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Abstract: The RadAlp experiment aims at developing advanced methods for rain and snow
estimation using weather radar remote sensing techniques in high mountain regions for improved
water resource assessment and hydrological risk mitigation. A unique observation system has been
deployed in the French Alps, Grenoble region. It is composed of a Météo-France operated X-band
MOUC radar (volumetric, Doppler and polarimetric) on top of the Mt Moucherotte (1920 m ASL),
the X-band XPORT research radar (volumetric, Doppler, polarimetric), a K-band micro rain radar
(MRR, Doppler, vertically pointing) and in situ sensors (rain gauges, disdrometers), latter three
operated on the Grenoble campus (220 m ASL). Based on the observation that the precipitation phase
changes at/below the elevation of mountain-top MOUC radar for more than 60% of the significant
events, an algorithm for ML identification has been developed using valley-based radar systems:
it uses the quasi vertical profiles of XPORT polarimetric measurements (horizontal and vertical
reflectivity, differential reflectivity, cross-polar correlation coefficient) and the MRR vertical profiles
of apparent falling velocity spectra. The algorithm produces time series of the altitudes and values
of peaks and inflection points of the different radar observables. A literature review allows us to
link the micro-physical processes at play during the melting process with the available polarimetric
and Doppler signatures, e.g., (i) regarding the altitude differences between the peaks of reflectivity,
cross-polar correlation coefficient and differential reflectivity, as well as (ii) regarding the co-variation
of the profiles of Doppler velocity spectra and cross-polar correlation coefficient. A statistical analysis
of the ML based on 42 rain events (98 h of XPORT data) is then proposed. Among other results,
this study indicates that (i) the mean value of the ML width in Grenoble is 610 m with a standard
deviation of 160 m; (ii) the mean altitude difference between the horizontal reflectivity and the ρHV
peaks is 90 m and the mean altitude difference between the ρHV and Zdr peaks is 30 m; (iii) even
for the limited rainrate range in the dataset (0–8.5 mm h−1), the “intensity effect” is clear on the
reflectivity profile and the ML width, as well as on polarimetric variables such as ρHV peak value
and the Zdr enhancement in the upper part of the profile. On the contrary, the study of both the
“density effect” and the influence of the 0 ◦C isotherm altitude did not yield significant results with the
considered dataset; (iv) a principal component analysis on one hand shows the richness of the dataset
since the first 2 PCs explain only 50% of the total variance and on the other hand the added-value
of the polarimetric variables since they rank high in a ranking of the total variance explained by
individual variables.
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1. Introduction

The orography of the high mountain region has a huge impact on flow patterns of air masses,
which dramatically alters the spatio-temporal distribution of precipitation [1]. The rapid change in the
elevation profile within a short distance plays a significant role in spatial variations on precipitation
phase (solid/liquid). While the lakes, glaciers and snowpacks in the mountains act as very important
freshwater reserves, quick runoff response due to steep slopes and limited vegetation makes the
alpine region vulnerable to natural disasters. Estimation of atmospheric precipitation (solid/liquid),
often characterized by high seasonal variability, is of paramount importance in a mountainous region
such as the Alps for the assessment and management of snow and water resources for drinking water,
hydropower production, agriculture and tourism [2]. One of the most critical application concerns
is the prediction of natural hazards associated with intense precipitation and melting of snowpacks
i.e., inundations, floods, flash floods and gravitational movements, which requires a high-resolution
observation (spatial resolution ≤ 1 km2 and temporal resolution ≤ 1 h) [3]. While this can hardly
be achieved with traditional in-situ raingauge networks, the use of radar remote sensing has a high
potential that needs to be exploited but also several limitations that needs to be surpassed.

Quantitative Precipitation Estimation (QPE) with radar remote sensing in complex terrain
such as the Alps is made more challenging by the topography, and the space-time structure and
dynamics of precipitation systems. Radar coverage of the mountainous regions thus presents the
radar positioning dilemma. On one hand, installing a radar at the top of a mountain allows a 360◦

panoramic view and therefore the ability to detect precipitation systems over a long-range at the
regional scale, particularly relevant for localized and heavy convective systems in warm seasons.
However, the precipitation can undergo significant changes between detection and arrival at ground
level, including a phase change when the ML occurs within/below radar elevation during the cold
periods. Signal attenuation within the ML and incorrect prediction of precipitation phase impact the
radar QPE quality at ground level. On the other hand, installing a radar at the bottom of the valley
provides high resolution and quality data required for vulnerable and densely populated alpine valleys,
but the QPE coverage is limited due to beam blockage by surrounding mountains. Météo-France is
enhancing the coverage of its operational radar network (ARAMIS, Application Radar à la Météorologie
Infra-Synoptique reference) in the Alps employing X-band polarimetric & Doppler radars. First set
of three radars were installed in the Southern Alps, between 2008 and 2013, at Montagne de Maurel
(1770 m ASL), Mont Colombis (1740 m ASL) and Vars Mayt (2400 m ASL) within the framework of
RHyTMME (Risques Hydrométéorologiques en Territoires de Montagnes et Méditerranéens) project [4].
In 2014/15, an additional X-band radar system was installed on top of the Mount Moucherotte (1920 m)
overseeing the valley of Grenoble, the biggest city in the French Alps with around 500,000 inhabitants.

