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Abstract

Running a reliability analysis on engineering problems involving complex numer-

ical models can be computationally very expensive. Hence advanced methods

are required to reduce the number of calls to the expensive computer codes.

Adaptive sampling based reliability analysis methods are one promising way

to reduce the number of numerical model evaluations. Reduced order mod-

elling is another one. In order to further reduce the numerical costs of kriging

based adaptive sampling approaches, the idea developed in this paper consists

in coupling both approaches by adaptively deciding whether to use reduced-

basis solutions in place of full numerical solutions whenever the performance

function needs to be assessed. Thus, a method combining such adaptive sam-

pling based reliability analysis methods and reduced basis modeling is proposed

based on an efficient coupling criterion. The proposed method enabled sig-

nificant computational cost reductions while ensuring accurate estimations of

failure probabilities.
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1. Introduction

Reliability analyses is an efficient tool to deal with the numerous uncer-

tainties present in engineering systems and thus determine the probability of

failure of these systems. Many recent developments in this field seek to address

increasingly complex numerical models, involving large physical and stochastic5

dimensions or even complex mechanical behaviors.

Generally speaking, a system failure mode is determined by a criterion from

which a so called performance function G is defined. A negative value of this

function corresponds to the failure of the system, whereas a positive value cor-

responds to an operational system. The limit between the failure and the safety10

domain is named limit state and corresponds to a null performance function. It

thus allows the calculation of the probability of failure.

Several reliability analysis techniques exist to estimate the probability of

failure such as analytic approximations (FORM/SORM), sampling methods

[1], surrogate-based reliability analysis methods which can be adaptive or not.15

Adaptive approaches have been proposed in particular for Kriging surrogates

[2] [3, 4, 5, 6, 7, 8], support vector machines [9, 10], Polynomial-Chaos-based

Kriging in [11]. For a fixed sampling technique, the probability of failure is

obtained by a classification of the samples, which is usually done by evaluating

the numerical model at the corresponding samples. However, sometimes it may20

not be necessary to compute the full numerical model for all the samples, as

many phenomena are very well described by a few dominant modes that can

be accurately estimated based on adjacent samples. This is the basic idea of

model order reduction approaches, which are used to reduce systems complexity

while best preserving the system’s response behaviour. In this paper, we focus25

on the model order reduction techniques known as reduced basis approaches or

reduced order models by projection [12, 13]. These methods rely on the projec-

tion of the governing equations of the physical model involved onto a subspace

of greatly reduced dimensionality compared to the initial space. Hence the res-

olution of the projected system involves a significantly reduced computational30
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cost. Following this concept, reduced basis techniques have already been com-

bined with several reliability analysis techniques such as first or second-order

reliability method or sampling based methods (i.e. Monte Carlo Simulations or

even Importance Sampling) [14] [15] [16] [17] [18]and were shown to be able to

lead to substantial computational savings. Presently, some of the most promis-35

ing methods for reliability analysis are the ones based on an adaptive sampling

approach. Kriging-based adaptive sampling methods [4] [19] [20] [21], which

are also the object of this work, consist in building a Kriging surrogate model

(Gaussian process interpolation) [22] of the performance function and using the

uncertainty structure of Kriging to enrich iteratively this surrogate model. At40

each iteration of the algorithm, the best candidate for the next simulation is

selected on the basis of a learning criterion and computed to increase the ac-

curacy of the Kriging metamodel. This learning criterion is built to learn the

limit state. In practice that means that the algorithm will enrich the metamodel

in the vicinity of the currently known limit state and also explore the design45

space in less known areas, i.e. areas where the metamodel variance is high. To

motivate our present work we can note that points in the vicinity of the limit

state might be close to other points already evaluated and consequently the

use of reduced-order solutions at these points are likely to have good accuracy

while accelerating the method. Enrichment points in regions of high variance50

could also potentially benefit from reduced basis modelling, since these points

can initially be calculated with the lower accuracy associated with reduced basis

models, which may be enough to clarify the performance function’s behaviour

in these areas.

Accordingly the objective of this paper is to propose a reliability analy-55

sis method based on the coupling of adaptive sampling and reduced basis ap-

proaches. The proposed approach can thus be seen as an adaptive fidelity

reliability analysis for the specific problems that are suitable for reduced basis

modelling. The main challenge for setting up such an approach resides in defin-

ing an appropriate coupling criterion, based on which to decide whether the60

reduced basis models can be used or whether the accuracy of the full numerical
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model is required. Different criteria based on a residual based error estimator

will be investigated: one quite simple criterion but which can sometimes have

poor accuracy and a preconditioning based criterion, which can potentially im-

prove accuracy. The rest of the article is organized as follows. We present in65

Section 2 the problem statement. In Section 3 we provide a presentation of

methods on which we build on such as an adaptive sampling based reliability

analysis and, more precisely, the AK-MCS algorithm [19]. Section 3 also intro-

duces the reduced-basis approach used in the present article. In Section 4 the

new method combining adaptive sampling techniques and reduced-basis model-70

ing is presented. First, we describe the overall framework of the proposed ap-

proach and then two implementations for the coupling of the algorithm AK-MCS

with reduced-basis modeling are proposed, based on different coupling criteria.

