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Canonical extensions - an algebraic approach
to Stone duality

Mai Gehrke

In memoriam Bjarni Jónsson

Abstract. This note aims to highlight some of the conceptual contribu-
tions to duality theory made by Bjarni Jónsson through the theory of
canonical extensions.

1. Introduction

In the fall of 1987 Bjarni Jónsson invited me to apply for a postdoctoral
position at Vanderbilt University. It was clear from our conversation at the
time of the interview that he was very interested in exploring the content and
meaning of Stone and Priestley duality for bounded distributive lattices. As
this was the topic of my PhD, I was very enthusiastic about the subject. By
the time I came to Vanderbilt the following fall, Bjarni had received a preprint
from Robert Goldblatt, which was to become Goldblatt’s 1989 paper Complex
Varieties [17]. As a first task, Bjarni asked me to lecture in the seminar on
this preprint. I knew nothing about Boolean Algebras with Operators (the
name alone seemed to me so long and clunky), nor about modal logic, and
the results in the paper were many and difficult. I am afraid I gave some
extremely uninspired talks drudging through the paper supplying very little
insight. Bjarni sat in the front row and slept through a couple of months of
such talks, waking up at the end of each session to ask the most pertinent and
challenging questions. Nevertheless I was not able to see or understand any
of it really. By late November, Bjarni changed tack and handed me a short
write-up entitled Twenty Four Functors, with a cubic diagram of functors,
some more defined than others, asking me if I would study these. Now this
seemed very exciting to me and I understood the task immediately. I worked
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diligently for the next 18 months handing off quite a substantial packet of
work in the spring of 1990 as my postdoc was ending.

The next thing I heard from Bjarni came to my office at New Mexico
State University in the spring of 1994 in a brown manila envelope. It was an
essentially complete manuscript of our 1994 paper on canonical extensions of
distributive lattices with operators [14]. I only knew this topic from my talks
about Goldblatt’s paper and, at first, I could not imagine what this might
have to do with me. Nevertheless, as I started reading, I recognized many
of the results from my twenty four functors work, including what was now
phrased as the definition of the canonical extension of a bounded distributive
lattice and the fact that canonical extension acted compositionally on order
preserving maps whose canonical extensions are Scott continuous.

Feeling embarrassed by having a paper with the famous Bjarni Jónsson
on a topic I knew nothing about, I started studying BAOs and DLOs in
earnest and this is when our close collaboration, which lasted through the
early 2000’s, really started.

Robert Goldblatt’s contribution to this volume [19] is also about canon-
ical extensions and it begins with an excellent historical overview of the sub-
ject, which I highly recommend for its comprehensive and succinct analysis
of the development of the theory of canonical extensions. He uses a metaphor
of Bjarni’s of an ‘acorn that has grown into a forest’. I have been working in
this large and beautiful forest most of the time since my collaboration with
Bjarni. Even my more recent work, e.g. with van Gool on sheaf representa-
tions [9] or with Grigorieff and Pin on formal language theory [10, 8], owes
very much to the algebraic view of topological duality, which Bjarni imparted
to me through the work on canonical extensions.

This contribution is non-technical. Neither am I giving a historical
overview of the development of the subject as this is done in [19]. What
I would like to do with this paper is to highlight some of the conceptual
contributions to duality theory made by Bjarni through the theory of canon-
ical extensions. The paper is organized around four sections: Section 2 on
the pointfree, algebraic approach to duality theory provided by Jónsson-style
canonical extensions, Section 3 on canonical extension of maps as upper and
lower semicontinuous envelopes, Section 4 on the functoriality of canonical
extension, and finally Section 5 on the decomposition of Cartesian products
into Boolean products and ultraproducts (also the fundamental ingredient in
the famous Jónsson’s Lemma) and its consequence in duality theory.

2. Canonical extension as pointfree Stone duality

A topological space is a pair, (X,O), where X is a set and O is a collec-
tion of subsets of X satisfying certain properties. In the pointfree study of
topology, the set X is discarded and just the complete lattice O is kept. If
the topological space is sufficiently separated (sober), then the points can be
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recovered from the lattice of opens. However, a characteristic feature of topol-
ogy is precisely the tension between the discrete world of points and the only
finite-intersections-closed collection of opens. The canonical extension point
of view of topology corresponds to getting rid of the points without getting
rid of the complete lattice P(X). Thus instead of studying the pair (X,O),
one studies the embedding O ↪→ P(X). Further, in the case of Stone duality
for Boolean algebras, since O is generated by the dual Boolean algebra B,
the data O ↪→ P(X), in turn, amounts to giving an embedding B ↪→ P(X).
This latter formulation brings the entire duality within the setting of lattice
theory, making the proper translation of additional structure such as opera-
tions on the Boolean algebra more transparent. The key insight needed here
is that this embedding may be uniquely characterized among the completions
of B.