To quantify the dilemma of the altitude positioning for the Mont Moucherotte radar (MOUC
radar hereafter), Figure 1 displays the altitudes and vertical extents of the ML as a function of the
cumulative rain amounts in the Grenoble valley, for all the precipitation events surpassing a cumulative
amount of 5 mm during the years 2016 and 2017. For this preliminary study, the ML top altitudes
were approximated by the 0 ◦C isotherm altitudes predicted by the Météo-France Numerical Weather
Prediction Model (NWP) model AROME at 12:00 UTC. The ML widths were derived from the statistics
presented hereinafter and the rain total amounts were derived from raingauge measurements made
at IGE (Institute for Geosciences and Environmental research), down in the Grenoble valley. The ML
altitude intervals are coloured as a function of their position with respect to the detection layer of the
MOUC radar at 0◦-elevation angle, up to a range of 20 km (above: red ; within: blue; below: green).
From this analysis, one can keep in mind that for a rainfall threshold of 5 mm/day, the ML is below
(within, resp.) the MOUC detection domain for 26.8 % (36.1 % respectively) of the cases, i.e., a total of
about 63% of problematic cases in terms of possible influence of the vertical structure of precipitation
on QPE. Interestingly, these figures do not vary too much as a function of the rain threshold, e.g., for a
threshold of 20 mm/day, we observe 26.9% (34.9% resp.) of green (blue respectively) cases, i.e., a total
61.5% of potentially problematic cases.
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The choice of the X-band frequency is challenging in the considered context due to its sensitivity
to attenuation [5]. First performance assessment of the RHyTMME radar network [6], points out:
(1). the need to better understand and quantify attenuation effects in the ML, (2). the importance of
non-uniform beam filling (NUBF) effects at medium to long ranges in such a high-mountain context,
as well as (3). the stronger impact of radome attenuation at X-band compared to S- or C-Band.
Since 2016, we have had the opportunity to operate a research X-Band polarimetric radar system
(XPORT radar hereafter) at IGE, in the valley. This unique setup of two radar systems just 11 km
apart with an altitudinal gradient of 1700 m, should enable us to deal with the radar positioning
dilemma and issues associated with the choice of the X-band operating frequency. In the present
article, we focus on the identification and characterization of the ML for a series of precipitation
events belonging mostly to the problematic cases for the MOUC radar. For this purpose, we consider
the quasi-vertical profiles (QVP) of polarimetric variables [7] recorded with the XPORT radar and
vertical profiles of Doppler spectra recorded with a co-located vertically pointing K-Band radar.
We will assume attenuation and beam broadening effects to be of limited importance for such
close-range/high-elevation angle measurements in predominantly stratiform precipitation with low
intensity. Note that the attenuation problem, and more precisely the relationship between the
total differential phase and path-integrated attenuation in convective rainfall and in the melting
layer, is addressed in another article [8]. Hereinafter, we discuss in Section 2 the experimental
setup and datasets used in this study and we illustrate the working principles of our ML detection
algorithm. In Section 3, we revisit the literature on the melting of ice particles in the atmosphere and
provide relevant illustrations, based on our radar observations, regarding micro-physical processes
occurring within the melting layer. In Section 4, we analyze the information content of the available
datasets. This allows us to draw some climatological features of the melting layer in a large Alpine
valley, information that can be useful for validation of (or radar data assimilation in) Numerical
Weather Prediction (NWP) models and for improving radar rain and snow quantitative estimation in
high-mountain settings.

Figure 1. Position of the ML above (red intervals), within (blue) and below (green) the 0◦-elevation
angle detection layer of the operational MOUC radar for precipitation events with daily amounts
greater than 5 mm in the Grenoble valley during the years 2016 and 2017. See text for details.
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2. Datasets and Methods

2.1. Study Site and Instruments

Grenoble is a Y-shaped alluvial valley in south-eastern France (Alps) with a mean altitude of
about 220 m ASL surrounded by three mountain ranges: Chartreuse (culminating at 2083 m ASL) to
the north, Belledonne (2977 m) to the south-east and Vercors (2307 m) to the west. Figure 2 shows the
topography of the study area as well as the positions of the Météo-France operated radar system on
top of the Mt Moucherotte (MOUC) and the IGE experimental site at the bottom of the valley.

Figure 2. Grenoble Experiment: Instrument Setup. The topographical map of Grenoble along with
positions of two radar systems is shown in the left and the cross-section of the scan volume passing
through XPORT and MOUC radars is shown in the right.

The IGE experimental site includes the following devices:

(i) IGE XPORT research radar [9]: X-band, dual polarized, volumetric scanning strategy, Table 1
(ii) Micro rain radar (MRR): K-Band, FMCW [10]
(iii) Meteorological station (MTO) including pressure, temperature, humidity, wind and rainfall

intensity measurements

Table 1. Characteristics of XPORT radar and numerical constants.

Symbol Value Unit Parameter

ν 9.4 GHz Frequency
Pt 100 kW Transmission Power
G 41.96 dB Antenna Gain

θ3dB 1.37 ◦ 3-dB beanwidth
θ 0.5 ◦ Angular resolution
τ 1 µs Pulse width

∆r 30 m Radial resolution
MDS −112 dB Minimum Detectable Signal

Numerical constants

|Kw|2 0.93 Dielectric constant of water
|Ki|2 0.176 Dielectric constant of solid ice

c 299,792,458 m/s speed of light

Operating protocol 3.5◦ , 7.5◦ , 15◦ , 25◦ & 45◦ PPIs
Recorded parameters Zh, Zv, Zdr, ρHV , Φdp

2.2. Datasets and Pre-Processing

The XPORT radar started recording high-resolution volumetric scan data of most significant
rain events in 2016. Its operating protocol is made of 5 PPI scans at elevation angles of 3.5, 7.5, 15,
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25 and 45◦. It systematically records five radar parameters at radial resolution of 30 m and angular
resolution of 0.5◦. The recorded parameters are: horizontal reflectivity (Zh), vertical reflectivity (Zv),
differential reflectivity (Zdr), cross-polar correlation coefficient (ρHV) and cumulative differential
phase (Φdp) [11]. In this study, we consider 42 significant rain events (≥5 mm) in between November
2016 and January 2018. Due to the presence of ground clutter for the three lowest elevation angles
and technical difficulties in operating the radar at 45◦ for a considerable period of time, we will
use hereinafter only the 25◦ elevation angle measurements, which have a 6-min time resolution,
the PPI itself lasting about 1 min. From the measurements of the recorded parameters, we produced
quasi-vertical profiles (QVPs) by averaging measurements over 360◦ azimuth and then projecting the
results to the vertical [7]. The ML identification algorithm, to be described below, performed poorly in
case of large spatial variability of the 25◦ elevation angle measurements, notably when a rainy system
was entering or leaving the valley. To limit the impact of such poor identifications on the ML statistical
analyses, we used PPI scans of ρHV to determine visually time steps with homogeneous precipitation
in the various sectors of the XPORT detection domain. This sorting results in a total of 980 XPORT
vertical profiles, i.e., to about 98 h of measurements. Monthly distribution of these vertical profiles
is shown in Table 2. Note that the summer events are under-represented in this sample due to their
convective nature, leading to strong spatial variability and subsequently poor identifications with the
ML detection algorithm.

Table 2. Monthly distribution of profiles (#: number).

Month # of Profiles Alt Peak ρHV

January 185 1564
February 6 1486

March 112 1303
April 119 1470
May 75 1902

September 41 2290
October 11 2715

November 224 1957
December 207 1584

The MRR allows the continuous acquisition of the vertical profiles of Doppler Spectra of apparent
fall velocities of the hydrometeors with a radial resolution of 100 m and a temporal resolution of 1 min.
We applied the algorithm developed by Maahn and Kollias [12] which takes the unprocessed MRR data
and apply an unfolding routine (called MK12 hereinafter) to reduce the error in Doppler spectra and
fall velocity, especially in the solid phase precipitation, with respect to the original METEK algorithm.
The MK12 pre-processing routine results in full Doppler spectra of apparent vertical velocities of falling
hydrometeors over a velocity range of 0–12 m/s and with vertical resolution of 100 m from which
we deduced the vertical profiles of the average velocity (W) and standard deviation (SW, for spectral
width). Note that the MRR radar was deployed in other field campaigns in summer, so MRR data is
actually available for only 27 out of 42 precipitation events being studied.