In Section 5 two application examples are considered. The first application

concerns a reliability analysis on a thermal problem related to a regenerativly75

cooled combustion chamber. The second one is the estimation of the probabil-

ity of failure of a laminated composite open hole plate based on the Tsäı-Hill

failure criterion. The performance of the proposed method is compared to the

AK-MCS results and computational gains assessed.

2. Problem statement80

This paper deals with reliability analyses involving certain numerically ex-

pensive models, specifically linear finite element models (e.g. in structural me-

chanics, heat exchange, etc). Let x1, ..., xm be the m uncertain parameters that

are input to the finite element model. These parameters are modeled by an

absolutely continuous random vector X of random variables Xi, i = 1, . . . ,m

characterized by a probability distribution with probability density function fX .

The output of the numerical model Y (X) is then also a random variable. Af-

ter finite element discretization of the equilibrium equation and the application

of boundary conditions the following linear system of N degrees of freedom is
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typically obtained:

K(x)u(x) = F (x) (1)

where K is an N × N matrix (called stiffness matrix in structural mechan-

ics), u ∈ RN the vector of the unknown state variables (e.g. displacements

in structural mechanics, temperatures in heat exchange, etc) and F ∈ RN the

vector of loadings (e.g. applied forces in structural mechanics, heat fluxes in

heat transfer). In the context of reliability, the output of interest is the per-

formance function G, which is considered here dependent on the state variable

u(x), solution of the finite element model:

G(x) = G(u(x), x) (2)

The performance function G : Rm → R characterizes the failure of a structure.

Hence the domain of failure reads Df = {x ∈ Rm, G(x) ≤ 0},the domain of

safety reads {x ∈ Rm, G(x) > 0} and the limit state is {x ∈ Rm, G(x) = 0}.

The failure probability Pf is then defined as:

Pf =

∫
Rm

1G(x)≤0fX(x)dx (3)

Several methods exist to obtain an estimation of this probability. One of the

simplest method is Monte Carlo Simulation (MCS). It consists in simulating a

random independent and identically distributed sample of size nMC with dis-

tribution fX and then classifying this population given the value taken by the

performance function. An estimation P̂f of the failure probability Pf is then

given by:

P̂fMC =
1

nMC

nMC∑
i=1

1G≤0(xi) (4)

where (x1, ..., xnMC ) corresponds to the Monte Carlo sample. The following

estimation of the coefficient of variation can be used to quantify the uncertainty

of the estimated failure probability:

ĈOVPfMC
=

√√√√ (1− P̂fMC)

nMC P̂fMC

(5)
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It can be seen on Eq. (5) that for a failure probability of 10−n, 10n+2 simulations

are needed to obtain an estimated coefficient of variation of about 10%. The

computational cost may thus be very important for computationally expensive

functions G. In the next section, an alternative approach based on adaptive

sampling is presented.85

3. Adaptive sampling based reliability analysis methods and Reduced-

Basis Modeling

3.1. Reliability analysis using a Kriging surrogate model

Sampling based classification methods need a lot of simulations to estimate

the failure probability. In order to avoid to evaluate a complex performance90

function G on a whole Monte Carlo population, an approximation by a surrogate

model of this function Ĝ can be used instead. However the accuracy of the

surrogate model needs to be controlled in the regions near the limit state in

order to allow an accurate classification of the Monte Carlo points in these

areas. For this purpose, Kriging based adaptive sampling methods allow to95

construct and enrich a Kriging metamodel by using the uncertainty structure of

this type of surrogate models to adaptively add learning points in regions that

contribute significantly to the probability of failure estimate. More specifically,

these methods use learning functions to select the best point to evaluate i.e. the

one which would improve the metamodel in the vicinity of the limit state.100

3.1.1. The Kriging surrogate model

Kriging, introduced in geostatistics by Krige [23] and formalized later by

Georges Matheron [24], is a method of interpolation in which the interpolated

function is modeled by a Gaussian process. For a dataset {G(x), x = (x1, ..., xn)}

Kriging or Gaussian Process [22] is fully characterized by the Kriging mean µ(x)

and a kernel (or covariance function) C(xi, xj) and can be defined as:

Ĝ(x) = µ(x) + Z(x) (6)

with:
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• the Kriging mean µ(x) = φ(x)β with φ(x) a basis functions vector and β

the associated regression coefficients.

• Z(x) a stationary zero mean Gaussian process with the variance σ2
Z such

that the kernel defining the Kriging is

C(xi, xj) = cov(Ĝ(xi), Ĝ(xj)) = σZΨ(xi, xj , θ),

Ψ being a user defined correlation function type.105

Finally, σZ , β and the hyperparameters θ must be estimated to approximate

the response for any unknown point of the domain. For a fixed kernel type,

several techniques exist to obtain the optimal values of these hyperparameters,

for example by Maximum Likelihood Estimation [25] or cross-validation [22].

