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Abstract

The LBM is combined with the Volume Penalization (VP LBM) approach to simulate flows
in the presence of obstacles. The single relaxation time LBM and the multiple relaxation time
LBM are used. The approach is evaluated for various test cases: flows enhanced by moving
boundaries for which an analytical solution is known, flow past a cylinder at a Reynolds
number of 500, and flow induced vibration of a cylinder. A comparison of our results with
analytical results and with results found in the literature, demonstrates the reliability of the
VP LBM to treat complex flows.
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1. Introduction

The approach proposed in this paper consists in coupling the Lattice Boltzmann Method
(LBM) with the Volume Penalization (VP) technique to model fluid flows in the presence of
obstacles, and more particularly moving obstacles. To compute such flows, it is necessary
to use fine grids and small time steps, and this leads to a high amount of computing time
when classical numerical approaches are used to solve the Navier-Stokes equations (finite
differences, finite volumes, finite elements). An important advantage of the lattice Boltz-
mann method is that it can be efficiently parallelized on graphic processor units (GPUs)
[1, 2], which enables a substantial decrease in computational time. The lattice Boltzmann
method has been widely used for fluid flow simulation [3, 4]. In literature, one can notice
that various approaches have been implemented in a lattice Boltzmann framework to model
flows around obstacles.

In 1994, Ladd [5] adapted the bounce back method to the computation of flows around
moving particles, and he proposed the momentum exchange approach to evaluate the hydro-
dynamic force acting on the particle. To treat curved boundaries, other authors improved
this method by introducing interpolation formula into the bounce back rule [6, 7, 8]. Fil-
ippova and Hänel [9], Mei et al. [10], Guo et al. [11] developed a bounce back method
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based on the construction of an equilibrium distribution function at the solid node, where
extrapolations were used to calculate the velocity at the solid node. Noble and Torczynski
[12] modified the lattice Boltzmann equation, by introducing a source term in the collision
term. With this method, the Single Relaxation Time Lattice Boltzmann equation could be
solved both in the fluid region, and in regions occupied by a solid obstacle (where the Zou
and He bounce back rule [13] was applied thanks to this source term).

The immersed boundary method becomes more and more popular in the lattice Boltz-
mann community [14, 15, 16, 17, 18]. It consists in solving the Navier-Stokes equations
with a source term that mimics the influence of the boundary on the flow, on a fixed Eu-
lerian mesh. The solid boundary (the immersed boundary) is tracked using a Lagrangian
approach [19]. This method works well for deformable bodies (elastic particles for instance
[20, 21, 22]). Nevertheless, it is a bit more complicated to treat solid bodies when using
the immersed boundary method. Feng and Michaelides [23] and Ten Cate et al. [24] were
the first authors to combine this technique with the lattice Boltzmann method to simulate
flows around moving rigid particles. In these initial works, the solid boundary was mod-
eled with Lagrangian marker points connected by an elastic spring whose constant needed
to be empirically adjusted to make the boundary rigid. To circumvent this difficulty, Feng
and Michaelides [25] and Dupuis et al. [26] coupled the direct forcing immersed boundary
method developed by Fadlun et al. [27] in a finite difference formulation, with the lattice
Boltzmann method. However, with the immersed boundary method, the force that repre-
sents the influence of the immersed boundary on the fluid, is applied to the Eulerian fluid
nodes surrounding the immersed boundary, and the no-slip boundary condition is not exactly
satisfied at the fluid solid interface. To improve that method, Wu and Shu [28] developed a
variant of the immersed boundary lattice Boltzmann method based on an implicit correction
of the velocity calculated on the Eulerian nodes in the vicinity of the immersed boundary.
With that method, the no-slip boundary condition is satisfied at the fluid solid interface.

Meldi et al. [29] applied the Arbitrary Lagrangian Eulerian (ALE) approach in a lattice
Boltzmann framework. The ALE technique consists in combining the Eulerian technique far
from the moving obstacle, and the Lagrangian technique in the vicinity of the obstacle. In
the fluid region near the obstacle, the conservation equations are written on a mesh that
moves arbitrarily according to time [30, 31]. This implies an increase in computing time.
The Distributed Lagrange Multiplier Fictitious Domain (DLM/FD) method was also cou-
pled with the LBM to calculate flows around deforming bodies [32]. This work was based
on the DLM/FD method developed by Glowinski et al. [33] (for rigid body motion) and
extended to deforming bodies by Yu [34]. The DLM/FD method consists in writing the
governing equations on a fixed domain, including the fluid and the solid regions, and using
Lagrange multipliers (or pseudo body forces) to make the fictitious fluid in the solid region
move like the solid medium. With this method the costly re-meshing step is avoided.