We may view this problem as a typical duality exercise: We are given
the following data

BStone Set

BA BA+

U

ClopSt PAt

?

and we want to transport the forgetful functor U across the dualities. Here
Clop and St are the functors of Stone duality for Boolean algebras, assigning
to a Boolean algebra its Stone space and to a Boolean Stone space its Boolean
algebra of clopen sets, whereas the functors P and At are the functors of the
discrete or Birkhoff duality between sets and complete and atomic Boolean
algebras assigning to a set its powerset and to a complete and atomic Boolean
algebra its set of atoms. Thus the dual of the forgetful functor U : BStone→
Set from Boolean spaces to sets is transported by duality to the functor
BA→ BA+ which sends a Boolean algebra B to [P ◦U ◦ St](B), that is, the
powerset of the set of ultrafilters of B. However, we want an intrinsic algebraic
characterization rather than the one using the detour through Stone spaces
and sets.

This problem was solved by Jónsson and Tarski in their famous paper
[24] on Boolean Algebras with Operators (BAOs). They introduced what
they called the perfect extension of a Boolean algebra. The name was later
changed to the canonical extension, see [19] for more details. The notation
for the canonical extension of A also changed from A+ to Aσ. More recently,
through work with H. A. Priestley, we believe it more apt to denote the
canonical extension of a Boolean algebra or bounded distributive lattice by
Aδ as the sigma and pi extensions are equal for objects. Incidentally, the
translation of the forgetful functor BA+ → BA, to a functor Set → BStone
is given by the Stone-Čech compactification. In fact, these functor pairs,

U : BA+ � BA: ( )δ and U : BStone� Set : β,
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are very nice categorical adjunctions which are dual to each other.
The key to the power of the Jónsson–Tarski canonical extension is pre-

cisely that one no longer needs to travel around the square. They gave an
intrinsic characterization of the unit ηB : B → Bδ of the adjunction as a
completion of B which is ‘compact’ and ‘separating’. This description is a
powerful tool for working with duality theory in an algebraic form and may
be seen as a form of pointfree topology well before it appeared elsewhere.
However, the ‘separating’ property refers to the existence of sufficiently many
atoms in the extension, so to show it requires the Axion of Choice and thus
the Jónsson–Tarski characterization does not satisfy the objective of later
pointfree topology. That being said, as we observed later in joint work with
Harding [11], the separation property may be replaced by a density property
making the canonical extension available in an Axiom-of-Choice-free setting.
More details of this Jónsson-style pointfree topology (in the setting of dis-
tributive lattices and Heyting algebras) may be found in [7, Section 2].

2.1. Twenty four functors

Thus, what Bjarni asked me to do in the fall of 1988, was to study the
following diagram.

BStone Set

Stone POS

BA BA+

DL DL+

U

β

U

( )−

( )σ

U

bulletitem

The back square should be a bounded distributive lattice version of the front
one just discussed above. DL+ is a bit harder to describe than BA+. It consists
of those complete lattices which are completely distributive and have enough
completely join irreducible or, because of the complete distributivity, this is
equivalent to having enough completely join prime elements, see also [13,
Theorem 2.1] for other equivalent characterizations. Stone is the category of
Stone or spectral spaces with proper maps [26]. The functors between the back
and the front are inclusion and forgetful functors and Booleanization (which
on the topological level corresponds to the patch topology construction). For
example, the dual of the forgetful functor from DL+ to DL is an ordered
version of the Stone-Čech compactification first studied by Banaschewski in
[1]. While studying this cube, I rediscovered the results of Banaschewski and
many more things about these twenty four functors and the categories on
which they are defined. One problem that had not been solved before was
the problem ‘parallel’ to the one solved by Jónsson–Tarski. Namely giving an
intrinsic characterization of the dual of the forgetful functor Stone → POS,
which sends the Stone dual of a distributive lattice to its underlying poset
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of points in the specialization order (formulated in terms of the Priestley
duality this is even simpler as it just forgets the topology of the space while
retaining the order component). For a duality theorist this was really quite
an easy exercise and I never realized that I had done much of anything even
though, in later years, Bjarni always asked me how I figured out what the
canonical extension of a bounded distributive lattice should be. I always just
told him it was easy given his cubic diagram and the Boolean case as input.

