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Imaging Properties of Multimode Photonic Crystal
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Abstract— Light propagation in multimode photonic crys-
tal waveguides and in arrays of single-mode photonic crystal
waveguides is analyzed. The dispersion relations of the modes
travelling along these devices explain the numerically observed
formation of single and multiple copies of the input beam. As the
analogous devices constructed in standard planar geometry, the
proposed photonic crystal devices can be employed as filters and
demultiplexers. The use of photonic crystal structures, where the
light is truly confined by the stop-band, adds the valuable benefit
of a dramatic reduction of the overall geometrical dimensions.

Index Terms— Couplers, diffraction, finite element method, in-
tegrated optics, multimode interference, multimode waveguides,
photonic crystal, waveguide arrays.

I. I NTRODUCTION

PHOTONIC crystal (PC) based devices are paving the
way for a new generation of integrated optical circuits

[1],[2]. In fact PC components, by taking advantage of the light
stop-band, allow to shrink the dimensions of the conventional
optical chips [3]. A 2-D periodic structure, like a lattice of
dielectric rods immersed in a low refractive index material
or a lattice of holes in a high refractive index substrate,
can be engineered in order to obtain an in-plane stop-band
for the propagation of light. By reducing or increasing the
radius of the rods or of the holes (i.e. by introducing defects)
a waveguide working over a span of wavelengths can be
fabricated [4].

Obviously a 2-D structure cannot be used in practice: it
is necessary to achieve confinement in the vertical direction,
as well [4]. The most intuitive solution is to sandwich the
2-D structure between an upper and a lower cladding whose
refractive indices are carefully chosen [5],[6]. For example a
periodically drilled dielectric membrane could be suspended
in air [7] or a low refractive index region with high refractive
index posts could be grown on a proper substrate [5]. It
has been noticed that even if the refractive index difference
between the background material hosting the rods and the
cladding is small, the 3-D PC waveguide may suffer from
negligible losses and moreover the design parameters (rod
radius and lattice pitch) do not differ appreciably from those
obtained by a straightforward 2-D analysis [5],[8].

As with conventional ridge optical waveguides, a great effort
has been devoted to the project of single-mode waveguides.
This design goal is particularly challenging for PC waveguides
constructed by perturbing a lattice of rods: it is well known
that by increasing the radius of the rods arranged along a
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straight line, the resulting waveguide could support more than
one mode.

Nevertheless conventional multimode waveguides can be
exploited in a large variety of coupling and splitting devices
[9],[10]. In fact, when an optical field is properly launched in
a multimode waveguide, a certain set of modes is excited and
since the modes travel with different phase velocities, copies or
multiple images of the initial field form at particular distances
[11],[12],[13]. Recently PC multimode waveguides have been
proposed as demultiplexers [14] and 3-dB power splitters [15].
Useful rules for the design of practical and compact splitting
and routing devices are available for conventional waveguides
[13] and in this communication we prove these rules to be
helpful even for PC multimode waveguides.

A thoroughly studied PC device, where multimode inter-
ference takes place, is the directional coupler [16],[17]; its
behavior can be explained also resorting to the coupled mode
theory (CMT) which gives a clear picture of the flow of energy
between the waveguides. PC based directional couplers have
gained a renewed interest because, by controlling the spacing
between the waveguides, the coupling coefficient between
adjacent waveguides can be engineered both in amplitude and
sign [18],[19],[20].

By increasing the number of coupled waveguides an array is
obtained [21],[22], [23],[24] and, as in directional couplers, the
field evolution is governed by a set of coupled equations where
the coupling coefficient plays a crucial role. We have verified
that a similar set of equations describes light propagation along
an array of PC waveguides [19],[20]. We observe that a PC
waveguide array, considered as one single system, supports
several supermodes and the numerical study of the field
propagation permits to choose the device length when splitting
or filtering functionalities are required.

The properties of single-mode and multimode PC wave-
guides are introduced in Section II whereas the self-imaging
is discussed through examples in Section III. Starting from
an outline of the behavior of PC couplers in Section IV, the
arrays of PC waveguides are discussed in Section V where
their potential as filters and demultiplexers is demonstrated.

