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Trends in genome-wide 
and region-specific genetic diversity in the 
Dutch-Flemish Holstein–Friesian breeding 
program from 1986 to 2015
Harmen P. Doekes1,2*, Roel F. Veerkamp1, Piter Bijma1, Sipke J. Hiemstra2 and Jack J. Windig1,2

Abstract 

Background: In recent decades, Holstein–Friesian (HF) selection schemes have undergone profound changes, 
including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal com-
position (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected 
to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF 
artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015.

Methods: Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide 
inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evalu-
ated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected 
under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele 
frequency over time.

Results: Effective population size estimates for the 1986–2015 period ranged from 69 to 102. Two major breakpoints 
were observed in genome-wide inbreeding and kinship trends. Around 2000, inbreeding and kinship levels temporar-
ily dropped. From 2010 onwards, they steeply increased, with pedigree-based, ROH-based and marker-based inbreed-
ing rates as high as 1.8, 2.1 and 2.8% per generation, respectively. Accumulation of inbreeding varied substantially 
across the genome. A considerable fraction of markers showed changes in allele frequency that were greater than 
expected under pure drift. Putative selected regions harboured many quantitative trait loci (QTL) associated to a wide 
range of traits. In consecutive 5-year periods, allele frequencies changed more often in the same direction than in 
opposite directions, except when comparing the 1996–2000 and 2001–2005 periods.

Conclusions: Genome-wide and region-specific diversity trends reflect major changes in the Dutch-Flemish HF 
breeding program. Introduction of OCS and the shift in breeding goal were followed by a drop in inbreeding and 
kinship and a shift in the direction of changes in allele frequency. After introduction of GS, rates of inbreeding and 
kinship increased substantially while allele frequencies continued to change in the same direction as before GS. These 
results provide insight in the effect of breeding practices on genomic diversity and emphasize the need for efficient 
management of genetic diversity in GS schemes.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  harmen.doekes@wur.nl 
1 Animal Breeding and Genomics, Wageningen University & Research, P.O. 
Box 338, 6700 AH Wageningen, The Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-018-0385-y&domain=pdf


Page 2 of 16Doekes et al. Genet Sel Evol  (2018) 50:15 

Background
Genetic variation in (closed) livestock populations is 
largely driven by the fundamental processes of selection 
and genetic drift. While selection acts directionally on 
alleles that have a selective (dis)advantage and on alleles 
that are ‘hitchhiking’ [1–3], genetic drift acts across the 
whole genome, causing random changes in allele fre-
quency from generation to generation as a result of sam-
pling gametes in a finite population [4].

In Holstein–Friesian dairy cattle (HF), intense artificial 
selection has been practised over many years. The use 
of a limited number of elite sires has reduced the effec-
tive population to a size ranging from 49 to 115 [5–7]. 
This implies that, in spite of its census size of millions 
of individuals, the breed is subjected to the same rate of 
genetic drift and accumulation of inbreeding as an ide-
alized population of 49 to 115 individuals [4]. To ensure 
adaptive capacity and limit inbreeding depression in the 
long term, it is important to monitor and manage genetic 
diversity in the HF population [8, 9].

Traditionally, genetic diversity has been character-
ised and managed with pedigree-based coefficients of 
inbreeding and kinship, which refer to the proportion of 
the genome that is expected to be identical by descent 
(IBD) within and between individuals, respectively. How-
ever, this genealogical approach has several limitations: 
(1) it strongly depends on pedigree completeness and 
quality (e.g. [10]); (2) it does not account for Mendelian 
sampling variation (e.g. [11]); and (3) it only provides a 
genome-wide expectation for loci that are selection-free, 
i.e. loci that are in complete linkage equilibrium with all 
loci under selection (e.g. [12]).

With the wide availability of dense single nucleotide 
polymorphism (SNP) data, it has become possible to 
obtain more accurate estimates of genome-wide inbreed-
ing and kinship and to evaluate diversity for specific 
regions of the genome [13–15]. Two approaches have 
been widely used to characterise and manage diversity 
from SNP data: the marker-by-marker approach [16] 
and the segment-based approach [17, 18]. The former 
approach involves the calculation of the observed and 
expected fraction of SNPs for which alleles are identi-
cal by state (IBS). Thus, it captures relationships that 
are caused by common ancestors going back to a very 
distant theoretical base population in which all alleles 
were unique. The second approach considers IBS seg-
ments, rather than individual SNPs. Since the length of 
these segments follows an inverse exponential distribu-
tion with expectation 1/2G Morgan [19], where G is the 
number of ancestral generations to the common ancestor 
from which the segment was derived, this approach may 
be used to distinguish recent from distant relatedness 
and move from IBS to ‘realised IBD’ [17]. Both IBS and 

IBD are relevant for management purposes. While IBS is 
the most direct diversity measure, (realised) IBD is more 
closely associated to inbreeding depression [18, 20, 21].

In recent decades, HF selection schemes have under-
gone profound changes with respect to inbreeding man-
agement, breeding goal composition and breeding value 
estimation. Around the year 2000, optimal contribution 
selection (OCS) was introduced to maximise genetic gain 
at a restricted rate of inbreeding [22]. Around the same 
time, national selection indices moved from produc-
tion- and conformation-based only to more comprehen-
sive indices that included traits related to production, 
conformation, longevity, health and reproduction [23]. 
More recently, genomic selection (GS) was introduced, 
which enabled the prediction of high-accuracy breeding 
values at a young age [24]. Since all these changes cause 
rearrangements in the ranking of artificial insemination 
(AI) bulls, they are expected to have influenced trends in 
genome-wide and region-specific genetic diversity. With 
the current availability of SNP-data, it is now possible to 
investigate this influence.

