different levels of TSH are associated with hyperthyroid-
ism or hypothyroidism [53]. In fact, high levels of TSH 
are commonly found in obese human children and ado-
lescents [54]. In goat, this gene has been characterized in 
relation with reproductive seasonality [55].

The main breed of the “meat-producing” group is the 
Boer breed, which is selected for meat production and 
for which several breeding programs have been devel-
oped. In spite of this, no evidence of strong selection 

in the Boer breed for genes related to meat production 
was detected in our analyses. A possibility is that varia-
tion in meat production traits in this population may 
have a  highly polygenic basis (many alleles of small 
effects determine the trait). Because of the size of the 
samples and the availability of phenotype records, we 
used approaches that are not suited to detect such selec-
tion events. Other targeted studies on the Boer breed are 
needed to evaluate the possible genomic impact of breed-
ing programs in this population.

Genes related to coat color
ROH analysis of the data for the three groups of solid 
coat colors detected signatures of selection near at least 
five genes that are known to be involved in the color 
and pattern definition of the coat: ADAMTS20, MC1R, 
ASIP, SOX18 and TIMP3. Two of these genes (MC1R 
and SOX18) were specifically detected in the comparison 
between solid Black and solid White individuals, whereas 
the remaining three were identified in both solid Black 
vs. solid White and solid Black and Red vs. solid White 
groups.

The well-known MC1R gene is involved in the genetic 
determinism of color [56] and located on chromosome 
18 in goats. It plays a major role in controlling the switch 
from eumelanin (black and brown) to pheomelanin (yel-
low to red; [57]) produced by melanocytes. This gene has 
already been studied in several species [58], such as cat 
[59], horse [60], dog [61], pig [62], cattle [63], sheep [64] 
and even in goat [65–68]. Although described in other 
species, no direct association between MC1R and red 
coat color is known in goat.

ASIP is a competitive antagonist of MSH (melanocyte 
stimulating hormone) for binding MC1R, enabling the 
switch from eumelanin to pheomelanin [69]. Similarly to 
what we observed for SNPs within the region surround-
ing MC1R, SNPs within the region around ASIP seemed 
to be able to distinguish the solid Red from the solid 
Black and White groups. The presence of an association 
with the Red/Black group in the region surrounding this 
gene seems to confirm its role also in goats, as hypoth-
esized in several studies [11, 70]. Moreover, the signal 
on this gene was also found with the differentiation tests 
(FLK, hapFLK) in Alpine, Poitevine and Valdostana goats 
with black-and-tan pigmentation pattern. This further 
confirms the potential role of this gene in modulating the 
melanocyte activity in goats, in particular its involvement 
in the switch from black to red pigments, whereas the 
white color may to be caused by other gene(s).

The third candidate gene identified is SOX18, which 
encodes a transcription factor that plays an important 
role in hair follicles and blood vessel development during 
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embryogenesis in disheveled mice, a semi-dominant 
mutation characterized by coat sparseness [71, 72]. In 
addition, alleles of this gene seem to be responsible for a 
dark phenotype in mice [57, 73].

ADAMTS20 located on chromosome 5 encodes a 
highly conserved metalloprotease. This gene is required 
for melanoblast survival and mediating Kit signaling in 
skin colonization such as the belted white locus in inbred 
mouse colonies [74–76]. It is also important in multiple 
biological functions, such as delayed palate closure [77] 
and soft tissue syndactyly [78]. Another gene detected 
with these approaches, TIMP3, is known to inhibit the 
activity of metalloproteinases, and shows high specific-
ity and selectivity for the ADAM and ADAMTS families 
[79] that are involved in melanoma cancerous cell devel-
opment [80]. A signature of selection that included this 
gene was also found in the Southwestern European goat 
group and in particular in the Pyrenean goat population, 
which is characterized by a piebald black and white pat-
tern, in the Argentata dell’Etna breed, which is character-
ized by a silver coat colour, and in the group of breeds 
from Northwestern Africa where Sahel, Peulh and Thari 
breeds are characterized by white or white spotted coat 
colours. However, for the last three breeds, no reliable 
pictures were available to evaluate the coat color pattern.

The signatures of selection near the KIT gene observed 
in the Kacchan and Abergelle breeds could be related to 
their spotted phenotypes (in this case, this phenotype is 
localized mainly on the anterior parts of the animals) as 
already observed in other species. It should be noted that 
the Argentata dell’Etna breed has a silver phenotype and 
that, in the fox, an analogous phenotype is caused by a 
mutation on an autosomal copy of the KIT gene [81].