II. SINGLE-MODE AND MULTIMODE PHOTONIC CRYSTAL

WAVEGUIDES

We consider 2-D guiding structures obtained by perturbing
a square lattice of dielectric rods embedded in an oxide
background. A good choice in order to obtain a single mode
waveguide is to decrease the radius of the rods arranged along
a row and in the following examples we decided to completely
remove these rods.
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The dispersion relation can be calculated via the plane wave
expansion method [25]; the elementary cell, which includes the
perturbed region, has length along the propagation directionz
equal to the lattice constanta and it is wide enough along the
transverse directionx [1],[25].

We analyse a bulk lattice of semiconductor (GaAs) rods
having refractive index 3.34 embedded in oxide (Al2O3)
whose refractive index is 1.5 [5]; the rod radius isr = 117
nm and the rod-rod pitch isa = 390 nm. The projected band
structure (alongz) of the PC waveguide obtained by removing
a row of rods is depicted in Fig.1. The dark-shaded regions
indicate the continuum of dispersion curves of the extended
modes of the unperturbed lattice, the white region is the stop-
band (ranging froma/λ = 0.234 to a/λ = 0.266) and the
thick solid line is the dispersion relation of the only TM mode
that can propagate in the waveguide. We emphasize that the
normalized wavevector (βa/2π, whereβ is the wavevector)
is an increasing function of the normalized frequency (a/λ).
The horizontal narrow line indicates the design wavelength
λ = 1550 nm (a/λ = 0.2516). The corresponding 2-D mode
profile is shown in Fig.2: most of the energy is confined in the
perturbed region (as happens in the core of conventional slab
waveguides) but the field tails outside the perturbed regions
have an oscillating behavior which has no counterpart in 3-
layer slab waveguides.

The multimode PC device can be obtained by removing the
rods along a few neighbouring rows. The input field is injected
directly at the waveguide input facet or by means of a single-
row (and single-mode) waveguide as illustrated in the sketch
of Fig.3.

As an example we consider a device obtained by removing
seventeen rows from the above described lattice (a = 390 nm,
r = 117 nm). The projected band structure is displayed in
Fig.4: the white region is the stop-band and the solid black
lines are the dispersion relations for the fourteen TM guided
modes. We observe that at the reference wavelengthλ = 1550
nm only thirteen modes are supported.

The 2-D modes are shown in Fig.5; as in standard slab
waveguides the modes exhibit “sin-like” shapes in the region
where most of the energy is concentrated [13],[26]. The
studied PC device (where the rods are completely removed)
exhibits a very strong confinement in the lateral directionx
and the region where the field is concentrated has a uniform
refractive index: it is thus not surprising that the guided
modes resemble those supported by slab waveguides where the
confinement is guaranteed by a strong refractive index contrast
or by metallic surfaces.

III. SELF-IMAGING IN MULTIMODE PHOTONIC CRYSTAL

WAVEGUIDES

In planar waveguides supporting several modes, the for-
mation of single or multiple copies of the input field can
be observed. These copies are formed along the propagation
direction at precise distances that can be related to the beat
lengthLπ between the two lowest order modes of the wave-
guide [12],[13]:

Lπ =
π

β0 − β1
, (1)

whereβ0, β1 are the propagation constants of the fundamental
and second mode, respectively. The presence of high order
modes is necessary to observe the formation of multiple
images but, since it is extremely important also the difference
among the propagation constants of the modes [12],[13],
the onset of self-imaging phenomena in a PC multimode
waveguide is not a trivial result.

Due to the complexity of the dielectric structure under
investigation, we analyse the electromagnetic field propa-
gation along the PC multimode waveguide by numerically
solving Maxwell’s equation (in the vector wave equation
form) through a Time Domain Vector Finite Element Method
(TDVFEM) [27],[28],[29],[30].