2.3. Automated Melting Layer Detection Algorithm

For its importance in micro-physical processes leading to precipitation phase change and for
coping with the associated artifacts (bright band, attenuation) that affect radar QPE, the characterization
of the ML has received a long-standing interest in radar meteorology [13,14] and radar
hydrology [15,16] communities. Polarimetry offers unprecedented means for observing distinct ML
radar signatures [14,17]: increase in reflectivity (Zh, Zv), differential reflectivity (Zdr) and differential
propagation phase (φdp), decrease in cross-correlation coefficient (ρHV) within the ML. Vertical profiles
of Doppler velocity spectra also bring valuable information on the hydrometeor falling velocities in
stratiform precipitation [18,19]. A number of automated ML detection algorithms have been proposed
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to deal with radar data collected in various configurations: vertically pointing measurements [20],
range-height indicators [21], PPIs at low-elevation angles [16,22], the latter being obviously the most
unfavourable (small incidence angles on vertical layers, beam broadening effects) but also the common
situation for QPE. In our context, we work with polarimetric QVPs [7] derived from the 25◦-PPI
XPORT radar measurements and with the vertical profiles of Doppler spectra derived from the MRR
data. We assume attenuation and non-uniform beam filling to be of limited importance for such
high-elevation angle measurements in predominantly stratiform precipitation with low intensity.

Figure 3 illustrates the working principle of the ML detection algorithm based on computation
of the first and second derivatives of the QVP, a Zh QVP in that case. The “bright-band” peak
corresponds to max(Zh) in the vertical profile, a first derivative equal to 0 and a minimum value of
the second derivative. The bright band top and bottom correspond to the maximum values of the
second derivative. The minimum of the first derivative of the reflectivity profile was found to be a
distinctive figure for the reflectivity profiles: large peak value and altitude (alt2_Zh) located in between
top and peak of the bright band. This altitude (alt2_Zh) is used as an initial guess for the ML position
in the vertical.

Figure 3. Example of automatic detection for a QVP of horizontal reflectivity. The dotted lines show
the estimated altitudes of “bright-band” top, peak and bottom. The quasi-vertical profiles of Zh, its 1st
derivative and 2nd derivative are shown in left, middle and right subfigures respectively. alt2_Zh is
the minimum of the first derivative of Zh profile i.e initial guess of ML position.

Hereinafter, we denote upper and lower breakpoints of a given ML signature in QVP as “top” and
“bottom” (“bot” in short), distinguishing the value and altitude coordinates of the point, e.g., Zh top
altitude, Zh top value. Maxima/minima of the QVP is denoted as “peak” (e.g., Zh peak altitude, Zh
peak value). For the sake of conciseness, a number of pseudo-variables are used in Tables and Figures;
their description is given in Appendix A.1.
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The identification algorithm for Zh works as:

a. Compute quasi-vertical profile of Zh, and its first and second derivatives.
b. Find the altitude with minimum first derivative of Zh –> alt2_Zh
c. Search for altitude and value of Zh peak (maxima with first derivative close to zero) up to 500 m

below alt2_Zh –> Zh peak altitude and Zh peak value
d. Search for Zh top altitude and Zh top value as max(second derivative of Zh) up to 300 m above

alt2_Zh
e. Search for Zh bot altitude and Zh bot value as max(second derivative of Zh) up to 500 m below

alt2_Zh

The same algorithm works for Zv as well. Similarly for Zdr, we search for Zdr peak values and
altitudes up to 800 m below alt2_Zh as max(Zdr) with first derivative close to zero. We look for top
and bottom of enhancement in Zdr profile up to 500 m above and below Zdr.alt.peak, as max(second
derivative of Zdr). In case of ρHV , we search for ρHV peak up to 800 m below alt2_Zh as min(ρHV)
with first derivative close to zero. Then we search for ρHV top altitude as the first altitude with ρHV
< max(ρHV) − 0.02 above Zh peak. The ρHV bot altitude is determined by symmetry. Using a single
reference altitude, alt2_Zh, for identification of ML in all the radar observables (Zh, Zv, Zdr, ρHV) helps
to reduce the errors in identification due to noise in different profiles in a given timestep, provided
that the bright band in Zh is well observed. The time series of alt2_Zh is also used to limit the allowed
jumps in reference altitudes in between two successive timesteps. Furthermore, in vertical profile of
MRR derived average fall velocity (W), we look for “W top” (and “W bot”) as the maxima (and the
minima) of second derivative of vertical profile of W, 500 m above and below ρHV peak altitude.

3. Microphysics of the ML and the Vertical Profiles of Radar Observables

In this section, we aim to perform a detailed analysis of ML with the help of QVPs of Zh, Zv, Zdr,
ρHV and vertical profile of W, their relationship with each other, definition of melting layer boundaries
and associated micro-physical processes. The QVPs of φdp are not considered in this article since they
were found to be too noisy and hardly exploitable for a large majority of the considered events, as they
have generally low precipitation intensities. The analysis of a single timestep (e.g., 1 March 2017
17:04:18 in Figure 4) provides detailed insights into the vertical structure of rainfall and micro-physical
processes associated with the melting layer, especially the hydrometeors’ evolution with time and/or
height. A stratiform rain event with 9 mm of cumulative rainfall spread over 11 h window is discussed
here. At the given timestep, rainfall intensity and temperature at MTO station were 2 mm h−1 and
7.8 ◦C respectively. Top of the brightband can be observed at 1770 m ASL, a bit below the 0 ◦C
isotherm at 1790 m estimated by the Météo-France AROME NWP model. The quasi vertical profiles of
polarimetric and vertical profiles of Doppler observations from XPORT (left) and MRR (right) radars
are displayed in Figure 4. Vertical profiles of XPORT are normalized between [0–1] to show the vertical
profiles of Zh, Zdr and ρHV in a single plot.

Zh, Zv: [15, 45] dBZ - -> [0, 1]
Zdr: [−3, 3] dB - -> [0, 1]
ρHV : [0.65, 1] - -> [0, 1]

As falling ice particles move from −5◦ to 0 ◦C, they grow by aggregation, resulting in larger
particles and in a reduction in the number of smaller particles [23], this might be an explanation for
the gradual decrease in reflectivity above the ML in Figure 3 (left). When they pass through the 0 ◦C
isotherm, they receive latent heat of fusion from the atmosphere. Ice particles start to melt and become
wet. The latent heat required cools the air, leading to a quasi-0 ◦C temperature layer. They continue to
descend, encounter warmer air and melt completely, eventually collapsing to rain drops much smaller
than original icy hydrometeors of same mass and higher fall velocities.
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Figure 4. Representative vertical profiles. Normalized quasi-vertical profiles of XPORT observables
(Zh: blue, Zdr: red, ρHV : gold) from PPI scan at 25◦ elevation angle, along with the ML identifications
(dotted lines) are shown in the left. Vertically pointing K-band MRR produced Doppler spectra and
average (W: green) of hydrometeors’ apparent falling velocities are shown in the right. For the ease of
reading, the unscaled and color-coded values of Zh, Zdr and ρHV , for normalized values of 0, 0.2, 0.4,
0.6, 0.8 and 1, are displayed on the top of the graph.