Fluid Structure Interaction (FSI) problems can be tackled with the volume penaliza-
tion technique by extending the Navier-Stokes equations to the whole domain (fluid domain
and solid domain), and penalizing the solid domain. While a Lagrange multiplier (a body
force) makes the fluid inside the solid region move as the solid medium with the DLM/FD
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method, with the VP method, a body force term is added to the Navier-Stokes equations,
which enables to consider the solid domain as a porous medium that moves at the same
velocity as the solid velocity. Furthermore, with this method, it is not necessary to apply
a boundary condition for the pressure at the fluid-solid interface. Since the whole domain
(fluid and solid) is treated as a porous medium with a very low permeability inside the solid
medium, and a very high one inside the fluid medium, the pressure adapts naturally when
lattice nodes cross the boundary (a refilling algorithm as required for several bounce back
methods [35] is not needed), when dealing with flows around moving bodies. This is also the
case for other methods, such as the method proposed by Noble and Torczynski [12], or the
immersed boundary method. However, unlike with the Lagrange multiplier method, the FSI
problems that can be tackled with the volume penalization method involve only rigid body
motions. The Volume Penalization method is efficient for fixed Cartesian grids, and it avoids
the re meshing step necessary in classical approaches devoted to Fluid Structure Interaction
modeling [36, 31]. The promising results obtained with the Volume Penalization technique
combined with various solving approaches (finite element method, finite volume method,
spectral method, vortex method) [37, 38, 39, 40, 41] make the volume penalization method
a good candidate to be coupled with LBM for modeling fluid structure interaction problems.
In contrast with the classical immersed boundary methods, the convergence of the volume
penalization method has been mathematically proved [37]. To the authors’ knowledge, this
method has not yet been developed in a lattice Boltzmann framework.

In a previous paper [42, 43], we successfully applied the combined Volume Penalization
Lattice Boltzmann Method (VP-LBM) to flows around motionless obstacles, for relatively
low Reynolds numbers (less or equal than 100). The Single Relaxation Time Lattice Boltz-
mann Method was used. In this work, we combined the Multi Relaxation Time Lattice
Boltzmann Method with the Volume Penalization approach, and we simulated more com-
plex flows: flows created by moving boundaries for which an analytical solution is known
(an asymmetric flow and a flow between two concentric cylinders), an unsteady flow past
a cylinder at a Reynolds number of 500, and the flow induced vibration of a cylinder at a
Reynolds number of 100. For these two latter more complex cases, the VP LBM method,
which is easy to implement, was parallelized. In the following paragraph, the Lattice Boltz-
mann method combined with the volume penalization technique will be described. Then,
the numerical results obtained for the test cases will be presented. In the last paragraph of
the paper, concluding remarks will be given.

2. Governing equations

2.1. Fluid flow computation
When solving fluid structure interaction problems using a volume penalization technique,

a source term involving the influence of the obstacle on the fluid flow is introduced into the
Navier-Stokes equations. The incompressible Navier-Stokes equations with a source term,
and the continuity equation read:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u+ f

∇ · u = 0

(1)
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where ρ and µ are the density and the dynamic viscosity of the fluid considered, p and u
are the pressure and the velocity, f is a body force that mimics the influence of the ob-
stacle on the fluid flow. In this article, the lattice Boltzmann method was chosen for fluid
flow computation. The lattice Boltzmann method consists in solving a simplified version of
the Boltzmann equation on a lattice, where fluid parcels move according to a finite set of
prescribed velocities. The correspondence between the lattice Boltzmann equation (meso-
scopic level) and the Navier-Stokes equations (macroscopic level) is achieved thanks to the
Chapman Enskog procedure.

2.1.1. Single Relaxation Time LBM
This model is based on a linear collision operator, proposed by Bhatnagar, Gross and

Krook (BGK) [3, 4]. The lattice Boltzmann equation with a forcing term is expressed as:

fα(x+ ξα∆t, t+ ∆t)− fα(x, t) = −1

τ
(fα(x, t)− f eqα (x, t)) + ∆tFα (2)

where fα is the distribution function along the α direction, ξα is the particle velocity, f eqα
is the equilibrium distribution function, τ is the non-dimensional relaxation time, ∆t is the
time step, and Fα is a forcing term that corresponds to the source term f . The nine-velocity
square lattice model D2Q9 shown in figure 1 was chosen. In this model, the lattice velocities
are:

