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Abstract

Running a reliability analysis on engineering problems involving complex numer-

ical models can be computationally very expensive. Hence, advanced methods

are required to reduce the number of calls to the expensive computer codes.

Adaptive sampling based reliability analysis methods are one promising way to

reduce computational costs. Reduced order modelling is another one. In order

to further reduce the numerical costs of Kriging based adaptive sampling ap-

proaches, the idea developed in this paper consists in coupling both approaches

by adaptively deciding whether to use reduced-basis solutions in place of full

numerical solutions whenever the performance function needs to be assessed.

Thus, a method combining such adaptive sampling based reliability analyses

and reduced basis modeling is proposed using on an efficient coupling criterion.

The proposed method enabled significant computational cost reductions, while

ensuring accurate estimations of failure probabilities.

Keywords: Reliability analysis, Kriging, Adaptive approaches,

Finite elements, Reduced order modeling, Reduced basis

1. Introduction

Reliability analyses are an efficient tool to deal with the numerous uncer-

tainties present in engineering systems and thus determine the probability of

failure of these systems. Many recent developments in this field seek to address
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increasingly complex numerical models, involving large physical and stochastic5

dimensions or even complex mechanical behaviors.

Generally speaking, a system failure mode is determined by a criterion de-

fined by a so-called performance function. By convention, a negative value of

this function corresponds to the failure of the system, whereas a positive value

corresponds to an operational system. The limit between the failure and the10

safety domain is named limit state and corresponds to a null performance func-

tion. It thus allows the calculation of the probability of failure.

Several reliability analysis techniques exist to estimate the probability of

failure such as analytic approximations (FORM/SORM), sampling methods

[1], surrogate-based reliability analysis methods which can be adaptive or not.15

Adaptive approaches have been proposed in particular for Kriging surrogates

[2, 3, 4, 5, 6, 7, 8, 9], support vector machines [10, 11], polynomial-chaos-based

Kriging in [12]. For a fixed sampling technique, the probability of failure is

obtained by a classification of the samples, which is usually done by evaluating

the numerical model at the corresponding samples. However, sometimes it may20

not be necessary to compute the full numerical model for all the samples, as

many phenomena are very well described by a few dominant modes that can be

accurately estimated based on adjacent samples. This is the basic idea of model

order reduction approaches, which are used to reduce a system’s complexity

while best preserving the system’s response behaviour. In this paper, we focus25

on the model order reduction techniques known as reduced basis approaches or

reduced order models by projection [13, 14]. These methods rely on the projec-

tion of the governing equations of the physical model involved onto a subspace

of greatly reduced dimensionality compared to the initial space. Hence the res-

olution of the projected system involves a significantly reduced computational30

cost. Following this concept, reduced basis techniques have already been com-

bined with several reliability analysis techniques such as first or second-order

reliability method or sampling based methods (i.e. Monte Carlo Simulations or

even Importance Sampling) [15, 16, 17, 18] and were shown to be able to lead

to substantial computational savings. Presently, some of the most promising35
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methods for reliability analysis are the ones based on an adaptive sampling ap-

proach. Kriging-based adaptive sampling methods which are also the object

of this work, consist in building a Kriging surrogate model (Gaussian process

interpolation) [19, 20] of the performance function and using the uncertainty

structure of Kriging to enrich iteratively this surrogate model. At each itera-40

tion of the algorithm, the best candidate for the next simulation is selected on

the basis of a learning criterion and computed to increase the accuracy of the

Kriging metamodel. This learning criterion is built to learn the limit state.

Several adaptive methods have been proposed such as the efficient global

reliability analysis (EGRA) by Bichon et. al [4] or Active learning reliability45

method combining Kriging and Monte Carlo Simulations (AK-MCS) by Echard

et. al [21]. Other methods have also been presented to address specific problems

such as small failure probabilities (rare events) estimations [3, 22, 23, 24, 25,

7, 26] , multiple failure regions problems [27, 28, 29, 30] or systems failure

probabilities assessment [6, 31, 5, 2, 9, 32].50

In practice algorithms will enrich the metamodel in the vicinity of the cur-

rently known limit state and also explore the design space in less known areas,

i.e. areas where the metamodel variance is high. To motivate our present work

we can note that points in the vicinity of the limit state might be close to other

points already evaluated and consequently the use of reduced-order solutions55

at these points are likely to have good accuracy while accelerating the method.

Enrichment points in regions of high variance could also potentially benefit from

reduced basis modelling, since these points can initially be calculated with the

lower accuracy associated with reduced basis models, which may be enough to

clarify the performance function’s behaviour in these areas.60

Accordingly the objective of this paper is to propose a reliability analy-

sis method based on the coupling of adaptive sampling and reduced basis ap-

proaches. The proposed approach can thus be seen as an adaptive fidelity reli-

ability analysis [33] for the specific problems that are suitable for reduced basis

modelling. Indeed, the reduced basis model is a low-fidelity model with in-65

creasing fidelity as the reduced basis is enriched. Hence, low-fidelity solutions
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can be used when they are sufficiently accurate, or if it is necessary the fidelity

can be increased by using the high-fidelity model. The main challenge for set-

ting up such an approach resides in defining an appropriate coupling criterion,

based on which to decide whether the reduced basis models can be used or70

whether the accuracy of the full numerical model is required. Different criteria

based on a residual based error estimator will be investigated: one quite simple

criterion but which can sometimes have poor accuracy and a preconditioning

based criterion, which can generally improve accuracy. The rest of the article

is organized as follows. We present in Section 2 the problem statement. In75

Section 3 we provide a presentation of methods on which we build on: adaptive

sampling based reliability analysis and, more precisely, the AK-MCS algorithm

[21]. Section 3 also introduces the reduced-basis approach used in the present

article. In Section 4 the new method combining adaptive sampling techniques

and reduced-basis modeling is presented. First, we describe the overall frame-80

work of the proposed approach. Then two implementations for the coupling

of the algorithm AK-MCS with reduced-basis modeling are proposed, based on

different coupling criteria. In Section 5 two application examples are considered.

The first application concerns a reliability analysis on a thermal problem related

to a regenerativly cooled combustion chamber. The second one is the estima-85

tion of the probability of failure of a laminated composite open hole plate based

on the Tsaï-Hill failure criterion. The performance of the proposed method is

compared to the AK-MCS results and computational gains assessed.

