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ABSTRACT: In the present work, we deal with both analytical/numerical and experimental
modelings of seismic metamaterials, designed to protect buildings and civil infrastructures from
incoming seismic waves. By using Floquet-Bloch transform, it is possible to strongly reduce
the size of numerical model compared to a fully simulated model. Indeed, the numerical mod-
eling comes down to the study of the eigenproblems defined on a primitive cell representative
of the whole periodic medium. Existence of frequency bandgaps, one of the main issues of
metamaterial, is analysed. Moreover, using reduced laboratory samples of soil with periodically
distributed holes or concrete inclusions, actual efficiency of the studied seismic metamaterials is
tested and compared with the analytical/numerical prediction. The comparison highlights the sim-
ilarities observed between experimentally recorded transfer functions and numerically predicted
bandgaps.

1 INTRODUCTION

The response of a building facing a seismic signal depends on its own geometric and material
properties, but also on both the incident waves and the characteristics of soil in the surrounding
area. As the standardization of old structures to the current seismic risk cartography could be
tricky, a modification of the soil around the buildings could be a promising alternative to improve
their response by rerouting harmful waves.

On the one hand, several studies tended to analyze the effect of barriers or other architectured
structures places in the ground to limit the propagation of the waves induced by ground vibrations
(Avilès & Sánchez-Sesma 1983) or railway (Van Hoorickx et al. 2017). Both are based on the
previous work of Lysmer & Waas (1972). Clouteau & Aubry (2001) analyzed how a dense urban
area can influence the propagation of seismic waves, especially in the case of periodically placed
buildings.

On the other hand, the academic work of Veselago (1968) about electromagnetism, consid-
ering materials with both negative permeability and negative permittivity, have enlightened a
new branch of the fundamental physic research about architectured materials. Materials archi-
tectured with specific periodic (or non-periodic) sub-wavelength microstructures, called metama-
terials, were designed for their unconventional properties. Research advances have been achieved
first by the electromagnetic community with for example the use of negative refraction index
metamaterials (Pendry et al. 1999, Pendry 2000).

The study and development of metamaterials in the seismic domain to protect structures from
incoming waves, especially the surface waves, are more recent. For example, Kim & Das (2012),
Ungureanu et al. (2016) used metamaterials to control seismic waves. Material and geometrical
characteristics of the microstructure of a metamaterial play an essential role on its behaviour with
respect to the wave propagation, parametric analyses are therefore necessary and several studies
have been performed (e.g. Du et al. (2017)).

Beside the theoretical and numerical investigations, several in-situ experiments have been
designed to show the feasibility of seismic protections with, for example, periodically distributed
inclusions (Brûlé et al. 2014) or even natural metamaterials like forests (Colombi et al. 2016),



and to test their efficiency. Contrary to in-situ test, the experimentation on reduced models allows
a better control of the different material parameters. For example, Colombi et al.’s study (2016)
on the propagation of surface waves through a forest was preceded by laboratory experiments
on reduced scale (Rupin et al. 2014). In laboratory models (reduced scale), in order to have
an adequate replication of the in-situ stress field (full scale), several works have also been per-
formed using centrifuge modeling. For example, isolation effects of geofoam barriers on wave
propagation within soil were investigated using a centrifuge device by Murillo et al. (2009).

In the present work, two types of seismic metamaterials with periodically distributed holes or
inclusions are numerically and experimentally investigated. In particular, the existence of fre-
quency bandgaps is analyzed. It is indeed one of the most important issues of using metamaterials
to control seismic waves, as it means the non-propagation of waves within some segmented fre-
quency ranges due to the interactions between waves and the periodic microstructure. Based on the
previously developed theoretical/numerical studies of periodic media made of beams or plates (Tie
et al. 2013, Tie et al. 2016), new numerical models are built and theoretical frequency bandgaps
are computed using Floquet-Bloch theory. Besides, reduced laboratory models of soil are designed
and made. Then, their efficiency is tested and their coherence with numerical dispersion curves
showing bandgaps is considered.