Now consider a zero mean Gaussian process Ĝ, i.e. µ(x) = 0. The distribution110

of the Kriging prediction for an unknown point x∗, taking into account the a

priori distribution of the observations, is Gaussian with the mean and variance

given by the expressions:

µĜ(x∗) = K(x∗, x)K(x, x)−1y (7)

σ2
Ĝ

(x∗) = K(x∗, x∗)−K(x∗, x)K(x, x)−1K(x∗, x) (8)

withK : (x, x∗)→ K(x, x∗) the covariance matrix such thatK(x, x∗)ij = C(xi, x
∗
j ).

In the following section, the adaptive sampling reliability analysis method AK-115

MCS, which combines Kriging and Monte Carlo based Simulation, will be pre-

sented.

3.1.2. AK-MCS

The active learning reliability method combining Kriging and Monte Carlo

Simulation (AK-MCS) is an adaptive reliability estimation method proposed120

by Echard et al. [19], based on the interpolation of the performance function

by Kriging together with the use of a specific learning function and on the

Monte Carlo method. This method aims to classify a Monte Carlo population
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S without evaluating each sample with the numerically expensive performance

function. The different stages of AK-MCS are summarized in Fig. 1 and de-125

scribed below:

1. Generation of an initial Monte Carlo population S of nMC samples.

2. Initial Design of Experiments (DoE) D of n samples defined using sam-

pling methods such as Latin Hypercube Sampling (LHS). The performance

function G is then evaluated for the n samples.130

3. Construction of a Kriging metamodel Ĝ of the performance function G on

the DoE.

4. Estimation of the failure probability Pf on the Monte Carlo population S

according to the following equation:

P̂fAK−MCS ≈
nĜ≤0

nMC
(9)

5. The learning function U given in Eq. (10) is evaluated on the whole pop-

ulation S to find the best candidate to evaluate for enriching the Kriging

metamodel.

U(x) =
|µĜ(x)|
σĜ(x)

(10)

with µĜ(x) and σĜ(x) respectively the mean and standard deviation of

the Kriging model of Ĝ (see Eq. (7) and Eq. (8)).

6. If the learning stopping criterion defined by Eq. (11) is fullfiled the meta-

model is considered sufficiently accurate for the population S and the

active learning is stopped. Then the algorithm goes to step 8. Otherwise,

the algorithm goes to step 7.

min
x∈S

U(x) ≥ 2 (11)

7. The performance function is computed on the sample minimizing the135

learning function U and the DoE is enriched with this new point x∗. Then

the algorithm goes back to step 3.

8. The estimated value of the coefficient of variation (COV) on the probabil-

ity of failure ĈOVPfAK−MCS
is verified to ensure the consistency of the

8



Monte Carlo Simulations. In case the COV is too high, new samples are140

added to the Monte Carlo population used in AK-MCS and the method

goes back to step 7. Otherwise, if the COV is below a user defined thresh-

old the failure probability obtained with the AK-MCS method is the final

estimation.

Generation of a Monte Carlo population S

DoE of n points

Evaluation of G  
Building of the Kriging metamodel  

Computation of Kriging prediction at each
point of S 
Estimation of the probability of failure Pf  

Identification of the best point x using the
learning criterion

Yes

No
Stopping condition of learning

No
Stopping condition on C.O.V.Pf

Add of the point x to the DoE

Adding points to S End

n = n + 1

Yes

Figure 1: Flowchart of the AK-MCS Algorithm.

One can note that step 7 of the AK-MCS algorithm involves the resolution145

of the numerical model. Given the finite element models we consider here (of

the form given in Eq. (1)), the idea pursued in the present article is to reduce

the numerical cost of this step (and thus the whole reliability analysis) by ap-

plying model order reduction method to the resolution of Eq. (1) and to use the

obtained approximate solution in the AK-MCS algorithm if this approximation150
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reaches a given accuracy threshold. To this purpose, next Section introduces

the retained reduce basis approach.

3.2. Reduced-Basis Modeling

Model order reduction is a technique for decreasing the computational cost

associated to the resolution of a full order model in numerical simulations, i.e.

decrease the cost associated with the resolution of the system of Eq. (1). One

of the existing model order reduction approaches, which will be considered in

this work, is reduced-basis modelling or reduced-order modeling by projection.

This method aims at solving the system of equations (1) by projection onto a

reduced basis denoted Φ = (Φ1, . . . ,ΦnRB
), where Φi, i = 1, . . . , nRB ∈ RN .

The initial problem projected on the reduced basis Φ is then rewritten:

ΦTK(x)Φα(x) = ΦTF (x) (12)

where α ∈ RnRB are the coefficients of the state vector u expressed in the re-

duced basis Φ. Thus the new problem to solve is a linear system of nRB � N

equations. Indeed the projected problem involves the inversion of the projected

stiffness matrix ΦTKΦ ∈ RnRB×nRB and provides after resolution the vector α.