2. Problem statement

This paper deals with reliability analyses involving certain numerically ex-

pensive models, specifically linear systems obtained by finite element discretiza-

tion (e.g. in structural mechanics, heat transfer, etc). Let x1, ..., xm be the m

uncertain parameters that are inputs to the finite element model. These pa-

rameters are modeled by an absolutely continuous random vector X of random

variables Xi, i = 1, . . . ,m characterized by a probability distribution with prob-
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ability density function fX . The output of the numerical model Y (X) is then

also a random variable. After finite element discretization of the equilibrium

equation and the application of boundary conditions the following linear system

of n degrees of freedom is typically obtained:

K(x)u(x) = F (x) (1)

whereK(x) is an n×n matrix (called stiffness matrix in structural mechanics),

u(x) ∈ Rn the vector of the unknown state variables (e.g. displacements in

structural mechanics, temperatures in heat exchange, etc) and F (x) ∈ Rn the

vector of loadings (e.g. applied forces in structural mechanics, heat fluxes in heat

transfer). In the context of reliability, the output of interest is the performance

function G(x), which is considered here dependent on the state variable u(x),

solution of the finite element model:

G(x) = G(u(x),x) (2)

The performance function G : Rm → R characterizes the failure of a structure.

Hence the domain of failure reads Df = {x ∈ Rm, G(x) ≤ 0},the domain of

safety reads {x ∈ Rm, G(x) > 0} and the limit state is {x ∈ Rm, G(x) = 0}.

The failure probability Pf is then defined as:

Pf =

∫
Rm

1G(x)≤0fX(x)dx (3)

Several methods exist to obtain an estimation of this probability. One of the

simplest method is Monte Carlo Simulation (MCS). It consists in simulating

a random independent and identically distributed sample x1, ...,xnMC of size

nMC with distribution fX and then classifying this population given the value

taken by the performance function. An estimation P̂f of the failure probability

Pf is then given by:

P̂fMC =
1

nMC

nMC∑
i=1

1G(x)≤0(xi) (4)
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The following estimation of the coefficient of variation (COV) can be used to

quantify the uncertainty of the estimated failure probability:

ĈOVPfMC
=

√√√√ (1− P̂fMC)

nMC P̂fMC

(5)

It can be seen in Eq. (5) that for a failure probability of 10−n, 10n+2 simulations90

are needed to obtain an estimated coefficient of variation of about 10%. The

computational cost may thus be very important for computationally expensive

functions G(x). In the next section, an alternative approach based on adaptive

sampling is presented.

3. Adaptive sampling based reliability analysis methods and Reduced-95

Basis Modeling

3.1. Reliability analysis using a Kriging surrogate model

Sampling based classification methods need a lot of simulations to estimate

the failure probability. In order to avoid to evaluate a complex performance

function G(x) on a whole Monte Carlo population, an approximation by a sur-100

rogate model of this function Ĝ(x) can be used instead. However the accuracy

of the surrogate model needs to be controlled in the regions near the limit state.

For this purpose, Kriging based adaptive sampling methods allow to construct

and enrich a Kriging metamodel by using the uncertainty structure of this type

of surrogate models to adaptively add learning points in regions that contribute105

significantly to the probability of failure estimate. More specifically, these meth-

ods use learning functions to select the best point to evaluate i.e. the one which

would improve the metamodel in the vicinity of the limit state.

3.1.1. The Kriging surrogate model

Kriging, introduced in geostatistics by Krige [34] and formalized later by

Georges Matheron [35], is a method of interpolation in which the interpolated

function is modeled by a Gaussian process. A Kriging or Gaussian Process
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(GP ) [19] G is fully characterized by the Kriging mean m(x) and a kernel (or

covariance function) k(·, ·) and can be defined as:

G(x) = m(x) + Z(x) (6)

with:110

• the Kriging mean m(x) = Φ(x)β with Φ(x) a basis functions vector and

β the associated regression coefficients.

• Z(x) a stationary zero mean Gaussian process with the variance σ2
Z such

that the kernel defining the Kriging is

k(v,w) = cov(G(v),G(w)) = σZΨ(v,w,θ),

Ψ being a user defined correlation function type.

Finally, the hyperparameters θ, σZ , β must be estimated to approximate the

response for any unknown point of the domain. For a fixed kernel type, sev-115

eral techniques exist to obtain the optimal values of these hyperparameters, for

example by Maximum Likelihood Estimation [36] or cross-validation [19].

The prior distribution of G is considered to be Gaussian. Hence, the posterior

distribution of G knowing the observations {y = G(xdoe),xdoe = (x1, ...,xn)} is

Gaussian G|y,xdoe ∼ GP (µĜ(·), σ2
Ĝ

(·)). The mean and variance of the Kriging

predictor Ĝ(x∗) of the response G(x∗) at a point x∗ are then given by the

expressions:

µĜ(x∗) = m(x∗) + k(x∗)C−1(y −m(x∗)1) (7)

σ2
Ĝ

(x∗) = k(x∗,x∗)− k(x∗)TC−1k(x∗) (8)

where k(x∗) = (k(x∗,x1), . . . , k(x∗,xn))T and C := (k(xi, xj))i,j is the

covariance matrix between the observations.

In the following section, the adaptive sampling reliability analysis method120

AK-MCS, which combines Kriging and Monte Carlo based Simulation, will be

presented.
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3.1.2. AK-MCS

The active learning reliability method combining Kriging and Monte Carlo

Simulation (AK-MCS) is an adaptive reliability estimation method proposed by125

Echard et al. [21], based on the interpolation of the performance function by

Kriging together with the use of a specific learning function and on the Monte

Carlo method. This method aims to classify a Monte Carlo population S with-

out evaluating each sample with the numerically expensive performance func-

tion. The different stages of AK-MCS are summarized in Fig. 1 and described130

below:

1. Generation of an initial Monte Carlo population S of nMC samples.

2. Initial Design of Experiments (DoE) D of nD samples defined using sam-

pling methods such as Latin Hypercube Sampling (LHS). Here we gen-

erate the Latin Hypercube sampling using the class LHSExperiment of135

the Python library Openturns [37], which takes into account the actual

variables distributions. The performance function G(x) is then evaluated

for the nD samples.

3. Construction of a Kriging metamodel Ĝ(x) of the performance function

G(x) on the DoE.140

4. Estimation of the failure probability Pf on the Monte Carlo population S

according to the following equation:

P̂fAK−MCS ≈
nĜ≤0
nMC

(9)

where nĜ≤0 corresponds to the number of samples of S in the domain of

failure.

5. The learning function U(x) given in Eq. (10) is evaluated on the whole

population S to find the best candidate to evaluate for enriching the Krig-

ing metamodel.

U(x) =
|µĜ(x)|
σĜ(x)

(10)

with µĜ(x) and σĜ(x) respectively the mean and standard deviation of

the Kriging model of Ĝ(x) (see Eq. (7) and Eq. (8)).
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6. If the learning stopping criterion defined by Eq. (11) is fullfiled the meta-

model is considered sufficiently accurate for the population S and the

active learning is stopped. Then the algorithm goes to step 8. Otherwise,

the algorithm goes to step 7.

min
x∈S

U(x) ≥ 2 (11)

7. The performance function is computed on the sample x∗ minimizing the145

learning function U(x) and the DoE is enriched with this new point x∗.

Then the algorithm goes back to step 3.