ξα =


(0, 0), α = 0

(cos[(α− 1)π/2], sin[(α− 1)π/2])c, α = 1, 2, 3, 4

(cos[(2α− 9)π/4], sin[(2α− 9)π/4])
√

2c, α = 5, 6, 7, 8

(3)

where c = ∆x/∆t, and ∆x is the lattice spacing (In this paper, we choose ∆x = ∆t = 1).
For the D2Q9 model, the equilibrium distribution function is expressed as:

𝝃𝟏

𝝃𝟐

𝝃𝟑

𝝃𝟒

𝝃𝟓𝝃𝟔

𝝃𝟕 𝝃𝟖

Figure 1: Discrete velocities of the D2Q9 model

f eqα (x, t) = wαρ

[
1 +

ξα · u
c2s

+
uu : (ξαξα − c2sI)

2c4s

]
(4)
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where wα is the weighting factor given by:

wα =


4/9, α = 0

1/9, α = 1, 2, 3, 4

1/36, α = 5, 6, 7, 8

(5)

cs is the speed of sound (cs = c/
√

3 for the D2Q9 model) and I is the identity matrix.
The incompressible Navier-Stokes equations (1) can be obtained from equation (2), using
the Chapman-Enskog procedure. This procedure leads to the following expression for the
kinematic viscosity of the fluid:

ν = c2s∆t(τ −
1

2
) (6)

In the lattice Boltzmann equation, the forcing term Fα, that represents the body force term
f in the Navier-Stokes equations, was modeled using the formulation proposed by Guo et
al. [44]:

Fα =

(
1− 1

2τ

)
wα

[
ξα − u
c2s

+
(ξα · u)

c4s
ξα

]
· f (7)

where the macroscopic quantities are calculated as follows:

ρ =
∑
α

fα(x, t) (8)

ρu =
∑
α

ξαfα(x, t) +
∆t

2
f (9)

As demonstrated by Guo et al., this force treatment leads to the exact Navier-Stokes equa-
tions.

2.1.2. Multiple Relaxation Time LBM
This model, which was first introduced by d’Humières [45], is more stable than the single

relaxation time lattice Boltzmann model. With this model, the collision process is carried
out in the moment space. A transformation matrix M enables to express the moments
mα(x, t) according to the distribution functions fα(x, t). The lattice Boltzmann equation
with a source term, as given by Lu et al. [46], becomes:

|fα(x+ ξα∆t, t+ ∆t)〉 − |fα(x, t)〉 =

−M−1[S(|mα(x, t)〉 − |meq
α (x, t)〉)− (I − S/2)M∆t|Fα(x, t)〉] (10)

In this equation, |•〉 denotes a column vector and I is the identity matrix. The moments
|mα(x, t)〉 = (m0,m1, . . . ,m8)

T are deduced from:

|mα(x, t)〉 = M |fα(x, t)〉 ⇒ |fα(x, t)〉 = M−1|mα(x, t)〉 (11)

The corresponding equilibria of the moments are given by:

|meq
α (x, t)〉 = ρ(1,−2 + 3(u2 + v2), 1− 3(u2 + v2), u,−u, v,−v, u2 − v2, uv)T (12)
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The transformation matrix M is:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(13)

S is a diagonal matrix that contains the relaxation rates of each moment:

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8) = diag(0, sn, sn, 0, sq, 0, sq, sn, sn) (14)

Ginzburg and d’Humières [8] showed that, for straight boundaries, the numerical slip at the
fluid-solid interface can be avoided if the following relationship is satisfied:

Λ =

(
1

sn
− 1

2

)(
1

sq
− 1

2

)
(15)

with Λ =
3

16
and sn =

1

τ
. The last term in equation (10) represents the forcing term

developed by Lu et al. [46] for the MRT LBM, which is a general formulation of the forcing
term proposed by Guo et al. [44] for the SRT LBM. In this expression, Fα is calculated
according to:

Fα = wα

(
ξα − u
c2s

+
(ξα · u)

c4s
ξα

)
· f (16)

When all relaxation rates are equal to
1

τ
, the MRT model leads to the SRT model, including

the forcing term developed by Guo et al. [44].

2.2. Volume penalization method
The aim of this work is to apply the volume penalization method in a lattice Boltzmann

framework to take into account the presence of an obstacle in a flow. In the volume penaliza-
tion method, the body force term in the Navier-Stokes equations (1) applies to all Cartesian
nodes of the whole computational domain (fluid domain and solid domain). The volume
source term reads:

f = −ρχ
η

(u− us) (17)

where χ is a mask function equal to 0 in the fluid domain, and 1 in the solid domain, η is
a permeability or penalization parameter, that is very small (for all computations, a value
of η = 10−7 was chosen), and us is the solid velocity. With this method, the penalization
term is very high in the solid domain, hence the velocity is equal to the solid velocity, and it
is null in the fluid domain. This penalization term is introduced into the lattice Boltzmann
equation (2) (SRT lattice Boltzmann equation) or (10) (MRT lattice Boltzmann equation),
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using the forcing term proposed by Guo et al. (7) (for the SRT LBM) or (16) (for the MRT
LBM). The lattice Boltzmann equation is solved on both fluid and solid domains. Equation
(9) is used to calculate the velocity in the fluid and solid domains. The right hand side
of this equation contains the fluid velocity via the penalization term f . This leads to the
following expression for the velocity:

u =

∑
α

ξαfα +
∆t

2

χ

η
ρus

ρ+
∆t

2

χ

η
ρ

(18)