Textbooks [24] and articles based on in-situ observations [25–27], wind-tunnelling
experiments [28] and modelling studies [29,30] on snowflake melting processes establish that the
melting of individual hydrometeor (or an aggregate) occurs in several stages in an atmospheric
column, that we may summarize as follows:

• In the first stage, melting starts at the tips of ice branches on the entire periphery, but mainly at
the bottom of the snowflake.

• In the second stage, aerodynamic drag helps the meltwater to flow and surface tension draws
meltwater preferentially into concave regions, e.g., from periphery to the linkages of the snow
crystals comprising of aggregates, minimizing the capillary forces and surface tension effects.
The hydrometeor is not covered by meltwater in this stage, as the main ice-frame is still intact and
the icy hydrometeor has ragged surface.

• As these enclaves fill up and the edges erode due to melting, in the third stage, liquid water
flows out of the filled concave regions, merges with other nearby liquid bodies, and melt water
seeps into branches inside the snowflakes breaking the ice lattices. Surface tension stabilizes the
hydrometeor into new equilibrium shapes and consequently the crystal mesh changes from one
with many small and sharp protrusions to one with a few smoother and larger protrusions.

• Towards the end of melting process, in the fourth stage, the weak connections of ice separating
drops/liquid water bodies become sufficiently thin to fracture under aerodynamic forces or
simply melt away relatively quickly. The particle assumes a spherical shape, initially around
an ice core and eventually forming a water drop. Through the melting process, hydrometeors
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undergo change in shape and ice/water content leading to smaller particles with higher mass
density, which results in increase of fall velocities as they also experience less air resistance.

Melting of a distribution of hydrometeors in a stratiform rainfall produces distinct signatures
of radar observables on ground-based Doppler and polarimetric radars (Figure 4). Zh and Zv are
sensitive to the phase (liquid, solid), concentration and size distribution of hydrometeors. Zdr is a
proxy for their shape anisotropy and variation of particle orientation. ρHV is a measure of coherence of
the observations made in the horizontal and vertical polarisations, and as such, a good indicator of
precipitation homogeneity within the resolution volume.

• With aggregation as the dominant process, from 1000 m above the ML, there is an increase in
radar reflectivity (Zh, Zv) of 6 to 7 dBZ, as observed in Figures 3 and 4, with little dependence
on precipitation intensity, consistent with [14]. Small snowflakes melt faster than the big ones,
causing some particles to fall faster than others and thus increasing probability of aggregation
and coalescence. In an atmospheric column with steady precipitation, assuming stationarity,
this leads to an increase in the particle size (in case of aggregation) or an increase in number
density (if no aggregation) at a layer lower than the initial level. This leads to steady increase
in Zh below initial 0 ◦C isotherm. When most big particles are at end of 3rd stage of melting,
i.e., with thin shell of meltwater with ice-core, they essentially have size of the ice-particle and
di-electric constant of water. These few large highly reflective particles, resembling big raindrops
to a radar, explain the maximum of the reflectivity profile; around 10 dBZ bigger than the value
at ML top for the example of Figures 3 and 4. The bright band peak is said to occur at a level
where the particles have attained the high scattering property of water drops but have not yet
attained their velocity [31]. As these big particles start to melt and gain higher falling velocities,
the number concentration at the given altitude of the atmospheric column decreases. This causes
a gradual decrease in reflectivity in the lower portion of ML (below thw altitude of Zh peak);
reflectivity remains more or less constant below the ML.

• Differential reflectivity (Zdr) is positive for particles whose major axes aligns close to horizontal,
zero for spherical particles/particles with random distribution of orientation, and negative for
vertically oriented particles. Big rain drops tend to flatten and orient themselves with major axes
close to horizontal. Pristine ice crystals have small axis ratio (horizontal to vertical) and high bulk
density, and fall with their major axes close to horizontal i.e., high Zdr. Aggregates have large axis
ratio, low bulk density and low dielectric constant resulting in “effectively isotropic” shape, so low
Zdr(∼0.5 dBZ) [17,32]. The vertical profile of Zdr is slightly different from Zh. Zdr increases
as well during melting, but the maximum develops at lower altitude than Zh. A peak with
positive value of Zdr below Zh peak indicates an oblate mean shape at that height, and the small
values above and upper part of ML indicates isotropic mean shape while individual ice particles
can be very irregular [29]. As the particles smoothen due to faster melting of protrusions, Zdr
decreases on the upper part of melting layer, and just before the ice-structure crumbles in 4th
stage of melting Zdr peaks rapidly, to 1 dB during this event. This suggest maximum anisotropy
of hydrometeors occurs at lower altitude than maximum size. Surface tension during 4th stage
of melting (following collaspe of ice-structure) acts much quicker compared to other melting
processes. As hydrometeors assume more spherical shape, Zdr decreases quickly i.e., the vertical
profile of Zdr enhancement is non-symmetric. This decrease in Zdr might also be a result of
break-up of large melted aggregates [33]. Rain drops take more oblate shape, as they reach
terminal velocity. It is noteworthy to remind that the elevation angle of 25◦ is used in this study,
Zdr measurements within the ML might be more pronounced at lower scanning angle.

• Co-polar cross correlation coefficient (ρHV) is sensitive to changes in shape, size, orientation
and thermodynamic phase of hydrometeors between successive pulses. It might be sensitive to
elevation angles of PPI scan in mixed-phased regions [34]. Vertical profile of ρHV shows relatively
high values (∼0.99) above (in snow) and below (in rain) the ML with a sharp decrease in the lower



Atmosphere 2019, 10, 784 10 of 22

part of ML. Some ML detection algorithms (like [22]) use ρHV < 0.97 as a threshold criterion for
mixed phase of precipitation. Decorrelation occurs if the two orthogonal backscattered waves do
not vary in unison, i.e., with the change in net effective backscattering properties at horizontal
and vertical polarization in the resolution volume. The decrease in correlation is pronounced for
wet, large and irregular hydrometeors [35], likely a consequence of a greater variety of shapes and
axis ratios associated with partly melted particles and introduction of raindrops [17]. ρHV minima
occurs below the Zh maxima and slightly above the Zdr maxima (Figure 4), where some large
particles are asymmetric with ice-frame still intact while some have already crumbled under
surface tension to become more spherical.

