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Abstract

The viscous spreading of planetary rings is believed to be counteracted by satellite torques, through either an
individual resonance or overlapping resonances. For the A ring of Saturn, it has been commonly believed that the
satellite Janus alone can prevent the ring from spreading, via its 7:6 Lindblad resonance. We discuss this common
misconception and show that, in reality, the A ring is confined by the contributions from the group of satellites Pan,
Atlas, Prometheus, Pandora, Janus, Epimetheus, and Mimas, whose cumulative torques from various resonances
gradually decrease the angular momentum flux transported outward through the ring via density and bending
waves. We further argue that this decrease in angular momentum flux occurs through “flux reversal.” Furthermore,
we use the magnitude of the satellites’ resonance torques to estimate the effective viscosity profile across the A
ring, showing that it decreases with radius from ∼50 cm2 s−1 to less than ∼10 cm2 s−1. The gradual estimated
decrease of the angular momentum flux and effective viscosity are roughly consistent with results obtained by
balancing the shepherding torques from Pan and Daphnis with the viscous torque at the edges of the Encke and
Keeler gaps, as well as the edge of the A ring. On the other hand, the Mimas 2:1 Lindblad resonance alone seems
to be capable of confining the edge of the B ring, and contrary to the situation in the A ring, we show that the
effective viscosity across the B ring is relatively constant at ∼24–30 cm2 s−1.

Key words: planets and satellites: dynamical evolution and stability – planets and satellites: rings

1. Introduction

Like protoplanetary and accretion disks, planetary rings are
subject to radial spreading. Such a phenomenon happens
whenever inner ring particles exchange angular momentum
with outer ones. Because the inner ring particles orbit the planet
(or star) faster than the outer ones, the slower-moving outer
particles gain angular momentum that causes them to drift
outward, while the faster-orbiting inner particles lose angular
momentum and drift inward. This angular momentum
exchange is accompanied by a net loss of kinetic energy and
translates on the largest scale into radial spreading of the ring in
both directions, toward and away from the planet. For a dense
ring, such diffusive spreading can be characterized by the
ring’s effective viscosity. For the A ring of Saturn, the effective
viscosity is expected to be dominated by self-gravitational
transport with an expected magnitude of the order of
ν∼ 100–200 cm2 s−1 (Daisaka et al. 2001; Yasui et al. 2012).
With a radial width Δr= 15,000 km, the spreading timescale is
(Δr)2/ν∼ 7×108 years. This represents the timescale for the
ring to spread from a hypothetical narrow band at a radius of
∼130,000 km to its current dimensions. A more sophisticated
modeling of the viscous evolution of the rings of Saturn
(Salmon et al. 2010) suggests a spreading timescale of
∼108 years. If the system did not have any satellites, these
numbers would have represented an upper limit on the age of
the A ring. However, the satellites of Saturn are believed to
play an important role in stopping the rings from spreading, or
significantly reducing the rate at which they do so, and
therefore extending the age of the rings.

The confinement of the rings of Saturn was, for a long time,
an unsolved matter. The satellite Atlas might be expected to
play a major role in confining the A ring through the

shepherding mechanism because it is the closest satellite to
its outer edge. However, Voyager imaging and occultation data
showed that the edge of the A ring appears to be in a 7:6 Inner
Lindblad Resonance (ILR) with the more massive satellite
Janus (Porco et al. 1984). Thus, it has been generally believed
that the torque exerted by this resonance confines the entire A
ring. However, this interpretation has recently been questioned
because of the large radius uncertainties in the Voyager
imaging data and the fact that the 7:6 resonance was located
well outside the A ring edge at the period of the Voyager
flybys. Indeed, Janus moves on a horseshoe orbit, switching
orbits every four years with the smaller satellite Epimetheus. As
a consequence, the 7:6 resonance moves back and forth relative
to the edge of the A ring. El Moutamid et al. (2016) showed
that the seven-lobed, resonantly forced pattern disappears when
the resonance location is far from the edge, confirming the
finding by Spitale & Porco (2009) that the edge of the A ring is
in resonance with Janus only during the half of the eight-year
libration period when this satellite is closer to the planet.
On the other hand, the B ring’s outer edge has been clearly

shown to be controlled by the 2:1 ILR with Mimas (Porco et al.
1984; Spitale & Porco 2010; Nicholson et al. 2014). This
resonance, the strongest anywhere in Saturn’s rings, is believed
to prevent the B ring from spreading outwards and also to be
responsible indirectly for the existence of the Cassini division
(Goldreich & Tremaine 1978a; see also Hahn et al. 2009).
As we discuss in more detail below, ring confinement

depends mainly (among other parameters) on the confining
satellite’s mass and the effective viscosity of the ring. Thanks
to the Cassini mission, the masses of the satellites of Saturn are
now well known (Jacobson et al. 2006, 2008; Weiss et al.
2009). However, the viscosity of the rings of Saturn is a
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parameter that remains poorly understood. In the A ring,
estimates from Voyager data of the viscosity (inferred mainly
from the damping of density waves in occultation profiles)
range from ∼65 cm2 s−1 to more than 2000 cm2 s−1 (Esposito
et al. 1983; Lissauer et al. 1984; Shu et al. 1985; Chakrabarti
1989). Recently, Tiscareno et al. (2007) applied the same
method to weaker waves seen in Cassini ISS images to suggest
that the viscosity in the A ring increases gradually from
∼25 cm2 s−1 near the inner edge of the ring to ∼300 cm2 s−1

near the inner edge of the Encke gap. Although Cassini did
observe density waves in the trans-Encke region of the A ring,
inferring the ring viscosity from wave damping in this region is
complicated because of wave interference and nonlinearity
issues. However, these estimates of the viscosity are only
representative of the viscosity in perturbed regions, as we
discuss in Section 5.

On the other hand, Spitale & Porco (2010) measured the
phase lag between the longitude of the m= 2 pattern at the
outer edge of the B ring and that of Mimas to obtain the only
estimate of the viscosity in B ring of ∼20 cm2 s−1 (applying the
relation between the phase lag and the viscosity given by
Borderies et al. 1982, which was intended only as a crude
approximation). This method is based on angular momentum
transfer between the ring edge and Mimas, and as we also
discuss in Section 5, the value and even the definition of
viscosity depend strongly on the particular process being
studied.

In this work, we study the effect of resonance torques due to
multiple satellites on the confinement of the A and B rings of
Saturn, as well as on the orbital evolution of the satellites. In
Section 2, we summarize the different torques exerted by
satellites on the rings and vice versa, and introduce the main
problem of confinement and angular momentum transport
across the rings; we also derive an expression for the angular
momentum transfer via bending waves. In Section 3, we first
study the variation of the angular momentum flux (henceforth
abbreviated as AMF) and the implied effective viscosity of the
A ring as one crosses the many first and second order Lindblad
and vertical resonances in this region. We then carry out a
similar calculation for the B ring.

In Section 4, we discuss the response of the rings to satellite
resonant torques and discuss their effects on the orbital
evolution of the satellites. Some implications of our results
are discussed in Section 5, and our conclusions are summarized
in Section 6.

2. Theoretical Background: Satellite Torques

Voyager and Cassini observations have revealed many gaps
and ringlets with sharp edges in the rings of Saturn (see the
review by Nicholson et al. 2017). The maintenance of some of
these sharp edges is related to satellites; for example, Pan and
Daphnis are located at the centers of the Encke and Keeler
gaps, respectively, while Janus and Mimas are thought to
confine the A and B ring outer edges through discrete ILRs, as
discussed above. However, the origin of many other sharp
edges (e.g., several gaps in the Cassini Division and the C ring)
in Saturn’s rings remains unclear.

Satellites can control and sharpen ring edges in one of two
ways: either through an individual resonance, like the Janus 7:6
and the Mimas 2:1 resonances, or via the overlap of many,
closely spaced resonances (generally referred to as “shepherd-
ing”), such as the situation with Pan and Daphnis. Much of the

theoretical background for this picture was developed by
Borderies et al. (1982, 1989); for a recent summary and in-
depth discussion of the uncertainties and limitations of this
model, the reader is referred to the review by Longaretti (2017).

2.1. Lindblad Resonances

When a ring particle is in an Inner/Outer Lindblad
Resonance (ILR/OLR) with a satellite, its mean motion obeys
the relation

v v- + - + + =( ) ˙ ( ) ˙ ( )m n m k n k1 0, 1s s

where m is the azimuthal wave number (m> 0 for an ILR and
m< 0 for an OLR) and k represents the resonance order (k= 0
for first order, |k|= 1 for second order, etc.). As usual, n and ns
are the mean motions of the ring particle and satellite,
respectively, and v̇ and v̇s are the local and the satellite’s
apsidal precession rates due to Saturn’s gravity field,
respectively. (For third and higher-order resonances, v̇s may
be replaced by Ẇs, the satellite’s nodal regression rate, subject
to the restriction that the coefficient of Ẇs be even.) Expressions
for these angular frequencies are given by French et al. (1982),
Nicholson & Porco (1988), and Borderies-Rappaport &
Longaretti (1994):
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where Mp, R, and Jn are the mass, equatorial radius, and the
zonal gravity harmonics of Saturn, (Jacobson et al. 2006) and i
and e are the inclination and eccentricity of the ring particle (or
satellite) orbit, respectively, and G is the gravitational constant.
The original formulae given by Nicholson & Porco (1988)
contain additional terms that describe perturbations by external
satellites, but these are negligible for ring particles and have
been ignored for the purpose of this study. In these expressions,
the quantity a is the local mean (or epicyclic) radius (distance
from the planet), as defined by Borderies-Rappaport &
Longaretti (1994), rather than the osculating semimajor axis
used in most celestial mechanics texts. For a ring particle, the
terms proportional to e2 and sin2i can also be neglected.
For a first-order ILR (OLR), after m orbits, the ring particle

will return to the same longitude relative to the satellite, at the
same mean anomaly, while the latter will have orbited Saturn m
−1 (m+1) times. A similar, but somewhat more complicated,
situation applies to higher-order resonances for which the mean
anomaly of the satellite is also important. In all cases, the
azimuthal parameter m differs by 1 from the coefficient of n in
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Equation (1). The order of the resonance is the difference
between the coefficients of n and ns, higher-order resonances
generally being weaker than first-order ones.