The aim of this study was to evaluate genome-wide 
and region-specific genetic diversity in HF AI bulls from 
1986 to 2015, using genealogical, marker-by-marker and 
segment-based approaches. An important objective was 
to evaluate whether major changes in the Dutch-Flemish 
HF breeding program were accompanied by changes in 
inbreeding and kinship trends. A second objective was to 
investigate whether observed changes in allele frequency 
could be attributed to selection, and whether regions 
under selection could be linked to known quantitative 
trait loci (QTL). A last objective was to investigate how 
the direction of changes in allele frequency has evolved 
over time.

Methods
Animals and data
A total of 6280 AI bulls with breed fraction  higher 
than 87.5% HF, born between 1986 and 2015 and genotyped 
by the Dutch-Flemish cattle improvement co-operative 
(CRV), were included in this study. Thus, the vast majority 
of AI bulls in the Dutch-Flemish breeding program were 
included. Figure 1 shows the number of bulls by year of birth.

Pedigrees were extracted from the database of CRV 
and extended with publicly available data [25]. The total 
pedigree comprised 46,232 animals. Complete genera-
tion equivalents (CGE) were computed as the sum of 
(1/2)n over all known ancestors, with n being the gen-
eration number of a given ancestor. The average CGE 
increased from 9.6 in 1986 to 17.0 in 2015 and was equal 
to 13.3 when calculated across all years. The average 
number of completely known generations increased from 
4.1 in 1986 to 8.1 in 2015. The generation interval (L), i.e. 
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the average age of parents at the birth of the bulls, was 
computed per year of birth for bull sires and bull dams 
separately, and for all parents combined (Fig.  2). The L 
decreased during the first decade and then increased 
slightly until it dropped steeply from 2009 onwards. The 
initial drop in L can be explained by an increased use 
of young unproven bull sires, which, at the time, was 
expected to improve genetic gain. However, due to vari-
able gains, the trend changed and, from 1998 onwards, 
almost exclusively proven bull sires were used. The drop 
in L from 2009 onwards was especially pronounced for 
bull sires and followed the implementation of GS. The 
average L across the whole 30-year period and for all par-
ents combined was 5.0 years.

Genotype data were provided by CRV and the final 
dataset comprised 75,538 autosomal SNPs. Bulls were 
genotyped with the Illumina BovineSNP50 BeadChip 
(versions v1 and v2) or CRV custom-made 60 k Illumina 
panel (versions v1 and v2). Genotypes were imputed 
to ~ 76 k from the different panels, following Druet et al. 
[26], and haplotypes were constructed with a combina-
tion of Beagle [27] and PHASEBOOK [28], by exploit-
ing both familial and population information. Prior to 
imputation, SNPs with a call rate lower than 0.85, a MAF 
lower than 0.025 or a difference larger than 0.15 between 
observed and expected heterozygosity were discarded. 
SNP positions were obtained from the Btau4.0 genome 
assembly and SNPs with unknown positions (N = 893) 
were discarded. The mean physical distance between 
two consecutive SNPs was 33.7 kb, with density varying 
substantially across the genome (see Additional file  1: 
Fig. S1). Black and white (N = 5021) and red and white 
(N = 1259) bulls were combined in all analyses, because 
a preliminary check on the mean SNP-based kinship 
within and between bulls of both groups indicated no 
major genetic differentiation across the 30-year period.

Genome‑wide diversity
Genome-wide diversity was quantified with genealogi-
cal, marker-by-marker and segment-based approaches. 
Pearson correlation coefficients between genealogical, 
marker-by-marker and segment-based measures were 
calculated to compare the different approaches.

Genealogical inbreeding and kinship
Genealogical coefficients of inbreeding (FPEDi) and kin-
ship ( fPEDij) were defined as the pedigree-based probabil-
ities that two alleles at a (imaginary) selection-free locus, 
sampled respectively within individual i or between indi-
viduals i and j, were IBD with reference to a base popula-
tion [4]. Founders in the pedigree were considered as the 
base population. Both FPEDi and fPEDij were calculated 
with calc_grm [29], according to the algorithms of Sar-
golzaei et al. [30] and Colleau [31].

Marker‑by‑marker homozygosity and similarity
Marker-by-marker homozygosity (HOMSNPi) and similar-
ity (SIMSNPij) were defined as the probabilities that two 
alleles at a random SNP, which were sampled respectively 
within individual i or between individuals i and j, were IBS. 
The HOMSNPi was obtained as the proportion of SNPs 
for individual i that were homozygous. The SIMSNPij was 
determined according to Malécot [16]:

SIMSNPij =

∑nSNP
k=1

(

I11,k + I12,k + I21,k + I22,k
)
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where nSNP is the total number of markers, Ixy,k is an 
indicator variable that was set to 1 when allele x of indi-
vidual i and allele y of individual j at marker k were IBS, 
and to 0 otherwise. Note that the SIMSNPij is equiva-
lent to VanRaden’s genomic relationship Gij [32] when 
allele frequencies of 0.5 are used in the computa-
tion of Gij (except for the scale; see Additional file  1 of 
Eynard et  al. [33] for derivation). Since self-similarities 
(

SIMSNPii =
1
2

[

1+HOMSNPi

]

)

 were included, the aver-
age similarity in a given cohort was also equivalent to the 
expected homozygosity in that cohort (i.e. the average sum 
of squared allele frequencies, p2 + q2, across all SNPs).