Genes related to other traits
In this work, a strong association was found between 
the results of the landscape genomics analyses and those 
obtained using independent analyses based on other 
types of more categorical classifications, such as the Köp-
pen classification. Several signals were associated with 
environmental parameters and these loci behave atypi-
cally in comparison with the theoretical distribution for 
neutral loci. Among the 13 common SNPs that differen-
tiated the Dry and Temperate/Continental groups, i.e. 
between hot-dry and temperate-cold areas, all showed a 
different major allele, and this may be the sign of natural 
selection that is driving alleles in opposite directions for 
the adaptation of the breeds to different environments. 
These SNPs were also confirmed by landscape genom-
ics analyses, i.e. although they are not included in the top 
57 SNPs, they displayed a high significance for one or 
more bioclimatic variables. Several of the genes around 
these 13 SNPs are associated with production traits in 

cattle. LYPLA1 encodes a hormone that acts as a ghre-
lin inhibitor and is, therefore, involved in the regulation 
of the appetite, as shown in rats [82]. This gene is also 
associated with feed intake and weight gain in cattle [83]. 
Other genes, such as RGS20 and SOX17 may play a role 
in pubertal development, as shown in Brahman cattle 
[84]. Regarding CLYBL, it was shown to be differentially 
expressed in cows with different milk citrate contents 
[85]. A region detected by FLK and landscape genomics 
and which is unique in the Continental group through 
FST analysis contains the CAPN10 and RNPEPL1 genes. 
Calpains are calcium-regulated proteases involved in cel-
lular functions that include muscle proteolysis both ante- 
and postmortem. In livestock, they play important roles 
in muscle growth and development, myoblast fusion, 
and differentiation [86]. The early post-mortem cleav-
age of these proteins leads to the tenderization of meat 
and, thus, calpain genes have been associated with meat 
tenderness [87, 88]. The RNPEPL1 gene is differentially 
expressed in pigs with different muscularity traits [89]. 
FLK analyses detected the RXFP2 gene in the Southwest-
ern European group and the central Asian group, par-
ticularly in the Thari and Blanca de Rasquera breeds. This 
well-known gene is responsible for the polled condition 
in most domestic sheep populations and associated with 
horn phenotypes in the Soay breed, a feral archaic sheep 
from Scottish islands, but it has not been shown to be 
involved in the development of horns in goats [22]. This 
signature of selection suggests that the genetic determin-
ism of horns in these two goat populations may be spe-
cific compared to other goat breeds.

The LCORL gene was present in a signature of selec-
tion detected in the Egyptian group, particularly in the 
Nubian breed. It has been associated with signatures of 
selection linked to animal size in cattle [90, 91] and in 
European commercial and local pig breeds [92].

Insulin, glucose pathway and oxidative stress response 
genes
Temperature variation detected by the Samβada analyses 
can operate as a primary environmental stressor. A major 
cellular effect caused by multiple environmental stressors 
is the generation of reactive oxygen species (ROS) that 
leads to oxidative stress. This was reported in livestock 
species such as cattle and chickens. In goats, it could be 
supported by genes that are involved in pathways linked 
to temperature changes, such as insulin or glucose path-
ways and oxidative stress response. The GPR37L1 gene 
is primarily expressed in neuronal cells and has a role 
in protecting primary astrocytes against oxidative stress 
[93]. Another gene related to oxidative stress is the INS 
gene, its level in pancreatic cells changing in case of oxi-
dative stress [94], which stimulates the HSP (heat shock 
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protein) gene in cardiac tissue [95]. The INS gene is also 
the target of other important pathways related to insulin 
production, response of the organism to insulin and glu-
cose metabolism. These biological processes are the most 
predominant in the landscape analyses. Heat stress can 
also affect the response of an organism to insulin stimu-
lus, which in turn affects lipid and carbohydrate pathways 
[96, 97]. Several of the genes involved in pathways related 
to temperature changes were close to SNPs identified in 
our analyses and are associated with production traits in 
several species. For example, IGF2 that is present in path-
ways related to insulin, glucose, glycogen, lipid, and car-
bohydrate processes is one of the most important genes 
for meat production and heat stress response in several 
species [98, 99].