3. Naturality of the extension of additional operations

A key point, in the work of Jónsson and Tarski as well as in our subse-
quent work, is that canonical extension is not just applied to bounded lattice
homomorphisms but to a much bigger clone of functions. The original con-
struction in Jónsson–Tarski of the sigma extension [24, Definition 2.1 and
Theorem 2.3] applies to arbitrary order preserving maps. There are however
several problems with this:

• It is not general enough as we cannot extend order-reversing operations
– or even worse – compositions, such as x 7→ x ∨ ¬x, which may be
neither order preserving or reversing.
• It is too general because on the level of arbitrary order-preserving maps

sigma extension is not functorial as it does not commute with composi-
tion. This point is a serious hindrance as it makes inductive proofs very
difficult if not impossible.
• The sigma extension, and its dual (known as the pi extension), are in

general just two among (infinitely) many possible extensions.

The first two points are serious practical problems but Bjarni also cared very
much about the third point, which he brought up often in our discussions.
Even though he did not advocate the perspective of category theory per se,
it has been my experience, again and again, in working with Bjarni, that it
was centrally important for him that an object of study should be uniquely
determined by an abstract property rather than just an ad hoc construction.
Interestingly (and probably not surprisingly for mathematicians), the solution
to the third bullet point was in the end closely connected to improvement on
the two first issues.

As a first step, we realized that sigma extension is functorial on the
clone of all (necessarily order preserving) maps whose sigma extensions are
Scott continuous:

Theorem 3.1. [14, Theorem 4.3] Let g :A→B be order preserving and f :B→C
be such that fσ is Scott continuous. Then (f ◦ g)σ = fσ ◦ gσ.

This, along with the fact that the sigma extension of any operator is
Scott continuous, is what allowed us to give a very simple (inductive) proof of
the Jónsson–Tarski canonicity theorem in the setting of bounded distributive
lattices with operators [14, Theorem 4.6].
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3.1. Topology on canonical extensions

In the summer of 1998, while I was visiting Bjarni and Harriet at their cabin
in Minnesota, we finally unblocked the question of generalizing beyond order
preserving maps by describing in which sense the sigma and pi extensions of
maps are also natural (or ‘canonical’). The answer involves putting topology
on canonical extensions. Once we realized this, Bjarni was in quite a state
of puzzlement for a while: He told me that it had been suggested to him al-
ready in the late 1940s that ‘adding topology’ might be the way to understand
extension of maps. However, viewing canonical extensions as topological al-
gebras does not work and he had abandoned the idea. One has to consider
distinct topologies on the domains and codomains of operations, and, as we
shall see, this explains the great complexity of questions of canonicity.

The answer comes from a classical concept from real analysis! Given
a topological space (X,O), a complete lattice L and a function f : A →
L defined on a dense subset A ⊆ X, the upper and lower semicontinuous
envelopes of f are defined by

lim(f)(x)=
∨
{
∧
f [U ∩A]|x ∈ U ∈ O}

lim(f)(x)=
∧
{
∨
f [U ∩A]|x ∈ U ∈ O}.

Under mild assumptions, which are satisfied whenever L is the canonical ex-
tension of a distributive lattice, these are, respectively, the greatest function
(in the pointwise order) which is below f on A and which is upper semi-
continuous and the least function which is above f on A and which is lower
semicontinuous [13, Theorem 2.11]. Upper and lower semicontinuity refer to
the two halves of the interval topology on the poset L.

Definition 3.2. Let P be a poset. The upper, respectively, lower topology on P
is generated by the complements of principal downsets, respectively, upsets,
and the interval topology is the join of these two topologies. That is,

ι↑ = <(↓p)c | p ∈ P>, ι↓ = <(↑p)c | p ∈ P>, and ι = ι↑ ∨ ι↓.
A function from a topological space to P is upper, respectively, lower semi-
continuous provided it is continuous when viewed as a function into the
topological space (P, ι↑), respectively, (P, ι↓).