8. The estimated value of the coefficient of variation (COV) on the probabil-

ity of failure ĈOVPfAK−MCS
is verified to ensure the consistency of the

Monte Carlo Simulations. In case the COV is too high, new samples are150

added to the Monte Carlo population used in AK-MCS and the method

goes back to step 7. Otherwise, if the COV is below a user defined thresh-

old the failure probability obtained with the AK-MCS method is the final

estimation.

One can note that step 7 of the AK-MCS algorithm involves the resolution155

of the numerical model. Given the finite element models we consider here

(of the form given in Eq. (1)), the idea pursued in the present article is to

reduce the numerical cost of this step (and thus the whole reliability analysis)

by applying model order reduction method to the resolution of Eq. (1). The

obtained approximate solution can thus be used in the AK-MCS algorithm if160

this approximation reaches a given accuracy threshold. To this purpose, next

section introduces the retained reduced basis approach.

3.2. Reduced-Basis Modeling

Model order reduction is a technique for decreasing the computational cost

associated to the resolution of a full order model in numerical simulations, i.e.

decrease the cost associated with the resolution of the system of Eq. (1). One

of the existing model order reduction approaches, which will be considered in

this work, is reduced-basis modelling or reduced-order modeling by projection.
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Figure 1: Flowchart of the AK-MCS Algorithm.

This method aims at solving the system of equations (1) by projection onto a

reduced basis denoted Φ = (Φ1, . . . ,ΦnRB
), where Φi, i = 1, . . . , nRB ∈ Rn.

The initial problem projected on the reduced basis Φ is then rewritten:

ΦTK(x)Φα(x) = ΦTF (x) (12)

where α(x) ∈ R
nRB are the coefficients of the state vector u(x) expressed

in the reduced basis Φ. Thus the new problem to solve is a linear system

of nRB � n equations. Indeed the projected problem involves the inversion

of the projected stiffness matrix ΦTK(x)Φ ∈ RnRB×nRB and provides after

resolution the vector α(x). We should note that the projected matrix size is

very low compared to the size of the initial stiffness matrix which can reach

millions of dof (degrees of freedom) for large-scale finite elements problems. On

the other hand, it was found empirically and is generally accepted in the reduced

order modelling community [13], that the size of an acceptable reduced basis

is in the order of a few dozen for a large variety of engineering problems. The

reduced solution is then obtained as ũ(x) = Φα(x). In practice, the exact
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error between the reduced solution and the real one is not computed (since it

would defeat any computational savings). Various error estimation techniques

exist such as [16, 38, 39, 40, 41]. In this paper, we first propose the following

residual based error estimator [16] (low computational cost) to approximate the

accuracy associated to reduced basis solutions :

εRB(x) =
||K(x)Φα(x)− F (x)||2

||F (x)||2
(13)

So far, the reduced basis Φ, on which the problem is projected, was not

specified as many methods exist to define a projection subspace [14, 39, 13],165

which include very effective methods for affinely parametrized equations. How-

ever, the method used here was sought such as to be applicable to all linear

problems, including to those for which finding the affine decomposition might

be very hard and for which simpler alternatives might be preferable. Thus, in

this paper, an on-the-fly method [42], which will be described in details in the170

next section, is used to construct the reduced basis. Indeed, this method is well

suited to the combination with active learning as it consists in enriching the

reduced basis iteratively along the sequential reliability estimation procedure

with all the simulations for which the full solution of the system Eq. (1) was

computed. In practice, both for the construction of the reduced-basis and for175

the computation of the residual, the stiffness matrix K(x) needs in general to

be assembled. The computational cost of this operation can be non negligible

in general, however, for large-scale problems it becomes increasingly negligible

compared with solving the system in Eq. (1). Besides the assembly of the ma-

trix K(x), the computation of the residual εRB(x) only involves matrix-vector180

products and differences whose computational costs are also negligible for prob-

lems of large dimensions. Model order reduction is thus a powerful technique to

reduce computational cost and its use within the AK-MCS approach is proposed

in the following.
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4. Proposed Method185

4.1. General concept

We propose here an hybrid reliability analysis method coupling active learn-

ing approaches and reduced-basis modeling. Indeed, some points of the DoE

may not need to be evaluated using the full numerical simulations. Points lo-

cated close to the limit state might be in the vicinity of other infill points which190

have previously been computed (using the full order model). Consequently,

reduced-order solutions at these points are likely to have good accuracy. The

proposed procedure starts with the definition of an initial DoE which at the

same time serves to initialize both the surrogate model and the reduced basis.

In fact, the first point of the DoE is evaluated with the full numerical model195

and is considered as the first element of the reduced basis. At each point of the

DoE, the response of the reduced-basis model and a criterion on the accuracy

of the reduced solution are computed. Then, based on the accuracy criterion,

it is decided either to use the reduced solution or to solve the full order model.

In this latter case, the solution computed using the full order model is also used200

to enrich the reduced basis Φ. A surrogate is then fitted using both reduced

and full solutions. At each iteration of the learning phase the same operations

are carried out to evaluate the infill points. In the next sections the method

combining the algorithm AK-MCS and reduced basis modeling with different

criteria is described.205

4.2. Coupling of AK-MCS and reduced-basis modeling

We propose here an algorithm combining the method AK-MCS and reduced

basis modeling based on the framework presented in the previous sections. It

involves to take in consideration reduced solutions in the initialization and learn-

ing phases of AK-MCS. The algorithm of the proposed method is provided in210

Algorithm 1 and described below. The algorithm starts with the initialization

of the reduced basis. Therefore, the first sample of the initial DoE is computed

and normalized to serve as the first element Φ1 of the reduced basis. Then all
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other samples of the DoE, i.e. samples of the inital DoE and infill points added

in the learning phase, are evaluated according to the following steps:215

1. Computation of the reduced solution ũi at the point xi by projection on

the available reduced basis.

2. Computation of the residual εRB(xi) for the previous solution based on

Eq. (13).

3. Evaluation of the accuracy of the solution ũi. If the value of εRB(xi) is220

below a user defined threshold ε, the reduced solution is considered to be

accurate enough and is added to the DoE. Otherwise, go to next step.

4. If the reduced solution is found not to be accurate enough based on the

previous threshold, the full numerical problem is solved. The associated

result ui is added to the DoE and also used to enrich the reduced basis225

after orthonormalization as shown in Eq. (14) and (15).

Φi = ui −
i−1∑
k=1

< ui,Φk > Φk (14)

Φi =
Φi

||Φi||2
(15)

with < ·, · > the L2 scalar product.

The proposed method adaptively makes the choice of using reduced-basis

solutions or the full numerical model. This coupling can thus greatly reduce

the execution time of AK-MCS since the computation of reduced solutions and230

residuals are less expensive than the resolution of the full finite element problem.