HOXC genes family and related genes
Three SNPs located on chromosome 5 were detected by 
FST analyses in the Tropical group. SNPs with the highest 
FST value were included in the HOXC cluster, and in the 
landscape genomics analysis they were associated with the 
bioclimatic variables defined as “isothermality” and “tem-
perature seasonality”. A genome scan between geographi-
cal groups to detect signals of early adaptation identified 
the same region. The HOX gene family (HOXA, HOXB, 
HOXC and HOXD clusters) controls the body plan of the 
embryo along the craniocaudal (head–tail) axis. The HOX 
gene family was recently associated with mating/sexual 
behavior in Drosophila, C. elegans and mice [100, 101]. 
Selective pressure on some HOX genes was also detected 
in bats and aquatic mammals [102, 103]. Recently, a sig-
nature of selection near the HOXA and HOXC gene clus-
ters was also reported in sheep [22]. One of the strongest 
associations in the Samβada analysis was detected close 
to the PBX1 gene, which is involved in the morphologi-
cal development of several parts of the body and tissues. 
PBX1 interacts with HOX gene clusters, which includes 
the HOXC gene [104, 105]. It is interesting to note that 
most of the breeds assigned to the Tropical group were 
characterized by a smaller size (e.g. Cameroon goat, 
Naine, Small east Africa, and African Dwarf). It has been 
reported that that the small body size of Zebu cattle in 
tropical areas can contribute to heat tolerance, since small 
animals have a higher surface to body mass ratio, together 
with the fact that small size correlates also with low nutri-
tional requirements [106]. These observations may apply 
also to goats and such genes can determine an adaptation 
towards a smaller size and therefore better heat manage-
ment in areas where hot temperatures are constant.

Genes linked to circadian clock
The genome scan for signatures of selection between geo-
graphical groups and the landscape genomics analysis 

detected several genes that are linked to circadian clock 
rhythm suggesting a possible association with adaptation 
at different latitudes. These included SOX14, NOCT, RAI1 
and TH. SOX14 is required to drive the development of a 
functional network supporting light-circadian behaviors 
[107]. NOCT encodes a circadian deadenylase expressed at 
high levels during the night in several mammalian tissues 
and was recently implicated in circadian control of metab-
olism [108]. RAI1 has an important function in the mainte-
nance of circadian rhythmicity. In humans, it is crucial for 
normal regulation of circadian rhythms, lipid metabolism 
and neurotransmitter function [109]. This gene disrupts 
the transcription of the CLOCK gene, a key component of 
the mammalian circadian oscillator that regulates many 
other critical genes involved in metabolism, physiology, 
and behavior. A chromosomal deletion of RAI1 in mice 
is associated with a short circadian period, whereas in 
humans it is associated with the Smith-Magenis syndrome, 
a pathology that is characterized by an inverted melatonin 
rhythm, sleep disturbances, abnormal feeding, and cogni-
tive disturbance [110, 111]. Finally, TH is involved in the 
production of tyrosine hydroxylase, which is important 
for the nervous system to function normally. Tyrosine 
hydroxylase is the rate-limiting enzyme in the synthesis of 
catecholamine, and hence plays a key role in the physiol-
ogy of adrenergic neurons and receptors. It is involved in 
the production of neurotransmitters that control physical 
movements and involuntary body processes, such as the 
regulation of blood pressure and body temperature. More-
over, in the response to photoperiod, it is well known that 
tyrosine hydroxylase neurons have estrogen receptors that 
are involved in the physiological cyclic activity induced by 
photoperiod [112].

Another gene that could be linked to the reproductive 
seasonality is TSHB, which has been reported to be asso-
ciated with meat production and reproductive seasonal-
ity in goats [55].

Conclusions
The goat is one of the most adaptable livestock species 
distributed worldwide across a large variety of climatic 
and geographical areas and used by humans for differ-
ent purposes. Natural and artificial pressures have led 
to different genomic signatures of selection across the 
genomes of many goat breeds. By applying different kinds 
of analyses, we were able to detect (1) different allelic 
distributions worldwide that are associated with biocli-
matic variables and groups, (2) signatures of selection 
that differentiate breeds raised for different economi-
cal purposes, and (3) population structure clustering 
that represent sub-continental groups We were also able 
to identify several genomic regions that contain genes 
related to processes such as milk-, meat- or fiber-related 
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production, coat color, glucose pathway, oxidative stress 
response, size and the internal circadian clock. These 
results provide a first comprehensive picture into the 
global domestication process and adaptation of the goat 
and highlights several genes that have contributed to the 
differentiation of this species worldwide.