TDVFEM offers some important advantages over the stan-
dard and widely used Finite Difference Time Domain Method
(FDTD). The most evident one is the use of unstructured
grids which offer superior versatility in modelling complex
geometries and permit the number of degrees of freedom to
be greatly reduced to achieve the same accuracy. We employ
the so called “vector” or “edge” elements of lowest order [31],
[32] which have degrees of freedom along the edges of the
grid. These elements enforce tangential continuity of the fields
but allow for jump discontinuity in the normal component,
which is a requirement for accurate modelling of fields in
inhomogeneous domains. Moreover this characteristic elimi-
nates the problem of spurious solutions typical of the classic
nodal elements [33]. Crank-Nicolson method is employed to
advance fields in time. This method is second-order accurate,
energy-conserving and unconditionally stable. This last feature
allows one to fix time step and mesh granularity independently,
in contrast with FDTD where one has to respect the stability
condition. The main drawback of TDVFEM with respect to
FDTD is that it requires a sparse linear system to be solved
at every time step. However the system matrix is very sparse
(around 5 × N nonzero elements, beingN the number of
degrees of freedom) and the system can be efficiently solved
by the use of preconditioned conjugate gradient (typically
less than ten iterations are required to obtain the desired
accuracy). Thanks to these good properties, TDVFEM can
solve very large problems with a reasonable time and memory
consumption and can overcome the severe limitations imposed
by the staircase approximation and the stability condition of
FDTD.

By using TDVFEM we excite the designed PC waveguide
(whose dispersion relations are shown in Fig.4) with the
fundamental mode of a single row waveguide positioned in
the middle of the multimode device (see Fig.3). The time-
averaged intensity depicted in Fig.6 shows the formation of a
clear copy of the input beam at the distancez = 43.5 µm.

In a planar waveguide and for a symmetric input, the first
copy is expected at a distance3Lπ/4 [13]. From the calculated
dispersion relations of the PC multimode waveguide (Fig.4)
we obtainβ0 = 0.3763×2π/a, β1 = 0.3731×2π/a and thus
3Lπ/4 = 45.7 µm which coincides fairly well with the result
shown by the simulation in Fig.6. We conclude that since the
field is almost completely confined in the uniform oxide layer
(due to the presence of the bandgap), the relation reported in
[9],[13] still holds to some extent.
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As reported for conventional integrated optics multimode
devices, the formation of multiple images takes place, as well.
A double copy of the input image can be observed aroundz =
22 µm (to be compared with3Lπ/8 = 22.85 µm) whereas a 3-
fold image is recognized at the distancez = 15 µm' Lπ/4 =
15.2 µm. We can also excite the waveguide in a non-symmetric
way, by injecting the field in the sixth row with respect to the
waveguide edge: the calculated intensity evolution is reported
in Fig.7. A copy of the injected field appears atz = 56 µm
but the single image is mirrored with respect to the middle of
the waveguide. The study of conventional waveguides having
width w proved that in case of an input centered atw/3 from
the edge of the waveguide [13], the first image should appear
at Lπ = 60.9 µm.

Since multiple images are formed, PC multimode wave-
guides could work as splitters (as suggested in [14],[34]).
We underline how the appearance of multiple images is a
consequence of the high number of supported modes (more
than ten): in fact these multiple copies of the input beam have
not been observed in other PC multimode devices where less
than five modes could propagate [14],[15].

The mathematical conditions to observe in a PC waveguide
a copy or a mirrored copy of the input field have been recently
analyzed and a detailed procedure to find numerically the posi-
tion of the images has been proposed [14]. As in our approach
the starting point is the knowledge of the dispersion diagram,
but such a general procedure does not lead to simple analytical
formulas which are very useful for a first design. On the other
hand, we verified that the formulas proposed for conventional
multimode waveguides [13] give useful approximated results
whenever light is well confined inside the perturbed region
forming the waveguide.

IV. M ODES OF PHOTONIC CRYSTAL COUPLERS

A PC directional coupler is basically a multimode de-
vice relying on the existence and propagation of only two
modes [16],[17],[35],[36],[37]. For instance if we consider
two straight parallel PC waveguides separated by four unper-
turbed rods, the dispersion curve of the unperturbed single
mode waveguide splits in two solutions: a fundamental even-
symmetry mode and a second-order odd-symmetry mode [19].

