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Abstract
Real-world cryptographic code is often written in a subset

of C intended to execute in constant-time, thereby avoiding

timing side channel vulnerabilities. This C subset eschews

structured programming as we know it: if-statements, loop-

ing constructs, and procedural abstractions can leak timing

information when handling sensitive data. The resulting

obfuscation has led to subtle bugs, even in widely-used high-

profile libraries like OpenSSL.

To address the challenge of writing constant-time cryp-

tographic code, we present FaCT, a crypto DSL that pro-

vides high-level but safe language constructs. The FaCT com-

piler uses a secrecy type system to automatically transform

potentially timing-sensitive high-level code into low-level,

constant-time LLVM bitcode. We develop the language and

type system, formalize the constant-time transformation,

and present an empirical evaluation that uses FaCT to imple-

ment core crypto routines from several open-source projects

including OpenSSL, libsodium, and curve25519-donna. Our

evaluation shows that FaCT’s design makes it possible to

write readable, high-level cryptographic code, with efficient,

constant-time behavior.

CCS Concepts • Security and privacy → Cryptogra-
phy; • Software and its engineering → General pro-
gramming languages; • Theory of computation→ Op-
erational semantics.
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1 Introduction
Despite many strides in language design over the past half-

century, modern cryptographic routines are still typically

written in C. This is good for speed but bad for keeping

secrets. Like most general-purpose languages, C gives the

programmer no way to denote which data is sensitive—and

therefore gives the programmer no warnings about code that

inadvertently divulges secrets.

One possible avenue for secret leaks is a timing side-

channel, wherein code executes for observably different time

depending on the value of secret information. For example, a

textbook implementation of RSA decryption takes a different

amount of time depending on the individual key bits [34]—

each ‘1’ bit requires an additional bignum multiplication and

thus more time. The cumulative effects of these operations

on the running time is large enough for the attacker to recon-

struct the value of the secret key. Timing vulnerabilities like

these are not merely of academic interest: they have been

found in implementations of both RSA [23] and AES [13, 45],

where they allowed even remote network attackers to divine

the values of secret keys.

The only recourse developers have to avoid timing vulner-

abilities is to make their code ugly. Specifically, they use a

selection of recipes to turn dangerous but readable code into

safe but obfuscated code: they re-write potentially secret-

revealing constructs like branches into low level sequences

https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605
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of assignments that operate in constant-time regardless of

the values of secret data. For example, the readable

if (secret) x = e

which branches on a secret bit is replaced by

x = (-secret & e) | (secret - 1) & x

which, unlike the branch, executes in the same amount of

time no matter the value of secret.

This is a sorry state of affairs. First, developers apply the

recipes in an ad-hoc way, and any untransformed computa-

tion is left vulnerable to attack. Second, the recipes obfuscate

the code, making it harder to determine whether the routine

is even computing the desired value. Third, it can be tricky

for developers to correctly apply the recipes. For example,

an attempt to use a recipe to fix a timing attack vulnerabil-

ity in TLS [39] led to the Lucky13 timing vulnerability in

OpenSSL [2], and the purported fix for Lucky13 opened the

door to yet another vulnerability [56]!

In this paper, we introduce FaCT, a domain-specific lan-

guage and compiler for writing readable and timing-secure

cryptographic routines. FaCT lets developers write readable

code using high-level control-flow constructs like branches

and procedural abstractions, but then automatically com-

piles this code into efficient, constant-time executables. We

develop FaCT via four contributions:

1. Language Design. Our first contribution is the design

of a language for writing cryptographic code. The language

allows programmers to use standard control-flow constructs

like if and return statements. However, the language is

equipped with an information-flow type system that pro-

grammers can use to specify which data are secret. The type

system prevents leaks by ensuring that secrets do not explic-

itly or implicitly influence the public-visible outputs (§3).

2. Public Safety. Our second contribution is the observa-

tion that not all programs are amenable to constant-time

compilation. Specifically, we show that naive application of

constant-time recipes can mangle otherwise safe programs,

causing memory errors or undefined behavior. We address

this problem by introducing a notion called public safety that

characterizes the source programs that can be compiled to

constant-time without introducing errors (§3.2.3).