Additional files

Additional file 1.Treemix plots. Each page shows the output of a conti‑
nental/sub‑continental group

Additional file 2: Figure S1. MDS plot of the breeds, grouped by produc‑
tion purpose: milk, meat and fiber groups. Group colors: milk = green, 
meat = red, fiber = blue; MDS and box plots of the first two components 
pre‑filtering (upper) and MDS plots after filtering. Figure S2. Manhattan 
plot of the FLK results for the sub‑continental group after filtering steps. 
Sub‑geographical group names are given on top of each plot. Chromo‑
somes are alternately red and black. Figure S3. Manhattan plot of the 
hapFLK results for the sub‑continental group after filtering steps. Sub‑
geographical group names are given on top of each plot. Chromosomes 
are alternately red and black. Figure S4. Genomic distribution of FLK and 
hapFLK signals across population groups. For each chromosome and each 
sub‑continental group, the chromosomal position detected with at least 
one of the two approaches is indicated. Figure S5. Signatures of selection 
on chromosome 5 for the North western Africa, South eastern Africa and 
South western Africa groups. North western Africa (NWA): red; South 
eastern Europe (SEE): green; South western Europe (SWE): blue. The table 
(bottom‑right) reports the genes within the region in which a signature 
was detected. Figure S6. Signatures of selection on chromosome 6 for 
the Central Asia, East Africa and South east Europe groups. Central Asia 
(CA): red; East Africa (EA): green; South east Europe (SEE): blue. The table 
(upper‑right) reports the genes within the region in which a signature 
was detected. Figure S7. Signatures of selection on chromosome 13 for 
the Alpines and Central Asia groups. Alpines (Alps): red; Central Asia (CA): 
blue. The table (right) reports the genes within the region in which a 
signature was detected. Figure S8. Signatures of selection on chromo‑
some 1 for the Alpines and South Western Europe groups. Alpines (Alps); 
red; South Western Europe (SWE): blue. The table (bottom‑right) reports 
the genes within the region in which a signature was detected. Figure S9. 
FLK signals on chromosome 6 around the casein gene cluster. The cluster 
of unannotated genes between YTHDC1 and SULT1B1 consists of genes 
coding for glucuronosyltransferase enzymes. Alps; red; East Arica (EA): 
blue. The table (right) reports the genes within the casein cluster region. 
Figure S10. Signatures of selection on chromosome 6 for the Egypt, 
South Eastern Europe and South Western Europe groups. Egypt (Egypt): 
red; South Eastern Europe (SEE): green; South Western Europe (SWE): blue. 
The table (bottom‑right) reports the genes within the region in which a 
signature was detected. Figure S11. Signatures of selection on chromo‑
some 12 for the Central Asia and South Western Europe groups. Central 
Asia (CA); red; South Western Europe (SWE): blue. The table (right) reports 
the genes within the region in which a signature was detected. Figure 
S12. ROH, FST and XP‑EHH results for the group of “meat‑producing” goat 
breeds. Types of analysis are indicated with different plot colors, within 
the most external squared‑based circle, where each color represent a 
chromosome (chromosome number outside the squares): green (exter‑
nal) = ROH; blue (middle) = Fst; violet (internal): XP‑EHH. For the three 
analyses, the regions above the threshold are marked in red. Figure S13. 
ROH, FST and XP‑EHH results for the group of “milk‑producing” goat breeds. 
Types of analysis are indicated with different plot colors, within the most 
external squared‑based circle, where each color represent a chromosome 
(chromosome number outside the squares): green (external) = ROH; blue 
(middle) = Fst; violet (internal): XP‑EHH. For the three analyses, the regions 
above the threshold are marked in red. Figure S14. CDA for the region on 
chromosome 25 detected for the group of “fiber‑producing” goat breeds. 
(a): LONG and (b) SHORT: (b). Left: CDA plot. Right: Correlation value of the 