We should note that the projected matrix size is very low compared to the size

of the initial stiffness matrix which can reach millions of dof (degrees of freedom)

for large-scale finite elements problems. On the other hand, it was found empir-

ically and is generally accepted in the reduced order modelling community [12],

that the size of an acceptable reduced basis is in the order of a few dozen for

a large variety of engineering problems. The reduced solution is then obtained

as ũ = Φα. In practice, the exact error between the reduced solution and the

real one is not computed (since it would defeat any computational savings) but

the accuracy associated to the reduced basis solution can be estimated by the

following residual [15]:

εRB =
||KΦα− F ||2
||F ||2

(13)

So far, the reduced basis Φ, on which the problem is projected, was not specified

as many methods exist to define a projection subspace. In this paper, an on-the-155
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fly method [26], which will be described in details in the next section, is used to

construct the reduced basis. Indeed, this method is well suited to the combina-

tion with active learning as it consists in enriching the reduced basis iteratively

along the sequential reliability estimation procedure with all the simulations for

which the full solution of the system Eq. (1) was computed. In practice, both for160

the construction of the reduced-basis and for the computation of the residual,

the stiffness matrix K needs to be assembled. The computational cost of this

operation can be non negligible in general, however, for large-scaled problems

it becomes increasingly negligible compared with solving the system Eq. (1).

Besides the assembly of the matrix K, the computation of the residual εRB only165

involves matrix-vector products and differences whose computational costs are

also insignificant for problems of large dimensions. Model order reduction is

thus a powerful technique to reduce computational time and its use within the

AK-MCS approach is proposed in the following.

4. Proposed Method170

4.1. General concept

We propose here an hybrid reliability analysis method coupling active learn-

ing approaches and reduced-basis modeling. Indeed, some points of the DoE

may not need to be evaluated using the full numerical simulations. Points lo-

cated close to the limit state might be in the vicinity of other infill points which175

have previously been computed (using the full order model) and consequently

reduced-order solutions at these points are likely to have good accuracy. The

proposed procedure starts with the definition of an initial DoE which at the

same time serves to initialize both the surrogate model and the reduced basis.

In fact, the first point of the DoE is evaluated with the full numerical model180

and is considered as the first element of the reduced basis. At each point of the

DoE, the response of the reduced-basis model and a criterion on the accuracy

of the reduced solution are computed. Then, based on the accuracy criterion it

is decided either to use the reduced solution or to solve the full order model. In

11



this case the solution computed using the full order is also used to enrich the185

reduced basis Φ. A surrogate is then fitted using both reduced and complete

solutions. At each iteration of the learning phase the same operations are car-

ried out to evaluate the infill points. In the next sections the method combining

the algorithm AK-MCS and reduced basis modeling with different criteria is

described.190

4.2. Coupling of AK-MCS and reduced-basis modeling

We propose here an algorithm combining the method AK-MCS and reduced

basis modeling based on the framework presented in the previous sections. It

involves to take in consideration reduced solutions in the initialization and learn-

ing phases of AK-MCS. The algorithm of the proposed method is provided in195

Algorithm 1 and described below. The algorithm starts with the initialization

of the reduced basis. Therefore, the first sample of the initial DoE is computed

and normalized to serve as the first element Φ1 of the reduced basis. Then all

other samples of the DoE, i.e. samples of the inital DoE and infill points added

in the learning phase, are evaluated according to the following steps:200

1. Computation of the reduced solution ũi at the point xi by projection on

the available reduced basis.

2. Computation of the residual εRB for the previous solution based on Eq. (13).

3. Evaluation of the accuracy of the solution ũi. If the value of εRB is below a

user defined threshold ε, the reduced solution is considered to be accurate205

enough and is added to the DoE. Otherwise, go to next step.

4. If the reduced solution is found not to be accurate enough based on the

previous threshold, the full numerical problem is solved. The associated

result ui is added to the DoE and also used to enrich the reduced basis

after orthonormalization as shown in Eq. (14) and (15).210
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Φi = ui −
i−1∑
k=1

< ui,Φk > Φk (14)

Φi =
Φi
||Φi||2

(15)

with < ·, · > the L2 scalar product.

The proposed method adaptively makes the choice of using reduced-basis

solutions or the full numerical model. This coupling can thus greatly reduce

the execution time of AK-MCS since the computation of reduced solutions and

residuals are less expensive than the resolution of the full finite element problem.215

4.3. Coupling of AK-MCS and reduced-basis modeling with preconditioned resid-

uals

While the residuals of Eq. (13) can be used as a first estimation of the

accuracy of the reduced basis solution it may be insufficiently accurate in some

cases, depending in particular on the conditioning number of the stiffness matrix.

Furthermore, it may not be easy to decide on a threshold based on the relative

residual of Eq. (13) which is defined on the loading vector, as one is more

interested in the relative error on the state variable vector (e.g. displacement

vector). The use of a preconditioner P can thus improve the error estimators

based on the residuals [27] as the precondioned residual is homogeneous to the

state variable. Thus, the following preconditioned residual is also considered in

this section:

εPRB =
||P−1KΦα− P−1F ||2

||P−1F ||2
(16)

The computation of the preconditioned residual εPRB is in general more expen-

sive than the computation of εRB due to the computation of the term P−1KΦα.