At a Lindblad resonance, perturbations from the satellite
excite the ring particles’ eccentricities. As a result, in the
reference frame of the perturbing satellite, the ring section
locked in resonance develops an m-lobed pattern, representing
the m apoapses and periapses that each ring particle goes
through before returning to the same longitude it started from in
the satellite’s frame.6 As the ring particles oscillate radially,
their perturbations are transferred via self-gravity to the
neighboring ring particles closer to the satellite and farther
from the resonance location. Because these neighboring ring
particles orbit the planet at a slower (faster) rate than those
locked in the ILR (OLR), a trailing spiral density wave is
created, propagating radially outward (inward) across the ring
in the direction of the perturbing satellite. The wave itself
carries angular momentum: negative for an ILR and positive
for an OLR (Toomre 1969; Dewar 1972; Goldreich &
Tremaine 1978b; Shu 1984).

Subsequently, the density wave is damped by collisions
between the ring particles as it propagates through the ring,
causing these particles to lose (gain) angular momentum and
drift back toward the resonant location. The net result is a
transfer of angular momentum from the satellite to the ring
when the density wave is damped. On other hand, a
corresponding reaction torque is exerted by the ring on the
satellite. At an ILR, the ring loses angular momentum, whereas
it gains momentum at an OLR. The rate of transfer of angular
momentum by a single resonance is given by the expression
(see Appendix A for details)

p
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where the minus (plus) sign applies to an ILR (OLR). Here,
β= a/as, and as, Ms and es are the semimajor axis, mass, and
eccentricity of the perturbing satellite, respectively; Σ is the
mean surface mass density of the ring at the resonance location.
The expression for the dimensionless quantity Am,k(β) is given
in Appendix A; it depends on the Laplace coefficients gbm(β)
and their derivatives that can be calculated numerically
(Brouwer & Clemence 1961) using the definitions given in
Murray & Dermott (1999, Equation (6.67)). In the limit
m?1, m/(m-1)≈ 1, b  1 and Am,0≈ 0.8m for a first-order
resonance (k= 0), and Am,1≈ 0.48m2 for a second-order
resonance (k= 1). Equation (4) then becomes
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where f ≈ 8.6m2 for a first-order resonance (k= 0) and f
≈ 3m4 for a second-order resonance (k= 1). This expression is
the same as the one derived by Goldreich & Tremaine (1978b,
1979), Shu et al. (1985), Meyer-Vernet & Sicardy (1987), and
Longaretti (2017). For low m, Equation (5) is accurate to within
a factor of 2–3 and should be used only to get a rough estimate
of the satellite torque.

Note that the resonant torque depends on the square of the
satellite’s mass, as is the case for the shepherding torque
discussed below. The reason is the same as for tidal torques: the
torque results from the gravitational interaction of the satellite
with the perturbation that it raises in the rings.
The torque expressions above apply to a situation where the

satellite resonance is located within the ring. However, when a
resonance is located at a ring edge, the magnitude of the torque
also depends on the phase lag Δ between the longitude of the
apoapse/periapse of the m-lobed pattern and that of the
perturbing satellite. A rough estimate of the torque can be
obtained by multiplying the torque expression in Equation (4)
by sin(mΔ). Borderies et al. (1982) derived a crude expression
for the Mimas 2:1 ILR torque at the outer edge of the B ring;
this is further discussed in Section 3.3.

2.2. Viscous Angular Momentum Transport

The AMF transported through the ring due to Keplerian
shear is given by the expression (Lynden-Bell & Pringle 1974;
Borderies et al. 1984)

pn= Sn ( )T na3 , 62

where ν is the effective viscosity of the ring. More precisely,
n nº ( )G q0 , where ν0 is its unperturbed effective viscosity and
G(q) is a dimensionless factor depending on the effective local
level of streamline perturbation q (see Section 5 for further
details). If resonances do not overlap, q= 0 and G(q)= 1 in
between resonances and this relation reduces to the usual one.
If resonances overlap (for example, if different density wave
trains are present so that an unperturbed region cannot be found
in some section of the ring), the effective q is expected to be
non-zero and G(q) has a more complex behavior. It may
potentially reach zero if AMF reversal takes place. Note that it
is always possible to define ν0 and ν such that Equation (6)
holds. Such effective viscosities can be defined even if the
dominant small-scale angular momentum transport mechanism
is not collisional. The form of G(q) depends on this mode of
transport (see Longaretti 2017 for more details on this issue).
The present work aims at characterizing ν and the potential
relevance of AMF reversal to the present analysis will be
further discussed in the discussion Section 5.2.
In the presence of an ILR, if the torque from the satellite

resonance is stronger than the ring’s viscous torque
 n(∣ ∣ )TTR the ring particles in the region perturbed by the

density wave lose angular momentum faster than it can be
replaced by the viscous flux and therefore move inward,
creating a gap with a sharp inner edge. In this case, TR
represents the maximum satellite torque that can be exerted on
the ring, but Equations (4) and (5) can greatly overestimate the
actual torque once a gap is formed (see Section 3.3). At an
OLR, if the satellite torque is again larger than the viscous
torque, but positive, then the ring particles drift outward,
creating a gap with a sharp outer edge. In this manner, a single
satellite could, in principle, maintain a gap in a broad ring via
an ILR at the gap’s inner edge and an OLR at its outer edge. In
such a situation, the viscous flux of angular momentum is
removed from the ring at the inner edge of the gap by the
satellite resonance and then transferred back to the ring at the
gap’s outer edge. The net torque on the satellite is zero when
the satellite reaches its equilibrium position.

6 This description strictly applies only to first-order resonances; for higher-
order Lindblad resonances, the satellite is replaced by a perturbing potential
component that rotates with a “pattern speed” vW = + -[( ) ˙ ]m k n k mp s s .
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In the case of a narrow ring bounded by a pair of satellites
(such as the Uranian ε ring), the inner edge of the ring is
defined by an OLR with the interior satellite, which exerts a
positive torque on the ring. This angular momentum is then
carried across the ring by the viscous torque until it is removed
from the ring at its outer edge by an ILR with the exterior
satellite. In this case, the reaction torques on the satellites will
cause them to slowly recede from the ring, with a net transfer of
angular momentum from the inner satellite to the outer one.
Detailed modeling suggests that flux reversal also plays a
significant role here in reducing the effective viscosity of the
perturbed ring (Borderies et al. 1984).

2.3. Overlapping Resonances

Another mechanism of sharpening a ring edge and
maintaining a narrow gap in a broad ring is shepherding by a
nearby satellite. From Equation (1), we see that the resonance
locations asymptotically approach the satellite as m increases.
For very high m, individual first-order resonances overlap in a
small region close to the edge when the resonance spacing
becomes smaller than the characteristic resonance width of
∼(MS/MP)

1/2a, i.e., when ~ <1
M

m M
p

s
4 (Porco & Goldreich

1987; Borderies et al. 1989, Longaretti 2017). As a result, the
satellite exerts a shepherding torque that is a sum of the torques
associated with the overlapping resonances, leading to the
expression (Lin & Papaloizou 1979; Goldreich & Tremaine
1980, 1982),
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where Δa is the distance between the satellite and the ring
edge, and = + @[ ( ) ( )]g K K2 2 3 2 3 2.248

9 0 1 . In practice,
this distance adjusts itself until a balance is achieved between
the satellite’s and ring’s viscous torques.

However, there is a minimum satellite mass for which a
complete gap is opened in a broad ring. If the satellite is smaller
than this, then a partial gap forms but closes again after the
encounter with the satellite, due to viscous spreading of the
ring. Such is believed to be the origin of the propellers found in
the A ring (Tiscareno et al. 2006, 2008; Sremčević et al. 2007).
In the A ring, this minimum mass corresponds to a satellite of
radius Rmin∼3.3(ν/100 cm2 g−1)1/3 km (Nicholson et al.
2017). For larger satellites, such as Daphnis and Pan, the ring
does not have enough time to close the gap between successive
encounters with the satellite, resulting in the formation of the
Keeler and Encke gaps, respectively.

2.4. Vertical Resonances

A satellite can transfer negative angular momentum to the
ring through another mechanism. A satellite with a non-
negligible inclination excites the inclinations of the ring
particles at an inner or outer vertical resonance (IVR/OVR).
The resonant location is given by a slight variant of
Equation (1), with v̇ replaced by Ẇ, but in this case, the
parameter k must be an odd number (i.e., +/−1, +/−3, ...). In
a self-gravitating ring, this results in a bending wave that
propagates away from the resonance in a direction away from
the perturbing satellite, opposite to that of density waves (Shu
1984). The best-known example of such a wave is that driven
at the Mimas 5:3 IVR in Saturn’s A ring, which was originally

studied in Voyager images (Shu et al. 1983). As in the case of a
density wave driven at an ILR, the bending wave generated at
an IVR also carries negative angular momentum, leading to a
negative torque on the rings as it is damped. The signs are
reversed at an OVR.
In Appendix A.2, we derive an expression for the torque

resulting from a second-order IVR/OVR (there is no first-order
torque, as the satellite needs to be inclined in the first place):
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Laplace coefficient that must be calculated numerically (See
Murray & Dermott 1999 Equation, (6.67)). The minus (plus)
sign applies to an IVR (OVR). In the limit m? 1, m/(m-
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In comparison to the torque from a first-order ILR/OLR in
Equations (4) and (5), (8) and (9) contain an additional factor I2s
that makes the torque from the strongest vertical resonances
smaller than that from first-order Lindblad resonances with the
same satellite, but roughly equivalent to that of second-order
Lindlad resonances (which depend on es

2). For this reason, in
our solar system, there are no known examples of a satellite
maintaining a ring edge through a vertical resonance.