SNPs used for the analyses for CAN1 and CAN2. Figure S15. CDA for the 
region on chromosome 25 detected for the group of “meat‑producing” 
goat breeds. (a): LONG and (b) SHORT: (b). Left: CDA plot. Right: Correla‑
tion value of the SNPs used for the analyses for CAN1 and CAN2. Figure 
S16. CDA for the region on chromosome 25 detected for the group of 
“milk‑producing” goat breeds. (a): LONG and (b) SHORT: (b). Left: CDA plot. 
Right: Correlation value of the SNPs used for the analyses for CAN1 and 
CAN2. Figure S17. MDS plot of breeds considered for the panel of coat 
colors. Breed codes and subdivisions based on the coat color pattern are 
indicated in the right part of the plot. Figure S18. CDA for the region on 
chromosome 18 near the MC1R gene detected for the group of coat color 
breeds. (a): LONG and (b) SHORT: (b). Left: CDA plot. Right: Correlation 
value of the SNPs used for the analyses for CAN1 and CAN2. Figure S19. 
CDA for the region on chromosome 13 near the ASIP gene detected for 
the group of coat color breeds. (a): LONG and (b) SHORT: (b). Left: CDA 
plot. Right: Correlation value of the SNPs used for the analyses for CAN1 
and CAN2. Figure S20. CDA for the region on chromosome 5 near the 
ADAMTS20 gene detected for the group of coat color breeds. (a): LONG 
and (b) SHORT: (b). Left: CDA plot. Right: Correlation value of the SNPs 
used for the analyses for CAN1 and CAN2. Figure S21. MDS plot of the 
filtered dataset considering components 1 and 2. Animals are color‑
coded based on the Köppen classification of groups: Tropical (green), Dry 
(red), Temperate (orange), Continental (blue). Figure S22. FST plot of the 
comparison of the Dry group vs. the other groups. The threshold line in 
red represents the 0.995 of the percentile distribution (FST = 0.398). Figure 
S23. FST plot of the comparison of the Temperate group vs. the other 
groups. The threshold line in red represents the 0.995 of the percentile 
distribution (FST = 0.320). Figure S24. FST plot of the comparison of the 
Continental group vs. the other groups. The threshold line in red repre‑
sents the 0.995 of the percentile distribution (FST = 0.507).

Additional file 3: Table S1. Environmental variables considered for the 
landscape genomic analysis. Table S2. FLK and hapFLK windows for 
the sub‑continental groups after filtering steps. Overlapping or partially 
overlapping regions across the different geographical subdivisions are 
reported with the same letter as used for the population group (from a to 
m). Table S3. Selective sweeps of early adaptation. The bold values indi‑
cate overlap or partial overlap between comparisons. Table S4 Common 
regions between ROH and XP‑EHH and/or FST analyses for the group of 
“fiber‑producing” goat breeds and genes within these regions. Table S5. 
Common regions between ROH and XP‑EHH and/or FST analyses for the 
group of “meat‑producing” goat breeds and genes within these regions. 
Table S6. Common regions between ROH and XP‑EHH and/or FST analy‑
ses for the group of “milk‑producing” goat breeds and genes within these 
regions. Table S7. Top four regions detected for the coat color groups 
(Black, White and Red), indicated comparisons between the groups 
and genes located nearby these regions. Table S8. Results of the most 
significant associations involving the 57 filtered SNPs. For each SNP: SNP 
probe, genotype, genomic coordinate, associated environmental variable 
(“Env”) and scores and statistical test output values (“Gscore”, “WaldScore”, 
“Efron”, “AIC”, “Beta_0” and “Beta_1”) are reported. Table S9. List of genes 
located nearby (± 100 kb) the 57 filtered SNPs obtained by the landscape 
genomics analysis. Table S10. GO term biological processes. Table S11. 
MAF (minor allele frequency) and major allele of the 13 SNPs shared by 
Dry and Temperate/Continental groups. Table S12. Samβada significant 
results for the SNPs of the FST analyses. For each SNP probe: chromosome 
and position are reported, as well as Environment, G score, Wald Score, 
AIC, Abs_Beta1 and the Köppen group in which the SNP was detected 
by the FST analyses. Table S13. List of genes located nearby (± 100 kb) of 
the 65 SNPs selected with the FST approach and confirmed by Samβada. 
The * symbol indicates the SNPs with the highest value (> 0.999) also in 
landscape genomic analysis

Additional file 4. Graphical representation of ROH and iHS results at the 
breed level of the signals FLK and hapFLK in the sub continental groups. 
Left panel: FLK (points) and hapFLK (line) signatures, with as header the 
chromosomal region investigated. Middle panels: ROH signatures. Right 
panels: iHS signatures [see Additional file 2]

Additional file 5. Genotype distribution of the SNPs detected in the 
landscape genomics analysis based on the GPS coordinates. Each page 
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represent a SNP, with its coordinates reported on the upper right part of 
each sheet, with environmental variable associated and statistics (G score, 
Beta 1 and AIC). The three possible genotypes are labelled with three dif‑
ferent colors: AA = red; AB = green; BB = blue
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