• Vertically pointing MRR provides vertical profile of hydrometeor’s apparent fall velocity spectra
(S(v)). The Doppler spectrum S(v) is the power-weighted distribution of radial velocities within
the resolution volume, i.e., S(v) represents the power returned to the radar by scatterers with
radial velocity between v and v + ∆v. The average radial velocity (W) is the first moment of
the normalized Doppler spectrum, and spectral width is the square root of normalized second
moment. Spectral width is a measure of dispersion of velocities within the resolution volume.
Unlike other radar observables, average fall velocity has a monotonously decreasing vertical
profile (with increase in elevation) within the ML. Above ML, snow has average fall velocity
of 1–2 m/s; presence of crystalline ice, super cooled water and air updrafts/downdrafts can
affect the average fall velocity of snow. Towards the end of 3rd stage of melting, hydrometeors
smoothen causing decrease in aerodynamic drag and slight increase in fall velocity. During the
4th stage of melting, as hydrometeor melt fraction increases, its density increases and it assumes
more spherical shape (size decreases), which also aids to decrease aerodynamic drag and to
increase fall velocity. As the largest hydrometeors melt completely and become spherical rain
drops, the average fall velocity reaches a maximum. As the raindrops continue to fall, they might
assume oblate shape resulting in a slight decrease of the fall velocity to reach the terminal velocity
of 6–8 m/s. At low rainfall intensities raindrops are small and remain mostly spherical and this
decrease might be negligible, like in Figure 4. Some ML detection algorithms (like [36]) use the
altitude of maximum average velocity as the bottom of ML. At the altitude of Zh peak, the average
fall velocity is still close to fall velocity of snow. The Doppler velocity spectra is very narrow
above and below ML, centered at terminal velocity of snow and rain respectively. Within the
melting layer, the spectral width broadens gradually with decrease in ρHV , reaches maximum
value at altitude with minimum ρHV , and it contracts again with increase of ρHV .

4. Statistical Analysis of the ML Characteristics

Here, we study the climatology of the melting layer based on the available dataset of 42 rain
events. We will seek to understand the dependence of ML parameters on altitude of the 0 ◦C isotherm,
intensity of rainfall at ground and density of snow. Being a standard hypothesis of 1D ML models [16],
1 to 1 correspondence of snowflake to raindrop is a question of interest. The added value of Doppler
and polarimetric measurements with respect to reflectivity measurements for the analysis of melting
layer is also a subject of interest in this study.

4.1. ML Boundaries and Vertical Organization of the ML

Let us first consider the altitudinal dimension of ML characteristic points. Our experience with
the ML detection algorithm indicates that ρHV peak is the most consistently identified signature,
and we expect it to be in between altitudes of Zh peak and Zdr peak. Figure 5 shows the probability
distribution functions (pdf) of different distances between radar signatures, i.e., top, peak and bottom
of Zh, Zdr and ρHV , with respect to the ρHV peak altitude, computed over the entire dataset of
980 profiles; a number of statistics (mean, standard deviation and quantiles of these distributions) are
listed in Table 3.
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Figure 5. Pdfs of distances (binned with width of 50 m) of different radar signatures in ML with respect
to ρHV peak altitude.

We note that the pdfs of Zh and Zdr peak altitudes are quite narrow. The mean distance between
ρHV peak and Zdr peak is around 30 m, while the average distance between ρHV peak and Zh peak is
around 90 m. The distributions of the altitudes of the top and bottom are flatter compared to that of
the peaks. The vertical profile of ρHV in ML is symmetric, by construction, with top and bottom at
225 m from the peak value. Zh top and ρHV bottom are the altitudes furthest from ρHV peak. Study
of ML microphysics in Section 3 shows that Zh is the first radar observation to change significantly
when the particles are still in early stages of melting. So like Fabry and Zawadzki [14] we assume that
Zh top coincides with 0 ◦C isotherm. We also observe that ρHV bottom and max(W) occur at similar
altitudes in Figure 4, both of which signify the end of melting process. So, in this study we will refer
Zh.alt.top as ML top and ρHV .alt.bot as ML bottom. Hence, ML width = Zh.alt.top − ρHV .alt.bot. In
our observation (Table 3), the mean ML width is 609 m; Q10 and Q90 of ML width are 450 m and 780 m
respectively.

Table 3. Statistics of ML altitudes in terms of mean, standard deviation and quantiles.
(see Appendix A.1 for the definitions of pseudo-variables).

Units Mean Std.Dev Q10 Q25 Q50 Q75 Q90

Zh.alt.top (m) 2041 450 1411 1621 2071 2311 2671
Zh.alt.t2p (m) 265 80 180 210 240 300 360
Zh.alt.p2b (m) 268 81 180 210 240 300 360
Zdr.alt.t2p (m) 274 87 180 210 270 330 390
Zdr.alt.p2b (m) 208 57 150 180 180 240 270
ρHV .alt.t2p (m) 254 76 180 210 240 270 330
ρHV .alt.p2b (m) 254 76 180 210 240 270 330
Zh.alt.peak − ρHV .alt.peak (m) 90.21 66.06 30 60 90 120 150
ρHV .alt.peak − Zdr.alt.peak (m) 30 48 0 30 30 30 60
ML width (m) 609 162 450 510 600 690 780

4.2. Statistics of ML Characteristic Values

Table 4 presents the statistics of the reflectivity and polarimetric values and Figure 6 displays
normalized pdfs of some of these variables. As a first guess, we considered the Marshal-Palmer
relationship (R = (Zh bot / 200)1/1.6 with Zh bot in mm6 m−3) as an estimate of rain rate (R in
mm h−1) below the ML. Wsnow and Wrain are hydrometeors’ apparent mean fall velocity in snow
(60 m above ML top) and rain (100 m below ML bottom) respectively.
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Table 4. Statistics of ML characteristic values. (see Appendix A.1 for the definitions of
pseudo-variables).

Units Mean Std.Dev Q10 Q25 Q50 Q75 Q90

Zh.val.bot (dBZ) 24.19 4.64 18.07 20.85 24.59 27.38 29.89
Zh.val.t2p (dBZ) 8.97 1.80 6.70 7.87 9.13 10.19 11.15
Zh.val.p2b (dBZ) 6.37 1.69 4.14 5.49 6.56 7.38 8.13
Zdr.val.peak (dB) 0.63 0.61 −0.08 0.2 0.57 0.99 1.49
Zdr.val.t2p (dB) 1.24 0.41 0.82 0.99 1.18 1.4 1.8
Zdr.val.p2b (dB) 1.51 0.52 0.96 1.15 1.4 1.8 2.25
ρHV .val.peak (-) 0.85 0.05 0.79 0.83 0.87 0.89 0.9
Rainrate (mm/h) 1.45 1.04 0.48 0.72 1.24 1.85 2.66
Wsnow (m/s) 1.6 0.75 0.85 1.28 1.56 1.91 2.37
Wrain (m/s) 5.92 1.2 4.46 5.24 6.01 6.73 7.23

Table 4 shows that the events considered in this study have a rather limited range of rain rate
values, 0.48 mm h−1 at 10% quantile, 2.66 mm h−1 at 90% quantile and a maxima of 8.47 mm h−1.
This is mostly due to the difficulties in identifying ML during convective events, often associated
with high rainfall rates, as they have high horizontal variability. Figure 6 shows that the variables of
interest are generally monomodal with limited skewness. This is why various pdf quantiles are listed
in Table 4. Both the altitude and value statistics (Tables 3 and 4) are in overall agreement with similar
X-band radar observations [21] of ML made at Davos and Ardeche, except the mean ML width which
is wider in our observations, possibily a result of different estimation mode between two studies.