Segment‑based inbreeding and kinship
Segment-based inbreeding (FROHi) was defined as the 
proportion of the genome of individual i that was cov-
ered by long uninterrupted homozygous segments. Such 
regions of homozygosity (ROH) were detected by moving 
SNP by SNP across chromosomes and testing potential 
ROH against predefined criteria. The following crite-
ria were used to define a ROH: (1) a minimum physical 
length of 3.75  Mb, (2) a minimum of 38 consecutive 
homozygous SNPs (no heterozygous calls allowed), and 
(3) a maximum gap of 500 kb between two consecutive 
SNPs. The minimum length of 3.75  Mb was chosen to 
match the pedigree depth. Given the genetic distance of 
approximately 1 cM per Mb [34] and the average length 
of 1/2G M for ROH derived from a common ancestor G 
generations ago [19], the FROHi was expected to capture 
inbreeding over 13.3 ancestral generations (correspond-
ing to the CGE of the pedigree). The latter two criteria 
were used to prevent calling of (potentially false positive) 
ROH in regions with low SNP density. The FROHi was cal-
culated as the fraction of the autosome in ROH [17]:

where nROHi is the total number of ROH in individual i, 
lROHi,m is the length of the mth ROH and la is the length of 
the autosome covered by SNPs (i.e. the autosome length 
minus the summed length of gaps longer than 500 kb).

Segment-based kinship ( fSEGij) was defined as the 
expected FROH for an offspring of individuals i and j. 
Shared segments were identified by moving SNP by SNP 
across every possible pair of chromosomes, with one 
homolog of individual i and one of j, and testing potential 
segments against predefined criteria. The same criteria 
were used as for calling ROH. The fSEGij was computed 
following de Cara et al. [18]:

FROHi =

∑nROHi
m=1

lROHi,m

la
,

fSEGij =

∑
nSEGij
m=1

∑2
xi

∑2
yj
lSEGij,m

4la
,

where nSEGij is the total number of shared segments 
between individuals i and j, lSEGij,m is the length of the m
th shared segment measured over homolog x of individ-
ual i and homolog y of individual j and la is the length of 
the autosome covered by SNPs.

Rate of change and effective population size
For each genome-wide parameter, the annual rate of 
change (�xy) for the 1986–2015 period was obtained as 
the opposite of the slope of the regression of LN (1− x̄) 
on year of birth, where x̄ equalled the average of the 
parameter in a given year [35]. The annual rate was 
multiplied by L to obtain the rate per generation 
(�xgen ) and, subsequently, the effective population size 
(Ne = 1/(2�xgen)). To investigate trends over time, �xy 
and �xgen were also calculated for 5-year periods, taking 
changes in L into account.

Region‑specific inbreeding
Accumulation of inbreeding across the genome over 
time was evaluated with ROH-based positional inbreed-
ing coefficients. For every marker k in bull i, a positional 
inbreeding coefficient (FROHi,k

) was set to 1 when k was 
encompassed by a ROH, and to 0 otherwise, following 
Kim et  al. [36]. The FROHk

 per 5-year period was then 
calculated as the fraction of bulls born in that period for 
which k was encompassed by a ROH.

Changes in allele frequency and putative selected regions
Changes in allele frequency were computed as 
�p = pt − p0, where pt and p0 were the frequency in the 
last (2011–2015) and first (1986–1990) 5-year periods, 
respectively. Since the average L was 5.0  years, the �p

-values were based on approximately five generations of 
drift and selection. To identify putative selected regions, 
the observed �p-values were compared to those expected 
under pure genetic drift. The �p-distribution under pure 
drift was obtained by gene dropping [37]. In each simu-
lated gene drop, alleles for a single SNP were randomly 
assigned to founders and subsequently dropped through 
the pedigree following Mendelian principles (i.e. ran-
dom sampling). To ensure a wide spectrum of p0-values, 
founder minor allele frequencies (MAF) ranging from 
0.5 to 50% were simulated. Realised p0-values were clas-
sified into 100 MAF-classes, ranging from 0.0–0.5% to 
49.5–50.0%, and the drift distribution per MAF-class was 
obtained based on 3000 replicates. Observed absolute 
�p-values above the 99.9% threshold (P < 0.001) of the 
empirical gene drop distribution were considered indica-
tive of selection. To visualise systematic changes over the 
erratic pattern of individual SNPs, the moving average of 
31 adjacent absolute �p-values was plotted against the 
physical position of the central SNP.
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Genomic regions with an excess of putative selected 
SNPs were considered as putative selected regions. For 
the key regions of interest, we investigated which QTL 
were known in these regions, using AnimalQTLdb [38]. 
The complete CattleQTLdb, which contains 99,675 
QTL, was first filtered; QTL mapped to chromosome X 
(N = 25,589), reported for non-HF breeds (N = 23,468) 
and/or with unknown start and end positions (N = 1737) 
were discarded. In addition, QTL associated to traits that 
were not clearly related to the Dutch-Flemish breeding 
bull-selection index, such as specific milk fatty acids or 
carcass traits, were removed (N = 21,195). This resulted 
in a final list of 27,662 QTL, associated to 61 traits clas-
sified in five trait categories: production (INET), con-
formation (CONF), longevity (LONG), reproduction 
(REPR) and udder health (UH). The final list of traits and 
number of QTL per trait and trait category is included in 
Table S1 (Additional file 2: Table S1).

Changes in allele frequency were also computed within 
each 5-year period as �p = pt − p0, with pt and p0 being 
the frequencies in the last and first year of the period, 
respectively (e.g. �p = p1990 − p1986). Correlation coef-
ficients between the �p-values of the different 5-year 
periods were calculated to investigate the direction of 
changes in allele frequency over time.

Results
Genome‑wide diversity
Descriptive statistics for all six genome-wide parameters 
are shown in Table 1. The average genealogical inbreed-
ing and kinship were 5.2 and 6.5%, respectively. Segment-
based coefficients were on average ~ 1.5% higher than 
genealogical coefficients. As expected, IBS coefficients 
showed a higher mean (64.4% for HOMSNP and 64.8% for 
SIMSNP), lower SD and lower CV than IBD coefficients. 
For all kinship parameters, the mean was considerably 
higher than the median, which was indicative of the 
right-skewedness of the underlying distributions that was 
due to the inclusion of self-kinships.