It has been recently numerically observed and theoretically
explained that the fundamental mode of the PC coupler can be
even or odd depending on the spacing between the waveguides
[18], in stark contrast with conventional couplers where the
fundamental mode is always even. In the case of the square
lattice PC structure we are considering, the fundamental mode
is even if the spacing is composed of an even number of
unperturbed rods whereas the fundamental mode is odd if
the spacing is composed of an odd number of unperturbed
rods [19]. The dispersion curves for a 3-rod spacing coupler
(obtained from a lattice witha = 487.5 nm andr = 80 nm)
are plotted in Fig.8 and at each normalized frequency the
normalized wavevector of the odd-symmetry mode is larger
than the wavevector of the even-symmetry mode.

If we assume that the two single mode waveguides forming
the coupler are weakly coupled, and thus the mode travelling

along the isolated single mode waveguide is weakly perturbed
by the presence of the other waveguide, the behavior of the
coupler can be described by means of the coupled mode theory
(CMT) [38]. In the framework of the CMT the field shape in
each waveguide is basically that of the unperturbed waveguide
but the two modes periodically exchange power along the
propagation direction. The strength of the interaction between
the waveguides is described by the coupling coefficientC

C =
1
2β

(
2π

λ

)2 ∫
W

δεr(x, z)E1
∗(x, z)E2(x, z)dW∫

W
|E1(x, z)|2 dW

, (2)

whereE1,2 are the modes of the individual waveguides (having
propagation constantβ), δεr(x, z) is the perturbation of the PC
dielectric constant that introduces the defect (i.e. the reduction
of the refractive index due to the removal of the high refractive
index rods), andW is the fundamental cell [19],[38]. It can
be easily proved that the beat lengthLπ is

Lπ =
π

2|C| , (3)

as in conventional planar couplers [26]. The field comes out
from the same waveguide in which it has been injected if the
coupler length is an even multiple ofLπ and it comes out from
the other waveguide if the coupler length is an odd multiple
of Lπ.

By calculating the modes of the isolated waveguides and
then the coupling coefficient (by means of Eq.(2)), we observe
thatC is positive whenever the number of rods in the spacing
is even, on the other handC is negative if the number of rods
in the spacing is odd. This change of sign is due to the fact that
the modes of the isolated PC waveguides have an oscillating
behavior outside their “cores” (see Fig.2), and thus the sign
of the numerator of Eq.(2) can be changed.

Since the sign ofC has a particular importance, we plot
in Fig.9 the productE1

∗(x, z)E2(x, z) (see (Eq.2)), for a 4-
rod (a = 390 nm, r = 117 nm) and a 3-rod spacing (a =
487.5 nm, r = 80 nm) coupler. By observing the sign of the
product in the removed rod region and keeping in mind that
δεr is negative (since the high refractive index rod has been
removed), we can ascertain thatC > 0 for the 4-rod spacing
coupler andC < 0 for the 3-rod spacing coupler.

The coupler is also a two-mode interference (TMI) device,
supporting an even and an odd supermode (with propagation
constantsβeven,odd). The two modes of the 4-rod spacing
and 3-rod spacing coupler are shown in Fig.10a),b) and
Fig.10c),d), respectively; note that the fundamental mode is
odd for the 3-rod spacing case. By comparing Eq.(1) and
Eq.(3) it follows that

C =
βeven − βodd

2
, (4)

which confirms that when the fundamental mode is even the
coupling coefficient is positive but if the fundamental mode is
odd the coupling coefficient becomes negative.

V. A RRAYS OF COUPLED PHOTONIC CRYSTAL

WAVEGUIDES

As a coupler formed by two single-mode PC waveguides
supports two modes, an array constructed by placing side by
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sideN PC waveguides can support up toN supermodes: the
PC waveguide array considered as a single guiding structure is
a multimode device [39]. As an example we examine an array
composed of five PC waveguides spaced by four unperturbed
rods. The calculated dispersion relations of the five TM modes
are depicted in Fig.11 and cross-sections of the modes (at
λ = 1.55 µm) are depicted in Fig.12; noticeably these modes
resemble those of an array of conventional waveguides [26].