(a) (b) (c)

(d) (e) (f)

Figure 6. Pdf plots of some ML characteristic value; dotted red lines indicated the mean value.
Limits of the plots are set at mean± 2.5× standard deviation. (a) ML width (m); (b) Zh.val.bot (dBZ);
(c) Zh.val.t2p (dBZ); (d) ρHV .val.peak; (e) Zdr.val.p2b (dB); (f) Mean Fall velocities (m/s).

The correlation matrix of the ML descriptors is shown in Figure 7. Due to the limited skewness of
their individual distributions and the likely non-linear relationships between pairs of them, we have
computed the Spearman’s rank correlation coefficient, more relevant for monotonic non-linear
relationships than the classical Pearson’s linear correlation coefficient. Zh top, Zh bot, Zh peak
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and R show high correlation with each other. The correlation coefficient of 1 between Z bot and R
results simply from the power-law transformation (deterministic and monotonic) applied. This high
level of correlation is to be expected as the size and concentration of icy hydrometeors above ML
are the common factors controlling these variables. Interestingly, the ρHV peak value correlates also
significantly with Zh top, Zh bot, Zh peak and R. We note that it correlates more with Zh peak than
with Zh top or Zh bot. This confirms that Zh peak is more sensitive to presence of large particles than
to the number concentration. In addition, we note that the Zdr peak value is significantly correlated
with ρHV peak value (which is also sensitive to particle orientation) and to a lesser extent to the
reflectivity and rainrate descriptors. ML width correlates more with the reflectivity variables than with
the polarimetric ones. Wsnow is essentially uncorrelated to all the other variables while Wrain is more
correlated with the reflectivity and rainrate variables than with the polarimetric ones.

Figure 7. Spearman’s Correlation Coefficient.

4.3. Evolution of ML Descriptors with Rainfall Intensity

During the events under study, rainfall in Grenoble valley has a slightly right skewed distribution
with mean at 1.45 mm h−1 and standard deviation of 1.04 mm h−1. As noted previously Zh top,
Zh bot and Zh peak show high correlation with each other. Inspired by Figure 10 of [14] we examine
the relationships between Zh bot and three descriptors of the reflectivity profile: Bright Band (BB)
width (altitude difference between Zh top and Zh bot), Zh top and Zh peak in Figure 8. As observed
in [14] the BB width increases slowly till the Zh bot of 21 dBZ, beyond which the increase is rapid.
Till 21 dBZ (Table 5), Zh.alt.p2b is bigger than Zh.alt.t2p, after which the former increases faster than
the latter. Our explanation is as follows: at higher rainfall intensities there is higher probability of
irregular shapes and aggregation above ML, resulting in particles with big concavities. When the ice
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particles start to melt, it takes longer to fill these concavities before a thin shell of liquid water can form
around the biggest particles (Zh peak), followed by longer melting period (stage 4) for larger particles.

Another observation in Figure 8 and Table 5 is the increase in Zh.val.t2p and decrease in Zh.val.p2b
with increase in reflectivity below the ML. It can be attributed to increase in particle size with increase
in rainfall; another possible contribution is from microwave attenuation at higher rainfall intensities as
raw data is used in this study i.e., without attenuation correction. Most models for vertical profiles
of equivalent reflectivity (using |Kw|2 from Table 1 for whole profile), assume that one snow particle
results in one rain drop; this assumption seems to be refuted above 21 dBZ as well.

Figure 8. Intensity effect on the “Bright Band”: Mean values of Zh top, Zh peak and Zh bot calculated
for vertical profiles at Zh bot classes of 3n dBZ. Heights of each profiles are normalized by Zh.alt.top.
Summary of BB enhancement and BB width are presented in Table 5.

Table 5. Summary: Intensity effect.

Zh
val.top

Zh
val.t2p

Zh
val.p2b

BB
width

Zh
alt.t2p

Zh
alt.p2b

(dBZ) (dBZ) (dBZ) (m) (m) (m)

15 7 7 410 194 216
18 9 7 448 219 229
21 8 7 474 228 246
24 9 7 528 267 261
27 9 6 570 284 286
30 10 6 634 334 300
33 11 5 623 345 278
36 10 5 750 405 345

As further illustrations of the correlation matrix results in Figure 7 for polarimetric and Doppler
variables, the evolution of ρHV peak value, the differential reflectivity enhancement on top of the
profile (Zdr.val.t2p) and the Doppler mean velocity in rain (Wrain) as a function of R is displayed in
Figure 9. The evolution of the ML width, a priori slightly different from the BB width, is displayed
as well as a function of R. Rainrates are divided into 7 classes, and mean intensities of each class
are the X-labels. In each class, the distribution of the considered variable is presented in the form of
box plots. As expected, the relationships are essentially non-linear. We underline that the upper two
rainrate classes have low number of values, thus diminishing the significance of the trends observed
there. Let us recall that with increase in intensity we expect increase in concentration, size, coalescence
and increased diversity in shape/orientation of icy hydrometeors above the ML. With increase in
number concentration and size of hydrometeors, we expect wider ML (Figure 9d) as more latent heat
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is required to melt large number of ice particles. Bigger particles size also means higher fall velocity
(Figure 9c) and longer melting time, both of which resulting in the ML widening. Terminal velocity of
rain drops depends on size, shape and mass of raindrops, and the density of air. At low rain intensity
(drizzle), particles are smaller, resulting in lower terminal velocity. Correlation matrix [Figure 7] as well
shows considerably high correlation of both fall velocity and ML width with rainrate. With increase in
diversity of shape, size and orientation of icy hydrometeors, we expect increase in Zdr.val.t2p within
ML with increase in rainfall intensity. In Figure 9b we can observe that the Zdr enhancement almost
doubles (from 1.1 dB to 1.9 dB) as rainfall intensity increases from 0.6 to 5.2 mm h−1. Finally, increase
in diversity in shape, size, orientation, fall speed of melting particles within the pulse volume results in
significant decrease of ρHV peak value as rainrate increases (Figure 9a). At low rain intensity, ρHV peak
value is quite high around 0.88 for rain-rate of 0.6 mm h−1; it drops to 0.78 around rainfall intensity of
4.5 mm h−1. A larger dataset would be necessary to determine if the non-monotonic trends visible for
ρHV peak value and ML width for the highest rainrates are significant.