However for preconditioners that are independent of the parameter x, the de-220

composition of P can be stored once for all. Thus the only cost is the resolution

of the system according to the type of factorization chosen, which has to be

done in any case, and which thus does not induces any significant additional
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Algorithm 1: Coupling algorithm

Generate a Monte Carlo population S of size nMC

Define an initial DoE D of n samples

u← solution of K(x1)u(x1) = F (x1)

ydoe ← G(u, x1)

for x ∈ D\{x1} do

α← solution of ΦTK(x)Φα(x) = ΦTF (x); u← Φα

εRB ← ||KΦα−F ||2
||F ||2

if εRB > ε then

u← solution of K(x)u(x) = F (x)

V ← u− Φ(ΦTu) ; Φ← [Φ, V
||V ||2 ]

ydoe ← [ydoe, G(u, x)]

while COV < 10% do

while learning stopping criterion not reached do

Fit Kriging model Ĝ with (D, ydoe)

Ŷ , σY ← Ĝ(x),∀x ∈ S

Pf ←
nĜ≤0

nMC
; COV ←

√
1−Pf

Pf ·nMC

Ulearning ← |Ŷ |
σY

x← arg min
x′∈S

Ulearning(x
′)

if Ulearning(x) < 2 then

α← solution of ΦTK(x)Φα(x) = ΦTF (x); u← Φα

εRB ← ||KΦα−F ||2
||F ||2

if εRB > ε then

u← solution of K(x)u(x) = F (x)

V ← u− Φ(ΦTu); Φ← [Φ, V
||V ||2 ]

D ← [D,x] ; ydoe ← [ydoe, G(u, x)]

else
learning stopping criterion reached

Generate a Monte Carlo population S∗ of size nMC

S ← [S, S∗]

End of algorithm
14



computational cost. Hence the previously proposed method for coupling AK-

MCS and reduced basis modeling can be improved by using the preconditioned225

residual εPRB in order to improve the residual based error estimation used to

decide if the reduced solution is accurate enough to be used in place of the full

numerical solution. There exist several ways of constructing a preconditioner.

In this paper, the proposed method will be run with two possible preconditioner

construction techniques:230

• the mean point preconditioner [28]: the full numerical model is computed

at the mean point of the physical design space and the resulting matrix

K0 serves as preconditioner P = K0.

• the nearest point preconditioner: every time the full numerical model is

computed to enrich the reduced basis, the matrix Ki = K(xi) is stored to235

serve as a possible preconditioner (let us denote Xfull = {xi, i = 1, . . . , nfull} ⊂ S

which contains the point where the full solution has been computed).

Then, for each sample evaluation, at point x∗ 6⊂ S, the preconditioned

residual is computed using P = Ki where xi = min
x∈Xfull

||x− x∗||2.

The two proposed strategies coupling AK-MCS and reduced-basis modeling with240

or without the use of a preconditioner are numerically investigated to compare

their performances on two applications. The first one concerns a thermal prob-

lem and the second one a mechanical problem.

5. Applications

In the following, the two numerical applications are presented. For each one245

a description of the physical problem is given followed by the numerical com-

parisons between the different strategies to estimate the probability of failure.

5.1. First application example: Reliability analysis on a thermal problem

5.1.1. Description of the problem

In this section, the application considered is a reliability analysis, which in-250

volves the heat transfer through the combustion chamber wall of a regeneratively

15



cooled rocket engine [29, 30, 15]. In such an engine, liquid hydrogen (LH2) flow-

ing through cooling channels in the combustion chamber wall at a temperature

of 40K is used for cooling the engine. We consider that failure occurs when the

maximum temperature of the inner wall of the combustion chamber exceeds a255

critical value Tallow, which corresponds to the cooling channel walls rupture.

Figure 2: Schematic of a regeneratively cooled rocket engine combustion chamber.

A schematic of the combustion chamber of a typical regeneratively cooled

liquid hydrogen (LH2) liquid oxygen (LOX) rocket engine is shown on Fig. 2.

As illustrated on this figure, two different parts made of two different materials

form the combustion chamber wall: an internal side made of a copper alloy and260

an external jacket made of a Ni alloy. Heat exchanges may happen through

convection between the combustion chamber wall and the sources of heat (com-

bustion chamber gases) and cooling (liquid hydrogen) and also with the exterior.

Considering these boundary conditions, the resulting thermal transfer depends

of the following parameters: the conductivity of the inner side of the wall (kCu),265

the conductivity of the jacket (kNi), the temperature of the gases on the inner

side of the combustion chamber (Thot), the film convection coefficient on the in-

ner side of the combustion chamber (hhot), the temperature on the outer side of
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the combustion chamber (Tout), the film convection coefficient on the outer side

of the combustion chamber (hout), the temperature of the cooling fluid (Tcool)270

and the film convection coefficient on the cooling channel side (hcool). These

parameters and the maximum temperature allowable Tallow are supposed to be

uncertain and are modeled by independent random variables following proba-

bility distributions given in Table 1. Thermal field at stationary equilibrium

is obtained by resolution of a convection-diffusion equation by a finite element275

approach. The finite element mesh of the combustion chamber wall and the

boundary conditions are illustrated in Fig. 3.

Figure 3: Finite element mesh of the combustion chamber wall and the boundary conditions

of the thermal problem.