2 BLOCH WAVE BASED MODELING OF A PERIODIC MEDIUM

In order to study analytically the existence of frequency bandgaps due to the presence of inclusions
or heterogeneities in a periodic media (Fig. 1), the Floquet-Bloch theory is used in this work.
Thus, the following elastic wave equation is considered in the frequency domain, with u(x) the
displacement field, C(x) the elasticity tensor, ρ(x) the mass density and ω the angular frequency:

divx (C(x) : ε(u(x))) = −ρ(x)ω2
u(x) (1)

In Equation 1, ε(u) is the infinitesimal strain tensor defined as:

ε(u) =
1

2

(
∇xu + (∇xu)T

)
(2)

In the case of a periodic medium, we have C(x + γn) = C(x) and ρ(x + γn) = ρ(x),

∀n ∈ Zdim, with γn =
∑dim

i=1 niLi, dim the dimension of the physical space, and Li the vectors
of periodicity (Fig. 1). Thanks to the periodicity of the periodic medium, the Floquet-Bloch trans-
form allows giving a response on the entire medium with the modal analysis of the only primitive
cell (Floquet 1883, Bloch 1928).

In fact, by the Floquet-Bloch transform a non-periodic field like u(x) defined on a periodic

medium can be decomposed into periodic fields u
B(x, k), which are called Bloch wave modes

and are calculated as follows:

u
B(x, k) =

∑

n∈Zdim

u(x + γn)e
ik · (x+γ

n
) (3)

where k is the Bloch wave vector belonging to the Brillouin zone (Brillouin 1946).
According to Equation 3, it is obvious that the principle of the Floquet-Bloch transform is

to sum up, over the whole periodic medium, values of the signal taken at all the periodically
corresponding points (Fig. 1). The obtained Bloch wave modes are therefore periodic and have
the same periodicity than the periodic medium.

The Floquet-Bloch transform applied to the initial problem defined by Equation 1 gives rise to
the following eigenvalue problems:

(divx + ik) ·
(
C : (ε(uB) + ik ⊗s u

B)
)
= −ρω2

u
B (4)

Hence, to solve the wave propagation problem on the whole periodic medium, it is sufficient to
study eigenvalues and eigenmodes on the primitive cell. Because the eigenproblem (Equation 4)
is too complex to be solved analytically, there is a need to use numerical methods.

Otherwise, according to Brillouin (1946), the eigenanalysis of Bloch wave modes can be lim-
ited to the first Brillouin zone, which is in fact the elementary cell in the reciprocal space dual
to the primitive cell in the physical space. However, the eigenanalysis is finally done within a
smaller zone, called the irreducible Brillouin zone, which is defined by taking into account the



Figure 1. Example of periodic medium and its primitive cell

symmetries of the first Brillouin zone. In practice, a grid of discret points of k is used in the irre-
ducible Brillouin zone, and for each Bloch wave vector k, the eigenproblem (Equation 4) is solved
numerically using the finite element method.

To apply the finite element method to the eigenproblem (Equation 4), its weak form is devel-
oped as follows:

∫

Ω

(
C : (ε(uB) + ik ⊗s u

B)
)
: (ε (vB) + ik ⊗s vB)dΩ = −

∫

Ω
ρω2

u · vdΩ (5)

with v virtual displacement field. To complete the definition of the above weak eigenproblem,
appropriate periodic boundary conditions have to be applied on the primitive cell.

The primitive cell is discretized by a finite element mesh. In our study, a same finite element
mesh is used whatever the value of k.

3 REDUCED METAMATERIAL MODELS

In order to verify the efficiency of a non-infinite metamaterial compared to the prediction obtained
by the Floquet-Bloch theory in an infinite periodic medium, an experimental study is made. The
attenuation on the amplitude of some frequencies induced by the presence of inclusions is mea-
sured in the frequency domain. For that, a comparison of the obtained response at several points of
an homogeneous block of compacted soil and the one with periodically distributed heterogeneities
is done. In the experimental model, the heterogeneities are simulated using empty holes and con-
crete inclusions. It allows to assess the effect of the properties contrast between the inclusions and
the soil matrix on both the occurence and the location of frequency bandgaps. In addition, the
efficiency of each solution will be evaluated.

3.1 Sample preparation and parameters

As previously indicated, by using a reduced laboratory model, the properties of soil are easier to
control than in an in-situ test. In the present work, the tested block is made of compacted kaolin
soil. The consistency of the soil is chosen to have the water content adjusted around its optimum
Proctor (wopt = 26%) to reduce the damping. The Proctor optimum water content corresponds to
the highest mass density that can be achieved. Otherwise, to assure the assumption of homogeneity
of the metamaterial’s matrix adopted in the present work, the hydrated kaolin is passed through a
sieve of 4mm before the compaction.