4.4. Evolution of ML Characteristic Values as a Function of Rainrate and Altitude of the 0 ◦C Isotherm

In this sub-sections, we detail the correlation structure of the ML descriptors as a function of the
rainrate, considered as the most natural variable for describing the intensity of the phenomenon of
interest (precipitation), and the ML top altitude, as a proxy for the 0 ◦C isotherm altitude.

Selection of physical explanatory variables helps to associate different ML radar signatures to
different physical processes occurring in the ML. 0 ◦C altitude and rainfall intensity at ground are
the two most trivial and easy to investigate explanatory variables. Temperature profile is another
possible explanatory variable for rates of melting process, most probably associated with width of
ρHV decrease and vertical distance between Zh peak value and ρHV peak value. Hydrometeors types
(distribution and shape) are related to Zdr peak value and ρHV peak value. Hydrometeor density can
be another explanatory variable associated with Wsnow and the reflectivity enhancement on top of
the profile (Zh.val.t2p). In this sub-section, we limit ourselves to study the relationship of some of the
ML descriptors with the rainrate and the 0 ◦C isotherm altitude, using R and ML top derived from the
radar dataset available as proxies. Investigations of other explanatory variables could be possible and
desirable, e.g., with high-resolution NWP model outputs; this will be the subject of future research.

(a) (b)
Figure 9. Cont.
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(c) (d)
Figure 9. Box-plots of different ML descriptors as a function of the rainrate. For each rainrate class,
upper and lower hinges corresponds to 25 and 75 percentiles respectively; black line inside the box
is the median and red-cross is the y-mean. The number of observations in each interval is shown
below corresponding x-label. (a) ρHV .val.peak vs. rainfall intensity (mm h−1); (b) Zdr.val.t2p (dBZ)
vs. rainfall intensity (mm h−1); (c) Wrain (m s−1) vs. rainfall intensity (mm h−1); (d) ML width (m) vs.
rainfall intensity (mm h−1) .

Using partial correlation coefficients in Figure 7, we computed the total correlation coefficients
r1.23 (Appendix A.2) of different ML characteristic values as explained variables (index 1) as a function
of the two explanatory variables (ML top and R). The most interesting results are displayed in Table 6.
First we note that ML top is poorly correlated with R in correlation matrix Figure 7 (r23 = 0.18).
This is desirable, as the addition of second explanatory variable promises new information, potentially
adding value in the explanation of variable of interest with respect to the first explanatory variable.
The added value can be quantified by comparing the total correlation coefficient r1.23 with the absolute
value of highest partial correlation coefficient r12 or r13. We found that there is actually little or no
added-value with the second variable most of the time, e.g., for Zh.val.t2p in Table 6, but also for Zh top
value, Wsnow and Wrain. However, there is a significant improvement on ρHV and Zdr observations,
i.e., +6 points improvement in explanation of ρHV peak and +12 points improvement in explanation of
Zdr enhancement at the bottom of the profile (Zdr.val.p2b), +11 points improvement in explanation
of the altitude difference between the ρHV peak and the Zdr peak values. As visible in Table 6 and
equation in Appendix A.2, such gains in correlation are significant when r12 and r13 are of opposite
sign, r23 being positive. The physical interpretation of such statistics is not trivial, but they do draw
our attention towards the complex interplay of melting processes on polarimetric radar observables.

Table 6. Spearman’s multiple regression with two explanatory variables: var 1 is the variable of interest,
var2 and var3 are explanatory variables, ML top and R, respectively. ’r’ is the Spearman’s correlation
coefficient between variables represented by subscripts.

var1 var2 var3 r12 r13 r23 r1.23

Zh.val.t2p ML top R 0.13 0.52 0.18 0.52
ρHV peak ML top R 0.16 −0.58 0.18 0.64

Zdr.val.p2b ML top R −0.28 0.57 0.18 0.69
Zh.alt.peak − ρHV .alt.peak ML top R −0.24 0.43 0.18 0.54
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4.5. Density Effect on Bright Band

The study [19] suggests that, for comparable precipitation rates, snow density affects the
brightband intensity i.e., high density hydrometeors result in lower reflectivity peak due higher falling
velocities and smaller particle sizes. Faster falling hydrometeors lead to lower number concentration
which results in decrease of reflectivity. Larger icy hydrometeors, when covered with thin layer of
water towards the end of second stage of melting (Section 3), appear as large particles with high
dielectric constant to a radar, effectively produces strong reflectivity signature. Conversely, smaller
particles lead to smaller reflectivity peak. The co-existence of supercooled cloud water with snow
above ML, leading to riming and change in snow densities. For stratiform precipitation with a melting
layer, the authors propose high density hydrometeors above ML can result in smaller BB enhancement.
Faster falling hydrometeors lead to lower number concentration and a decrease in reflectivity.

In order to check if this effect is visible in our dataset, in Figure 10 we examine the effect of
snow density on BB enhancement. As most of the events under study are stratiform events with
max rainfall intensity of 8.47 mm h−1, we do not have significant number of observations at the last
interval i.e., mean(Wsnow) > 2.3 m s−1 as seen in Figure 10. For a small class of reflectivity values
below ML, [25–27 dBZ], we observe a decrease in BB enhancement of 1 dBZ with the increase in snow
velocity/density.

Figure 10. Density effect: BB enhancement vs. Wsnow for comparable precipitation rates. Left plot
shows the density effect for Zh bot in the 25–27 (dBZ) range. X-labels show the mean value of fall
velocity in the given interval and number of observations below that. Red crosses show the mean value
of BB enhancement in each box.

4.6. Information Content of the ML Dataset

In order to investigate more deeply the information content of the ML dataset available, we have
implemented a number of statistical techniques ranging from Principal Component Analysis (PCA) to
more complex clustering techniques, e.g., Kohonen’s self-organizing maps. In this article we simply
present results from the PCA technique. We remind that PCA is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components (PCs). By ordering the principal
components, it is possible to reduce the dimensionality of the dataset if first few PCs retain most of
the variance present in all of the original dataset. Here, we have selected 18 variables (x-labels of
Figure 11b), assumed to be representative of the total variance present in vertical profiles of Zh, Zdr,
ρHV and W within the ML. Figure 11a shows that the first two PCs only explain about 50% of the total
variance and that we need at least 9 PCs to explain 90% of the dataset variance. Lack of dominance of
a few PCs is an indication that the dataset is quite rich and that polarimetric and Doppler variables
bring significant information with respect to reflectivity data.