3. Constant-Time Compilation. Our third contribution is

a compiler that automatically converts (public safe) source

programs into constant-time executables. The FaCT compiler

is based on the key insight that we can exploit the secrecy

types to automatically apply the recipes that developers have

hitherto applied by hand, and can do so systematically, i.e.,

exactly where needed to prevent the exposure of secrets via

timing. We formalize the compiler with two transformations,

return deferral and branch removal, and prove that compila-

tion yields constant-time executables with source-equivalent

semantics (§4).

4. Implementation & Evaluation. Our final contribution
is an implementation of FaCT that produces LLVM IR from

high-level sources, and uses LLVM’s clang to generate the fi-
nal object or assembly file. We evaluate FaCT’s usability with

a user study, surveying students in an upper-level, under-

graduate programming languages course at a U.S. university,

where 57% of the participants found FaCT easier to write

than C (compared to 15% who found C easier). We evaluate

FaCT’s expressiveness and performance by using our imple-

mentation to port 7 cryptographic routines from 3 widely

used libraries: OpenSSL, libsodium, and curve25519-donna,

totaling about 2400 lines of C source. The unoptimized FaCT

code—which we formally guaranteed to be constant-time—is

between 16–346% slower than the C equivalent. The clang-
optimized FaCT code—which we empirically check to be

constant-time using dudect [51]—is between 5% slower to

21% faster than the C equivalent, showing that FaCT yields

readable constant-time code whose performance is competi-

tive with C (§5).

We make all source and data available under an open source

license at: https://fact.programming.systems.

2 Background
Some common C constructs—branches, returns, and array

updates—can reveal secrets via timing channels. In this sec-

tion, for each potentially dangerous construct, we explain:

(1) how that construct could introduce bugs in real-world

projects; (2) how developers must use recipes to avoid the

dangerous construct; and, (3) how FaCT allows programmers

to forgo recipes and write readable yet safe code.

Branching on Secret Values. A first class of vulnerabil-

ity arises from directly branching on the value of a secret—

attackers can often reconstruct control flow through a pro-

gram, and thus secret condition values (e.g., because the true

branch takes orders of magnitude longer to execute than

the false branch) [48]. To avoid this type of vulnerability,

developers manually translate branching code to straight-

line code by replacing if-statements with constant-time

bitmasks. Consider the following example from OpenSSL

(edited slightly for brevity), which formats a message before

computing a message authentication code (MAC):

for (j = 0; j < md_block_size; j++, k++) {
b = data[k - header_length];
b = constant_time_select_8(is_past_c, 0x80, b);
b = b & ~is_past_cp1;
b &= ~is_block_b | is_block_a;
block[j] = b;

}

It’s hard to tell, but this snippet (1) iterates over plaintext

message data, (2) terminates the message with standard-

defined 0x80, and (3) pads the terminated message to fill a

hash block—all while keeping data secret. To this end, even

https://fact.programming.systems
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the selection operator constant_time_select_8(mask, a, b)

is a series of bitmasks: (mask & a) | (~mask & b).

Translating each line of this OpenSSL code to FaCT leads

to drastically more readable code:

for (uint64 j from 0 to md_block_size) {
k += 1;
b = is_past_c ? 0x80 : data[k - (len header)];
if (is_past_cp1 || (is_block_b && !is_block_a)) {

b = 0;
}
block[j] = b;

}

With FaCT, the programmer declares the sensitive variables

as used in the conditions as secret. After doing so, they

are free to use plain conditional expressions and ternary

operators to compute the final value of b. The FaCT compiler

automatically uses the type annotations to generate machine

code equivalent to the C example.

Early Termination. Both loops and procedures can termi-

nate early depending on the value of a secret, thereby leaking

the secret. A well-known padding oracle attack in older ver-

sions of OpenSSL exploits an early function return [60]: a

packet processing function would decrypt a packet and then

check that the padding was valid, and, in the case of invalid

padding, would return immediately. An attacker could ex-

ploit this to recover the SSL session key by sending specially

crafted packets and use timing measurements to determine

whether or not the padding of the decrypted packet was

valid. Similarly, if the number of loop iterations in a program

depends on a secret, attackers can use timing to uncover the

value of that secret (e.g., in the Lucky13 attack [2]).