3. Angular Momentum Fluxes across the Rings

We can apply the formulae in Section 2 to examine the ring
confinement mechanisms at the outer A ring, Keeler gap, and
Encke gap edges. In this section, we also study the effect of
other satellite resonances on the AMF and the viscosity of the
A and B rings, and examine the role they play in their
confinement. Ultimately, we are trying to answer the following
questions: (1) what mechanism actually confines the rings of
Saturn? and (2) what is the rings’ effective viscosity and how
does it vary with radius across the system?
To calculate the satellite torques in the A ring, we use a

simplified surface mass density profile based on the results of
Tiscareno et al. (2007). For radii between 124,000 km and
132,000 km, we assume that Σ= 33.7+1.3 (a1000–124) g cm

−2,
where a1000 is the radius in thousands of kilometers. M. S.
Tiscareno & B. E. Harris (2017, in preparation) found that the
surface mass density beyond this radius decreases gradually to
reach Σ= 15 g cm−2 at the outer edge of the A ring. Thus, we
adopt a rough model of Σ≈ 44.3–6.1 (a1000–132) g cm

−2 for radii
beyond 132,000 km (see M. S. Tiscareno & B. E. Harris 2017, in
preparation, for more accurate values for the surface mass density
across the A ring). We use Equation (2) to calculate the mean
motions of ring particles at different radii.

3.1. Viscosity of the Outer A Ring

We begin with the outermost part of the A ring, where we
can apply Equations (4)–(7) to calculate the required ring
viscosity that results in a balance between the satellite and the
ring torques at the edge of the A ring and at the Keeler and
Encke gaps. The outer edge of the A ring is located at a mean
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radius of 136,770 km and coincides, for one half of the time,
with the 7:6 ILR with Janus, as discussed in Section 1 above.
Using Equations (4) and (6), with m= 7, we obtain an effective
ring viscosity at the outer edge of the A ring of ∼11 cm2 s−1.
However, we note that Equation (4) represents the maximum
torque from a satellite Lindblad resonance, as derived from
density wave theory, but the actual torque exerted on the ring
edge will be reduced with respect to the full linear torque due to
the truncation of the ring at the edge. As described above, the
expression for such an edge torque depends on the phase lag
between the ring m-lobed streamlines and the perturbing
potential. Such a lag has not been measured for the A ring, but
appears to be small (R.G. French & N. Cooper 2017, private
communication). Because of this reduction in the actual torque
with respect to the full linear torque, our estimated effective
viscosity represents the maximum value; the actual value may
be much lower than 11 cm2 s−1.

For Daphnis and the Keeler gap (radius∼ 136,505 km), as
well as for Pan and the Encke gap (radius∼ 133,854 km), the
overlapping resonance model is more appropriate than the
discrete resonance one. Applying Equations (6) and (7) to these
features, and using the estimates of mass from Weiss et al.
(2009), we obtain an effective ring viscosity of ∼14 cm2 s−1

and ∼64 cm2 s−1, respectively. Note the decrease in the
effective viscosity (and the angular momentum flux) as
function of ring radius.

Our estimates of viscosity from torque balancing are much
smaller than those estimated from the damping of density
waves by Tiscareno et al. (2007), who obtained values of
∼300 cm2 s−1 in the near-Encke region. In fact, if we use the
latter value, then none of the satellites mentioned above would
be capable of maintaining the ring or gap edges, yet occultation
data (reviewed by Nicholson et al. 2017) clearly show that all
five edges of the outer A ring, Keeler gap, and Encke gap are
very sharp. Equations (4)–(7) depend on several physical
parameters of Saturn, as well as of its satellites and rings, but
only the two ring parameters, Σ and ν, are at all uncertain. The
surface mass density appears in each of Equations (4)–(7), and
thus cancels out when comparing the viscous torque in the
rings to those from the satellites. This leaves the ring’s effective
viscosity as the only adjustable parameter in this model.

3.2. Collective Resonant Confinement of the A Ring

As noted above, if the resonant torque from a satellite’s ILR
is stronger than the local viscous torque in the ring, we expect
that a gap with a sharp inner edge should open at the resonance
location. However, even if the resonant torque is smaller and
no gap forms, the satellite resonance will still exert a negative
torque on the ring, via a density wave, which will reduce the
outward flux of angular momentum through the rings. In this
scenario, the Janus 7:6 ILR is responsible only for removing
the flux that has “survived” all of the previous similar satellite
resonances. To quantify this picture, we calculate the variation
of the AMF across the A ring, taking into account all of the
first- and second-order Lindblad resonances due to the satellites
Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, and
Mimas, as well as the strongest (i.e., second-order) vertical
resonances due to Mimas.

By substituting Equations (2) and (3) into Equation (1) and
solving for a, we can calculate the resonance locations for each
satellite, for different orders and m numbers. Table 1 lists the
first- and second-order resonances, as well as the mass,

eccentricity and semimajor axis for each satellite contributing
to the viscous flux across the A and B rings (a full map of
resonances, with their strengths, is given in M. S. Tiscareno &
B. E. Harris 2017, in preparation). We then use the expression
in Equation (4), along with the simple linear expressions for the
surface mass density given above, to estimate the torque
exerted on the ring by each resonance.
We do not consider the resonances of Daphnis, because its

mass is so small that the associated torques are negligible. In
addition, Atlas’ and Pan’s second-order resonances were not
included either because of their negligible torques (due to small
masses and eccentricities), and for their first-order resonances,
the absolute m values are limited to a maximum of 100 (for
higher values of m, the Pan resonances start overlapping near
the Encke gap, and the angular momentum transfer is then
described by the overlapping resonance torque due to a close
satellite). Pan and Daphnis are unique in having both ILR
(m> 0) and OLR (m< 0) resonances in the main rings because
they are located within gaps in the A ring. For this reason, each
serves as a bridge to transfer the AMF from one ring edge to
the other via their overlapping resonance torques. These
torques thus are equal and opposite on the inner and outer
gap edges, and need not be considered when studying the large-
scale AMF through the A ring.
Similar to the situation for Janus, as Epimetheus moves in

and out on its horseshoe orbit, so does its 7:6 ILR. It is outside
the A ring when the Janus 7:6 ILR is at the outer edge of the
ring, and then moves within the rings when the Janus 7:6 ILR
moves out. Thus, only one of the Janus and Epimetheus 7:6
resonances affects the rings at any given time, and their time-
averaged torque is half of that given by Equation (4). Note that
the decay time of the seven-lobed perturbation is longer than
the four-year libration period of the co-orbital satellites.
Consequently, expressions of the torque derived in a stationary
context do not formally apply. However, it is known that, when
the full linear torque applies (i.e., without a ring edge), the
torque is independent of the specific physical process of
transfer of the torque to the ring (Meyer-Vernet & Sicardy
1987). We may expect that similar features hold in the present
context and that the stationary edge torque estimate should
apply half the time as mentioned above, although edge torques
do explicitly depend on the ring internal dissipation. These
points will require formal theoretical backing in the future.
In addition to the 5:3 ILR, Mimas has a relatively strong 5:3

IVR at a radius of ∼131,900 km (due to its inclination of
∼1°.6). Therefore, we apply Equation (8) to compute the torque
exerted by this resonance.
Because we know that the AMF transmitted through the ring

must reach zero after encountering the Janus 7:6 ILR at the
outer edge of the A ring, we set this number as a starting point
(see Section 3.1) and estimate the viscous flux going backwards
in radius across the A ring. The flux increases (with decreasing
radius) by TR (Equation (4)) at each resonant location, and by
TVR at the Mimas 5:3 bending wave (Equation (8)). We use the
same simplified piecewise-linear profile of ring surface mass
density specified above. The local AMF is then converted into
ring viscosity using Equation (6).
Because we do not know the actual confining torque from

Janus at the A ring edge, we consider a range of torques for the
7:6 ILR with the minimum value close to zero (very small
phase lag), up to the maximum value, TR= 3.4×1012 Nm.
Figure 1 shows the resulting upper and lower limits on the
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AMF and the inferred viscosity as a function of radius across
the A ring, As noted above, the small phase lag observed in the
seven-lobed pattern indicates that the actual numbers are
probably closer to the lower limit.

As might be expected, this plot shows a gradual outward
decrease in the AMF (Figure 1(a)) through the ring as we
encounter successive resonances with the external satellites.
The notable drops in flux at ∼125,000 km, 130,500 km,
134,500 km, and 136,700 km are due to the Janus 4:3, 5:4,
6:5, and 7:6 ILRs, respectively, and the drop at ∼132,300 km is
due to the Mimas 5:3 ILR. While these resonances play a major
role in removing the viscous flux of the A ring, resonances
from the other satellites cumulatively have almost the same
contribution, especially in the region outside the Encke gap
where hundreds of first- and second-order resonances of
Epimetheus, Prometheus, Pandora, and Atlas accumulate.
Finally, the viscous flux drops low enough for the Janus 7:6
ILR torque to remove the remaining angular momentum and
prevent the ring’s outer edge from spreading. In fact, our
calculations indicate that the overlapping resonance torque
from Atlas would be of the same order as that from the Janus
7:6 ILR if the phase lag of the 7-lobed pattern Δ∼ 0°.9.
Because the phase lag is indeed believed to be small, both
torques may be involved in removing the remaining AMF at
the ring edge.