This is also evidenced with a further analysis of the contribution of each variable in the explanation
of the total variance of the dataset. For this purpose, we simply computed the square of the total
correlation coefficient (explained variance) of each variable with all the (independent) PCs. Figure 11b
shows that the top 5 variables (when ordered) explain 20–24% of the total variance of the system and
that the polarimetric variables (Zdr and ρHV) rank high. We expected Doppler information (mean
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fall velocities) to rank high as well, but this is not the case, especially for Wsnow. Maybe some other
Doppler-derived variables, e.g., the velocity gradient within the ML, should have been considered
with a higher explanatory power.

(a) (b)
Figure 11. Principle Component Analysis: Explanation of total variance of the dataset. (a) Total
Variance: PCs Contribution; (b) Total Variance: Variable Contribution.

5. Discussion and Conclusions

The study presented here is an exploratory analysis within a broader project aimed at improving
rain and snow quantitative estimation over high-mountain terrains, i.e., the study site is a large alpine
valley in the French Alps. We studied the vertical variability of precipitation in the presence of melting
layer through quasi-vertical profiles of polarimetric variables (Zh, Zv, Zdr and ρHV) and vertical profiles
of Doppler spectra with high resolution (30 m in radial for the XPORT radar; 100 m for the MRR radar).
We have selected an elevation angle of 25◦ for establishing the polarimetric QVPs of the XPORT radar.
By choosing such a relatively low elevation angle, we were able to capture interesting radar signatures
of the heterogeneity of hydrometeors between their horizontal and vertical dimensions [7]. On the
other hand, for such an elevation angle, the horizontal variability of precipitation certainly influences
the radar measurements. This was mitigated in our statistical analysis by discarding QVPs with high
spatial variability related for instance to the precipitation system entering or leaving the valley or to
highly convective situations. We used for this purpose a visual inspection of the ρHV) PPIs.

It is well established that the melting processes in the atmosphere give rise to enhancements
in measurable radar parameters, which are precipitation and frequency dependent [34]. Efforts to
understand the effects of melting particles on electromagnetic waves and consequent uncertainties
in the surface-rainfall estimation have resulted in several melting layer detection algorithms and
definitions of ML boundaries, each with their advantages and limitations. We have built a ML
detection algorithm that detects the top, peak and the bottom of the enhancements in vertical profiles
of Zh, Zv, Zdr and ρHV , and records the concurrent altitudes and values. We focused on stratiform
events where ML occurs at rather low altitudes, e.g., within/below the Météo-France MOUC radar
elevation. After an intensive review of the literature, we summarized the melting processes of an
individual hydrometeor within the melting layer into four distinct stages. Then, we attributed different
stages of the melting of the distribution of hydrometeors to the enhancements of the vertical profiles of
radar observations. We observed that Zh peak occurs at higher altitude compared to ρHV peak while
the Zdr peak occurs lower; this observation is consistent with the melting processes of the largest
particles, which have a major influence on the peak values. Falling icy hydrometeors start to melt
when they cross the 0 ◦C isotherm. In radar only observation, Zh top is the closest indicator of the 0 ◦C
isotherm altitude. So, we consider the altitude of Zh top to be the ML top. At the end of the melting
process, as the largest particles melt completely; they assume the smallest possible volume due to
surface tension and they attain maximum velocity. We observe that the altitude of max(W) from MRR
corresponds well with the altitude of ρHV bottom. We have considered the altitude of ρHV bottom to be
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ML bottom. The subsequent statistical analysis of different ML descriptors provides results consistent
with observations made in similar climatological context. It also demonstrates that the polarimetric
information brings a strong added-value about the characterization of the ML processes with respect
to reflectivity measurements alone.

Although robust in its current form, the ML detection algorithm can be improved: in particular,
we observed that ρHV peak is the most consistently identified parameter and we may consider this
peak altitude as a reference to limit the altitude search ranges for each variable, as well as to initiate the
algorithm and control the consistency of identifications from one time step to the next. Another area
for improvement concerns the characterization and filtering of the variability of the quasi-vertical
profiles associated with the horizontal variability of precipitation, e.g., when a precipitation system
is entering or leaving the detection domain or in case of convective orecipitation. This could be
achieved with sectorial identifications based on detection of the horizontal precipitation intermittency.
Although the impact of attenuation at X-band on radar observations is thought to be limited due to
the short distances, high-elevation angles and the limited rain rate range considered in the present
study, the pre-processing of radar observations for attenuation is certainly desirable prior to the ML
identification algorithm implementation. In another paper [8], we start investigating the relationship
between the total differential phase φdp and path-integrated attenuation (PIA), the latter being derived
from mountain returns through the so-called Mountain Reference Technique. This study indicates that
the φdp-PIA relationship (which is key for attenuation correction) in the melting layer is dependent on
the vertical position within the ML, and as such on the processes occurring during the melting.
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The following abbreviations are used in this manuscript:

Radar Radio Detection and Ranging
ML Melting Layer
BB Bright Band
XPORT X-band Portable Radar
PPI Plan Position Indicator
RHI Range Height Indicator
MRR Micro Rain Radar
MOUC Radar at Mt Moucherotte
QPE Quantative Precipitation Estimation
QVP Quasi-Vertical Profile
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Appendix A

Appendix A.1. Definition of Pseudo Variables

Following are the definition of pseudo-variables used to characterize ML in the text, shown
to represent the horizontal reflectivity (Zh) profile. Similar definitions are used for other variables
wherever applicable.

Zh peak = Maximum value of Zh (dBZ)
Zh.alt.peak = Altitude of the Zh peak (m)
Zh.val.top = Zh value at top inflection point (dBZ)
Zh.alt.top = Altitude corresponding to Zh.val.top (m)
Zh.val.bot = Zh value at bottom inflection point (dBZ)
Zh.alt.bot = Altitude corresponding to Zh.val.bot (m)
Zh.val.t2p = |Zh.val.top − Zh.val.peak| (dBZ); Reflectivity enhancement on top of the profile
Zh.alt.t2p = |Zh.alt.top − Zh.alt.peak| (m)
Zh.val.p2b = |Zh.val.peak − Zh.val.bot| (dBZ); Reflectivity enhancement on bottom of the profile
Zh.alt.p2b = |Zh.alt.peak − Zh.val.bot| (m)

Appendix A.2. Correlation Coefficient with 2 Explanatory Variables

The following formula was used to determine the total Spearman’s correlation coefficient of
an explained variable 1 with two explanatory variables 2 and 3, denoted r1.23, as a function of the
Spearman’s partial correlation coefficients between pairs of them (r12, r13, r23):

r2
1.23 =

r2
12 + r2

13 − 2 ∗ r12 ∗ r13 ∗ r23

1− r2
23
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