Since the velocity boundary condition is naturally applied at the solid obstacle thanks to the
mask function, this method is easy to implement.

3. Numerical results and discussion

In this section, we present numerical results obtained with the VP-LBM. In a first step,
the VP LBM approach was evaluated by simulating flows for which an analytical solution
is known: a symmetric shear flow between two moving plates, and a Couette flow between
two cylinders. These test cases were chosen by Le and Zhang [47] and by Lu et al. [46] for
evaluating the immersed boundary approach combined with the lattice Boltzmann method.
Our results will therefore also be compared with the results computed by Lu et al. with the
IB-LBM (Immersed Boundary Lattice Boltzmann Method). In a second step, more complex
flows were treated: flow past a cylinder at a Reynolds number of 500, and flow induced
vibration of a cylinder at a Reynolds number of 100. It will be showed that all these tested
cases yielded satisfactory results.

3.1. Symmetric shear flow
First, we focused on a symmetric shear flow, between two moving parallel plates (see

figure 2 ) with a thickness e = 50 l.u.
This configuration was modeled by Le and Zhang [47], Lu et al. [46], and Farnoush and

Figure 2: The symmetric shear flow case
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Manzari [48], who analyzed the immersed boundary method combined with the lattice Boltz-
mann method. The length of the domain is L = 200 l.u., and the distance between the two
plates is H = 100 l.u. The upper and lower plates move according to x direction, with veloci-
ties ud and −ud, respectively. Periodic boundary conditions were applied according to x and
y directions. For this configuration, the lattice Boltzmann simulations were performed with a
maximum lattice velocity that ensured that the Mach number was small (ud = 0.01 l.u.). For
this steady unidirectional flow in the absence of a pressure gradient, the analytical solution
of the Navier-Stokes equations is:

uanalytical(y) =
2ud

H
(y − e)− ud (19)

The relative L2 error of u in the fluid domain was calculated according to:

2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

er
ro

r

(a) influence of τ (VP SRT LBM)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.000

0.002

0.004

0.006

0.008

0.010

0.012

er
ro

r

= 0.7
= 10

(b) influence of Λ (VP MRT LBM)

Figure 3: (a) Influence of τ on the relative L2 error of u, for the symmetric shear flow (VP SRT LBM); (b)
Influence of Λ on the relative L2 error of u, for the symmetric shear flow (VP MRT LBM).

error =

√∑
(u− uanalytical)2√∑

(uanalytical)
2

(20)

where the summation was performed in the fluid domain, and u and uanalytical are respectively
the computed horizontal velocity and the analytical solution. Figure 3 compares the relative
L2 error of u in the fluid domain, computed when using the volume penalization method
and the single relaxation time lattice Boltzmann method (VP SRT) on the one hand, and
the multiple relaxation time lattice Boltzmann method (VP MRT) on the other hand. In
this figure, we can see that the error was very close to zero for τ = 1

2
+
√
6
4
≈ 1.11 when the

flow was computed with the single relaxation time LBM, and for Λ = 3
8

= 0.375 when the
multiple relaxation time LBM was applied.

In figure 4 , the difference between the exact solution and the numerical results obtained
with the SRT LBM (figure (a)) and the MRT LBM (figure (c)), and the corresponding veloc-
ity profiles at x = L/2 (figure (b) for the SRT LBM and figure (d) for the MRT LBM with
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Figure 4: Difference between the numerical and the exact velocities (a) and (c), and velocity profiles (b) and
(d), obtained at x = L/2, for the symmetric shear flow. For the VP MRT LBM computations, Λ = 3

8 was
used.
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Figure 5: Convergence history of the VP SRT LBM, for the symmetric shear flow case.
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Figure 6: Convergence history of the VP MRT LBM for the symmetric shear flow case (τ = 0.7 and τ = 10).
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Figure 7: Convergence histories of the VP SRT LBM (τ = 1
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√
6
4 ), and of the VP MRT LBM (τ = 1

2 +
√
6
4 ,

Λ = 3
8 ), for the symmetric shear flow case.
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Figure 8: Comparison of the errors obtained with the volume penalization LBM, with those obtained with
an immersed boundary LBM by Lu et al. [46], for the symmetric shear flow case.
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Λ = 3
8
) are presented. We can see that the velocity calculated in the solid domain is the solid

velocity naturally applied thanks to the penalization technique. For the Multiple Relaxation
Time LBM with Λ = 3

8
, the solution is very close to the exact solution for all relaxation times.