The standard topology of the reals is the interval topology for the usual
order on the reals. However, for the interval topology, a ‘best continuous
approximant’ of a function does not exist in general. The fact that such
canonical upper and lower envelopes exist for the two halves of the interval
topology often plays an important role in analysis. With the appropriate
topology on the domain one may see the sigma and the pi extensions of a
map between lattices as the upper and lower semicontinuous envelopes of the
map, respectively.

Definition 3.3. Let A be a bounded distributive lattice and η : A → Aδ its
canonical extension. An element x ∈ Aδ is called a filter element provided it
is in the complete meet closure of A in Aδ, while an element y ∈ Aδ is called
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an ideal element provided it is in the complete join closure of A in Aδ. The
strong topology on Aδ is generated by the sets of the form

[x, y] = {u ∈ Aδ | x ≤ u ≤ y}

with x ranging over filter elements of Aδ and y ranging over ideal elements.
This topology is not akin to the interval topology since the basic opens are
closed intervals.

One can show that Aδ equipped with the interval topology is a Priest-
ley space (in fact, for these lattices, the interval topology is equal to the
double Scott topology and to the Lawson topology and this topology is the
unique topology for the given order making it into a Priestley space, see the
discussion leading up to [13, Theorem 2.8] and the further references given
there). The strong topology on Aδ contains the interval topology properly
(for A infinite) thus it follows that the strong topology on Aδ makes it into
a totally order disconnected space which is not compact. Further, one can
show that η : A→ Aδ embeds A in the space as its set of isolated points and
the image is topologically dense in Aδ, again see [13, Theorem 2.8]. This is
very convenient as it implies that any function with domain A is continuous
with respect to the strong topology on Aδ and has unique upper and lower
semicontinuous extensions to Aδ. This is central in showing that lim(f) and
lim(f) are always extensions of f . For further details, see [13, Section 2]. See
also [16, Section 4] for details on how this works for lattices that are not
necessarily distributive.

Canonical extensions of maps, at least if they are operators or dual oper-
ators, are of interest because they allow us to define Stone duals of these maps.
In particular, consider a bounded distributive lattice A with an additional n-
ary operation f which is a normal operator. That is, f preserves finite joins in
each coordinate. In this situation, one can show that the sigma extension of f ,
obtained as fσ = lim(f), is a complete operator. That is, it is completely join
preserving in each coordinate. Invoking the connection with Stone duality as
discussed in Section 2.1, we know that Aδ ∼= U(X,≤) where X is the dual
space of A with its specialization (or Priestley) order. Now identifying Aδ with
U(X,≤) and using the fact that fσ is a complete operator, it follows that fσ

is completely determined by its restriction to the tuples whose coordinates are
principal upsets ↑x for x ∈ X; these being the completely join irreducible ele-
ments of Aδ. Thus, defining an (n+1)-ary relation onX by (y, x1, . . . , xn) ∈ R
if and only if ↑y ≤ fσ(↑x1, . . . , ↑xn), one may show that fσ is given by in-
verse image under R, i.e. fσ : (U1, . . . , Un) 7→ R−1[U1 × · · · × Un]. It follows
that we can recapture f from the relation R. In the case of Boolean algebras
with operators, this is the Jónsson–Tarski duality, exploited in their work
on canonical extensions [24] in order to obtain set representations of various
classes of BAOs, and foreshadowing Kripke semantics of modal logic about
a decade before it was introduced. For further details, see [19] in this volume
and [18, Section 3.3].
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3.2. Syntactic conditions for canonicity

An important issue concerning canonical extension is which properties are
preserved when moving from a lattice or Boolean algebra with additional
operations to its canonical extension. When a property is preserved, it is said
to be canonical. It follows that the dual of a canonical property is purely order
theoretic and thus independent of topology. Accordingly, if a class is given by
canonical properties then canonical extension provides concrete set-theoretic
representation within the class.

An important algebraic condition closely related to canonicity is the
question of when canonical extension for maps commutes with composition
of maps. In fact, as we will explain below, in order to be able to give inductive
proofs of canonicity for large classes of varieties, it is particularly important
to identify whole clones (classes containing all projections and closed under
composition) with this property.

Consider the diagrams

A B Aδ Bδ

C D Cδ Dδ

h

f

g

k

hσ

fσ

gσ

kσ

Given that the first diagram commutes, we want to be able to conclude
that the second diagram also commutes. An obvious way to prove this is to
show that

gσfσ = (gf)σ = (kh)σ = kσhσ.