Pearson correlation coefficients between different 
genome-wide estimates of inbreeding and kinship per 
year of birth are shown in Fig.  3. Correlations between 
kinship parameters were considerably higher than those 
between inbreeding coefficients. Over all years, the 
highest correlations were found between the genomic 
parameters (on average 0.90 for HOMSNP with FROH and 
0.98 for SIMSNP with fSEG) and the lowest between the 
marker-by-marker and genealogical estimates (on aver-
age 0.60 for HOMSNP with FPED and 0.92 for SIMSNP 
with fPED). Correlations between genomic param-
eters remained relatively constant over years, whereas 
correlations between pedigree and genomic param-
eters decreased over time. For example, the correlation 
between fSEG and fPED decreased from 0.97 in 1986 to 
0.88 in 2015. This divergence could be explained by the 
accumulation of Mendelian sampling variation over time, 
which is captured by genomic information, but not by 
pedigree data. When more generations are included in 
the calculation of fPED, more sampling events are unac-
counted for and fPED is likely to deviate more from the 
realised genomic relationship. Correlations between 
pedigree and genomic inbreeding parameters seemed 
to increase slightly from 2009 onwards. However, this 
increase could also be due to random fluctuations, as the 
standard errors for inbreeding correlations were rather 
large (Fig. 3).

Roughly, genome-wide inbreeding increased from 
1986 to 2000, remained rather constant for a decade 
and then steeply increased from 2011 onwards (Fig.  4). 
Genome-wide kinship levels fluctuated more, but also 
increased from 1986 to 2000, temporarily dropped and 
then remained rather constant until a steep increase from 
2009 onwards.

Genome-wide rates of change per year and per gen-
eration for the 1986–2015 period are shown in Table 2. 
Estimates of Ne computed from �FPED, �FROH and 
�HOMSNP were equal to 79, 75 and 69, respectively. 
Rates of kinship were lower than rates of inbreeding, with 

Table 1 Descriptive statistics for genome-wide inbreeding and kinship parameters in all years combined

Values are shown as percentages

N number of coefficients, SD standard deviation, Min. minimum, Max. maximum, CV coefficient of variation, FPED and fPED genealogical inbreeding and kinship, FROH 
and fSEG segment-based inbreeding and kinship, HOMSNP and SIMSNP marker-by-marker homozygosity and similarity

Parameter N Mean SD Median Min. Max. CV

FPED 6280 5.206 2.250 5.097 0.000 17.876 0.432

FROH 6280 6.750 2.892 6.427 0.669 25.378 0.429

HOMSNP 6280 64.360 1.177 64.223 58.425 71.838 0.018

fPED 1,470,166 6.538 4.581 5.685 0.267 58.938 0.701

fSEG 1,470,166 7.987 4.609 7.143 0.006 62.689 0.577

SIMSNP 1,470,166 64.823 1.777 64.473 61.530 85.919 0.027
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a Ne estimated from �fPED, �fSEG and �SIMSNP of 102, 
100 and 91, respectively. The difference between inbreed-
ing and kinship rates was largely due to the relatively high 
kinship levels in early years (Fig. 4). In fact, the average 
kinship at the beginning of the period was more than two 
generations ahead of the average inbreeding, while a dif-
ference of a single generation is expected for a randomly 
mating population.

Rates of inbreeding and kinship were also computed for 
periods of 5  years, accounting for the change in L over 
time. Both rates per year and per generation decreased 
over the first four periods, were slightly negative between 

2001 and 2005 and increased in the last two periods 
(Fig. 5). In the 2011–2015 period, rates of �FPED, �FROH 
and �HOMSNP were as high as 1.8, 2.1 and 2.8% per gen-
eration, respectively. Rates of change were very similar 
across the three approaches, except in the first, third and 
last periods. In the 1986–1990 period, the �HOMSNP and 
�SIMSNP were close to zero as a result of large fluctua-
tions in IBS levels (Fig. 4). In this period, �FPED was also 
relatively high (i.e. 1% higher per generation than �FROH
). In the 1996–2000 period, genealogical rates of inbreed-
ing were slightly higher (0.1–0.2% higher per generation) 
than segment-based rates, which, in turn, were slightly 
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higher (0.2–0.3%) than marker-based rates. In the last 
period, which showed almost no fluctuations, marker-
based rates were considerably higher (0.7% per gen-
eration) than segment-based rates, which were in turn 
slightly higher (0.3% for �F  and 0.1% for �f ) than genea-
logical rates of inbreeding.

Region‑specific inbreeding
Accumulation of inbreeding across the genome was 
evaluated with ROH-based positional inbreeding coeffi-
cients (FROHk

). Substantial heterogeneity was observed in 
the levels of FROHk

 over time (Fig. 6). There were, among 

others, regions with a continuous increase in inbreeding 
(e.g. the peaks on BTA10), regions with an increase fol-
lowed by a decrease (e.g. around 40 Mb on BTA26) and 
regions with a constant inbreeding level over time (e.g. 
BTA18). Particularly striking was the strong increase in 
FROHk

 in the last period for various regions (e.g. around 
55  Mb on BTA4, around 40  Mb on BTA14 and around 
25  Mb on BTA22). Overall, BTA10 showed the most 
prominent increase in FROHk

, from 5% in the 1986–1990 
period to 20–30% in the 2011–2015 period at the peak 
regions. BTA20 also showed regions with a FROHk

 of 
20–30% in the 2011–2015 period, but these peaks had 
already a higher FROHk

 at the start of the 30-year period 
(of 10–15%). Within the high peak on BTA10, there was 
a remarkable trough near 62.5 Mb, which could be due to 
incorrect SNP positions on the reference genome Btau4.0 
(the 12 SNPs in this region were mapped near 71.5 Mb 
on UMD3.1). The trough within the peak on BTA4, near 
55  Mb, might also be the result of incorrect SNP posi-
tions, although for this region there was no inconsistency 
between Btau4.0 and UMD3.1 positions.