Input kCu kNi Thot hhot Tout hout Tcool hcool Tallow

Unit W/mK W/mK K kW/m2K K kW/m2K K kW/m2K K

Probability law Gaussian Gaussian Uniform Uniform Uniform Uniform Uniform Uniform Uniform

Mean 310 75 900 31 293 6 40 250 230

COV 2% 2%

Half-range 10% 10% 5% 5% 5% 10% 7.5%

Table 1: Probability distributions of the thermal problem parameters.
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Here an in-house finite element solver coded in Python is used to compute

the thermal field. Thus we have access to the maximum temperature and we can

deduce the performance function, defined here as G(x) = Tallow(x) − Tmax(x).280

Then the failure probability can be estimated using Monte Carlo sampling or

using AK-MCS based strategies. The results of these comparisons are presented

in the following.

5.1.2. Results

First, a Monte Carlo Simulation was run to have an accurate estimation285

of the failure probability used as reference in the following comparison. The

estimation obtained with standard Monte Carlo was P̂fMC = 6.22 · 10−3 with

an estimated COV of 5.65% (for nMC = 5× 104). The AK-MCS method was

implemented using the reduced-basis coupling with the classical and the mean

point preconditioned residual criteria. These two methods were run on the290

same thermal problem described in the previous section. In order to verify

the residual is a valid coupling criterion, the Pearson correlation coefficient

between the residual and the real error is estimated (real error is defined as

the error between the reduced solution and the finite element solution). The

samples used for this estimation are the points used during the construction of295

the reduced basis by Algo. 1. As depicted on Fig. 4, the preconditioned residual

is almost perfectly correlated to the real error, which can be explained by the

well-posedness of the problem. The correlation between the real error and the

non preconditioned residual has a lower score but seems to be quite good for

very small errors under 5× 10−3.300
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Figure 4: Correlation between the residuals and the real error for the thermal problem.

The graphical representation of the first three modes of a temperature re-

duced basis constructed on-the-fly during a run of the coupling based on εRB

for ε = 10−3 is given in Fig. 5. The construction methodology used implies that

the first mode is the dominant mode, meaning that it is the one that represents

the best the typical thermal fields. However, to capture finer variations of the305

thermal field and thus achieve accurate reduced solutions, additional basis vec-

tors (corresponding to additional modes) are needed. Therefore it is interesting

to study the influence of the value ε taken as threshold for the coupling criterion

on the proposed method’s performances. To this end, the following procedure

is carried out:310

• Run AK-MCS algorithm and save the resulting DoE (i.e. initial DoE and

infill points)

• For varying threshold ε, apply the reduced basis coupling on the samples

of the AK-MCS DoE in the same order they were added by AK-MCS

algorithm.315

Here two criteria are used to compare the proposed method performances for

different ε:
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Mode 1 Mode 2 Mode 3

Figure 5: First three temperature modes obtained using the on-the-fly constructing procedure

through AK-MCS for the thermal problem.

• the speed up achieved by using the proposed method over AK-MCS, i.e.

the ratio of number of evaluations of the full numerical model in AK-

MCS to the number of its evaluations when using the coupling. Note that320

we only compare the ratios of the full numerical models, as the cost of

inverting the reduced basis model becomes negligible as the size (number

of degrees of freedom) of the problem increases.

• the relative accuracy of the failure probability estimation. Here we com-

pare the estimations of P̂fAK−MCS+RB and P̂fAK−MCS on the same325

initial DoE and Monte Carlo population. The relative accuracy is thus

defined by the formula 1− |P̂fAK−MCS
−P̂fAK−MCS+RB

|
P̂fAK−MCS

where a perfect ac-

curacy will have a value equals to 1.

In order to take into account the stochastic variation of the AK-MCS approach

in the assessment of the influence of the parameter ε, the previous procedure was330

run 10 times for different initial DoEs and Monte Carlo populations. The mean

of the two criteria described just above were thus computed for different values

of the threshold. Their evolution is given on Fig. 6 for the non preconditioned
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residual εRB and on Fig. 7 for the preconditioned residual εPRB .

Figure 6: Accuracy (red stars) of Pf and speed up (blue dots) of the proposed method as a

function of the threshold ε on the non preconditioned residual for different constant DoEs and

Monte Carlo generated by AK-MCS algorithm for the thermal problem.

Figure 7: Accuracy (red stars) of Pf and speed up (blue dots) of the proposed method as a

function of the threshold ε on the preconditioned residuals for different constant DoEs and

Monte Carlo generated by AK-MCS algorithm for the thermal problem.

From these figures a good compromise between speed up obtained by the335

proposed algorithm and accuracy of the probability of failure estimate results

seems to be reached for ε = 10−3. It can also be noted that even if the cor-
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relation of the real error with the non preconditioned residual is not as good

as if preconditioning is used (as shown by Fig. 4), it is sufficient here to obtain

satisfying results in terms of estimating the probability of failure. On the basis340

of these results, AK-MCS and the proposed methods are now compared in more

details for ε = 10−3. Compared to the previous study, one should note that,

in the proposed approach, the selection of enrichment points is now potentially

led by the solution obtained using the reduced basis approximation. For each

version of the proposed methods (with and without preconditioning) 30 compu-345

tations of both the proposed method and AK-MCS for a same initial DoE and

Monte Carlo population have been run. The sample mean Pf and corrected

sample standard deviation σPf
based on the results of these runs can be found

on Table 2 and Table 3.