Figures 5 , 6 , and 7 show that converged results with an error very close to zero were
obtained with the smallest number of iterations when using the VP SRT LBM with τ = 1

2
+
√
6
4

or the VP MRT LBM with τ = 1
2

+
√
6
4

and Λ = 3
8
. In figure 7 , we can also remark that

using the VP SRT LBM with τ = 1
2

+
√
6
4

or the VP MRT LBM with Λ = 3
8
leads to the

same error, which is very close to zero. Indeed, for the SRT LBM, we have: sn = sq = 1
τ
,

this implies: Λ = (τ− 1
2
)2 = 3

8
, and thus: τ = 1

2
+
√
6
4
. Furthermore, as mentioned previously,

Ginzburg and d’Humières [8] showed that, when applying the half way bounce back boundary
condition, exact solutions can be obtained for Poiseuille and Couette flows, if Λ = 3

16
. Lu et

al. [46], who conducted a theoretical analysis on the Immersed Boundary Lattice Boltzmann
Method, showed that, for similar flow cases, the error can be decreased but not eliminated
for Λ = 9

8
.

For this case, we also compared the results given by the volume penalization method, with
those obtained with the immersed boundary method by Lu et al. [46] on the same grid (see
figure 8 ). In this case involving straight boundaries, it can be noticed that for high relaxation
times, the immersed boundary method combined with the single relaxation time LBM results
in a higher error as compared with the results obtained with the volume penalization method
(figure 8 (a)). We can also remark that while the error is very close to zero when using the
volume penalization method together with the multiple relaxation time LBM, it cannot be
eliminated when implementing the immersed boundary method in a multiple relaxation time
LBM (figure 8 (b)).

3.2. Flow between two cylinders

L

x

y

R

P

1

R2

Ur
θ

Ω U2

Ω1

 = 0

θ

c

Figure 9: The cylindrical Couette flow case.
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In this part of the study, we applied the VP LBM to a curved boundary, by focusing on
a flow between two cylinders, as shown in figure 9 . The length and width of the square
computational domain are L = 200 l.u., and the radii of the inner and the outer cylinders
located in the center of the domain, are R1 = 45 l.u. and R2 = 70 l.u. respectively. While
the outer cylinder is motionless (Ω2 = 0), the inner cylinder moves according to the angular
velocity Ω1 = ud/R1. In the computations, ud was small enough to deal with a low Mach
number flow (ud = 0.01 l.u.). This configuration was studied by [47] and [46], who evaluated
the immersed boundary method implemented in a lattice Boltzmann framework. For this
case, the analytical profile of the tangential velocity component is:

Uθ analytical =
−udR1

(R2
2 −R2

1)
r +

udR1R
2
2

(R2
2 −R2

1)

1

r
(21)

where r is the cylindrical coordinate.
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Figure 10: Isocontours of velocity magnitude obtained for the cylinder case.
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Figure 10 displays the isovalues of the velocity magnitude computed with the single
relaxation time LBM and the multiple relaxation time LBM, for two relaxation times (τ = 1
and τ = 10). In this figure, we can see that unrealistic results are obtained if a high relaxation
time is chosen when the flow is computed with the single relaxation time LBM (τ = 10, figure
10 (b)). This problem does not occur when the multiple relaxation time model is applied
(see figure 10 (d)).
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Figure 11: Influence of τ on the relative L2 error of v, for the flow between two cylinders (VP SRT LBM).
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Figure 12: (a) and (b) Influence of Λ on the relative L2 error of v, for the flow between two cylinders (VP
MRT LBM).