We study by means of the TDVFEM code how the field
propagates along the array for different input conditions.
When the input field is the fundamental mode of the central
waveguide the appearance of an input field replica can be
observed. Fig.13 shows the intensity evolution inside the array;
a sharp copy of the input forms at the distancez = 45 µm,
a double image is obtained aroundz = 22 µm and a 4-
fold image atz = 15 µm. We then consider in Fig.14 an
asymmetric input excitation: the input field is injected in the
second PC waveguide from the array edge; still a copy of the
input is formed at the distancez = 45 µm. We emphasize
that the approximated relations introduced for the multimode
waveguides cannot be used because the dispersion relations
of the array supermodes are basically different from those of
the modes of a multimode waveguide (the same conclusion
is valid also in conventional waveguides [26]). In fact it is
clear in Fig.11 that, if the operating wavelength is fixed,
the wavevectors of the array supermodes are almost equally
spaced whereas the separation of two consecutive modes of a
multimode waveguide is an increasing function of the mode
order (as in Fig.4).

The simulations in Fig.13 and Fig.14 clearly indicate that
the device could find application as an extremely compact
(shorter than50 µm) and efficient splitter. Since the field is
already confined by waveguides the transition from the array
to an output single-mode waveguide does not give rise to the
insertion losses observed in multimode waveguides.

It is interesting to analyse the output from the array as a
function of the signal wavelength; since TDVFEM calculates
the device transmission in the time domain, by propagating a
suitable short pulse, the transmission spectra can be obtained
from a single simulation by means of the discrete Fourier
transform. Fig.15 shows the field intensity at the outputs of
a 5-waveguide array when the input is injected in the central
waveguide and the wavelengthλ is varied between 1400 nm
and 1700 nm. Fig.15a) refers to a 22µm long array; most
of the power is concentrated in the outermost waveguides for
λ = 1550 nm, whereas the power is equally divided among
the first, second, fourth and fifth waveguide from the edge
for λ = 1480 nm and the field is focused again only in
the central waveguide forλ = 1655 nm. Fig.15b) shows the
output intensities for a45 µm long array: atλ = 1550 nm
the power is concentrated in the central waveguide whereas at
λ = 1475 nm the signal is equally divided among the first,
second, fourth and fifth waveguide, as in a1×4 power splitter.
It is apparent that PC waveguide arrays could be used as filters
and demultiplexers in order to separate signals that are more
than 50 nm apart. Similar performance can be achieved by
cascading/combining PC couplers [40],[41].

The CMT introduced for the PC directional coupler [38] can

be generalized to treat the arrays [19],[20]; the only difference
is that the waveguides of the array are coupled to two adjacent
waveguides and not just to one as in directional couplers. The
set of equations that models the propagation in an array ofN
PC coupled waveguides is:

i
dAn

dz
+ βAn + C (An+1 + An−1) = 0, n = 1, . . . , N, (5)

where An is the amplitude of the Bloch mode of the n-th
isolated PC waveguide andβ is the corresponding wavevector.
Relying on the CMT the intensity evolution is explained as
an exchange of power among waveguides. This energy flow
is recognized in the intensity patterns depicted in Fig.13 and
Fig.14. At the edge of the array light seems to bounce back
inside the array just because the field cannot be coupled to
any further PC waveguide.

We observe that the light evolution along a conventional
multimode waveguide resembles the diffraction experienced
by a gaussian beam as long as the broadening of the input
beam is much smaller than the waveguide width. Likewise
if we consider an array having such a large number of
waveguides that light cannot reach the array edges, discrete
diffraction is clearly observed [23],[24]: in fact there are many
supermodes having closely spaced propagation constants and
thus the supermodes do not experience a phase difference
among them sufficient to give rise to multiple images.