C programmers again use special recipes, turning idiomatic

programs into hard-to-read constant-time code. Consider the

following buffer comparison code from the libsodium cryp-

tographic library:

for (i = 0; i < n; i++)
d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

This snippet compares the first n bytes of the arrays x and

y, returning 0 if they are the same, and -1 otherwise. To

avoid leaking information about the contents of the arrays,

though, the loop cannot simply return early when it detects

differing values; instead, the programmer must maintain a

“flag” (d), and update it at each iteration to signal success

or failure. While iterating inside the loop, if the values x[i]

and y[i] are the same, then x[i] ^ y[i] will be 0, leaving

d unchanged. However, if x[i] and y[i] are different, then

their XOR will have at least one bit set, causing d to also have

a non-zero value. After the loop, the code uses a complex

shift-and-mask dance to collapse d into the value -1 if any

bits are set, and 0 otherwise.

FaCT lets programmers avoid the “flag” contortions:

for (uint64 i from 0 to n)
if (x[i] != y[i])

return -1;
return 0;

With FaCT, the programmer can readily express returning

-1 in the case of failure as the compiler automatically gen-

erates a special variable for the return value, and uses the

secret type to translate returns-under-secret conditions into

(constant-time) updates to this variable, producing machine

code roughly equivalent to the C recipe above.

Memory Access. Memory access patterns that depend on

secret data can also inadvertently leak that secret data. An

attacker co-located on the same machine as a victim process,

for example, can easily infer secret memory access patterns

by observing their own cache hits and misses [32, 45]; alarm-

ingly, attackers might even learn such information across a

datacenter—or even over the Internet [23, 52].

To avoid leaking information via memory access patterns,

developers rely on recipes that avoid accessing memory

based on secrets. The following C code (from the “donna”

Curve25519 implementation), for example, swaps the values

of array a with array b based on the value of a secret (swap):

for (i = 0; i < 5; ++i) {
const limb x = swap & (a[i] ^ b[i]);
a[i] ^= x;
b[i] ^= x;

}

To avoid leaking the value of the secret swap, the code always

accesses both a[i] and b[i] at each loop iteration, and uses

bitmask operations that only change them if swap is a mask

of all 1-bits.

FaCT, again, makes such subterfuge unneccessary:

if (swap != 0) {
for (uint64 i from 0 to 5) {

secret uint64 tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}
}

Once the programmer has marked swap as secret, the com-

piler will automatically synthesize masked array reads simi-

lar to those from the original Curve25519 code.

3 FaCT
FaCT is a high-level, strongly-typed C-like DSL, designed

for writing constant-time crypto code. In this section, we

describe the DSL and its type system, one that both disal-

lows certain unsafe programs and specifies how the compiler

should transform code to run in constant-time.
1
We describe

the type-directed transformations in §4.

1
The surface language as used by developers is slightly less verbose than

the core language presented in this section. For example, our surface syntax

allows procedures to be called in expressions; FaCT desugars such expres-

sions into core language procedure-call statements. We refer to both the

surface and core languages as FaCT.
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Procedure definitions

fdef ::=

| f (x⃗ : β⃗ ) { S } : β internal procedure

| export f (x⃗ : β⃗ ) { S } : β exported procedure

| extern f (x⃗ : β⃗ ) : β external procedure

Statements

S ::=

| S ; S sequence

| β x = e variable declaration

| β x = f (e⃗ ) procedure call

| e := e assignment

| if (e ) { S } else { S } conditional

| for (x from e to e ) { S } range-for

| return e return

Expressions

e ::=

| true | false boolean literal

| n numeric literal

| x variable

| ⊖ e unary op

| e ⊕ e binary op

| e[e] array get

| len e array length

| zeros(β , e ) zero array

| clone(e ) array clone

| view(e, e, e ) array view

| declassify(e ) declassify

| assume(e ) assume

| ref e reference

| deref e dereference

| ctselect(e, e, e ) constant-time selection

Figure 1. (Subset of) FaCT grammar.