In figure 11 , the relative L2 error of v in the fluid domain as a function of the relaxation
time, computed with the single relaxation time LBM, is plotted. In contrast with the previous
cases which involved straight boundaries, this case deals with a curved boundary which is
approximated in a staircase manner; this induces an error for all τ values. A similar remark
can be done when examining the evolution of the relative L2 error of v according to Λ, for
the computations performed with the multiple relaxation time LBM (see figure 12 (a)) and
a relaxation time τ = 0.7. For a higher relaxation time (τ = 10), the optimal value of Λ that

13



0.0 0.2 0.4 0.6 0.8 1.0
x/L

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(v
v a

na
ly

tic
al

)/u
d

= 0.7
= 1
= 5
= 10

(a) difference between the numerical (VP
SRT LBM) and the exact vertical velocities

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v/
ud

= 0.7
= 1
= 5
= 10

exact

(b) vertical velocity obtained with the VP
SRT LBM

0.0 0.2 0.4 0.6 0.8 1.0
x/L

0.02

0.01

0.00

0.01

0.02

(v
v a

na
ly

tic
al

)/u
d

= 0.7
= 1
= 5
= 10

(c) difference between the numerical (VP
MRT LBM) and the exact vertical veloci-
ties

0.0 0.2 0.4 0.6 0.8 1.0
x/L

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v/
ud

= 0.7
= 1
= 5
= 10

exact

(d) vertical velocity obtained with the VP
MRT LBM

Figure 13: Difference between the numerical and the exact velocities, and velocity profiles, obtained at
y = L/2, for the cylinder case.

minimizes the error is closer to zero, and the error is smaller than for τ = 0.7 (see figures 12
(a) and (b)).
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Figure 14: Convergence history of the VP SRT LBM, for the cylinder case.
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Figure 15: Convergence history of the VP MRT LBM, for the cylinder case.

Figures 13 (a) and (c) show the profiles of the difference (made non dimensional with
ud) between the numerical and the exact solutions, obtained with the single relaxation time
LBM, and with the multiple relaxation time LBM, at y = L/2. The corresponding velocity
profiles are plotted in figures 13 (b) and (d). The optimal values of Λ that minimize the
relative L2 error of v were used for the computations performed with the MRT LBM. In this
figure, we notice that, for high values of the relaxation time, the volume penalization MRT
model produces errors that are smaller than the ones obtained with the volume penalization
SRT model. High differences can also be seen at the fluid-solid interface for the VP SRT
LBM and high values of the relaxation time. For this case with curved boundaries, we can
also remark that when applying the MRT LBM with τ = 10 and Λ = 0.0016, converged
results are obtained after a smaller number of iterations than with other relaxation times
(for the MRT LBM, and the SRT LBM, see figures 14 and 15 ). However, the discrepancy
between τ = 0.7 and τ = 10 for the MRT LBM is not high.

In figure 16 , we also compared the errors obtained with the volume penalization LBM
(SRT and MRT) with those computed with the immersed boundary method (and the same
grid) by Lu et al. [46]. In this figure, we can notice that the error in the vicinity of the
solid boundary is higher with the volume penalization method that approximates the curved
boundary with a staircase manner, than with the immersed boundary method that takes the
curved shape of the boundary into consideration. The error in the rest of the fluid domain
is lower when the flow is predicted with the VP LBM.

For this case, we also studied the influence of the grid on the accuracy of the results.
To do that, we carried out simulations with the multiple relaxation time LBM, and for
a relaxation time τ = 0.7. The number of cells according to the x and y directions was
varied between 200 l.u. and 800 l.u. For the dense grid (800 l.u.), two cases were considered:
one case where the number of grids Ngrid in the flow domain, according to x and y, was:
R2−R1 = 100 l.u., and another case where this number was higher: R2−R1 = 125 l.u. (see
table 1). In figure 17 , the evolution of the relative L2 error of v according to the parameter
Λ is presented. We can see that for a higher number of cells in the flow domain, the error
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Figure 16: Comparison of the errors obtained with the volume penalization LBM, with those computed with
an immersed boundary LBM by Lu et al. [46], for the cylinder case.

decreases and the results are less dependent on the parameter Λ. To accurately describe the
curved surface with the volume penalization method, a large number of grids must thus be
used.

L (l.u.) Ngrid (l.u.)
200 25
400 50
600 75
800 100
800 125

Table 1: Grid resolutions tested for the cylinder case
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Figure 17: Influence of the grid resolution on the relative L2 error of v, for the flow between two cylinders
(VP MRT LBM, τ = 0.7).
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3.3. Flow past a circular cylinder at a Reynolds number of 500
The cases presented in the previous paragraphs deal with low Reynolds number flows.

In our previous paper, we applied the VP LBM method to the computation of the flow past
a cylinder at a Reynolds number of 100. In this paper, to evaluate the ability of the VP
LBM to handle more complex flows, we focused on the flow around a circular cylinder at a
Reynolds number of 500 (the Reynolds number is based on the diameter D of the cylinder
and the free stream velocity U0). The computational domain is presented in figure 18 . For
that case, the boundary conditions at the upper and lower horizontal planes were symmetry
boundary conditions, a constant velocity profile was applied at the inlet, and a convective
condition, as proposed by Yang [49], was employed for the outlet. The dimensions of the
domain are 30D in the horizontal direction, 10D in the vertical direction, and the distance
between the cylinder and the outlet is equal to 25D.