Independent estimates of the ring’s viscous AMF at the radii
of the Encke and Keeler gaps are provided by the shepherding
torques exerted by Pan and Daphnis, respectively, as indicated
by the filled circles in Figure 1(a) (with three-sigma error bars
on the satellite’s masses taken from Weiss et al. 2009). It can be
seen that the torque from Daphnis is quite consistent with our
calculated curves. However, the shepherding torque from Pan
is larger than our local estimate of the AMF. This may be
because either our adopted surface mass density of the A ring is
underestimated in the trans-Encke region by an average factor
of 1.6–2.2 (if the surface mass densities were higher, then the
torques from other satellite resonances here would be strong
enough to bring the curve of the AMF near the Encke gap up to
a level comparable to the torque from Pan), and/or the mass of
Pan (from Weiss et al. 2009) is overestimated by a factor of
1.3–1.5 (as the torque goes as the square of the mass). Overall,
our torque calculations appear to be accurate within a factor of
1.6–2.2, and most importantly are consistent with the observed

decrease in the ring’s AMF between the Encke gap and the
edge of the A ring.
Although its net contribution to the AMF in the rings is

small, Pan has an interesting relationship with the A ring. Not
only it does it act to transfer angular momentum from one edge
of the Encke gap to the other (via the overlapping resonances
torque), it also transfers angular momentum on a larger scale as
well. In the inner regions of the A ring, Pan decreases the AMF
of the ring through its many ILRs, while in the trans-Encke
region, Pan increases it again through its almost-equally
numerous OLRs. The cumulative ILR torques slightly exceed
that of the OLRs, partly because of the higher surface density in
the inner regions of the A ring. (The impact on Pan’s orbit is
discussed in Section 4). A similar phenomenon occurs with
Daphnis and the Keeler gap, but its overall effect on the A ring
is negligible because of the small size of the discrete-resonance
Daphnis torques.
Figure 1(b) shows the effective viscosity inferred from

Equation (6), as well as that estimated above from balancing
the shepherding torques at the Encke and Keeler gaps. Also
shown here are the effective viscosity estimates inferred from
damping of weak density waves (Tiscareno et al. 2007). Similar
to the flux profile, the effective viscosity decreases in several
small steps from the inner edge of the A ring up to the Encke
gap, and then drops rapidly due to the large number of
resonances in the region beyond this gap. However, unlike the
viscous flux profile, the effective viscosity increases in some
regions with increasing radius; it also decreases gradually when
there are no resonances perturbing the ring. In both instances,
the reason is that we calculate the effective viscosity at a certain
radius by dividing the AMF of the ring (at that same radius) by
3πΣna2 (Equation (6)). Hence, when the surface mass density
Σ increases with radius (for 122,000 km< a< 132,000 km) the
effective viscosity decreases, whereas when Σ decreases with
radius (for a> 132,000 km), the effective viscosity can
increase, unless the satellite torques are strong enough to
decrease it. As a result of this relation between the surface
density of the ring and the viscous flux, the effective viscosity
(both upper and lower limits) in the A ring decreases from
40–53 cm2 s−1 at the inner edge of the A ring, down to
12–25 cm2 s−1 at a radius of 132,000 km, and then varies
within a range of 15–30 cm2 s−1 between 132,000 and
136,000 km, before rapidly decreasing to less than 11 cm2 s−1

at the outer edge of the A ring.

Table 1
Physical and Orbital Parameters of Eight Saturnian Satellites with Resonances Located in the A and B Rings

Satellite as(km) es(10
−3) Ms(10

15 kg) A Ring Resonances B Ring Resonances

First Order Second Order First Order Second Order

Enceladus 237,948 4.7 108022.0 L L L 3:1
Mimas 189,176 19.6 37493.0 L 5:3 2:1 4:2
Epimetheus 151,466 9.8 526.6 4:3-7:6 11:9-13:11 2:1, 3:2 4:2-6:4
Janus 151,412 6.8 1897.5 4:3-7:6 11:9-13:11 2:1, 3:2 4:2-6:4
Pandora 141,710 4.2 137.1 5:4-19:18 10:8-37:35 3:2, 4:3 5:3-8:6
Prometheus 139,380 2.2 159.5 6:5-35:34 11:9-69:67 3:2, 4:3 5:3-8:6
Atlas 137,670 1.2 6.6 6:5-100:99 L 3:2, 4:3 L
Pan 133,854 0.01 4.3 8:7-100:99, L 3:2, 4:3 L

−99:−100-27:−28

Note. The final columns show the ranges of first- and second-order ILRs in each ring. For Prometheus, for example, the first-order resonances in the a ring have m
numbers ranging from 6 to 35, while the second-order ILRs of the same satellite range from m = 10 to 68 as the radius increases. The masses of Enceladus, Mimas,
Epimetheus, Janus, Prometheus, Pandora, and Atlas are taken from Jacobson et al. (2006, 2008), and the mass of Pan is from Weiss et al. (2009). The semimajor axes
of Janus and Epimetheus represent the periods in the configuration of their mutual horseshoe orbit when Janus is closer to the ring (see text).
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Again, the calculated effective viscosity at the Keeler gap is
consistent with the estimate obtained in Section 3.1 from torque
balancing, but not at the Encke gap, probably for the reasons
discussed above. Nevertheless, the general decrease of the
effective viscosity in the trans-Encke region is consistent with
that estimated from torque balancing.

Our effective viscosity estimates are also consistent with the
viscosity inferred from the damping of density waves
(Tiscareno et al. 2007) in the inner part of the A ring.
However, they diverge from the density-wave-derived values in
the outer part of the A ring, an issue to which we will return to
in Section 5.

3.3. Resonant Confinement of the B Ring

Because our estimates of the A ring’s AMF and its viscosity
seem to be roughly consistent with those obtained from

balancing the shepherding torques, we have also attempted to
apply the same method to the B ring.7 Compared to the A ring,
the number of resonances in the B ring is small; Table 1 shows
that there are 27 first- and second-order ILRs, among which the
Mimas 2:1 ILR (at the outer edge of the B ring, at a radius of
117,553 km) is by far the strongest. In addition to resonances of
the satellites involved in the confinement of the A ring, the B
ring contains an Enceladus 3:1 ILR (radius∼ 115,207 km). The
B ring has also a Mimas 4:2 IVR located ∼830 km interior to
the 2:1 ILR, at a radius of 116,724 km.
Unlike the situation in the A ring, the density and bending

waves driven by these resonances are not easy to see in either

Figure 1. Upper and lower limit estimates (dashed lines) of (a) the angular momentum flux (AMF) and (b) the effective viscosity (on a log scale) in the A ring, as a
function of radius, taking into account all the first- and second-order Lindblad resonances from the satellites (Table 1) and the 5:3 bending wave from Mimas. The
curves have upper and lower limits because the exact rate of angular momentum transfer from the Janus 7:6 ILR is uncertain (see text). Solid circles represent the AMF
and the effective viscosity estimates derived independently from torque-balancing arguments at the Encke and Keeler gaps. Diamonds represent the viscosity of the
ring inferred from the damping of density waves (Tiscareno et al. 2007); though there is no reason to believe that the viscosity inferred in this way should be the same
as the effective viscosity estimated in this work (see text). Only the strong ILRs are identified in part (a), but many smaller ILRs contribute to the decrease of the AMF
of the ring, especially beyond a 130,000 km radius.

7 We do not study the Cassini division because of the existence of numerous
complex structures in this region that remain largely unexplained to this day.
Cassini has not found satellites in any of its narrow gaps (Nicholson et al.
2017), and there are relatively few and weak external satellite resonances. The
major contributors to this region’s AMF are thus currently unknown.
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imaging or occultation data. This is due to the large amount of
confusing, small-scale structure in the B ring, as well as to its
typically very high optical depth. In Voyager data, only the
Janus 2:1 density wave and the Mimas 4:2 bending wave were
detected (Esposito et al. 1983; Lissauer 1985). Recently,
however, Hedman & Nicholson (2016) have detected density
waves due to the Mimas 5:2, Pandora 3:2, Enceladus 3:1, and
Janus 3:2 ILRs in stellar occultation profiles obtained by
Cassini.

Starting from the Mimas 2:1 ILR and moving inward, we
estimate the cumulative AMF across the B ring by taking into
account the satellite torques from the expected ILRs (Table 1)
and the Mimas 4:2 IVR. Hedman & Nicholson (2016) found
that the surface mass density is surprisingly constant across the
different regions of the B ring, ranging between 50 g cm−2 and
75 g cm−2, except for a single value of 120–140 g cm−2 in the
region around 116,100 km. For simplicity, we use a constant
value of Σ= 75 g cm−2 to estimate the satellite torques, and
thus the AMF in the B ring (the variation of the surface mass
density at the outer edge of the B ring is more complex; see P.
Y. Longaretti 2018, in preparation).

Unlike the outer edge of the A ring, a phase lag of Δ= 2°.9
in longitude between the m= 2 forced pattern and the longitude
of Mimas has been reported by Spitale & Porco (2010), based
on the analysis of a large set of Cassini images. Nicholson et al.
(2014), however, did not detect any significant lag in their
analysis of radio and stellar occultation data, setting an upper
limit of 1°.8. We thus prefer to treat the reported phase lag as an
upper limit, rather than as a strong constraint. P. Y. Longaretti
(2018, in preparation) shows that the torque expression at the
sharp edge of the B ring from Borderies et al. (1982) is
underestimated by up to a factor of ∼6. We take this correction
into account in calculating the resonant torque at the edge of
the B ring, and set this value (as well as the upper limit on the
phase lag) as the starting condition for our calculation in
Figure 2(a).

The variation of the viscous AMF across the B ring
(Figure 2(a)) is very different from that of the A ring. It
remains relatively constant, decreasing by ∼10% before
dropping abruptly to zero at the Mimas 2:1 ILR. Apart from
the latter, the largest torques are again associated with the two
first-order ILRs of Janus, as indicated in the figure. Also unlike
the situation in the A ring, where the Janus 7:6 ILR is only able
to confine the outer edge of the ring with the help of many
other resonances, application of Equation (4) to Mimas’ 2:1
ILR shows that its maximum torque could confine a ring
(without the assistance of other satellite resonances) with a
viscous AMF more than ten times larger than our best estimate
for the B ring.