3.1 Core Language
FaCT is designed to be embedded into existing crypto projects

(e.g., OpenSSL), and not to be used as a standalone language.

As such, FaCT “programs” are organized as collections of pro-

cedures. As shown in Figure 1, developers can export these

procedures as C functions to the embedding environment.

They can also import trusted procedures. This is especially

useful when using FaCT to implement error-prone glue code

around already known-safe C crypto primitives (e.g., build-

ing a block cipher mode that calls an AES primitive).

FaCT procedures are composed of a sequence of state-

ments (e.g., if statements, for loops, etc.), which are them-

selves composed of expressions. Both statements and ex-

pressions are mostly standard. We only remark on the more

notable language constructs we add to make writing crypto-

graphic code more natural.

Labels

ℓ ::= Pub | Sec

Size

s ::= 8 | 16 | . . . | 128

Array size

sz ::= ∗ | 0 | 1 | . . .
Mutability

m ::= R | RW

Base types

β ::= Boolℓ | (U)Int
s
ℓ | Refm

[
β
]
| Arrsz

[
β
]
|
{
x⃗ : β⃗

}

Figure 2. FaCT types.

First, FaCT includes a number of array primitives to cap-

ture common idioms in cryptographic routines, and to re-

place unsafe pointer arithmetic. The operation len e returns
the length of an array e; zeros(β , e ) creates an array of ze-

ros of type β of length e; clone(e ) copies the array e; and
view(e1, e2, elen ) returns a slice of array e1 starting at posi-

tion e2 and with length elen . We introduce views to make up

for the lack of pointers: views allow developers to efficiently

compute on small pieces of large buffers.

Second, we provide vector primitives: parallel vector arith-

metic and vector shuffle instructions. These instructions

allow developers to implement crypto algorithms that lever-

age fast SIMD instructions (e.g., SSE4 in x86_64) without

resorting to architecture-specific inline assembly or com-

piler intrinsics.

Third, we expose ctselect, a constant-time selection prim-

itive. The operation ctselect(e1, e2, e3) evaluates to either

e2 or e3, depending on whether e1 is true or false, respec-
tively. The compiler guarantees that ctselect compiles to

constant-time code (e.g., as a series of bitmasks or the CMOV
instruction on x86_64). Developers need not use ctselect

directly; instead, they can use our higher-level if-statements,

which our compiler transforms to such ctselects (§4).

Lastly, FaCT includes a declassify primitive that takes a

secret expression as input and returns a public value. De-

velopers can use this primitive to bypass FaCT’s typing re-

strictions (described below) and explicitly make information

public. This is useful, e.g., for implementing encryption: a

buffer containing a secret message must be treated with care,

but if the buffer is encrypted in-place, it is thereafter safe to

declassify because it contains ciphertext.

3.2 Type System
The most important feature of the FaCT language is its static

information-flow type system. We rely on this type system

to: (1) provide a way for developers to demarcate the sensi-

tivity of data—whether it is secret or public; (2) reject unsafe

programs, i.e., programs that are not information-flow se-

cure or cannot be safely transformed to constant-time code;

and (3) direct the compiler when applying transformations.

Below, we give an overview of our type system and explain

how it fulfills the first two roles; we leave the third for §4.
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Like previous information-flow type systems [41, 42, 54,

61], FaCT decorates each base type with a secret or public

secrecy label
2
. Figure 2 summarizes our base types; they are

largely standard. Reference types wrap another base type

and inherit its secrecy label; they are also access controlled,

i.e., they can be read-only or read-write. In the FaCT surface

syntax, we disallow recursively-typed references—only ref-

erences of integer and boolean types are expressible. Array

types, like references, inherit the secrecy of their base type;

arrays have a size which is either a statically known constant

or dynamically determined (∗). Struct types do not carry a

secrecy label; instead, each struct field is individually labeled.

Developers explicitly specify labels when they declare vari-

ables and procedures. FaCT’s type system, in turn, uses these

labels to reject unsafe programs and specify how the com-

piler should transform high-level code that uses seemingly

unsafe constructs (e.g., secret if-statements) to constant-

time code. Below, we walk through our typing rules for

expressions, statements, and procedures.