4.3. Coupling of AK-MCS and reduced-basis modeling with preconditioned resid-

uals

While the residuals of Eq. (13) can be used as a first estimation of the

accuracy of the reduced basis solution it may be insufficiently accurate in some

cases, depending in particular on the conditioning number of the stiffness matrix.

Furthermore, it may not be easy to decide on a threshold based on the relative

13



Algorithm 1: Coupling algorithm

Generate a Monte Carlo population S of size nS = nMC

Define an initial DoE D of nD samples

u← solution of K(x1)u(x1) = F (x1)

ydoe ← G(u,x1)

for x ∈ D\{x1} do

α← solution of ΦTK(x)Φα(x) = ΦTF (x); G(x)← Φα

εRB ← ||KΦα−F ||2
||F ||2

if εRB > ε then

u← solution of K(x)u(x) = F (x)

V ← u−Φ(ΦTu) ; Φ← [Φ, V
||V ||2 ]

ydoe ← [ydoe, G(u,x)]

while COV < 10% do

while learning stopping criterion not reached do

Fit Kriging model Ĝ with (D, ydoe)

Ŷ , σY ← Ĝ(x),∀x ∈ S

Pf ←
nĜ≤0

nS
; COV ←

√
1−Pf

Pf ·nS

Ulearning ← |Ŷ |
σY

x← arg min
x′∈S

Ulearning(x
′)

if Ulearning(x) < 2 then

α(x)← solution of ΦTK(x)Φα(x) = ΦTF (x); u← Φα

εRB ← ||KΦα−F ||2
||F ||2

if εRB > ε then

u← solution of K(x)u(x) = F (x)

V ← u−Φ(ΦTu); Φ← [Φ, V
||V ||2 ]

D ← [D,x] ; ydoe ← [ydoe, G(u,x)]

else
learning stopping criterion reached

Generate a Monte Carlo population S∗ of size nMC

S ← [S, S∗]

End of algorithm
14



residual of Eq. (13) which is defined on the loading vector, as one is more

interested in the relative error on the state variable vector (e.g. displacement

or temperature vector). The use of a preconditioner P can thus improve the

error estimators based on the residuals [43] as the preconditioned residual is

homogeneous to the state variable. Thus, the following preconditioned residual

is also considered in this section:

εPRB(x) =
||P−1K(x)Φα(x)− P−1F (x)||2

||P−1F (x)||2
(16)

The computation of the preconditioned residual εPRB(x) is in general more ex-

pensive than the computation of εRB(x) due to the computation of the term235

P−1K(x)Φα(x). However for preconditioners that are independent of the pa-

rameter x, the decomposition of P can be stored once for all. Thus the only

cost is the resolution of the system according to the type of factorization chosen,

which has to be done in any case, and which thus does not induces any signif-

icant additional computational cost. Hence the previously proposed method240

for coupling AK-MCS and reduced basis modeling can be improved by using

the preconditioned residual εPRB(x). This new estimates improves the residual

based error estimation used to decide if the reduced solution is accurate enough

to be used in place of the full numerical solution.

There exist several ways of constructing a preconditioner. In this paper,245

the proposed method will be run with two possible preconditioner construction

techniques:

• the mean point preconditioner [44]: the full numerical model is computed

at the mean point of the physical design space and the resulting matrix

K0 serves as preconditioner P = K0.250

• the nearest point preconditioner: every time the full numerical model is

computed to enrich the reduced basis, the matrixKi = K(xi) is stored to

serve as a possible preconditioner (let us denote Xfull = {xi, i = 1, . . . , nfull} ⊂ S

which contains the point where the full solution has been computed).

Then, for each sample evaluation, at point x∗ 6⊂ S, the preconditioned255
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residual is computed using P = Ki where xi = min
x∈Xfull

||x− x∗||2.

Note that the preconditioning of the residual also makes it easier to set

the value of the threshold ε in the proposed algorithm. Indeed based on error

bound provided in [45], for a good choice of preconditioner, εPRB(x) can be seen

as a good approximation of the relative error of the reduced basis solution ũ(x)260

compared to the true solution u(x). It can be expected that if ε is set to have a

low relative error on u(x) (e.g. 10−3), the error on G(x) will also be low. This

is generally the case, as G is usually only mildly nonlinear in u(x). However, it

is certainly dependent on the form of G : x → G(u(x),x) and in case G(x) is

highly nonlinear in u(x) the choice of ε may need more than one trial to obtain265

a reasonable value.

4.4. Potential extensions to multi-fidelity modeling with co-kriging

The use of both reduced and complete solutions as solutions of the same

model to fit a surrogate model can be discussed. In fact, the data has different

fidelity levels: the complete solutions are high-fidelity data and the reduced270

solutions are low-fidelity data with nF different levels. Indeed, each time the

reduced basis is enriched the reduced model is improved and corresponds to a

new level of fidelity. The use of a surrogate model based on multiple fidelity

levels such as a co-kriging could thus be considered. However, only relatively few

simulations are available for each fidelity level, which makes it next to impossible275

to construct a co-kriging model based on nF fidelity levels. An approximation

would be to simplify the problem as having only two fidelities and use a two-

fidelity co-kriging model. This reformulation as a co-kriging problem using the

solution obtained with the full numerical model as high fidelity data and the one

obtained with the reduced basis model as low-fidelity data can be investigated280

in three different ways:

1. by trying to replace Kriging by co-Kriging all along the learning algorithm,

2. by using Kriging in the learning and replacing the final Kriging by a co-

Kriging with the low and high-fidelity training points,
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3. same strategy than the second one, except that here the low-fidelity points285

are recomputed at the end using the final reduced basis in order to have

the same low-fidelity level.

Their comparison will be illustrated in Appendix A.

The two proposed strategies coupling AK-MCS and reduced-basis modeling

with or without the use of a preconditioner are numerically investigated to290

compare their performances on two applications in the next section. The first

one concerns a thermal problem and the second one a mechanical problem.

5. Applications

In the following, the two numerical applications are presented. For each one

a description of the physical problem is given, followed by the numerical com-295

parisons between the different strategies to estimate the probability of failure.

5.1. First application example: Reliability analysis on a thermal problem

5.1.1. Description of the problem

In this section, the application considered is a reliability analysis, which in-

volves the heat transfer through the combustion chamber wall of a regeneratively300

cooled rocket engine [46, 47, 16]. In such an engine, liquid hydrogen (LH2) flow-

ing through cooling channels in the combustion chamber wall at a temperature

of 40K is used for cooling the engine. We consider that failure occurs when the

maximum temperature of the inner wall of the combustion chamber exceeds a

critical value Tallow, which corresponds to the cooling channel walls rupture,305

due to thermally induced stresses.

A schematic of the combustion chamber of a typical regeneratively cooled

liquid hydrogen (LH2) liquid oxygen (LOX) rocket engine is shown on Fig. 2.