The relatively flat profile of the AMF also applies to the
effective viscosity estimates (Figure 2(b)); ν decreases from
∼30 cm2 s−1 at the inner edge of the B ring to ∼8 cm2 s−1 at
the outer edge. Note the gradual outward decrease in the ring
effective viscosity, even though we are assuming a constant
value of surface density across the B ring. Here, the
denominator in the effective viscosity calculation is propor-
tional to a1/2 (see the discussion above) and therefore, for a
constant viscous flux, the effective viscosity must decrease with
increasing radius. Note that Figure 2(b) shows the effective
viscosity profile based on the measured phase lag in the m= 2
pattern at the outer edge of the B ring. However, if this phase
lag were much larger, then the torque from the Mimas 2:1 ILR

alone would be capable of maintaining the edge of the B ring
for an effective ring viscosity up to ∼330 cm2 s−1.
Unfortunately, unlike the situation in the A ring, there are no

satellite-controlled gaps within the B ring, which prevents us
from making an independent check of our estimates of the
AMF or the effective viscosity across the B ring.
Two conclusions can be drawn for the B ring: (1) unlike the

Janus 7:6 ILR at the outer edge of the A ring, which depends
on the help of many other resonances to confine this ring, the
Mimas 2:1 ILR alone can easily prevent the outer edge of the B
ring from spreading outward, and (2) the effective viscosity is
expected to be relatively constant across the ring, perhaps
ranging between 24 cm2 s−1 and 30 cm2 s−1.

4. Evolution of the Satellites of Saturn

So far, we have studied the role that the satellites play in the
modification of the AMF and the viscosity of the rings through
various Lindblad and vertical resonances. The rings, on the
other hand, respond to these torques by exerting an equal and
opposite reaction torque on the satellite at each resonant
location. Such a response has consequences for the evolution of
the satellites’ semimajor axes.
We sum the torques exerted by the A and B rings on each of

the satellites of Saturn, as calculated above, and compare them
to the torques exerted by Saturn’s tidal bulge using the standard
expression (Kaula 1964),
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Here, k2 is Saturn’s tidal Love number, which represents the
planet’s reaction to the tidal potential due to a satellite, and Q is
the tidal quality factor that models the phase lag between the
planet’s tidal bulge and the direction of the satellite. To
calculate the planet’s tidal torque on the satellites, we use the
value of k2/Q= 1.59×10−4 that was empirically determined
by Lainey et al. (2012, 2017) using Earth-based and thousands
of Cassini-based astrometric positions of the satellites of Saturn
(Tajeddine et al. 2013, 2015; Cooper et al. 2014). In addition,
we calculate the rate of change of the satellites’ semimajor axes
due to the torques from the planet and the rings (Kaula 1964):
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where TRings is the total torque from the rings on the satellite.
Table 2 shows the torques and resulting rates of change of the
semimajor axis for different satellites. Interestingly, the ring
torque dominates the orbital evolution of the semimajor axis for
all the small, inner satellites of Saturn. On the other hand, the
ring torque on Mimas is ∼10% of that, due to Saturn’s tides.
The numbers from Table 2 show that the torque from the

rings should be taken into account when modeling the orbital
evolution of all the “ring moons” of Saturn, as well as Mimas.
However, the ring torque becomes negligible in comparison to
the tidal torque for satellites beyond Mimas, because they have
no first-order ILRs (and some of them have only a very small
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number of second-order ILRs) in the rings. Of course, our
calculations do not take into account other effects that can play
an important role in the satellites’ orbital evolution, in
particular the gravitational interactions between satellites. For

example, Janus and Epimetheus are locked together in mutual
horseshoe orbits, while Prometheus and Pandora are involved
in overlapping mean motion resonances that put them on
chaotic orbits within the resonant region (Goldreich &
Rappaport 2003). Atlas is currently locked in a 54:53 mean
motion resonance with Prometheus (Cooper et al. 2015).
Subject to the above caveats, we can estimate the outward

migration timescale for the satellites, defined as D = D ˙t a a,
where Δa is the distance between the satellite and the edge of
the A ring and ȧ is the average rate of change of the semimajor
axis of the satellite due to torques from the rings and Saturn’s
tides from Table 2. Of course, this is only a rough calculation,
in as much as we are assuming a constant value of ȧ, which will
in reality be higher when the satellite is closer to the rings and
thus has more ILRs within the A ring. Our estimates therefore
represent upper limits on the ages of the satellites.
We find maximum ages on the order of ΔtMimas∼ 109 years,

ΔtEpimetheus∼ 109 years, ΔtJanus∼ 3 · 108 years, ΔtPandora∼
108 years, ΔtPrometheus∼ 107 years, and ΔtAtlas∼ 4 · 106 years
(we assume that Atlas was trapped in resonance with
Prometheus only recently). All these satellites thus appear to
be younger than 1 Gyr. These calculations do not take into

Figure 2. Upper limit estimates of the angular momentum flux (AMF) (a) and the effective viscosity (b) in the B ring as a function of the radius, taking into account all
the first- and second-order Lindblad resonances from the satellites (Table 2) and the 4:2 bending wave from Mimas. The solid circle represents the AMF and the
resulting effective viscosity, estimated from torque balancing at the outer B ring edge, with the reported phase lag relative to Mimas of Δ = 2°. 9.

Table 2
Comparison of the Torques Exerted by the Rings to Those of Saturn’s Tidal
Bulges on the Inner Satellites and Mimas, with the Resulting Migration Rates

of Their Semimajor Axes due to Each Effect

Satellite
Planet’s Tidal
Torque (Nm)

Ring Tor-
que (Nm)

˙∣a Tidal

(km/
Myr)

˙∣a Rings

(km/
Myr)

Mimas 3.90 × 1014 3.97 × 1013 46.4 4.72
Epimetheus 2.92 × 1011 1.43 × 1012 2.21 10.8
Janus 3.80 × 1012 1.89 × 1013 7.99 39.5
Pandora 2.95 × 1010 1.57 × 1012 0.83 44.2
Prometheus 4.41 × 1010 1.14 × 1013 1.06 274
Atlas 8.14 × 107 4.05 × 1011 0.047 233
Pan 4.09 × 107 5.12 × 1011 0.036 90.1

Note. The migration rates ignore any resonant interactions between the
satellites (see text).
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account the inter-satellite interactions: Mimas and Tethys are in
a 4:2 mean motion resonance. Equations (10) and (11) give for
Tethys TTides= 7.41 · 1015 Nm and =ȧ 66.8T kmMyr−1, and
because they are locked in a resonance, the actual migration rate
of Mimas would be = =-˙ ( ) ˙a n n a 42.1M T1 2

2 3 kmMyr−1;
thus, Tethys may be decelerating Mimas’ orbital migration, and
if the latter has been caught in the resonance since its formation,
the migration timescale would then be slightly larger. However,
recent studies of Mimas suggest that it may possess a global
subsurface ocean (Tajeddine et al. 2014; Noyelles et al. 2016;
Noyelles 2017; Caudal 2017), although such a claim is difficult to
reconcile with the absence of surface fracturing (Rhoden et al.
2017). If this is true, orbital migration could have been delayed
recently by tidal dissipation in the satellite, thus increasing the
estimated age.

The Mimas-Tethys reasoning may also apply to the Janus/
Epimetheus pair, although these two satellites may have
entered into their mutual horseshoe libration quite recently,
because the lifetime of such a configuration is estimated to be
only ∼2 · 107 years (Lissauer et al. 1985).

The upper limits on the ages of Prometheus and Pandora that
we obtain are larger than those of Borderies et al. (1984), who
estimated ∼106 and 107 years, respectively. This is probably
due to differences in the input parameters; for instance, they
used a ring surface mass density of 50 g cm−2 (a factor of ∼3
larger than what is used here). It is also unclear what satellite
masses they used, but if they assumed a satellite density of
0.92 g cm−3 for ice (which is twice what Cassini measured;
Thomas 2010), this could account for more of the difference. It
is also unclear whether their age estimate was based on a
numerical integration over time, or a simple instantaneous
estimate like that in Table 2.

Borderies et al. (1984) also raised the question of whether
Pandora will eventually be captured into the 3:2 mean motion
resonance with Mimas (radius ∼141,892 km), which is currently
just beyond Pandora’s orbit (mean radius∼ 141,710 km). Further-
more, Pandora is currently located between inclination
type (radius∼ 141,532 km) and eccentricity type (radius∼
141,827 km, ∼68 km inside the 3:2 resonance) 6:4 Mimas
resonances, and surprisingly was not caught in either of them in
the past (Murray & Dermott 1999, see their Figure 10.28). The
rate of orbital migration of Mimas is∼42.1 kmMyr−1 (taking into
account the resonance with Tethys), but the Mimas 3:2 ILR moves
more slowly, at a rate -( ) ȧ3 2 M

2 3 , or » -ȧ0.76 32 km MyrM
1,

in the same order of that of Pandora (∼45 kmMyr−1, taking into
account the uncertainties in the torques exerted by the A and B
rings, and Saturn’s k2/Q), meaning that the latter may have
managed to avoid getting caught in the Mimas resonances by
migrating at the same rate as the resonances surrounding it. On the
other hand, if we assume that the values in Table 2 were accurate,
then the Mimas 6:4 inclination type resonance would catch up
with Pandora in another ∼15Myr, on the same order as the age of
Pandora. This number may, however, vary depending on the
Saturn’s k2/Q at Mimas’ tidal frequency.