3.2.1 Expression Typing
FaCT’s expression typing judgment Γ ⊢ e : β states that

under the type context Γ, which maps variables to their

declared types, the expression e has the type β . We write

x : β ∈ Γ when variable x maps to type β in the context Γ.
Figure 3 gives the typing rules for the most interesting

expressions. The rule for ctselect, for example, ensures that

(1) the result is at least as secret as all the arguments to

ctselect and (2) all the arguments can be cast to integers—

since, internally, ctselectmay be implemented as a series of

constant-time bitmasks. The typing rules for other constructs

similarly preserve secrecy.

The type system also disallows certain kinds of unsafe

computations. For example, we reject programs that index

memory based on secrets: the rules for T-Arr-Get and T-

Arr-View ensure that array indices are public and in-bounds.

The in-bounds checks are highlighted , and detailed in §3.2.3.

3.2.2 Statement and Procedure Typing
FaCT allows developers to write code whose control flow de-

pends on sensitive data. Unfortunately, not all such code can

be safely or efficiently transformed. For example, to safely

allow writes to arrays using a secret-dependent index we

must (transform the code to) write to all indices [38, 46, 50];

such a transformation would be expensive, and FaCT in-

stead disallows such computations. As such, typing rules for

statements and procedures rely on a secrecy context, which

comprises a pair of secrecy labels pc, rc called the path and

return context, respectively.

2
Labels are partially ordered according to ⊑ as usual: Pub ⊑ ℓ and ℓ ⊑ Sec

holds true for any label ℓ. The join of two labels is similarly standard: ℓ1⊔ℓ2
is Sec if either label is Sec, and Pub otherwise. For brevity, we also use these

operators on types (operating on the underlying label), much like previous

work (e.g., [41, 42]).

The path context label pc for a statement is secret if

the statement is contained within—i.e., is control-dependent

upon—a secret branch. Since a procedure caller’s path con-

text must persist through to the callee’s path context, the

initial path context label of a procedure is secret if it is ever

called from a secret context; otherwise the initial path con-

text label is public. We use ω to map procedures to their

initial path context labels.

The return context label rc for a statement is secret if the

statement may be preceded by a return statement that is

itself control-dependent on a secret value. A procedure’s

return context label is always initially public. Thus, the se-

crecy context (pc⊔ rc) for a statement represents whether the

flow of control (to get to the statement) can be influenced

by secret values. For example, if the conditional expression

of an if statement is secret, then the statements of each

branch are judged with pc = Sec, and are thus typed under

a secret context.

Statement Typing. FaCT’s statement typing judgment is

of the form ω, pc, βr ⊢ S : Γ, rc → Γ′, rc′, where βr is the
return type of the procedure containing the statement S . This
judgment states that, given a type- and security- context de-

fined by ω, pc, βr and initial Γ, rc, the statement S : (1) can be

safely compiled into constant-time code, and (2) yields a new

updated type context Γ′ and return context rc
′
. This typing

judgment accounts for new variable declarations and ensures

that the secrecy context influences subsequent statements.

For example, if a return statement resides within a secret

branch, then all statements executed after that branch must

also be typed under a secret context, since their execution

now depends on the return.

Figure 4 shows themost interesting statement typing rules.

For example, (T-Asgn) checks that when updating a refer-

ence, the current secrecy context does not exceed the secrecy

label of the value e2 being assigned. This ensures that secret
data cannot be leaked via control flow. Rules (T-If) and (T-

Ret) account for such secret contexts; the latter additionally

ensures that the procedure cannot return a value more sen-

sitive than specified by the procedure return type.

Rule (T-For) is more restricting: it ensures that secrets do

not influence the running time of for loops by requiring that

the loop bounds—and therefore the number of iterations—

be public. The updated return context rc
′
must both be a

fixpoint of the loop, and must be no lower than the original

return context rc. In practice, our type checker only assigns

rc
′
to be secret if it cannot assign it to be public.

The typing for procedure calls given by (T-Call) is slightly

more complex. In particular, this rule ensures that procedures

can only be called with suitable inputs and checks that the

output type is compatible with the variable being assigned.