As illustrated on this figure, two different parts made of two different materials

form the combustion chamber wall: an internal side made of a copper alloy and310

an external jacket made of a Ni alloy. Heat exchanges may happen through
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Figure 2: Schematic of a regeneratively cooled rocket engine combustion chamber.

convection between the combustion chamber wall and the sources of heat (com-

bustion chamber gases) and cooling (liquid hydrogen) and also with the exterior.

Considering these boundary conditions, the resulting thermal transfer depends

on the following parameters: the conductivity of the inner side of the wall (kCu),315

the conductivity of the jacket (kNi), the temperature of the gases on the inner

side of the combustion chamber (Thot), the film convection coefficient on the in-

ner side of the combustion chamber (hhot), the temperature on the outer side of

the combustion chamber (Tout), the film convection coefficient on the outer side

of the combustion chamber (hout), the temperature of the cooling fluid (Tcool)320

and the film convection coefficient on the cooling channel side (hcool). These

parameters and the maximum temperature allowable Tallow are supposed to be

uncertain and are modeled by independent random variables following proba-

bility distributions given in Table 1. Thermal field at stationary equilibrium

is obtained by resolution of a convection-diffusion equation by a finite element325

approach. The finite element mesh of the combustion chamber wall and the

boundary conditions are illustrated in Fig. 3.
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Figure 3: Finite element mesh of the combustion chamber wall and the boundary conditions

of the thermal problem.

Input kCu kNi Thot hhot Tout hout Tcool hcool Tallow

Unit W/mK W/mK K kW/m2K K kW/m2K K kW/m2K K

Probability law Gaussian Gaussian Uniform Uniform Uniform Uniform Uniform Uniform Uniform

Mean 310 75 900 31 293 6 40 250 230

COV 2% 2%

Half-range 10% 10% 5% 5% 5% 10% 7.5%

Table 1: Probability distributions of the thermal problem parameters.

Here an in-house finite element solver coded in Python is used to compute

the thermal field. Thus we have access to the maximum temperature and we can

deduce the performance function, defined here as G(x) = Tallow(x)− Tmax(x).330

Then the failure probability can be estimated using Monte Carlo sampling or

using AK-MCS based strategies. The results of these comparisons are presented

in the following.

5.1.2. Results

First, a Monte Carlo Simulation was run to have an accurate estimation335

of the failure probability used as reference in the following comparison. The
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estimation obtained with standard Monte Carlo was P̂fMC = 6.22 · 10−3 with

an estimated COV of 5.65% (for nMC = 5× 104). The AK-MCS method was

implemented using the reduced-basis coupling with the classical and the mean

point preconditioned residual criteria. These two methods were run on the340

same thermal problem described in the previous section. In order to verify the

residual is a valid coupling criterion, the Pearson correlation coefficient between

the residual and the real error is estimated (real error is defined as the error

between the reduced solution and the finite element solution). These estimations

are done for different reduced basis sizes and are computed using the residuals345

and real error values on a random Monte Carlo population.

As depicted on Fig. 4, the preconditioned residual is almost perfectly cor-

related to the real error, which can be explained by the well-posedness of the

problem. The correlation between the real error and the non preconditioned

residual has a lower score, in particular for larger sizes of the reduced basis.350

The graphical representation of the first three modes of a temperature re-

duced basis constructed on-the-fly during a run of the coupling based on εRB

for ε = 10−3 is given in Fig. 5. The construction methodology used implies that

the first mode is the dominant mode, meaning that it is the one that represents

the best the typical thermal fields. However, to capture finer variations of the355

thermal field and thus achieve accurate reduced solutions, additional basis vec-

tors (corresponding to additional modes) are needed. Therefore it is interesting

to study the influence of the value ε taken as threshold for the coupling criterion

on the proposed method’s performances. To this end, the following procedure

is carried out:360

• Run AK-MCS algorithm and save the resulting DoE (i.e. initial DoE and

infill points)

• For varying threshold ε, apply the reduced basis coupling on the samples

of the AK-MCS DoE in the same order they were added by AK-MCS

algorithm.365

Here two criteria are used to compare the proposed method’s performances for
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Reduced basis size = 5

Reduced basis size = 10

Reduced basis size = 20

Figure 4: Correlation between the residuals and the real error for the thermal problem. Three

reduced basis sizes (5, 10 and 20) are considered.

21



Mode 1 Mode 2 Mode 3

Figure 5: First three temperature modes obtained using the on-the-fly constructing procedure

through AK-MCS for the thermal problem.

different ε:

• the speed up achieved by using the proposed method over AK-MCS, i.e.

the ratio of number of evaluations of the full numerical model in AK-

MCS to the number of its evaluations when using the coupling. Note that370

we only compare the ratios of the full numerical models, as the cost of

inverting the reduced basis model becomes negligible as the size (number

of degrees of freedom) of the problem increases.

• the relative accuracy of the failure probability estimation. Here we com-

pare the estimations of P̂fAK−MCS+RB and P̂fAK−MCS on the same375

initial DoE and Monte Carlo population. The relative accuracy is thus

defined by the formula 1− |P̂fAK−MCS
−P̂fAK−MCS+RB

|
P̂fAK−MCS

where a perfect ac-

curacy will have a value equal to 1.

In order to take into account the stochastic variation of the AK-MCS approach

in the assessment of the influence of the parameter ε, the previous procedure was380

run 10 times for different initial DoEs and Monte Carlo populations. The mean

of the two criteria described just above were thus computed for different values
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of the threshold. Their evolution is given on Fig. 6 for the non preconditioned

residual εRB and on Fig. 7 and Fig. 8 for the preconditioned residuals εPRB .

Figure 6: Accuracy (red stars) of Pf and speed up (blue dots) of the proposed method as a

function of the threshold ε on the non preconditioned residual for different constant DoEs and

Monte Carlo generated by AK-MCS algorithm for the thermal problem.

Figure 7: Accuracy (red stars) of Pf and speed up (blue dots) of the proposed method as a

function of the threshold ε on the preconditioned residuals with the mean point preconditioner

for different constant DoEs and Monte Carlo generated by AK-MCS algorithm for the thermal

problem.

From these figures a good compromise between speed up obtained by the385
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Figure 8: Accuracy (red stars) of Pf and speed up (blue dots) of the proposed method as a

function of the threshold ε on the preconditioned residuals with the nearest point precondi-

tioner for different constant DoEs and Monte Carlo generated by AK-MCS algorithm for the

thermal problem.

proposed algorithm and accuracy of the probability of failure estimate results

seems to be reached for ε = 10−3. It can also be noted that even if the corre-

lation of the real error with the non preconditioned residual is not as good as

if preconditioning is used (as shown by Fig. 4), it is sufficient here to obtain

satisfying results in terms of estimating the probability of failure. On the basis390

of these results, AK-MCS and the proposed methods are now compared in more

details for ε = 10−3. Compared to the previous study, one should note that,

in the proposed approach, the selection of enrichment points is now potentially

led by the solution obtained using the reduced basis approximation. For each

version of the proposed methods (with and without preconditioning) 30 compu-395

tations of both the proposed method and AK-MCS for a same initial DoE and

Monte Carlo population have been run. The sample mean Pf and corrected

sample standard deviation σPf
based on the results of these runs can be found

on Table 2 and Table 3.