As highlighted in the previous paragraph, a large number of grids must be used to de-
scribe properly a curved surface, when using the volume penalization method. Hence, the
domain was discretized with 6048 lattices according to the horizontal direction, 2016 lattices
according to the vertical direction, and 201 lattices along the diameter of the cylinder. A
velocity of 0.05 was imposed at the inlet. For that case which involved a large number of
grids, the VP-LBM code was parallelized with CUDA. The computations were carried out
with Graphics Processing Units (GPUs), and the multiple relaxation time lattice Boltzmann
method was used. A non dimensional relaxation time τ = 0.56 was chosen.

In figure 19 which displays the instantaneous isovalues of velocity magnitude around the
cylinder, we can see the vortex shedding phenomenon that occurs behind the cylinder. With
the momentum exchange method proposed by Wen et al. [50], the drag force FD and the lift
force FL exerted on the cylinder were calculated, and the drag and lift coefficients CD and
CL were obtained from the following relationships:

CD =
FD

1
2
ρU2

0D
and CL =

FL
1
2
ρU2

0D
(22)

The Strouhal number was also calculated as follows:

St =
fD

U0

(23)

where f is the frequency of the vortex shedding. In figure 20 , where the evolutions of the
drag and the lift coefficients according to the non dimensional time are presented, a periodic
behavior of these coefficients can be noticed. The average drag coefficient CDave, the root
mean square of the lift coefficient CLrms, and the Strouhal number were compared with
experimental results found in the literature [51, 52], and with numerical results obtained
with the finite volume method (FVM), and more particularly with the OpenFOAM [53]
code, on a structured mesh. In table 2, we can see that the results calculated with the VP-
LBM are in a satisfactory agreement with experimental results, and with numerical results
computed with the finite volume method.
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Figure 18: Computational domain for the flow around a cylinder

Figure 19: Instantaneous isovalues of velocity magnitude behind the cylinder (Re = 500).
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Figure 20: Drag and lift coefficients obtained with the VP LBM, for the flow past a circular cylinder, at a
Reynolds number of 500.

3.4. Flow induced vibration of a cylinder at a Reynolds number of 100
To finish with, the flow induced vibration of a cylinder at a Reynolds number of 100

was calculated with the VP-LBM approach. For that fluid structure interaction case, the
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VP-LBM FVM Experiments
CDave 1.45 1.43 1.45 [52]
CLrms 0.84 0.82
St 0.22 0.22 0.21 [51]

Table 2: Results obtained for a flow around a cylinder at a Reynolds number of 500

computations were performed with the VP-LBM code parallelized with CUDA, and also
with the CPU version of the VP-LBM code. The boundary conditions applied on the fluid
domain were the same as in the previous paragraph (see figure 21) , but the cylinder, which
was submitted to a force normal to the freestream, exerted by a spring, and to the fluid lift
force, moved according to the following equation:

mÿG + k (yG − y0) = Fy (24)

wherem is the cylinder mass, yG is the position of the gravity center of the cylinder according
to y, and y0 is its position at rest, k is the spring constant and Fy is the lift force. To compare
our results with those found in literature (Shiels et al. [54]), equation (24) was made non
dimensional as follows:

m∗ÿ∗ + k∗ (y∗ − y∗0) = CL (25)

with the non dimensional parameters:

m∗ =
m

0.5ρD2
k∗ =

k

0.5ρU2
0

y∗ =
yG
D

CL =
Fy

1

2
ρU2

0D
t∗ = t

U0

D

To gather the results obtained with various parameters k∗ and m∗ on a unique plot, Shiels
et al. [54] introduced the effective dimensionless stiffness:

k∗eff = k∗ −m∗ω∗2, (26)

where ω∗ is the oscillating frequency of the cylinder (it is calculated with the results obtained
from the computations).

Several computations were performed, with an increasing number of lattices in the cylin-
der. The parameters used for these computations are given in Table 3.