The migration times of the inner moons and Mimas confirms
that their ages are less than 1 Gyr, more consistent with a model
of satellite formation from the rings (Charnoz et al. 2010, 2011)
than with a primordial origin. We have, however, not attempted
to construct a realistic history of the satellites’ orbits because
this would involve a self-consistent reconstruction of which
resonances fell within the rings at any given time, as well as
assumptions as to which resonance(s) may have terminated the

A ring at various points during this evolution. A further
complication is the possibility that the present ring moons may
represent merger products from an initially much larger set of
smaller objects that accreted at the edge of the A ring (Charnoz
et al. 2010).
Furthermore, note that we used here a constant value of the

effective k2/Q= 1.59×10−4 (Lainey et al. 2012, 2017), and
hence an effective quality factor of Q∼ 1600, ten times smaller
than the commonly accepted value of ∼16,000 (Dermott et al.
1988), based on analysis of past resonances. Lainey et al. also
found that the quality factor is even smaller at the tidal
frequency of Rhea, with Q∼ 300. Internal oscillation modes
inside Saturn raised by the satellites (Ogilvie & Lin 2004) are
believed to be the cause of such small values of the effective Q
(Fuller et al. 2016). Therefore, it is unknown when Mimas got
locked in resonances with those internal modes and started
migrating rapidly. If this happened soon after its formation,
then our age estimates are correct; however, if it happened only
recently, then Mimas may be as old as the solar system. On the
other hand, the differences in the tidal quality factor do not
affect the age estimates of the inner satellites because their
migration rates are dominated by ring torques (Table 2).
Pan constitutes a particularly interesting case; it has ILRs in

the inner part of the ring, but because it is within the A ring, the
reaction torques from these are largely countered by those from
the OLRs in the trans-Encke region. However, Pan has more
ILRs than OLRs in the rings (see Table 1), and the surface mass
density Σ is larger interior to the Encke gap. Therefore, (as
Table 2 shows) the net response from the rings is a positive
total torque on Pan, making it want to drift slowly outward.
However, the situation is more complex than this. If we
calculate the ratio between the angular momentum of the ring
beyond the Encke gap and that of Pan, we find that

= ´∣ ∣L L 4.7 10Ring Pan
3. This means that, although the

discrete resonant torques on Pan tend to push it outward, Pan
cannot easily drag the nearby ring material with it. Instead, the
much larger shepherding torques at the gap edges push Pan
back to the middle of the gap, or perhaps a little outside this at
the point of overall torque balance.
We find a similar situation for Daphnis and the Keeler gap,

but further complicated by the presence of a first-order
Prometheus ILR at the gap’s inner edge (Tajeddine et al.
2017). It thus seems likely that these two satellites will only
exit the rings when the satellites holding back the A ring have
migrated far enough to allow the ring to spread beyond the
Roche limit, dropping the ring’s surface mass density and
eventually converting some of the outermost ring material into
new satellites. However, these new satellites could confine the
ring again, further delaying the exit of Daphnis and Pan from
their prisons.

5. Discussion

Our calculations in Section 3, illustrated in the upper panels
of Figures 1 and 2, strongly suggest that the AMF transported
outward though the rings is almost constant across the B ring,
but decreases significantly across the A ring, especially in the
trans-Encke region. This is a direct consequence of the high
concentration of first-order satellite resonances in this region—
and their relative paucity in the B ring—and seems to be a
robust result. A corollary to this result is that the confinement
of the A ring is best thought of as distributed across many
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satellite resonances of comparable strength, rather than being
due to a single ILR at the ring’s outer edge.

However, simply concluding that the AMF must decrease
across the A ring does not explain why this happens; nor does it
explain why the viscosity estimates for the A ring differ so
much between this work and those inferred from the damping
of density waves (Tiscareno et al. 2007). Those points are
addressed in this section, starting with the issue of viscosity.

5.1. Process Dependent Viscosity

The viscosities in the A ring obtained from Equation (6) and
those inferred from density wave damping (Figure 1(b)) are
different because they are inferred from different physical
processes and contexts. Several points must be kept in mind
when trying to relate different measurements of viscosity: first,
different levels of nonlinearity will lead to different effective
viscosities; second, in the nonlinear regime, no single effective
viscosity can be defined even for a given process (e.g.,
collisional stresses); and third, different processes depend on
different effective stress tensors.

5.1.1. Collisional Stress

Collisions are collectively characterized by the collisional
pressure tensor Pij(i, j= x, y, z or r, θ ,z). The µ qaAMF r , the
energy dissipated µ -qa qt2 3r 1 , and the damping of
eccentricities (e.g., in density waves)∝ t1, where qar is the
azimuthal average of Prθ while t1 is an average over a
combination of Prr and Prθ (Borderies et al. 1985; Shu et al.
1985). The quantity q characterizes the compression of the
flow, and has two contributions, one from the gradient of
eccentricity and the other from the gradient of apsidal shift of
the ring streamlines; more formally, using the notation of
Equation (13), = +[( ) ( ) ]q ade da maed da2 2 1 2 (see, e.g.,
Longaretti 2017 and references therein for more details). One
may always write8 s n=q ( )a S G qr 0 0 0 and s n= -W ¢ ( )t F q1 0 0
( = WS 3 20 is the unperturbed velocity shear), but as F and G
are different functions of q, the effective “transport” and
“dissipation” viscosities n n=( ( )G qt 0 and n n= ¢ ( )F qd 0
respectively) will differ, possibly in a significant way,
especially in the AMF reversal regime. This is true even
though density wave damping is modeled in the linear limit, as
the measured viscosity will then incorporate nonlinear effects.
Note that, in a circular flow, q= 0, the damping term t1 cancels,
and the dissipation ( -q )a qt2 3r 1 and transport (arθ) terms
become identical, so only one effective viscosity is relevant in
this limit. Note also that the point made above about effective
transport and dissipation viscosities in the nonlinear regime is
also valid for a Newtonian fluid, although the microscopic
kinematic viscosity n0 is unique and unambiguous in this case.

This short discussion justifies the first two statements above for
collisional stresses. Let us now turn to other types of stresses.

5.1.2. Self-gravity Wakes Stress

It is well-known that such wakes produce a self-gravitational
stress tensor whose contribution to the vertically averaged fluid
momentum equation is of the form ( s ¶ ¶)( )T x1 ij i with

ò d p= -( )T dz g g g G4ij i j i ij
2 (in cgs units) and where gi is

the self-gravitational acceleration in the i direction (Lynden-
Bell & Kalnajs 1972). This is formally equivalent to the
pressure tensor term s ¶ ¶( )( )P x1 ij i . In practice, self-gravity
wakes fluctuate on short length- and timescales (comparable to
the critical wavelength of the instability and to the associated
growth timescale). It is common in fluid dynamics to average
such fluctuations over such scales in order to obtain an effective
laminar flow equation, with an extra averaged self-gravitational
stress tensor term ò dá ñ = á - ñT dz g g gij i j i ij

2 . Although á ñ =g 0i ,
this averaged self-gravitational tensor does not vanish, because
fluctuations correlate across different components. This averaged
stress tensor has the same physical dimensions as the pressure
tensor, so one may always define, as before, effective “transport”
and “dissipation” viscosities associated with self-gravity wakes, by
substituting the averaged self-gravity tensor for the pressure tensor
into the corresponding quantities qar and t1, which will then
possess a self-gravitational component on top of the collisional one.
The behavior of this self-gravity tensor is not known, except

for the angular momentum transport contribution á ñJTr in a
circular Keplerian background flow (Daisaka et al. 2001); in
particular, its value is not known in perturbed flows. However,
one may expect the remarks made for the collisional stress
tensor to apply here as well: the self-gravitational stress will
depend on the nonlinearity parameter q in an unknown way,
but there is no reason to expect its effective transport and
dissipation components to be of the same magnitude.

5.1.3. “Reynolds” Stress

This discussion would not be complete without mentioning the
third tensor of interest, d s= á ñ( )R v vij i j whose contribution to the
effective laminar flow ( s ¶ ¶)( )R x1 ij i is formally identical to that
of the collisional and self-gravity stresses (v v,i j stand for the
velocity and sv vi j is the deviation of the tensor from its laminar
large scale form). This tensor is a generalized form of the usual
Reynolds tensor, which takes into account surface density
fluctuations. Self-gravity wakes do drive fluctuations in density
and velocity along with fluctuations in self-gravity, and Daisaka &
Ida (1999) have shown that the contribution to this tensor from
self-gravity wakes is comparable to the self-gravitational tensor.
All the remarks made above concerning the self-gravitational
stress apply to this generalized Reynolds stress as well.

5.1.4. General Stress Tensor and Its Implications

One can therefore define a generalized stress tensor
= + +W P T Rij ij ij ij. Correlatively, the form of qar and t1

associated with W contains contributions from all three tensors
discussed above, which contribute to angular momentum
transport for the first and density wave damping for the
second, with three different dissipation and transport effective
viscosities9 and related F and G dimensionless functions10 of q.

8 Two different kinematic viscosities, n0 and n ¢0, have been introduced to
stress the fact that, in a non-Newtonian fluid, there is no reason that a single
such quantity may be defined, although the difference could be absorbed in the
definition of F and G.

9 In principle, other processes can contribute to the generalized Reynolds
stress tensor, e.g., small-scale viscous overstabilities. This process has only
been studied for axisymmetric modes, but (in principle) nothing prevents the
existence of non-axisymmetric small-scale disturbances. Although such terms
are known to be stable in the shearing sheet limit (Schmidt et al. 2001), they
may be transiently excited and contribute to the problem. In the absence of
other bulk forces, no other relevant stress tensor may be defined.
10 From a conceptual point of view, such a dimensionless function must
depend on all the dimensionless numbers characterizing the flow, in order for
the associated viscosities n0 to be a constant. For example, it is well known that
the collisional stress tensor also depends on the effective optical depth.
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With these remarks in mind, let us return to the problem at
hand. In the A and B rings, the known processes that control
the effective transport and dissipation viscosities just defined
are either collisions, self-gravity wakes, or small-scale viscous
overstabilities. In unperturbed regions of the A ring, it is nearly
certain that angular momentum transport is dominated by
self-gravity wakes.11 The situation is less clear in perturbed
regions, but one may question the existence of small-scale self-
gravity wakes in density waves on two fronts: first, the typical
growth timescale of wakes is comparable to the orbital period,
i.e., to the peak-through travel time of the flow; second, the ring
density in the peaks may be sufficient to quench the wake
instability. Therefore, it is not clear that the process dominating
density wave damping is the same as the transport process in
unperturbed regions in the A ring. Furthermore, as the
preceding discussion has shown, there is also no reason, for a
given process, to expect that the effective damping viscosity of
density waves has any simple relation to the effective transport
viscosity in unperturbed regions of the A ring. Consequently,
there are no grounds to expect that the damping viscosity
measured in density waves should bear any simple relation to
the transport viscosity derived in this work.