Changes in allele frequency and putative selected regions
Absolute changes in allele frequencies from the 1986–
1990 period to the 2011–2015 period, |�p|, were com-
pared with those expected from gene dropping (Fig.  7). 
Many SNPs showed higher |�p|-values than would be 
expected under pure genetic drift. For example, there 

Table 2 Genome-wide rates of change and effective popu-
lation size (Ne) for the period 1986–2015

FPED and fPED genealogical inbreeding and kinship, FROH and fSEG segment-based 
inbreeding and kinship, HOMSNP and SIMSNP marker-by-marker homozygosity 
and similarity

Parameter Rate of change (%) per

Year Generation Ne

FPED 0.1280 0.6354 78.67

FROH 0.1342 0.6663 75.04

HOMSNP 0.1462 0.7261 68.86

fPED 0.0984 0.4887 102.31

fSEG 0.1001 0.4991 100.19

SIMSNP 0.1108 0.5502 90.88
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Fig. 5 Rate of change per year (top) and generation (bottom) for genome-wide parameters within 5-year periods. FPED and fPED: genealogical 
inbreeding and kinship; FROH and fSEG: segment-based inbreeding and kinship;HOMSNP and SIMSNP: marker-by-marker homozygosity and similarity
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Fig. 6 Positional inbreeding coefficients (FROH) per 5-year period between 1986 and 2015. Grey bars cover gaps between consecutive markers 
of > 500 kb (with an additional 3.75 Mb on both sides of the gap). BTA: Bos taurus autosome. Note that the scale of the x-axis differs between chro-
mosomes
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were 6835 SNPs (9.05% of the total number) and 490 
SNPs (0.65% of the total number) with a |�p| above the 
95%- and 99.9%-thresholds of the gene drop distribu-
tion, respectively. The SNPs above the 99.9%-threshold 
were considered indicative of selection and, although 
they were spread across the whole genome, these SNPs 
were generally located in peaks of high |�p| (Fig.  8). In 
line with the pattern observed for FROHk

 (Fig. 6), BTA10 
showed the highest |�p| on average, with two wide peaks 
enriched with putative selected SNPs. However, on 
BTA20 no clear peak was observed and only three puta-
tive selected SNPs were detected. In contrast, BTA19 
showed a narrow peak for |�p| that was not present in 
Fig.  6. This could be explained by the extremely high 
SNP density in this region (see Additional file 1: Fig. S1), 
which caused the moving average of 31 |�p|-values to 
be based on a region of only 50 kb (while for ROH only 
regions longer than 3.75 Mb were considered).

For 11 regions that were enriched with putative selected 
SNPs, we investigated whether QTL were known in these 
regions (Table 3). In general, the putative selected regions 
were large and overlapped with many QTL of different 
trait categories. Across all regions combined, there was 
a relatively large number of QTL for conformation traits 
and relatively few for production traits, when compared 
to QTL reported for the complete autosome. The rela-
tively low fraction of QTL for production-traits could be 
explained by the fact that 39% of all production-QTL in 
the AnimalQTLdb are located on BTA14, whereas only a 
single short region on this chromosome was identified in 
this study as a putative selected region.  

To evaluate the direction of allele frequencies over 
time, correlation coefficients between the �p within dif-
ferent 5-year periods were calculated (Table  4). Except 
for the correlation between the 1996–2000 and 2011–
2015 periods, all correlations were significantly different 
from 0 (P < 0.0001). Correlation coefficients for any two 
consecutive periods were positive (ranging from 0.08 
to 0.26), except for the transition from the 1996–2000 
period to the 2001–2005 period (− 0.09).

Discussion
In this study, we evaluated genetic diversity across the 
genome of HF AI bulls from 1986 to 2015. An important 
objective was to investigate whether major changes in 
the Dutch-Flemish HF breeding program were accompa-
nied by changes in diversity trends. We used genealogi-
cal, marker-by-marker and segment-based approaches to 
compare trends in expected IBD, IBS and realised IBD.

Genome-wide rates of inbreeding and kinship and cor-
responding estimates of Ne computed over the 1986–
2015 period were similar to those previously reported for 
HF populations. Genealogical and genomic estimates of 
Ne for HF populations in Australia, Canada, Denmark, 
Spain, Ireland and the United States of America for (parts 
of ) the 1975–2013 period range from 49 to 127 [5–7, 39, 
40]. A similar Ne across countries is expected, due to the 
extensive exchange of genetic material. In spite of the 
global connectedness of the breed, there is some degree 
of genetic differentiation across countries [7, 41].

Genome-wide diversity trends showed two break-
points. The first occurred around 2000, after which levels 
and rates of inbreeding and kinship temporarily dropped 

Fig. 7 Absolute allele frequency changes from 1986–1990 to 2011–2015 (|p2011−2015 − p1986−1990|) observed in data and gene drop. Changes are 
shown for different minor allele frequencies (MAF) in the 1986–1990 period, using MAF-classes of 0.5% (e.g. 0.0–0.5%). The red line represents the 
99.9%-threshold of the gene drop distribution per MAF class
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(Figs. 4 and 5). The second occurred around 2010, after 
which inbreeding and kinship steeply increased. Both 
breakpoints coincided with major changes in the Dutch-
Flemish breeding program.