D τ U0 L1 L2

41 0.56 0.0487 1230 410
81 0.6 0.0397 2430 810
209 0.75 0.0398 6270 2090

Table 3: Parameters used for computating the flow induced vibration of a cylinder

For the cylinder equation of motion, the non dimensional cylinder mass and spring con-
stant were assigned the following values:

k∗ = 21.724 m∗ = 10
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Figure 22: Comparison of our results with those found in literature [54]
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Figure 23: Temporal evolutions of the drag and lift coefficients
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Figure 24: Cylinder response, for the three tested grids
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Figure 25: Temporal evolutions of the drag and lift coefficients, for the three tested grids

(a) Velocity field in lattice units (b) Vorticity field in lattice units

Figure 26: Velocity and vorticity fields obtained with the VP-LBM for the flow induced vibration of a
cylinder at a Reynolds number of 100

Figures 22 and 23 show a comparison of the results obtained with the CPU and the GPU,
with the smallest number of grids (41 cells through the diameter of the cylinder). In figure 22
(a), we can see that for the parameters selected for this computation, the cylinder oscillates
with a large amplitude which is greater than 50% of the cylinder diameter, this corresponds
to the lock-in behavior. The oscillation is periodic (see figure 22 (b)). In figure 23, the
temporal evolutions of the drag coefficient and of the lift coefficient are plotted. The CPU
code and the GPU code lead to similar results. In figures 24, 25(a), 25(b), the transverse
motion of the cylinder, the oscillation of the drag force and of the lift force are plotted for
the three tested grids. For the two coarsest grids, high frequency spurious oscillations of the
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drag force and of the lift force can be noticed, which must be due to the volume penalization
method, when the solid boundary ’jumps’ from a cell to its neighbour. These oscillations
disappear when the highest number of grids is used. It can also be seen in figure 24 that the
cylinder motion is not sensitive to these force oscillations. Due to its inertia, the cylinder
does not see these high frequency oscillations of the hydrodynamic forces, and the amplitude
of the cylinder oscillation remains the same for the three tested grids. From the velocity
field computed with the VP LBM, the vorticity field was obtained with Paraview software
[55]. The effects of the cylinder oscillation on the downstream flow can be seen in figure 24
. The vortex shedding phenomenon is reduced, and the vortices gradually disappear in the
wake of the cylinder.

4. Conclusions

In this paper, we presented a new approach for modeling fluid flows in the presence
of solid obstacles. It consists in coupling the volume penalization method with the lattice
Boltzmann approach. With this method, the lattice Boltzmann equation was applied on
both solid and fluid media, and the solid domain was penalized in order to apply the solid
velocity in the solid domain.

To evaluate this method, several cases were considered. First, the VP-LBM method was
applied to cases for which an analytical solution is known: a symmetric shear flow, and
a cylindrical Couette flow. The numerical results obtained with the volume penalization
method combined with the Single Relaxation Time Lattice Boltzmann method on the one
hand, and with the Multiple Relaxation Time Lattice Boltzmann method, on the other hand,
were compared with the analytical solutions, and with results obtained by a combination of
the immersed boundary method and the LBM, by Lu et al. [46] who performed a theoretical
analysis of numerical slip velocity that occurs when using the immersed boundary LBM.
For these cases, we noticed that the VP MRT lattice Boltzmann method enables to reduce
the slip velocity in the solid domain, in comparison with the VP SRT LBM. For straight
boundaries, this error was very close to zero when an optimum value of the relaxation time
was used for the SRT LBM, and also when an optimum value of the parameter Λ was chosen
for the MRT LBM. In the case with a curved boundary, the error could not be eliminated,
but it was decreased when the MRT LBM was applied. Then, two complex unsteady flows
were computed: a flow around a circular cylinder at a Reynolds number equal to 500, and
the flow induced vibration of a cylinder at a Reynolds number of 100. To treat these cases,
the Multiple Relaxation Time Lattice Boltzmann Method was chosen, the VP LBM code
was parallelized with CUDA, and the computations were performed on Graphics Processing
Units. A comparison of the results obtained for these cases, with results found in the litera-
ture was done, and a good agreement was highlighted.

To conclude with the VP-LBM, it can be noticed that it is physically meaningful, and
easy to implement. Indeed, the computational domain where the Navier-Stokes equations
(and thus the Lattice Boltzmann equation) are solved consists of the fluid and the solid me-
dia, and the volume force that is introduced into the Navier-Stokes equations, is applied on
the whole solid domain thanks to a mask function, and it considers the obstacle as a porous
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medium. In addition, the convergence of the volume penalization method has been math-
ematically proved [37]. In the context of the Lattice Boltzmann method, many researchers
apply the immersed boundary method. The immersed boundary method consists in apply-
ing in the Navier-Stokes equations a volume force located on the surface of the obstacle and
in spreading forces on the lattice nodes near the interface. With this method, the surface
of the obstacle must be tracked during the computation, and it is less easy to implement
this method in a highly parallelizable method such as the LBM. Even if the surface of the
obstacle is modeled in a staircase manner with the volume penalization method, it enables
to calculate flows around complex boundaries, and coupling this method with LBM makes
the VP LBM an efficient parallel computing tool.
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