In Fig.16 it is depicted the intensity evolution in an array
formed by eleven waveguides and having length19 µm. Still
we observe the formation of intensity wings along the prop-
agation direction characterized by zero dispersion [22],[24].
For this array (4-rod spacing,a = 390 nm and r = 117
nm) the numerically calculated coupling coefficient isC =
7.67 × 104 m−1 (from Eq.(2)); the array outputs have been
calculated by solving the set of coupled equations (Eq.(5)) as
well, and the result is shown in the right part of Fig.16. As
expected, since the PC waveguides are weakly evanescently
coupled, the agreement between the results from CMT and
the numerical solution of Maxwell’s equation is remarkably
good. We have verified that if the waveguides get closer the
agreement between CMT and the TDVFEM simulation gets
worse: in fact the mode travelling along a waveguide is more
perturbed by the presence of the nearby waveguides and the
hypothesis leading to the CMT is not anymore fulfilled.

The analysis of PC couplers has shown that the sign of the
coupling coefficient can be changed. In the example of Fig.16
the coupling coefficient is positive but if we considered an
array with negativeC (which can be easily obtained by using
a 3-rod spacing between the waveguides, for instance) the
intensity evolution would have the same qualitative behavior.
Nevertheless the change of sign ofC varies the sign of the
phase delay experienced by the “discrete beam” travelling
through the PC array. The paramount importance of the sign
of C has been thoroughly studied in arrays of conventional
waveguides [23],[24] and it has been shown that the diffraction
coefficient is given by

D = −2Cd2 cos (kxd) (6)

wherekxd is basically the phase difference between the field
in adjacent waveguides [23]. We underline that in conventional
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arrays the sign of diffraction is controlled by varying the phase
difference between the input field in the waveguides (i.e. by
choosing the input tilt angle), whereas in PC arrays the sign
of diffraction can be chosen by fixing the spacing between
waveguides. If the spacing is composed by an even number
of rodsC is positive and the diffraction coefficient is negative
(normal diffraction); on the other hand if the spacing is formed
by an odd number of rodsC is negative and the diffraction
coefficient is positive (anomalous diffraction).

By alternating arrays with normal and anomalous diffraction
it is possible to construct a structure exhibiting the desired
value of average diffraction. If the average diffraction is zero,
a replica of the input field is obtained at the end of the PC
device. Fig.17 shows the intensity evolution in a structure
composed of a20 µm long normal diffraction array (as the one
of Fig.16), followed by a24 µm long anomalous diffraction
array which is followed by a21 µm long normal diffraction
array. The anomalous diffraction array is composed of 3-rod
spaced PC waveguides witha = 487.5 nm andr = 80 nm;
the geometrical parameters of the anomalous-diffraction array
have been carefully chosen to avoid any abrupt transition and
bend at the interface between the array sections. The input
field is focused by the anomalous diffraction array atz = 32
µm and the last section (composed by a normal diffraction
array) creates a further copy of the input atz = 65 µm.

Intuition suggests that the interface between a normal
diffraction and an anomalous diffraction PC array works like
a convex lens: as the high refractive index region of the lens
changes the phase front curvature of the incoming beam, in
the same way the propagation in an anomalous diffraction
array reshapes the curvature of the beam cancelling the phase
curvature due to the propagation in the normal diffraction
array.

VI. CONCLUSION

In this paper, we studied the propagation in multimode
devices constructed starting from a 2-D square lattice of
dielectric rods. We analysed multimode waveguides and arrays
of coupled PC waveguides and pointed out that the presence of
many modes can give rise to self-imaging phenomena. We also
showed how in principle the studied PC multimode devices can
find application as compact1×N splitters and demultiplexers.
Moreover since diffraction can be controlled in PC waveguide
arrays, our results are a significant step towards planar circuits
where low-divergence optical beams can be routed along the
desired paths.