First of all, note that the sample means obtained for the AK-MCS algo-400

rithm and for the proposed method are consistent with the Monte-Carlo refer-
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Pf σPf
nsim nfull

MCS 6.22× 10−3 3.5× 10−4 5× 104 5× 104

AK-MCS 6.52× 10−3 1.88× 10−4 38.2 38.2

AK-MCS + RB 6.52× 10−3 1.90× 10−4 38.1 6.7

Table 2: Results of MCS and mean results of AK-MCS and AK-MCS + RB with no precon-

ditioned residual for the thermal problem.

Pf σPf
nsim nfull

MCS 6.22× 10−3 3.5× 10−4 5× 104 5× 104

AK-MCS 6.52× 10−3 1.88× 10−4 38.2 38.2

AK-MCS + RB 6.52× 10−3 1.88× 10−4 40.7 6

Table 3: Results of MCS and mean results of AK-MCS and AK-MCS + RB with the mean

point preconditioner for the thermal problem.

Pf σPf
nsim nfull

MCS 6.22× 10−3 3.5× 10−4 5× 104 5× 104

AK-MCS 6.47× 10−3 3.03× 10−4 38.1 38.1

AK-MCS + RB 6.47× 10−3 3.02× 10−4 39.4 6

Table 4: Results of MCS and mean results of AK-MCS and AK-MCS + RB with the nearest

point preconditioner for the thermal problem.

ence P̂fMC = 6.22 · 10−3 (with an estimated COV of 5.65%). More precisely,

the sample mean obtained for both proposed method variants are very close to

the AK-MCS reference P̂fAK−MCS sample mean. Note as well that the values

of the estimated variances don’t take extreme values when the reduced basis405

is used and are even very close to the reference σ̂
P̂fAK−MCS

, especially for the

preconditioned residual strategy. For these computations the speed up of the

algorithm in terms of full numerical simulations for the preconditioned residual

strategy is of 6.37 and 6.33 respectively for the mean point and the nearest
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point preconditioner. For the non preconditioned residual strategy the speed410

up factor is 5.74. Moreover, for a run of the coupling algorithm with the mean

point and the nearest point preconditioners full evaluations represent on aver-

age respectively 15% and 15.5% of the total number of evaluations. Without

preconditioning the percentage of full evaluations is on average 17.8%.

Moreover, the different reformulations of the problem with co-Kriging (cf.415

section 4.4) have been tested on this application. Detailed results are given in

Appendix A. The only strategy that worked well was the third one, that consists

in using Kriging in the learning phase, then recomputing all low-fidelity points

with the final reduced basis and finally constructing a co-kriging using these low-

fidelity data and the high-fidelity data. However, the use of co-Kriging does not420

improve significantly the accuracy of the estimation for this problem, whereas it

slightly increases the computational cost, as all reduced basis solutions must be

reevaluated. Therefore, we chose to keep the results obtained with the kriging

surrogate model in this study.

To confirm the promising results obtained with the proposed approaches on425

this first application example, a second, more complex application is investigated

in the following.

5.2. Second application example: failure of a composite laminate plate with a

hole under complex loading

5.2.1. Description of the problem430

We now consider the application of the proposed methods on a mechanical

problem involving a potentially non-symmetric laminates, due to uncertainties

in the ply layup. The test case illustrated on Fig. 9 is the reliability analysis of

a one-side clamped laminated plate with a hole under uniform vertical pressure

and in-plane shear loading on the side opposite to the clamping considering the

Tsaï-Hill failure criterion recalled below:(
σL(θ,h)

Xult

)2

+

(
σT (θ,h)

Yult

)2

+

(
τLT (θ,h)

τult

)2

− σL(θ,h)σT (θ,h)

X2
ult

> 1 (17)
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where Xult, Yult and τult are the ultimate strengths and σL, σT and τLT are

respectively the longitudinal, transverse and shear stresses. The variables θ and

Figure 9: Boundary conditions and loading on the laminated plate.

h are respectively the fiber orientation angles and the ply thickness for each of

the six plies of the laminate. It is assumed that, due to manufacturing uncer-

tainties, these parameters are random and thus are modeled by the following435

independent random variables:

• the ply thicknesses hi follow gamma distributions Γ(µ, σ, γ) with param-

eters provided in Table 5,

• the fiber orientation angles θi follow uniform distributions U(a, b) with

parameters provided in Table 6.440

µ 2 · 10−4

σ 2 · 10−5

γ 0

Table 5: Parameters of the gamma probability distribution used to model all ply thicknesses.

Note that the nominal laminate is thus assumed to have a ply thickness of

0.2 mm and a layup of [0, 45,−45]s. However due to uncertainties, the actual

laminate may have different values, in particular it is non-symmetric in general.
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θ1 θ2 θ3 θ4 θ5 θ6

a -2.5 42.5 -47.5 -47.5 42.5 -2.5

b 2.5 47.5 -42.5 -42.5 47.5 2.5

Table 6: Parameters of the uniform probability distributions used to model the fiber orienta-

tion angles.

A MATLAB-based in-house finite element solver is used here to compute the

stress field. We used a four-node Mindlin shell element with five degrees of445

freedom per node with a shear correction factor computed according to [48].

The finite element mesh of the laminate used here is illustrated in Fig. 10. The

elastic constants of a ply are provided in Table 7. The longitudinal ultimate

tensile and compression strengths (resp. XT
ult and XC

ult), transversal ultimate

tensile and compression strengths (resp. Y Tult and Y Cult) and ultimate in-plane450

shear strength (τult) of the ply are provided in Table 8.

Figure 10: Finite element mesh of the laminated plate with a hole.

In the next section, the failure probability will be estimated using AK-MCS

and reliability analysis based on the proposed strategy in order to test the
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E1 E2 ν12 G12

181 GPa 10.3 GPa 0.28 7.17 GPa

Table 7: Ply elastic constants.

XT
ult XC

ult Y Tult Y Cult τult

997 MPa 847 MPa 38 MPa 198 MPa 60 MPa

Table 8: Ply ultimate stresses.

performances of the coupling on the presented problem.

5.2.2. Results455

First, a Monte Carlo Simulation was run to have an accurate estimation of

the failure probability of this problem. The estimation obtained with standard

Monte Carlo was P̂fMC = 7.6 × 10−4 with an estimated COV of 9.36% (for

nMC = 1.5× 105).