Here the second equality holds by hypothesis. The question is therefore, when
canonical extension distributes over composition, i.e., under what conditions
it is the case that (gf)σ = gσfσ?

The topological description of sigma (and pi) extensions clearly exhibits
the problem with composition since the topology on the domain (the strong
topology) and on the codomain (the Scott (or dual Scott) topology) are
different thus causing problems when we want to compose. In fact the Scott
and dual Scott topologies are contained in the strong topology. Nevertheless,
the topological description of sigma (and pi) extensions, points us towards
two special cases where things go better:

(1) when the extension is continuous with respect to the Scott (or dual
Scott) topology on both the domain and codomain;

(2) when it is continuous with respect to the strong topology on both the
domain and codomain.

The situation (1) covers the case of operators as discussed above, while (2) is
essential for dealing with join or meet preserving or reversing maps. Combin-
ing these two special cases in various ways leads to Sahlqvist-type theorems.
This algebraic approach to Sahlqvist theorems, using algebraic induction and
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based on the properties of basic operations and the syntactic shape of the
terms involved, has been studied extensively, starting with Bjarni’s paper
[23]. See among others [15, 5, 4, 3].

4. Functoriality and Bjarni’s PH property

As we have seen above, the view of canonical extensions of maps as upper
and lower topological envelopes leads to a natural dichotomy, depending on
whether one considers maps that are continuous with respect to a weaker
topology on the domain or with respect to a stronger one on the codomain.
Also, as discussed above, the first option, which leads one to focus on sigma
extensions that are Scott continuous, may be seen to be responsible for the
original Jónsson–Tarski canonicity result as well as the positive version from
[14] and the subsequent work on Sahlqvist theorems.

The second choice, of imposing continuity with respect to a stronger
topology on the codomain, leads to Bjarni’s PH (as in ‘Preserving Homomor-
phisms’) property, discussed in this section, and through that to the model
theoretic results on canonicity, which we will discuss in Section 5.

The PH property comes about when we ask whether canonical extension
is functorial. First of all, there is quite a bit of good news. Canonical extension
is functorial even on the category of bounded (not-necessarily-distributive)
lattices with homomorphisms. In fact, the upper and lower envelopes of ho-
momorphisms agree thus providing the unique doubly continuous extensions,
which are in fact complete homomorphisms. Furthermore, these extensions
are continuous both with respect to the weaker topology on both domain
and codomain and with respect to the stronger topology on both. In fact, in
the setting of the category of bounded distributive lattices with their homo-
morphisms (and also for Boolean algebras), canonical extension is not only a
functor but a reflection into the category DL+ (respectively BA+). However,
if we are interested in distributive lattices or Boolean algebras with additional
operations, so called Distributive Lattice Expansions (DLEs), then canonical
extension is not functorial in general. This may be seen with a simple exam-
ple due to Bjarni: Let L be a bounded chain with a bounded subchain A so
that both A and its complement are dense in L (e.g. the unit interval with
A the set of rational points). Further, consider as a unary operation on L
the characteristic function of A. Then the embedding of A equipped with the
constant function 1 into this algebra does not extend to a DLE homomor-
phism as it does not commute with the sigma extensions of the additional
operations.

The fact that the above counterexample is provided by an embedding
is no coincidence: by the First Isomorphism Theorem, every homomorphism
between abstract algebras factors into a quotient map followed by an em-
bedding and one may show that the extensions of surjective homomorphisms
are always homomorphisms. Thus, if functoriality of canonical extension is
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violated, it is violated by the associated embedding. The characteristic in-
sight of Bjarni is that this allows us to see functoriality as a local property
at an algebra: a DLE has the PH property provided the canonical extension
of the inclusion of each of its subalgebras is a subalgebra inclusion. Then it
follows from the factorization of morphisms and the fact that quotients are
well behaved that canonical extension on a category of DLEs with their ho-
momorphisms is functorial if and only if each individual algebra in the class
has the PH property.

In our paper [13], we showed that large classes of DLEs have the prop-
erty PH. In particular, any DLE whose basic operations are monotone, that
is, preserve or reverse order in each coordinate (it may preserve in some and
reverse in others), has the PH property. Also, any DLE whatsoever which
lies in a finitely generated variety of DLEs has the PH property. Much of this
analysis goes through for lattices but things are more complicated – mainly
because the various topologies (in particular, the one generated by the prin-
cipal upsets of completely join irreducible elements, the Scott topology, and
the upper topology) no longer are equal. However, some results are provided
in [11, 16] and it was studied in the PhD thesis of Jacob Vosmaer [27].