5.2. Density Wave Overlap and Angular Momentum Transport
Reversal

Let us now turn to the question of why the AMF decreases
so dramatically across the A ring, especially in the trans-Encke
region. We propose that this is due to the phenomenon of
angular momentum flux reversal (see below) on a large scale,
associated with the large number of density waves in the outer
A ring.

Equation (6) is commonly used under the assumption that
the radial gradient in angular velocity across the rings is
described by simple Keplerian shear between nearby circular
orbits: dn/da=−(3/2) n/a; i.e., G(q)= 1 is assumed. This is
violated in perturbed regions for the collisional stress tensor. In
fact, if q reaches a critical value of qa∼ 0.7–0.8, then both the
radial shear and the AMF can go to zero. This phenomenon—
sometimes referred to as “flux reversal” because the AMF can
actually change sign if q> qa—is thought to play a key role in
the shepherding of narrow ringlets and in the maintenance of
extremely sharp edges controlled by external resonances.

Indeed, angular momentum transfer to external satellites at a
sharp ring edge requires either AMF reversal or a significant
decrease of the surface density, when moving toward the edge.
In proto-planetary disks, a decrease of the surface density over
the whole perturbed region is the normal process of angular
momentum transfer from the disk to an embedded planet (see,
e.g., Crida et al. 2006). The fact that edges are sharp in
planetary rings is quite unexpected in this respect, and requires
the effective viscosity to go to zero if the surface density
remains more or less constant (remember that the only factors
in the AMF are the surface density and the effective viscosity,
whatever the dominant transfer mechanism). This question was
resolved by Borderies et al. (1982) for isolated resonances and

Borderies et al. (1989) for overlapping ones; the role of AMF
reversal was explicitly shown for collisional stresses in those
two analyses.
In the present context, we suggest that the cumulative effect

of the many density waves in the outer A ring is to produce an
effective value of q that is sufficient to significantly reduce the
AMF below its unperturbed value without a significant drop of
the surface density over the same radial domain. To illustrate
our argument, we plot in Figure 3 the number of overlapping
density waves as a function of radius in the A and B rings,
averaged with a sliding mask of 100 km in width. For the
purpose of this calculation, we consider a density wave to
extend for a radial distance of six times its first wavelength. As
this figure shows, the large number of density wave overlaps in
the outer A ring indicates a highly perturbed region, with at
least two waves co-existing at almost all radii outside
130,000 km.
This view does, however, raise two issues that we can only

speculate upon, considering the lack of relevant theoretical
analyses in the literature:

1. The correct expressions for AMF are not certain for
small-scale transport processes other than collisional
stresses.

2. Angular momentum is transported both at small scales
(sub-laminar stresses) and large scales (density waves). A
natural question here is the relative magnitude of these
two contributions.

The second point does not really raise a problem of principle.
Small- and large-scale transports do actually occur at the same
time. We have shown that each density wave removes only
small fraction of the AMF in the A ring, but they collectively
remove most of the AMF. The presence of density waves also
serves as a background to produce some level of nonlinearity in
the AMF process.
The first point calls for some comments. Note first that, in

practice, only self-gravity wakes need to be considered here
(see the last footnote). Now, the turbulent viscosity prescription
(which in effect is what is used here, although we deal with
weak 2D instead of strong 3D turbulence) states that

s ná ñ µJT Sr 0 0 , where S is the actual velocity shear (Prandt
1925). The dependence on the shear (instead of, e.g., the
rotational velocity) is, in fact, inevitable from a thermodynamic
perspective (Longaretti 2002; Lesur & Longaretti 2005). A
sheared medium is out of global thermodynamic equilibrium:
the equilibrium distribution function of a gas whose entropy is
maximized under the requirement of conserved angular
momentum and energy exhibits uniform fluid rotation.
Consequently, such a system will try to restore thermodynamic
equilibrium by removing the shear, i.e., transporting angular
momentum across the shear so that á ñ µJT Sr seems
necessary.12

The point here is that wake transport may be proportional to
the actual perturbed shear, a feature that can only be
investigated through numerical simulations. On the other hand,
the steady decrease of the AMF in the outer A ring region
disclosed in this work requires either a slow decrease of the
outer A ring surface density in the density wave overlap region,

11 The length scale of small-scale overstabilities is comparable to that of self-
gravity wakes, but their growth time is much slower, so the associated effective
viscosity contribution to the Reynolds stress is expected to be much lower than
for the wakes. Also, the direct contribution of viscous overstabilities to the
stress tensor terms is small. Consequently, viscous overstabilities contribute
little to the various tensors previously introduced and are ignored for the rest of
this discussion. Note that self-gravity wakes and viscous overstabilities do not
seem to cohabit easily in numerical simulations (Salo et al. 2001).

12 In fact, this argument only proves that á ñ µJT Sr
p where p > 0. However, on

the one hand, experience in various contexts indicates that p = 1 is the most
common situation, and on the other hand, a different power dependence does
not change the major conclusion.
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or a slow decrease of the angular momentum flux through flux
reversal in the same region. As the first way is excluded from
the known constraints on the surface density profile (the A ring
edge is sharp), we are left with only two options for flux
reversal to actually take place: wakes are quenched or do not
dominate the generalized stress tensor W in density waves, or
the wake self-gravitational stress also exhibits AMF reversal.
These two options are not mutually exclusive.

5.3. Implications and Miscellaneous Points

Let us now come back to the main thread of this discussion.
According to this interpretation of our results, the AMF is
indeed reduced in the trans-Encke region. This explanation has
the benefit of causally connecting the decreasing AMF in the
outer A ring with the concentration of resonances in this region.
The high level of perturbation in the outer A ring (cf.
Figure 3(a)) is consistent with the steep decline of the ring’s
AMF in that region. However, in light of the preceding
discussion, making this explanation quantitative is clearly

beyond the scope of the present paper, as it involves
sophisticated dynamical developments.
On the other hand, the number of resonance overlaps in the

B ring is relatively low (see Figure 3(b)) and, as suggested
above, the outer edge is confined through flux reversal at a
single resonance rather than via flux reversal, due to multiple
resonances within the ring.
Although our expressions for the satellite resonance torques,

both for Lindblad and vertical resonances, are believed to be
secure when the resonances drive density or bending waves in
the rings, the application of these same expressions is less
certain when the resonance falls at a sharp edge in the rings.
The wave-derived torques provide an estimate of the maximum
torque at a sharp edge (see P. Y. Longaretti 2018, in
preparation, for detailed discussion of this point). This is a
source of potential error in the “boundary conditions” we apply
at the outer edges of the A and B rings, where we set the AMF
equal to the torques associated with the Janus 7:6 and Mimas
2:1 ILRs, respectively.

Figure 3. Number of density waves at any radial location in the A (a) and B (b) rings, averaged with a sliding mask of 100 km of radius. Here, we limit the extension
of a density wave to six times the first wavelength (calculated using Equation (7.43) from Longaretti 1992). While the B ring does not show much density wave
overlaps, the A ring has a high number of overlaps near its outer edge, which supports the flux reversal mechanism to take effect.
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It is also possible that there are additional sources or sinks of
angular momentum within the rings, apart from satellite
resonances. In particular, several density waves in Saturn’s C
ring have been identified as being driven by internal
oscillations within the planet (Marley & Porco 1993; Hedman
& Nicholson 2013, 2014), while other waves have been
identified with tesseral resonances, i.e., permanent gravitational
anomalies or slowly propagating waves within Saturn (Hedman
& Nicholson 2014; M. El Moutamid et al. 2017, in
Preparation). Many of these waves correspond to OLRs, at
least in the C ring, and thus should lead to an outward increase
in the AMF through the rings, unlike almost all satellite
resonances. If similar waves exist in the A and B rings,
something which has yet to be established, they might act to
reduce the cumulative AMF somewhat below that shown in
Figures 1 and 2.

Ballistic transport constitutes another source of angular
momentum exchange between rings and the outside world
(Durisen et al. 1989, Estrada & Cuzzi 1996, Schmidt et al.
2009). Ring particles in low optical depth regions of the ring
acquire angular momentum from meteoritic bombardment,
moving them further away from the planet. However, this
process is less efficient in opaque rings. Hence, it is suspected
to be the principle mechanism confining the inner edges of
the A and B rings (by stripping material from the Cassini
division and the C ring), and may even be the source of the
AMF in the innermost regions of the A and B rings (cf.
Figures 1 and 2).

6. Conclusion

A careful accounting of all known satellite resonances in the
A and B rings reveals that, in the A ring, the radial confinement
of the ring against viscous spreading is distributed over many
resonances. As a result, the AMF is expected to decrease
outwards across the ring. For the B ring, on the other hand,
almost all of the work is done by the Mimas 2:1 ILR located at
the outer edge. By equating the computed AMF with that
expected to be transported by collisional interactions within the
rings, we derive a radial profile of transport viscosity across
both rings. In the A ring, this is found to be roughly consistent
with viscosities inferred from torque balancing at the Encke
and Keeler gaps, but no such direct test is possible for the B
ring. We speculate that the observed steep decrease in AMF in
the trans-Encke region of the A ring may be due to “flux
reversal” associated with the disturbed streamlines produced by
the large concentration of density waves driven by satellite
resonances in this region, which translates into a decrease in
effective viscosity. Finally, we find that the reaction torques
exerted by the rings on the small inner satellites, or
“ringmoons,” exceed the torques due to tides they raise in the
planet and lead to upper limits on the ages of the larger ring
moons of 1 Gyr or less.
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discussion on this topic. We also thank Joe Spitale for
reviewing this paper, and M. Hedman and M. Tiscareno for
fruitful discussions. R.T. and M.E.M. were funded by the
Cassini mission. P.Y.L. acknowledges support by the French
National Program of Planetology (PNP).