Pf σPf

AK-MCS 6.52× 10−3 1.88× 10−4

AK-MCS + RB 6.52× 10−3 1.90× 10−4

Table 2: Mean results of AK-MCS and AK-MCS + RB with no preconditioned residual for

the thermal problem.

Pf σPf

AK-MCS 6.52× 10−3 1.88× 10−4

AK-MCS + RB 6.52× 10−3 1.88× 10−4

Table 3: Mean results of AK-MCS and AK-MCS + RB with preconditioned residual for the

thermal problem.

First of all, note that the sample means obtained for the AK-MCS algorithm350

and for the proposed method are consistent with the Monte-Carlo reference

P̂fMC = 6.22 · 10−3 (with an estimated COV of 5.65%). More precisely, the

sample mean obtained for both proposed method variants are very close to the

AK-MCS reference P̂fAK−MCS sample mean. Note as well that the values of the
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estimated variances don’t take extreme values when the reduced basis is used355

and are even very close to the reference σ̂
P̂fAK−MCS

, especially for the precondi-

tioned residual strategy. For these computations the speed up of the algorithm

in terms of full numerical simulations is of 6.372 for the preconditioned residual

strategy and of 5.736 for the non preconditioned residual strategy. Moreover,

for a run of the coupling algorithm with and without preconditioning full evalu-360

ations represent on average respectively 29.4% and 36.1% of the total number of

evaluations, corresponding respectively to 6.7 basis vectors out of 38.1 evaluated

samples and 6 basis vectors out of 40.66 evaluated samples in average.

To confirm these promising results, a second, numerically more complex

application is investigated in the following.365

5.2. Second application example: failure of a bending composite laminate plate

with a hole

5.2.1. Description of the problem

We now consider the application of the proposed methods on a mechanical

problem involving a potentially non-symmetric laminates, due to uncertainties

in the ply layup. The test case illustrated on Fig. 8 is the reliability analysis of

a laminated plate with a hole under under uniform vertical pressure considering

the Tsäı-Hill failure criterion recalled below:(
σL(θ, h)

Xult

)2

+

(
σT (θ, h)

Yult

)2

+

(
τLT (θ, h)

τult

)2

− σL(θ, h)σT (θ, h)

X2
ult

> 1 (17)

where Xult, Yult and τult are the ultimate strengths and σL, σT and τLT are

respectively the longitudinal, transverse and shear stresses. The variables θ and370

h are respectively the fiber orientation angles and the ply thickness for each of

the six plies of the laminate. It is assumed that, due to manufacturing uncer-

tainties, these parameters are random and thus are modeled by the following

independent random variables:

• the ply thicknesses hi follow gamma distributions Γ(µ, σ, γ) with param-375

eters provided in Table 4,
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Figure 8: Boundary conditions and loading on the laminated plate.

• the fiber orientation angles θi follow uniform distributions U(a, b) with

parameters provided in Table 5.

µ 2 · 10−4

σ 2 · 10−5

γ 0

Table 4: Parameters of the gamma probability distribution used to model all ply thicknesses.

θ1 θ2 θ3 θ4 θ5 θ6

a -2.5 42.5 -47.5 -47.5 42.5 -2.5

b 2.5 47.5 -42.5 -42.5 47.5 2.5

Table 5: Parameters of the uniform probability distributions used to model the fiber orienta-

tion angles.

Note that the nominal laminate is thus assumed to have a ply thickness of

0.2 mm and a layup of [0, 45,−45]s. However due to uncertainties, the actual380

laminate may have different values, in particular it is non-symmetric in general.

A MATLAB-based in-house finite element solver is used here to compute the

stress field. We used a four-node Mindlin shell element with five degrees of
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freedom per node with a shear correction factor computed according to [31].

The finite element mesh of the laminate used here is illustrated in Fig. 9. The385

elastic constants of a ply are provided in Table 6. The longitudinal ultimate

tensile and compression strengths (resp. XT
ult and XC

ult), transversal ultimate

tensile and compression strengths (resp. Y Tult and Y Cult) and ultimate in-plane

shear strength (τult) of the ply are provided in Table 7.

Figure 9: Finite element mesh of the laminated plate with a hole.

E1 E2 ν12 G12

181 GPa 10.3 GPa 0.28 7.17 GPa

Table 6: Ply elastic constants.

XT
ult XC

ult Y Tult Y Cult τult

997 MPa 847 MPa 38 MPa 198 MPa 60 MPa

Table 7: Ply ultimate stresses.

In the next section, the failure probability will be estimated using AK-MCS390

and reliability analysis based on the proposed strategy in order to test the

performances of the coupling on the presented problem.
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5.2.2. Results

First, a Monte Carlo Simulation was run to have an accurate estimation of

the failure probability of this problem. The estimation obtained with standard395

Monte Carlo was P̂fMC = 5.4 · 10−4 with an estimated COV of 9.62% (for

nMC = 2× 105).