5. Boolean products and model theoretic conditions for
canonicity

The most fundamental model theoretic result about algebras is Birkhoff’s
variety theorem. In a formula this may be stated as follows

V(K) = HSP (K).

Here K is a class of similar algebras and V(K) is the class of all algebras
satisfying all the equations simultaneously satisfied by all the algebras in K.
H, S, and P are the operators on classes of similar algebras taking all ho-
momorphic images, isomorphic copies of subalgebras, and isomorphic copies
of Cartesian products, respectively. An important fact that Bjarni often has
used to great advantage in his work, is that one can further decompose the
operator P into P = PBPµ, where PB takes all possible Boolean products of
algebras from a class K and Pµ takes all possible ultraproducts of algebras
from K. This decomposition comes about as follows. Let

h : A ∼= Πi∈IBi

be a direct decomposition of an algebra A, let X be the Boolean space of all
ultrafilters on I, that is, X = β(I), the Stone-Čech compactification of the
discrete space on I. For each x ∈ X let Cx = Πi∈IBi/x. That is, Cx is the
ultraproduct obtained from the product Πi∈IBi by considering two tuples as
equivalent if they are equal on a subset of I which belongs to the ultrafilter
x. For a ∈ A and x ∈ X, let h′(a)(x) = h(a)/x. Then the map

h′ : A→ Πx∈XCx
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is a Boolean product decomposition of A. A weak Boolean product decom-
position is simply a sheaf representation over a Boolean space, and thus
a Boolean product decomposition is a special sheaf representation over a
Boolean space. For more details see [2] or more specifically [13, Section 3.3].

In [13], we obtained a canonical extension formulation of a result on
Boolean products from my PhD dissertation: The canonical extension of a
weak Boolean product decomposition is the full Cartesian product of the
canonical extensions of the factors [6]. That is,

Theorem 5.1. [13, Theorem 3.15] Suppose

g : B → Πx∈XCx

is a weak Boolean product decomposition of the DLE B. If all the induced
homomorphisms gx : B → Cx are preserved by canonical extension, then

g′ : Bσ w Πx∈XC
σ
x

where, for all b ∈ B and x ∈ X, g′(b)(x) = gσx (b).

Of course a similar result holds for canonical extensions using pi exten-
sions.

This result, combined with the decomposition P = PBPµ yields a num-
ber of model theoretic results on the PH property, on canonicity, and on
sheaf representations. The first of these are in [13]. In particular, we showed
that every distributive lattice with additional operations (DLE) that is either
monotone (i.e. each additional operation is either order preserving or revers-
ing in each coordinate) or smooth (i.e. the sigma and pi extensions of each
additional operation agree) has the property PH, see [13, Theorem 3.24 and
Theorem 3.26]. We showed that the property PH is preserved by a number
of constructions on monotone DLEs such as homomorphic images [13, The-
orem 3.12], subalgebras [13, Theorem 3.11], binary joins [13, Theorem 3.27],
and weak Boolean products [13, Theorem 3.16]. Finally, we showed that a
direct product has the PH property if and only if all the ultraproducts on it
have it, and thus ultraproducts is the one badly behaved construction in the
lot. This leads to a number of canonicity results [13, Section 4.1], including
what one may see as an algebraic version of one of the main results of [17].

The line of inquiry into model theoretic conditions for canonicity started,
at least for Bjarni and me, with Robert Goldblatt’s paper [17], which, in 1989,
as Hilary Priestley has put it ‘made the wall come down’ between the model
theory of modal logic and the study of canonicity via lattices and duality.
Since then a great number of contributions in this direction have been made,
such as [20, 12, 21], the most recent of which is Goldblatt’s contribution to
this volume [19]. For further discussion and a historical overview we refer the
reader to [19].

A somewhat different direction of generalization of this work is the du-
ality theoretic investigation of sheaf representations of universal algebras and
DLEs in particular. The fact that the canonical extension of a weak Boolean
product is the Cartesian product of the canonical extensions of the factors
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[13, Theorem 3.15] may be seen as a first step in this direction, while [9] is
the most recent contribution in this still active direction.
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