Appendix A
Satellite Resonant Torques

Satellites can excite waves in planetary rings. The strongest
such waves (density waves) arise from first-order resonance
motions excited by the equatorial, circular part of the satellite
orbit. Radial (eccentric) oscillations of the satellites contribute
higher-order resonances and also produce density waves, but
with weaker wave responses from the rings. Similarly, vertical
oscillations induce vertical waves in the rings (bending waves),
but only at second- and higher-order resonances.
The question of the angular momentum exchange (torques)

between rings and satellites has long been scrutinized, starting
with the original work by C.C. Lin, F. Shu, A. Toomre, P.
Goldreich, and S. Tremaine in the 1960s and 1970s. Such
torques can, in principle, be computed in two different ways:

1. From the angular momentum density carried by the wave
at its group velocity (this results in a radial flux of angular
momentum); or

2. From a direct analysis of the torque itself (i.e., the
coupling of the satellite forcing to the wave response).

The conservation of the so-called wave action ensures that,
in the dissipationless limit, the overall flux carried by the wave
(sometimes referred to as the angular momentum luminosity) is
constant (independent of radius) and equal to the total satellite
torque. This conservation of the angular momentum flux is also
commonly used to compute the change in amplitude of the
wave as it propagates.
Even though the torque is a second-order quantity (with

respect to the perturbing potential of the satellite, i.e., in the
ratio of the satellite mass to the planet’s), the direct method (the
second way above) requires only a first-order Lagrangian
solution of the dynamics, though a second-order solution is
required if one uses Eulerian fluid dynamics. Conversely, the
indirect method (the first way above) requires only first-order
Eulerian solutions. Eulerian fluid dynamics being much more
widely used by theorists, most torque derivations rely on the
first approach.
Much more attention has been devoted to density waves than

to bending waves in the assessment of these angular
momentum exchanges between rings and satellites. This
follows because the strongest torques for any given satellite
are associated with density waves, from the remark made above
that the strongest density waves (i.e., those with k= 0) are
independent of the satellite’s eccentricity and inclination),
whereas the strongest bending wave amplitudes (for k= 1) are
proportional to the satellite’s inclination. Therefore, bending
wave torques are expected to be negligible in the overall
exchange of angular momentum between rings and any given
satellite.
There does not appear to exist a direct evaluation of bending

wave torques in the literature, from any of the communities
dealing with disk-satellite interactions (“satellite” here refers to
any body orbiting the central object, be it a moon, planet, star,
or galaxy). However, Bertin & Mark (1980) (in a galactic
dynamics context) and Shu et al. (1983) (in a planetary ring
context) both provide expressions for the angular momentum
luminosity, thereby quantifying the torques from bending
waves according to the remark made above about the equality
of the torque and the luminosity.
In these notes, we provide an alternative derivation of the

torque. This derivation proceeds by noting that the generic
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torque expressions and linear solutions for density waves and
bending waves are formally equivalent. Therefore, the density and
bending wave torques are formally identical, mutatis mutandis.
The exposition focuses on the leading-order bending wave torques
at inner vertical resonances (IVR) for the sake of definiteness, but
this can easily be generalized to higher-order torques and/or outer
vertical resonances.

A.1. Inner Lindblad Resonances: a Reminder

Ring fluid particle positions in a density wave are given by
(for details, see Longaretti 1992 and Longaretti 2017)

j= - - W + D[ ( ( ) )] ( )r a e m t m1 cos , 13p h

where j is the fluid particle mean longitude, eits eccentricity,
Dm h the apsidal shift, and kW = W + k mp s s the pattern speed

associated with the satellite resonance (Ws and ks are the
epicyclic rotation velocity and epicyclic frequency of radial
motions, respectively). An implicit choice of origins of time
and angles has been made in this relation: at t= 0, the satellite
is at periapse and its mean epicyclic longitude is zero. As a
consequence, for k=0 resonances, the origin of angles in the
rotating frame is the satellite’s mean epicyclic longitude.

The relevant component of the satellite potential giving rise
to the considered resonance reads (see, e.g., Goldreich &
Tremaine 1980, 1982; Shu 1984)

f q b q= F - W( ) ( ) ( ) ( )r t m t, , cos , 14m k p,

where β= a/as and Ωp is the pattern speed associated with the
satellite resonance. The satellite’s dynamical action is char-
acterized by (setting r= a in Φmk)

y º
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+ F ( )a
d

da
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m k
m k,

,
,

The strongest resonance corresponds to k= 0. One has, for
m> 1 (Goldreich & Tremaine 1980; Shu 1984; M. S.
Tiscareno & B. E. Harris 2017, in preparation):
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where β= a/as, bºD d d , and bg ( )bm is a Laplace coefficient
that is defined along with its derivatives (Murray & Dermott
1999, Equation (6.67)).

For a second-order resonance (k= 1) we have
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where bºD d d2 2 2.

The angular momentum per unit mass of ring fluid particles
is
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Here, Ss is the tangential component of the acceleration due to
the satellite.
The torque T follows from (Borderies et al. 1982; Shu et al.

1985; Longaretti 1992, Longaretti 2017)

ò òj p y= S = ( ) ( )T dad a
dH

dt
da ma ZIm , 22m k,

where = D( )Z e imexp ; this relation is exact (for both linear
and nonlinear density waves). For a linear density wave at an
ILR, Z is given by (Shu 1984; Shu et al. 1985; Longaretti 1992)
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Inserting Equation (16) in Equation (15) finally yields (Shu
et al. 1985; Longaretti 1992)
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The torque at an OLR has the same expression but an opposite
sign. We recover the expression of the torque for a Lindblad
resonance in Equation (4) once the definition of the
dimensionless quantity Am k, is introduced

y
= - ( )A

a

GM2
. 26m k

s m k

s
,

,

In particular:

b= += [ ] ( )A m D b
1

2
2 , 27m k

m
, 0 1 2

b b= + + + +=
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )A m m m D D b

1

2
1 2

1

2
. 28m k

m
, 1

2 2
1 2

A.2. Inner Vertical Resonances

The position of any fluid particle in a bending wave can be
described by

q j
j

=
=
= = - W + D[ ( ) ] ( )

r a

z h aI m t m

,
,

sin , 29p

where j is the fluid particle mean longitude. The azimuthal
wavenumber m is positive by assumption. The pattern speed ?p
is discussed below. The resonance radius ar is implicitly
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defined by

m- W =[ ( ) ] ( ) ( )m n a a , 30r p r

where m = - Ẇn is the frequency of vertical oscillations.
An implicit choice of the origins of time and angle has been

made in the previous relations: t= 0 is the time of passage of
the satellite through the equatorial plane and the origin of
angles is the angular position of the satellite at t= 0. For
simplicity, the satellite is assumed to orbit on a circular inclined
orbit with inclination is. The theory of planetary motion
adopted here is epicyclic, so this orbit is precessing at a rate

mW = -˙ ns s s (see Borderies-Rappaport & Longaretti 1994 for
a description of the epicyclic kinematics and dynamics in
inclined orbits).

The form of the satellite potential for this type of resonance
is known less well than that for a Lindblad resonance. Because
deviations from the equatorial plane are small, one can write

j q q
f

= F = +
¶
¶ =

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )r z t r z t

z
z, , , , , 0, . 31s s

s

z
0

0

Now the vertical derivative of the potential is given by, for any
term in the Fourier expansion (see Appendix A of Shu 1984 or
section IIe of Shu et al. 1983),

f
y q

¶
¶

= - W
=

⎛
⎝⎜

⎞
⎠⎟ ( ) [ ( )] ( )

z
r m tsin . 32s

z
m k p

0
,

The strongest vertical resonances correspond to k=± 1 (for
k= 0, there is no vertical forcing, as the inclination of the satellite
is neglected in this term). Inner vertical resonances (IVRs)
correspond to mW = + = + - W[( ) ˙ ]n k m m k n k mp s s s s with
k= 1 for the strongest ones (k=−1 for an OVR). For k=±1
(m> 1 assumed),

y b=( ) ( ) ( )r
GM

a
b I

2
. 33m k

s

s

m
s, 3 2

The angular momentum per unit mass of ring fluid particles is

q k
= = - +⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( ) ( )H r

d

dt
na

n
I O I1

1

2
. 342 2

2
2 4

We have again

= ( )dH

dt
rS . 35s

The torque T follows from

ò òf p y= S = ( ) ( )T dad a
dH

dt
da ma YIm , 36m k,

where = D( )Y I imexp and Equations (22), (24), and (25)
have been used to derive the second equality. This relation is
also exact; note the analogy with Equation (15). For a linear
bending wave at an IVR, Y is given by (Shu et al. 1983 Shu
1984)

ò
y
p

d d= -
S

-
-¥

( ) ( ) ( )Y i
G a

ix iy dy
2

exp exp , 37m k

r

x
, 2 2

where = - -( )x a a ar r (ar is the resonance radius implicitly
defined by Equation (23) and δ is again defined by
Equation (17).

Note the formal equivalence between Y in Equation (29) and
Z in Equation (16), except for the sign of x (this change of sign
reflects the fact that an ILR density wave and IVR bending
wave propagate in opposite directions). Because of this
analogy, the torque is again given by

p y
= -

S
-

( )
( )

( )T
ma

m GM3 1
. 38m k

p

2 3
,

2

Here again, an OVR torque has the same magnitude but
opposite sign.
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