The drop in inbreeding and kinship around 2000 fol-
lowed a shift in breeding goal composition and the 
introduction of OCS. Although the Dutch-Flemish bull 
selection index has changed continuously over time, 
the major shift took place around 2000, when longevity, 

udder health and reproductive traits were added to the 
index within a few years’ time (Table  5). The inclusion 
of a wide range of traits at that time resulted in a more 
diverse set of bulls with high estimated breeding values 
(EBV) and thereby contributed to the (temporary) drop 
in inbreeding and kinship. From 2000 onwards, pedi-
gree-based OCS has been used to select bull-parents in 
the breeding program and restrict �F  and �f . However, 
the effect of OCS will have been limited due to practical 

Fig. 8 Moving average of absolute changes in allele frequency from the 1986–1990 to the 2011–2015 period (|p2011−2015 − p1986−1990|). Moving 
average is based on 31 SNPs. The SNPs in red (N = 490) have an allele frequency change above the 99.9%-threshold of the gene drop distribution 
(see Fig. 7). BTA Bos taurus autosome
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difficulties. One such difficulty is that, in practice, not all 
candidates with allocated contributions are available for 
breeding. Another difficulty is that OCS considers all 

candidates at a single moment in time, while selection 
decisions in the breeding program are made on a daily 
basis. In spite of these difficulties, the use of OCS will 
have restricted �F  and �f  and its introduction will have 
contributed to the observed drop around 2000. A drop in 
�F  and �f  around 2000 was also observed in the Cana-
dian and Danish HF populations [5, 40], although less 
pronounced than the drop in the current study. In these 
other HF populations, OCS was not (yet) introduced at 
that time. Stachowicz et  al. [5] suggested that the drop 
in the Canadian population may be due to an increased 
awareness and the introduction of average relationship 
values (R-values) by the Canadian Dairy Network around 
2000.

The steep increase in inbreeding and kinship rates 
around 2010 coincided with the implementation of GS. 

Table 3 Putative selected regions based on changes in allele frequency from the 1986–1990 period to the 2011–2015 
period and fraction of known QTL mapped to these regions per trait category

QTL were included when reported in AnimalQTLdb [38]. QTL were classified into five trait categories: INET (production index), CONF (conformation), LONG (longevity), 
REPR (reproduction) or UH (udder health). See Additional file 2 for classification of traits

BTA Start–end position (Mb) nQTL Fraction of QTL per trait category (%)

INET CONF LONG REPR UH

1 128.0–133.0 83 4 34 8 46 8

3 80.0–86.0 68 6 47 7 31 9

7 10.5–22.0 169 7 36 19 31 8

10 19.0–29.0 43 37 30 5 23 5

10 60.0–75.0 111 9 76 2 9 5

11 76.0–89.5 342 15 70 1 14 1

12 19.0–26.0 42 29 21 7 38 5

14 6.0–8.0 44 91 2 2 2 2

19 11.5–12.0 1 0 0 0 0 100

24 1.5–4.0 26 35 27 8 27 4

26 25.0–27.5 30 17 50 3 23 7

Total putative selected regions 959 17 51 6 22 4

Complete autosome 27,662 38 25 8 26 3

Table 4 Correlations between allele frequency changes 
(e.g. p1990 − p1986) within different 5-year periods 
between 1986 and 2015

Standard errors of correlations ranged from 0.0004 (for 1996–2000 with 
2011–2015) to 0.0035 (for 2006–2010 with 2011–2015)

Period 86–90 91–95 96–00 01–05 06–10

91–95 0.094

96–00 0.089 0.082

01–05 − 0.062 − 0.130 − 0.094

06–10 − 0.028 − 0.113 − 0.087 0.092

11–15 0.040 − 0.041 0.001 − 0.070 0.264

Table 5 Relative emphasis of trait categories in the Dutch-Flemish bull selection index over time

Note that the relative emphasis of trait categories may not be calculated consistently across references

INET production index combining milk, fat and protein yield, CONF conformation traits, i.e. conformation of udder, legs, muscling and/or general stature, LONG 
longevity or durability, REPR reproductive traits including fertility and birth traits, UH udder health or somatic cell count

Year Index Relative emphasis of trait category (%) References

INET CONF LONG REPR UH

1980 INET 100 – – – – [42]

1989 Stiersom 67 33 – – – [42, 43]

1999 DPS 67 – 33 – – [44]

2003 DPS 58 – 26 12 4 [23]

2007 NVI 40 27 8 16 9 [45]

2012 NVI 26 30 11 19 14 [46]
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From the 2006–2010 period to the 2011–2015 period, 
there was a two- to four-fold increase in the annual rate 
of inbreeding. Rates per generation were also consider-
ably higher since the implementation of GS, although the 
difference was less pronounced due to the decrease in 
L . Rates of �FPED, �FROH and �HOMSNP between 2011 
and 2015 were as high as 1.8, 2.1 and 2.8% per generation, 
respectively (Fig. 5). These rates correspond to an Ne of 
18, 24 and 28, respectively. Rates of kinship were lower 
than rates of inbreeding, but were also well above the 
rates of 0.5–1% per generation recommended for live-
stock populations [47, 48]. The high rates per generation 
were rather unexpected, because, in theory, GS reduces 
�Fgen for a given genetic gain compared to traditional 
best linear unbiased prediction (BLUP) selection, by pre-
dicting Mendelian sampling terms and reducing the co-
selection of sibs [15, 49].