Then, a similar study as the one for the thermal problem was carried on460

this problem. First the correlation between the residuals and the real error

was estimated. Figure 11 presents the results obtained for different reduced

basis dimensions. It can be seen on this figure that the coefficient of correlation

between the non preconditioned residual and the real error is very low and

that many residuals take values greater than 1 regardless of the size of the465

reduced basis. This is probably due to the higher ill-conditioning of this problem,

compared to the previous one, in particular due to the non symmetric laminates

that are considered, inducing bending-shear coupling. On the basis on these

results, it would be quite hard to find an efficient threshold ε and ensure the

effectiveness of the coupling.470

The correlation with preconditioned residuals was considered next and is also

presented on Fig. 11. Given the higher numerical complexity of this application,

both preconditioners presented in Section 4.3 were tested. It can be noted that
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the two proposed preconditioners have similar performances for this problem

with coefficients of correlation higher than 0.9 which is a significant improvement475

compared to non preconditioned residual.

As in the thermal problem, the first modes of the displacement field con-

structed on-the-fly during a run of the coupling, based on εPRB for ε = 10−3, can

be graphically represented. The representations of the four first basis vectors

of the displacement field in the out of plane direction are given in Fig. 12. The480

first mode has obviously much similarity with the general shape of the displace-

ment field, which again is asymmetric, due to the non-symmetric laminates and

induced bending shear coupling. For this same reason, the higher modes repre-

sented describe even more complex variations of the displacement fields. Hence,

due to this relatively complex behaviour it can be expected that more modes485

will be required on this application to satisfy the error criterion ε = 10−3.

The performance of the proposed methods for different thresholds on εPRB

was studied next, following the same process as for the first application, i.e.

using the coupling strategy on a fixed DoE generated during a run of AK-

MCS for varying thresholds. The mean values of the speed up and accuracy490

computed over 10 runs as a function of ε are given on Fig. 13 for the mean point

preconditioner and on Fig. 14 for the nearest point preconditioner.
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Reduced basis size = 5

Reduced basis size = 10

Reduced basis size = 20

Figure 11: Correlation between the residuals and the real error for the laminated plate with

a hole problem. Three reduced basis sizes (5, 10 and 20) are considered.
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Mode 1 Mode 2

Mode 3 Mode 4

Figure 12: First four Z-displacement modes obtained using the on-the-fly constructing proce-

dure through AK-MCS for the laminated plate with a hole problem.
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Figure 13: Accuracy (red stars) of the failure probability Pf and speed up (blue dots) as a

function of the threshold ε on the preconditioned residuals with the mean point precondi-

tioner for different constant DoEs and Monte Carlo generated by AK-MCS algorithm for the

laminated plate with a hole problem.

Figure 14: Accuracy (red stars) of the failure probability Pf and speed up (blue dots) as a

function of the threshold ε on the preconditioned residuals with the nearest point precondi-

tioner for different constant DoEs and Monte Carlo generated by AK-MCS algorithm for the

laminated plate with a hole problem.

According to Fig. 13 and Fig. 14 the best compromise between accurate

estimations and a consequent acceleration of the reliability analysis method lies
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again at ε = 10−3 for both preconditioners. Note that this is in-line with our495

earlier comment that the threshold epsilon can be selected based on a relative

value that is considered acceptable on the norm of error in the displacement

field. A value of 10−3 or 0.1% for the norm of the displacement field relative

error seems a sensible value to choose as a start for many problems.

Then AK-MCS and the proposed method were run 40 times for different500

initial DoEs and Monte Carlo populations with ε = 10−3. The resulting sample

means Pf and corrected sample standard deviation σPf
are given in Table 10

for the mean point preconditioner and in Table 9 for the nearest point precondi-

tioner. The mean failure probability estimated by the proposed method is in the

95% confidence interval of the mean results of AK-MCS [8.20×10−4, 8.80×10−4].505

Moreover the corrected sample standard deviations are in the same order of mag-

nitude whether reduced basis solutions are used or not. On average, the use of

the proposed methods over AK-MCS allows a speed-up of 6.8 and 6.7 respec-

tively for the mean point and the nearest point preconditioner. Furthermore,

for a run of the coupling algorithm the mean point and the nearest point pre-510

conditioners full evaluations represent on average respectively only 16.2% and

14.4% of the total number of evaluations.

Pf σPf
nsim nfull

MCS 7.6× 10−4 7.1× 10−5 1.5× 105 1.5× 105

AK-MCS 8.50× 10−4 6.36× 10−5 100.2 100.2

AK-MCS + RB 8.23× 10−4 6.47× 10−5 105.7 14.97

Table 9: MCS results and mean results of AK-MCS and AK-MCS + RB with the nearest

point preconditioner for the laminated plate with a hole problem.
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Pf σPf
nsim nfull

MCS 7.6× 10−4 7.1× 10−5 1.5× 105 1.5× 105

AK-MCS 8.47× 10−4 5.58× 10−5 99.95 99.95

AK-MCS + RB 8.48× 10−4 7.14× 10−5 98.87 15.97

Table 10: MCS results and mean results of AK-MCS and AK-MCS + RB with the mean

point preconditioner for the laminated plate with a hole problem.

5.3. Computational costs for large-scale applications

The previous numerical investigations have been carried out in order to study

the performances of the coupling with reduced basis in terms of results accuracy515

and full solution number reduction. In order to be able to compare to the true

probabilities of failure obtained by crude Monte Carlo simulation we considered

relatively few degrees of freedom in both the thermal and the mechanical prob-

lems. However, the CPU time savings enabled by the use of reduced solutions

are particularly interesting for high dimensional problems (large number of de-520

grees of freedom). Hence, we now use refined meshes to compare the CPU times

of the coupling with the mean point preconditioner and the classical methods

on the two previous problems.

5.3.1. First application example: Reliability analysis on a thermal problem

As the thermal problem admits a simple affine decomposition of the matrix525

K(x) =
∑
i γi(x)Ki, the assembly of the matrices Ki is done once for all. The

reported assembly and system resolutions CPU time corresponds to the assem-

bly made by the computational code Code Aster [49]. The CPU time reported

in Table 11 corresponds to a problem of 1,321,537 degrees of freedom.

Hence, the speed up in terms of CPU time is about 5 for this problem.530

5.3.2. Second application example: failure of a composite laminate plate with a

hole under complex loading

For this application, the stiffness matrix K(x) has to be assembled for each

point x evaluated during the learning procedure. Moreover the force vector F (x)
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AK-MCS + RB AK-MCS

assembly time of Ki (once for all) 3.20 3.20

number of evaluations of G(x) 40 38

number of reduced solutions ũ(x) evaluations 40 38

number of full solutions u(x) evaluations 6 38

time of the projection ΦTKiΦ with the initial reduced basis 0.6 -

time of the projection ΦTKiΦ with the final reduced basis 1.8 -

mean time of full solution u(x) evaluation 43.6 43.6

mean time of reduced solution ũ(x) evaluation 0.01 -

mean time preconditionned residual εPRB(x) evaluation 1.3 -

total CPU time 324 1657

Table 11: Operations CPU time (in seconds) for the reliability analysis for the thermal prob-

lem.

actually does not depend on x here. Thus the value P−1F can be computed535

once for all at the beginning of the algorithm. The CPU time reported in

Table 12 corresponds to a problem of 1,029,700 degrees of freedom. Hence, the

speed up in terms of CPU time is about 5.4 for this problem.