To obtain a sample of size 300 × 300 × 250mm3 (Fig. 2), the hydrated kaolin is compacted
with three successive layers in its depth until a load of 1.1MPa using a hydraulic press. The
obtained compact kaolin soil has its density ρs equal to 1750kg/m3, and its elastic modulus Es

is measured to be 233MPa, by calculating correlation between time signals recorded at different
points (see Section 4) and with a Poisson ratio νs taken equal to 0.25.



Figure 2. Presentation of the experimental setting: A homogeneous sample with the electronic devices

Figure 3. Primitive cell (left) and its Brillouin zone (right)

From homogeneous samples, metamaterial ones are made in such a way that they are periodic
in the horizontal plane on a depth of 8cm by drilling empty holes or by introducing inclusions.
For the periodic layer, the primitive cell is designed as a 2D square pattern of dimension c × c =
13× 13mm2 with cylindrical empty holes or inclusions with a radius R equal to 4mm (Fig. 3).

Two types of metamaterial samples are made, with respectively empty holes or concrete inclu-
sions as periodic heterogeneities. In the first case, holes are drilled using a broach with a diameter
of 8mm. Because the holes are hand-made, there is a large uncertainty in their actual diameters
and positions. For the second case, the holes drilled in the first case are filled by quick-setting
cement, then tests are performed six days after pouring the concrete. Contrary to originally rigid
inclusions such as metallic ones, cast-in-place concrete inclusions have the advantage of fitting
the shape of the holes without the use of force, hence, a “prefect” adhesion on matrix/inclusion
interfaces can be obtained without local modification of the properties of the compact kaolin soil.
After compression tests on samples of concrete poured in the same way, the properties of the
concrete inclusions are identified as: Ec = 10GPa, ρc = 2100kg/m3 and νc = 0.3.

3.2 Boundary condition setting and experimental devices

In order to reduce the influence of reflected waves, the sample is laid on a rubber layer. All its
other boundaries are free surfaces.

The incident wave signal is generated with a piezoelectric device at the top horizontal boundary
of tested samples (Fig. 2). Especially in our case surface waves are generated, as under an electri-
cal signal, a piezoelectric crystal convert the energy into a stress field and it is therefore possible
to control the type of introduced mechanical waves. For the sake of simplicity of experimental



Figure 4. Top view of two different configurations for the positions of accelerometers (blue circles) and
of the piezoelectric device (red)

setting, only monochromatic signals limited by 25kHz are produced by the piezoelectric device
and applied on the tested samples. About twenty frequencies are considered. The lowest one is
200Hz.

For each frequency, the propagation of the signal is measured on the top horizontal surface by
means of seven accelerometers (Fig. 2, Fig. 4). The accelerometers have an operational range until
20kHz. The sampling frequency is 100kHz on samples of 2s. As a first analysis of experimental
results, only the signals recorded by the accelerometers 1, 3 and 7 (Fig. 4) are considered in this
work.

3.3 Experimental configurations

Regarding the position of the piezoelectric device, two experimental configurations are tested: one
with the source out of the metamaterial barrier and an other one with the source inside (Fig. 4).
With the first configuration, it is expected to test the influence of metamaterial barrier on the
propagation of the incoming wave, while with the second one, it is expected to investigate the
behaviour of the waves trapped by the barrier within it. The same block of compacted soil is
used for homogeneous sample and for the improved one. The homogeneous model will be used
as a reference case. As the attenuation within metamaterial samples is measured with respect to
the reference one, uncertainties on material properties and the lack of knowledge on boundary
conditions could be considered as suppressed.

4 NUMERICAL/EXPERIMENTAL COMPARISON

2D numerical models based on the Floquet-Bloch theory presented here above (Section 2) are used
to perform numerical/experimental comparison. They represent in fact plane wave propagation in
an infinite 2D periodic domain with a primitive cell defined in Figure 3. It is worth noticing that,
for the tested samples, neither the vertical direction, in which materials are homogeneous, nor its
boundaries are not taken into account by the numerical model. Caution is therefore required in
interpreting the comparison presented hereafter.

To set appropriate material properties in the numerical models, especially those of the com-
pact soil, the classical method of cross-correlation (Elgamal et al. 2004) is used to estimate the
Rayleigh wave velocity propagating in it. Cross-correlation function caiaj

between two temporal
signals recorded by accelerometers ai(t) and aj(t) is expressed as:

caiaj
(τ) =

1
N−m

N−m∑
n=1

ai(n∆t)aj((n+m)∆t)

√
1
N

N∑
n=1

a2i (n∆t)

√
1
N

N∑
n=1

a2j (n∆t)

m = 0, 1, 2, . . . , N (6)

with τ the time delay, N the length of the signal and ∆t the time step of the signal.
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Figure 5. Temporal signals recorded at accelerometers 1 and 3 in the homogeneous sample tested within
the first configuration (see Fig. 4 (left)). The frequency of the signal of 2s is 2MHz; A zoom of the temporal
signal between 0.08s and 0.09s is presented.