Estimates of inbreeding and kinship rates in real life 
HF GS schemes are still scarce. Rodríguez-Ramilo et al. 
[6] recently evaluated genealogical and genomic inbreed-
ing and kinship trends in the Spanish HF population. 
They reported Ne estimates that increased from 74 to 
79 in the 1980–1999 period to 95–101 in the 2000–2013 
period as a consequence of a reduction in L, but did not 
evaluate the years with GS separately [6]. For the global 
HF population, Miglior and Beavers [50] indicated that, 
although the number of AI bull sires has increased since 
GS, the number of sires that father 50% of the AI bulls 
has remained relatively constant. In North-American AI 
bulls, they also reported an increase of 1% in FPED from 
2011 to 2012 [50], which is in line with the 0.94% increase 
in the current study (Fig. 4).

An important factor that contributes to the accumula-
tion of kinship in GS schemes is the relationship of selec-
tion candidates with the reference population. In GS, 
genomic EBV (GEBV) are computed from the effects of 
SNPs, which are estimated in a reference population of 
individuals with known genotypes and phenotypes [24]. 
The accuracy of an individual’s GEBV is strongly affected 
by the genetic relationship between the individual and 
the reference population [51–53]. Pszczola et  al. [51] 
indicated that the average squared relationship of a can-
didate with the reference population influences especially 
the accuracy of GEBV. This means, for example, that hav-
ing a single full sib in the reference population contrib-
utes more to a candidate’s GEBV accuracy than having 
two half-sibs. In general, candidates with a high average 
squared relationship with the reference population have 
a more accurate GEBV and are, therefore, more likely 
to be selected at a young age. This implies that, in a way, 
genetic variation in the reference population drives vari-
ation in selected individuals, which in turn drives vari-
ation at the population level. Thus, the composition of 

the reference population is an essential parameter that 
requires careful consideration for the management of 
diversity in the population.

Since the implementation of GS, rates of marker-by-
marker homozygosity and similarity have been consid-
erably higher (0.7%) than segment-based rates, which in 
turn have been slightly higher (0.1–0.3%) than genealogi-
cal rates. The higher rate for IBS suggests that relatedness 
due to distant common ancestors is increasing relatively 
fast compared to relatedness caused by common ances-
tors in more recent generations. This could be due to 
the discordance between the way breeding values are 
estimated and the way diversity is managed. In the cur-
rent Dutch-Flemish breeding program, breeding values 
are predicted with genomic BLUP (GBLUP) and are, 
thus, based on marker-by-marker similarities weighted 
by allele frequencies [32]. However, diversity is managed 
on a genealogical basis by restricting �fPED with OCS. 
Although the relatively high correlations between fPED 
and SIMSNP and between fPED and fSEG (Fig. 3) suggest 
that genomic IBD and IBS can be quite efficiently man-
aged using fPED, it is important to revisit this idea in view 
of OCS. In fact, when OCS is performed with GBLUP and 
a restriction on �fPED, the algorithm will search for selec-
tion candidates with a high GEBV and low average fPED , 
thereby putting emphasis on the Mendelian sampling 
terms that are not captured by the pedigree. As dem-
onstrated by Sonesson et  al. [15], the genomic inbreed-
ing rate in such a scenario will substantially exceed the 
genealogical restriction. In addition, it will result in a IBD 
profile that is extremely variable across the genome [15]. 
Thus, controlling diversity at the genomic level should be 
a priority in the breeding program.

In this study, genomic diversity was characterised with 
marker-by-marker IBS and segment-based IBD. Both meas-
ures have clear advantages and drawbacks with regard to 
management. The main advantage of using marker-by-
marker IBS in OCS is that it is the most effective in con-
serving diversity [54, 55]. However, a drawback is that it 
stimulates both alleles of biallelic loci to move to a fre-
quency of 0.5, irrespective of their effects. Thereby, deleteri-
ous mutations continue to segregate in the population. To 
expose and eliminate recessive deleterious mutations, it was 
suggested to combine OCS with inbred matings [56]. Alter-
natively, a segment-based IBD matrix can be used in OCS 
to restrict the increase in recent inbreeding. The ration-
ale behind this approach is that recent inbreeding is more 
harmful than distant inbreeding, because the latter may 
have already been purged [57, 58]. In other words, the FROH 
is more closely associated with inbreeding depression than 
HOMSNP [18, 20, 21]. Segment-based metrics can also be 
used to identify genomic regions that are prone to inbreed-
ing depression [9], although the power of detection is 
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limited by the fact that a single segment can contain multi-
ple shorter haplotypes (or single SNPs) with different effects 
on the phenotype [9, 59]. Another drawback of the use of 
ROH and IBD-segments is their arbitrary definition. In this 
study, we defined the minimum length of IBD segments 
based on the average CGE of the pedigree, so that both 
genealogical and segment-based coefficients were expected 
to capture relatedness over 13.3 ancestral generations. 
However, the observed segment-based coefficients were 
on average ~ 1.5% higher than genealogical coefficients. 
Pedigree skewness, which is not completely accounted for 
by the CGE, will have contributed to this difference. For 
example, in an extreme scenario with 20 generations com-
pletely known on the sire’s side, but with the dam unknown, 
the CGE of the offspring equals 10 while the FPED equals 0 
by definition. A second factor that strongly influenced the 
difference between genealogical and segment-based coef-
ficients was the chosen maximum gap length between 
SNPs. For example, when the maximum gap size was set 
to 250 kb instead of 500 kb, the segment-based coefficients 
moved to the same scale as genealogical coefficients. Due to 
the large effect of such small changes, and the wide variety 
of criteria used in the literature [36, 60, 61], one should be 
extremely cautious when comparing segment-based coeffi-
cients across studies. A last drawback of the segment-based 
approach is that it is computationally rather intensive. In 
spite of these limitations, the use of segment-based metrics 
is considered a promising tool to determine the effect of 
inbreeding and, when applied in OCS, to maintain diversity 
and fitness simultaneously [8, 18, 20].