6. Conclusions

The present article proposes strategies to improve the efficiency of adap-540

tive sampling surrogate based reliability analysis techniques based on the use

of reduced basis solutions over expensive full numerical solutions. This is made

possible by an adaptive construction of an efficient reduced basis. The pro-

posed approach first initializes a reduced basis during the initial phase of the

active learning algorithm. Then, based on a reduced solution accuracy crite-545

rion it decides for each point either to use the reduced solution or to solve the

full numerical model. As the learning phase of the adaptive sampling concen-

trates the choice of infill points in the vicinity of the limit state, reduced-basis
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AK-MCS + RB AK-MCS

computational time of P−1F (once for all) 4.84 -

mean assembly time of K(x) 86 86

number of evaluations of G(x) 101 101

number of reduced solutions ũ(x) evaluations 101 101

number of full solutions u(x) evaluations 15

mean time of full solution u(x) evaluation 2041 2041

mean time of reduced solution ũ(x) evaluation 1.28 -

mean time of preconditionned residual εPRB(x) evaluation 2.92 -

total CPU time 39734 214838

Table 12: Operations CPU time (in seconds) for the reliability analysis for the mechanical

problem.

modeling may be very efficient as new points are likely to be close to many

already computed points. Two different implementations of the approach were550

proposed, differing in terms of the reduced basis coupling criterion. The appli-

cations have highlighted the limitations on a criterion based on a basic residual

and the usefulness of an improved criterion based on a preconditioned resid-

ual. The performance of the proposed approach was also assessed on the two

applications, which have shown that the coupling has a great potential for re-555

ducing the computational costs. The speed up is of course dependent of the

problem, but on the application problems considered the theoretical speed-up

reached up to a factor of 7.1 and the practical speed-up up to a factor of 5.4. As

the problems become larger scale in terms of number of degrees of freedom the

practical speed-up is expected to increasingly approach the theoretical speed-560

up. A perspective to improve the coupling criterion is to look at the exploration

phase during the learning. Indeed, according to the current definition of the

criterion, infill points in less known area are likely to be evaluated using the full

numerical model as they are located far from other points. However to clarify
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the behaviour of the performance function in less known area due to a high565

variance reduced solutions may be sufficient in a first step. This consideration

could be taken into account in the coupling criterion and may be the subject of

a later work.
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Appendix A. Study of Co-kriging reformulations on the thermal prob-

lem

Appendix A.1. First reformulation possibility

Due to the high variance of the co-Kriging model and the form of the learning575

function U(x) =
|µĜ(x)|
σĜ(x) , the use of co-Kriging for the whole algorithm did not

permit an efficient learning. The results obtained on the basis of 20 run of the

algorithm with co-Kriging are:

• the learning algorithm converged on average after 231 simulations (on

average 40 simulations are needed when using Kriging)580

• 4 out of 20 runs were stoped at the 500th iteration

The failure of this strategy can be explained in multiple ways:

• Co-kriging works best when the ratio of the number of low to high fidelity

simulations is within a reasonable range, as investigated by Toal [50].

Unfortunately at the beginning of the learning algorithm we are actually585

very far from this ideal ratio as we have very few reduced basis simulations.

• The problem is not really two-fidelity but n-fidelity. When the reduced

basis is enriched the correlation between the reduced basis solution and

the full solution may completely change at a new point, compared to a
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previously calculated reduced basis solution nearby. This may perturb the590

co-kriging learning process which sees two points that are very close but

that present very different correlations between low and high fidelity.

• The adaptive sampling algorithm for reliability tends to concentrate sam-

ples in the close vicinity of the limit state. Most of these samples will be

low fidelity reduced basis solutions. This sampling may not be well suited595

for a reasonable learning of the co-kriging hyperparameters.

Appendix A.2. Second reformulation possibility

The performance of co-Kriging was compared to Kriging by carrying out the

following procedure:

• Run of the coupling algorithm using Kriging and saving of high and low-600

fidelity points

• After convergence of AK-MCS co-Kriging is built using low and high-

fidelity points

• Evaluation of the probabilities of failure on a fixed Monte Carlo popula-

tion using both the Kriging model and the co-Kriging model in order to605

compare Pf values.

The previous procedure was run 40 times for different initial DoEs and Monte

Carlo populations. In order to compare the metamodels the absolute relative

differences between the reference probability of failure (Monte Carlo method

estimation) and the estimated probability of failure
|P̂fMC

−P̂fAK−MCS+RB
|

P̂fMC

were610

computed for both surrogate models.The following results have been obtained:

Kriging co-Kriging

maximal absolute relative difference 0.13 1.15

mean absolute relative difference 0.055 0.27

Table A.13: Second strategy results
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We find that the probabilities of failure obtained with the co-Kriging model

are on average poorer than with kriging.

We assume that the poor quality of the co-Kriging predictions is due to the

first reduced basis solutions (computed with a poor current reduced basis) which615

are very distant from the true solutions. The issue of varying correlations when

the reduced basis is enriched (discussed above for the the first strategy) might

also be a major explanation for the poorer quality obtained with co-kriging.

Appendix A.3. Third reformulation possibility

The performance of co-Kriging was compared to Kriging by carrying out the620

following procedure:

• Run of the coupling algorithm using Kriging and saving of high and low-

fidelity points

• After convergence of AK-MCS: re-evaluation of low-fidelity points using

the final reduced basis in order to have only two fidelity levels625

• Building of co-Kriging using low and high-fidelity points

• Evaluation of the probabilities of failure on a fixed Monte Carlo popula-

tion using both the Kriging model and the co-Kriging model in order to

compare Pf values.

The previous procedure was run 30 times for different initial DoEs and Monte630

Carlo populations. In order to compare the metamodels the absolute relative

differences between the reference probability of failure (Monte Carlo method

estimation) and the estimated probability of failure
|P̂fMC

−P̂fAK−MCS+RB
|

P̂fMC

were

computed for both surrogate models.The following results have been obtained:

The co-Kriging built with this strategy allows to obtain an accurate estima-635

tion of the failure probability. However, it can be seen in Table A.14 that the

use of co-Kriging does not improve significantly the accuracy of the estimation

whereas it increases the computational cost as all reduced basis solutions must

be reevaluated. This third strategy may however still be useful for checking that
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Kriging co-Kriging

maximal absolute relative difference 0.12 0.12

mean absolute relative difference 0.053 0.053

Table A.14: Third strategy results

the final probability of failure estimate obtained with a kriging approach does640

not differ significantly from the one obtained with a co-kriging approach.
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