For example, the cross-correlation between signals recorded at point 1 and 3 for the frequency
equal to 4.25kHz results in a velocity of the Rayleigh waves of VR = 206m/s. Then the Young’s
modulus of the compacted soil is determined using the following equation:

Es = 2ρs(1 + νs) ·V
2
S (7)

with VS the shear wave velocity linked to VR by:

VR =
0.862 + 1.14νs

1 + νs
VS (8)

With the numerical models, eigenvalues for each discret k chosen in the irreducible Brillouin
zone are computed by performing a finite element analysis of the primitive cell. Dispersion curves
are then plotted and existence of frequency bandgaps can be highlighted.

For the data post-processing of experimental results, the transfer functions α(f) with respect
to the frequency f is defined as the ratio of the signal recorded after the metamaterial barriers to
the incident one:

αM (f) =
â7(f)

â1(f)
; αC(f) =

â1(f)

â7(f)
(9)

with âi(f) the Fourier transform of the vertical accelerations measured with the sensor i. In
Equation 9, αM gives an estimate of attenuation for the first experimental configuration (see
Figure 4(left)) and αC for the second one (see Figure 4(right)). Finally, by calculating the ratio of
α(f) obtained within a metamaterial sample to the one obtained within the homogeneous simple,
the attenuation due to the metamaterial barriers can be actually measured without the one caused
by the geometrical spreading of wavefront (visible on Fig. 5).

The Figure 6 presents the comparison between numerical predictions and experimental mea-
sures for both experimental configurations and for both cases of periodically distributed holes (top
line in Fig. 6) or concrete inclusions (bottom line in Fig. 6).

• Figure (a) presents dispersion curves predicted theoretically by solving the eigenproblem
(Equation 4) and computed using finite elements. The first Floquet-Bloch modes are shown
within the frequency range [0, 20]kHz. In the case of the primitive cell with a hole, the first
bandgap is obtained between 9.4kHz and 10.2kHz. In the case of the primitive cell with a
concrete inclusion, the first frequency bandgap is obtained between 16.5kHz and 18.6kHz and
is much larger.

• Figures (b)-(c) present the attenuation levels obtained experimentally in terms of the ratios
between transfer functions. We note that, as the valid operating range of the accelerometers are
inferior to 20kHz, experimental results at this frequency are questionable. For the metamaterial
sample with holes, the experimental results appear coherent with the numerical predictions, as
an important attenuation level is observed around 8kHz, close to the frequency range of the
first numerically predicted bandgaps. For the metamaterial sample with concrete inclusions,
the numerical/experimental comparison is less obvious. However, for the first experimental
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Figure 6. Comparison between the theoretically predicted frequency bandgaps (grey) and experimental
transfer functions in the two cases of empty holes (first line) and concrete inclusions (second line). (a)
Dispersion curves showing the first Floquet-Bloch modes and the first bandgap in the frequency range
[0, 20]kHz. (b)-(c) Transfer functions for the two different configurations (Fig. 4).

configuration, a large frequency range of attenuation is observed between 10kHz and 15kHz,
which is in agreement with the numerical predictions.

The comparison between numerical and experimental results is encouraging but not conclu-
sive. Several possible causes can explain differences. First of all, the 2D numerical model is
not representative of the 3D experiment, because the third vertical direction is ignored and the
boundary conditions are not taken into account in the Floquet-Bloch theory. Moreover, there are
uncertainties in the identified material properties, such as the value of Rayleigh wave velocity.

5 CONCLUSIONS

In this work, 2D numerical models based on Floquet-Bloch theory have been developed to study
a periodic metamaterial by eigenanalysis of a primitive cell. It was used to locate frequency
bandgaps by plotting dispersion curves.

In order to test actual efficiency of metamaterial, an experimental test has been made on a block
of compacted soil with periodically distributed empty holes or concrete inclusions. Experimental
results showed the existence of frequency ranges of attenuation. However, they did not fit well
with the numerically predicted frequency bandgaps, which brought out the limits of the developed
numerical model.
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