Selection has played an important role in shap-
ing genetic variation across the HF genome over time. 
Although the identification of selection footprints was 
not the primary objective of this study, the regions 
in Table  3, enriched with ‘significant’ |�p| values, can 
be considered as putative signatures of selection. The 
most prominent peaks in |�p| were observed on BTA10 
(Fig.  8), which is in line with previously reported selec-
tion signatures for HF cattle [36, 62]. Using the extended 
haplotype homozygosity test (EHH) in German HF cattle, 
Qanbari et al. [63] detected 161 significant ‘core regions’ 
under selection, of which 17, 45, and 11 regions were 
located on BTA2, 10 and 20, respectively. We observed 
no clear peaks on BTA2. For BTA20, a large region with 
high FROHk

 (Fig.  6) was observed, but it showed only 
small changes in allele frequency (Fig.  8). This could 
be explained by the fact that FROHk

 for this region was 
already high in 1986, which suggests that selection for 
this region occurred already before the Holsteinisation 
(the large-scale introduction of HF into national dairy 
industries in the 1970s and early 1980s). The latter could 
also explain why this region was identified as a selection 
signature in various countries [36, 62, 64].

The important role of selection was also apparent 
from the fact that, in consecutive 5-year periods, allele 
frequencies changed more often in the same direc-
tion than in opposite directions (Table 4). An exception 
was found when comparing allele frequency changes 
between the 1996–2000 and 2001–2005 periods, which 
suggests a change in the direction of selection around 
this time. Indeed, this change coincided with the imple-
mentation of OCS and the major shift in breeding goal 
composition. To further investigate the change in direc-
tion around 2000, a ‘moving correlation’ between �p in 
the 1996–2000 period and �p in the 2001–2005 period 
was computed for groups of 51 markers (see Additional 
file  3: Fig. S2). There were several regions that showed 
a relatively strong negative correlation (see Additional 
file  4: Table S2) and which were rather large and har-
boured many known QTL associated with a wide range 
of traits. Although some of the identified regions showed 
a relatively large fraction of QTL related to traits such as 
reproduction (e.g. the region on BTA1), longevity (e.g. 
the region on BTA12) or udder health (e.g. the region on 
BTA13), these findings could not be specifically tied to 
the changes in breeding goal composition.

Substantial differences in |�p| (Fig. 8) and in the accu-
mulation of FROHk

 (Fig.  6) were observed across the 
genome. The emergence of such heterogeneity as a result 
of selection has been previously investigated in simula-
tion and experimental studies [1, 3, 15]. These studies 
showed that GS acts more locally across the genome, 
with more pronounced hitchhiking effects compared to 
BLUP selection [1, 3, 15]. The striking increase in FROHk

 
from the 2006–2010 period to the 2011–2015 period for 
various genomic regions (Fig.  6) could be the result of 
this local selection pressure. The peak regions showing 
high FROHk

 remained fairly similar from the 2006–2010 
period to the 2011–2015 period, which suggests that GS 
has not per se changed the regions that are under selec-
tion, but has especially increased the intensity of selec-
tion at these regions. This hypothesis is supported by the 
relatively strong positive correlation between �p-values 
in the 2006–2010 period and those in the 2011–2015 
period (Table 4).

An important question that should be raised is how 
heterogeneity in |�p| relates to maximising genetic gain 
and maintaining genetic diversity. At some loci, it is 
desirable to increase the frequency of favourable alleles 
towards fixation. At other loci, a high level of genetic 
diversity is beneficial, for example to ensure a popula-
tion’s capacity to combat a wide range of pathogens [65] 
or to limit inbreeding depression [9]. Thus, it is impor-
tant to minimise the size of selection footprints [3, 8]. 
This can be achieved by slowly increasing the frequency 
of many favourable alleles with small effects, instead of 
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strongly selecting for a few alleles with large effects [15, 
66]. Although such an approach will not result in the 
highest gains in the short term, it will increase the long-
term response [67, 68]. To maximise long-term gain fur-
ther, it is desirable to select for rare favourable alleles, 
because this will increase the genetic variance [67]. Thus, 
to optimise long-term response while maintaining diver-
sity, it is recommended to give less weight to SNPs that 
explain more variance and use a relatively uniform distri-
bution of weights for the computation of GEBV [67, 69].

In general, genomic information offers many opportu-
nities to manage genetic diversity and inbreeding more 
efficiently in the future (see [8] for a review). Among oth-
ers, it can be used to control diversity at specific regions 
[70], select against multiple recessive disorders at the same 
time [71], estimate dominance effects for a better under-
standing of inbreeding depression [72], exploit variation in 
recombination rate across the genome [34] and character-
ise gene bank collections on the genomic level to optimise 
these collections and exploit stored material [7]. However, 
the practical benefit of such new insights and genomic 
tools in real-life selection schemes has yet to be explored.

Conclusions
There is substantial heterogeneity in diversity across the 
genome of HF AI -bulls over time as a result of selection 
and genetic drift. Trends in genome-wide and region-
specific diversity reflect major changes in the Dutch-
Flemish breeding program. The introduction of OCS and 
the shift in breeding goal, which both occurred around 
2000, were followed by a temporary drop in inbreeding 
and kinship and were accompanied by a shift in the direc-
tion of changes in allele frequency. The recent introduc-
tion of GS around 2010 was accompanied by a substantial 
increase in the rates of inbreeding and kinship, both per 
year and per generation and especially at the IBS level. 
Allele frequencies continued to change in the same 
direction as before GS. These results provide insight in 
the effect of breeding practices on diversity across the 
genome and emphasize the need for efficient manage-
ment of genetic diversity in HF GS schemes.
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