Although a careful study and design must rely on TD-
VFEM, a comprehensive numerical tool handling time-domain
Maxwell’s equations, we underline the importance of the
dispersion diagrams in order to explain the PC devices behav-
ior. The simple formulas derived for conventional multimode
waveguides, where the beat length between the two lowest or-
der modes is particularly significant, provide useful indications
also for the design of PC multimode waveguides whenever
light is tightly confined in the waveguide.
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Fig. 1. Projected band structure for the waveguide obtained by removing a
row of dielectric rods from a square lattice of semiconductor rods (n = 3.34)
embedded in oxide (n = 1.5). The lattice constant isa = 390 nm and the
rod radius isr = 117 nm.

Fig. 2. Waveguide 2-D mode shape in the center of the cell; the circles
indicate the position of the rods.

Fig. 3. Sketch of the multimode device: the large waveguide is obtained
by removing seventeen rows of rods. The input single row and single-mode
waveguide is used to inject the light.

Fig. 4. Projected band structure of the 17-rod wide waveguide. At the
normalized frequencya/λ = 0.2516 (λ = 1550 nm) there are thirteen
guided modes.

Fig. 5. The thirteen 2-D supermodes of the 17-rod wide multimode
waveguide (atλ = 1550 nm). The dielectric rods are indicated as black
circles.

Fig. 6. Intensity evolution along the 17-rod wide device for a symmetric
input (simulated by TDVFEM); white refers to the highest intensity. The first
copy of the input is formed atz = 43.5 µm, a 2-fold image is obtained at
z = 22 µm and a 3-fold image atz = 15 µm.

Fig. 7. Intensity evolution along the 17-rod wide device for an asymmetric
input: the field is injected in the 6-th rod from the edge (simulated by
TDVFEM). A mirrored copy of the input is formed atz = 56 µm.

Fig. 8. Dispersion relations for the supermodes of the 3-rod spacing coupler
(a = 487.5 nm, r = 80 nm); odd supermode (dashed line) and even
supermode (solid line).
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Fig. 9. ProductE∗1E2 between the modal fields of adjacent individual
waveguides (as used in the formula forC). a) 4-rod spacing coupler, the
white circle delimits the defect area (the adjacent waveguide removed rod).
b) 3-rod spacing coupler, the black circle delimits the defect area. Colormap:
black for negative values, white for positive values.

Fig. 10. a) Fundamental and b) second-order supermode of the 4-rod spacing
coupler and c) fundamental and d) second-order supermode of the 3-rod
spacing coupler. The superimposed grey circles show the position of the rods.
Colormap: white for positive values of the field and black for negative values.

Fig. 11. Projected band structure for the supermodes of an array formed by
five waveguides spaced by four rods (a = 390 nm, r = 117 nm).

Fig. 12. Cross sections of the supermodes (atλ = 1550 nm) of an array
formed by five waveguides spaced by four rods (a = 390 nm, r = 117 nm).

Fig. 13. Intensity evolution in the 5-waveguide array for a symmetric input
(simulated by TDVFEM). The first image is formed atz = 45 µm. A 2-fold
image and a 4-fold image are observed atz = 22 µm and z = 15 µm,
respectively.

Fig. 14. Intensity evolution in the 5-waveguide array, asymmetric input: the
field is injected in the second waveguide from the edge. A mirrored copy
forms atz = 45 µm.

Fig. 15. Outputs as a function of the input wavelength when the field is
injected in the central waveguide (simulated by means of TDVFEM). a) 22
µm long, 5-waveguide array (4-rod spacing); b) 45µm long, 5-waveguide
array (4-rod spacing). Solid line: output from the central waveguide; dashed
line: output from the second and fourth waveguide (from one edge); dotted
line: output from the first and fifth waveguide.
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Fig. 16. TDVFEM simulation of the 11-waveguide normal-diffraction array
(a = 390 nm, r = 117 nm, 4-rod spacing) and comparison with the outputs
calculated by means of the CMT withC = 7.67 × 104 m−1 and β =
3.78× 106 m−1 (on the right).

Fig. 17. Intensity evolution along sections of PC waveguide arrays. PC1:
normal-diffraction array, length 20µm. PC2: anomalous-diffraction array,
length 24µm. PC3: normal-diffraction array, length 21µm. A first copy
of the input image is formed atz = 32 µm.