Then, a similar study as the one for the thermal problem was carried on

this problem. First the correlation between the residuals and the real error

was estimated. Figure 10 presents the correlation when the residual is not400

preconditioned. It can be seen on this figure that the coefficient of correlation

between the non preconditioned residual and the real error is very low and that

many residuals take values greater than 1. This is probably due to the higher

ill-conditioning of this problem, compared to the previous one, in particular due

to the non symmetric laminates that are considered, inducing bending-shear405

coupling. On the basis on these results, it would be quite hard to find an

efficient threshold ε and ensure the effectiveness of the coupling.

Figure 10: Correlation between the classical residual and the real error for the plate with a

hole problem.

Hence the correlation with preconditioned residuals was considered next.

Given the higher numerical complexity of this application, both precondition-

ers presented in Section 4.3 were tested. As seen in Fig. 11, the two proposed410
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preconditioners have similar performances for this problem and the coefficients

of correlation are almost equal to 0.96 which is a significant improvement com-

pared to non preconditioned residual (cornoprec = 0.42). For these reasons, the

following computations with the proposed method will be run using the mean

point preconditioner to evaluate the residuals.415

Figure 11: Correlation between the preconditioned residuals and the real error for the lami-

nated plate with a hole problem.

As in the thermal problem, the first modes of the displacement field con-

structed on-the-fly during a run of the coupling, based on εPRB for ε = 10−3, can

be graphically represented. The representations of the four first basis vectors

of the displacement field in the out of plane direction are given in Fig. 12. The

first mode has obviously much similarity with the general shape of the displace-420

ment field, which again is asymmetric, due to the non-symmetric laminates and

induced bending shear coupling. For this same reason, the higher modes repre-

sented describe even more complex variations of the displacement fields. Hence,

due to this relatively complex behaviour it can be expected that more modes

will be required on this application to satisfy the error criterion ε = 10−3.425

The performance of the proposed methods for different thresholds on εPRB

was studied next, following the same process as for the first application, i.e.

using the coupling strategy on a fixed DoE generated during a run of AK-MCS
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Mode 1 Mode 2

Mode 3 Mode 4

Figure 12: First four Z-displacement modes obtained using the on-the-fly constructing proce-

dure through AK-MCS for the laminated plate with a hole problem.
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for varying thresholds. The mean values of the speed up and accuracy computed

over 10 runs as a function of ε are given on Fig. 13.430

Figure 13: Accuracy (red stars) of the failure probability Pf and speed up (blue dots) as a

function of the threshold ε on the preconditioned residuals for different constant DoEs and

Monte Carlo generated by AK-MCS algorithm for the laminated plate with a hole problem.

According to Fig. 13 the best compromise between accurate estimations

and a consequent acceleration of the reliability analysis method lies again at

ε = 10−3. Then AK-MCS and the proposed method were run 40 times for dif-

ferent initial DoEs and Monte Carlo populations with ε = 10−3. The resulting

sample means Pf and corrected sample standard deviation σPf
are given in Ta-435

ble 8. The mean failure probability estimated by the proposed method is in the

95% confidence interval of the mean results of AK-MCS [4.39×10−4, 4.85×10−4].

Moreover the corrected sample standard deviations are in the same order of mag-

nitude whether reduced basis solutions are used or not. On average, the use of

the proposed methods over AK-MCS allows a speed-up of 7.1. Furthermore,440

for a run of the coupling algorithm full numerical evaluations represent on aver-

age only 16.4% of the total number of evaluations, corresponding to 14.35 basis

vectors out of 111.15 evaluated samples on average.
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Pf σPf

AK-MCS 4.62× 10−4 4.94× 10−5

AK-MCS + RB 4.47× 10−4 5.19× 10−5

Table 8: Mean results of AK-MCS and AK-MCS + RB with preconditioned residual for the

laminated plate with a hole problem.

6. Conclusions

The present article proposes strategies to improve the efficiency of adaptive445

sampling surrogate based reliability analysis techniques based on the use of

reduced basis solutions over expensive full numerical solutions, made possible by

an adaptive construction of an efficient reduced basis. The proposed approach

first initializes a reduced basis during the initial phase of the active learning

algorithm. Then, based on a reduced solution accuracy criterion it decides for450

each point either to use the reduced solution or to solve the full numerical model.

As the learning phase of the adaptive sampling concentrates the choice of infill

points in the vicinity of the limit state, reduced-basis modeling may be very

efficient as new points are likely to be close to many already computed points.

Two different implementations of the approach were proposed, differing in terms455

of the reduced basis coupling crietrion. The applications have highlighted the

limitations on a criterion based on a basic residual and the usefulness of an

improved criterion based on a preconditioned residual. The performance of the

proposed approach was also assessed on the two applications, which have shown

that the coupling has a great potential of reducing the computational costs.460

The speed up is of course dependent of the problem, but on the application

problems considered the speed up reached up to a factor of 7.1. A perspective

to improve the coupling criterion is to look at the exploration phase during the

learning. Indeed, according to the current definition of the criterion, infill points

in less known area are likely to be evaluated using the full numerical model as465

they are located far from other points. However to clarify the behaviour of
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the performance function in less known area due to a high variance reduced

solutions may be sufficient in a first step. This consideration could be taken

into account in the coupling criterion and may be the subject of a later work.
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