To this end, we ensure that if the procedure f has visible

effects, then its initial path context ω ( f ) must be at least the

label of the calling context. This, in effect, ensures that in
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T-Ct-Sel

Γ ⊢ e1 : Boolℓ
β is numeric or Bool Γ ⊢ e2 : β Γ ⊢ e3 : β

Γ ⊢ ctselect(e1, e2, e3) : β ⊔ ℓ

T-Arr-Get

Γ ⊢ e1 : Arr
sz
[
β
]

Γ ⊢ e2 : UInt
s
Pub

Γ ⇒ e2 < len e1

Γ ⊢ e1[e2] : β

T-Arr-View

Γ ⊢ e1 : Arr
sz
[
β
]

Γ ⊢ e2 : UInt
s
Pub

Γ ⊢ elen : UInt
s
Pub

sz
′ = szOfExpr (e

len
)

Γ ⇒ e2 < len e1 Γ ⇒ elen ≤ len e1 − e2

Γ ⊢ view(e1, e2, elen ) : Arr
sz
′ [
β
]

Figure 3. (Subset of) FaCT expression typing rules.

a secret context we cannot call procedures that (1) modify

public parameters, i.e., take mutable public references as

input parameters; (2) are externally defined and so possibly

have publicly visible side-effects; or (3) are exported (top-

level) procedures.

Procedure Typing. Figure 5 shows rules for typing proce-

dure definitions. FaCT’s procedure typing judgment is of

the form ω ⊢ f (x⃗ : β⃗ ) { S } : βr , which states that under

ω, the procedure f with named parameters x⃗ of types β⃗ has

return type βr . Procedures in FaCT may only return sim-

ple types (i.e., boolean values or integers), but there are no

such restrictions on the types of parameters. When typing

procedures, the initial type context Γ is formed from the

procedure’s parameters, and the initial path context pc is

given by ω ( f ). The return context rc always starts as Pub, as

the procedure body S (vacuously) has no preceding secret-

dependent return statements. The return type βr is taken
from the procedure definition. If the body S is well-typed

under these initial contexts, then the procedure itself is con-

sidered well-typed.

3.2.3 Public Safety
The FaCT type system ensures that procedures can be trans-

formed using constant-time recipes without giving up safety.

Naively applying recipes can inadvertently introduce safety

and security vulnerabilities while making the code constant-

time. Consider the following procedure:

void potential_oob( secret mut uint32[] buf
, public uint64 i
, secret uint64 secret_index ) {

assume(secret_index <= len buf);
if (i < secret_index)

buf[i] = 0;
...

}

T-Call

ω ⊢ f (β⃗ ) : β hasEffects( f ) ⇒ pc ⊔ rc ⊑ ω ( f )
Γ ⊢ ei : βi Γ′ = Γ,x : β

ω, pc, βr ⊢ β x = f (e⃗ ) : Γ, rc→ Γ′, rc

T-Asgn

Γ ⊢ e1 : RefW
[
β
]

Γ ⊢ e2 : β pc ⊔ rc ⊑ β

ω, pc, βr ⊢ e1 := e2 : Γ, rc→ Γ, rc

T-If

Γ ⊢ e : Boolℓ
ω, pc ⊔ ℓ, βr ⊢ S1 : Γ ∧ e , rc→ Γ1, rc1
ω, pc ⊔ ℓ, βr ⊢ S2 : Γ ∧ ¬e , rc→ Γ2, rc2

ω, pc, βr ⊢ if (e ) { S1 } else { S2 } : Γ, rc→ Γ, rc1 ⊔ rc2

T-For

Γ ⊢ e1 : UIntPub Γ ⊢ e2 : UIntPub
Γ′ = Γ,x : UIntPub ∧ e1 ≤ x < e2

rc ⊑ rc
′ ω, pc, βr ⊢ S : Γ′, rc′ → Γ′′, rc′

ω, pc, βr ⊢ for (x from e1 to e2) { S } : Γ, rc→ Γ, rc′

T-Ret

Γ ⊢ e : βr pc ⊔ rc ⊑ βr

ω, pc, βr ⊢ return e : Γ, rc→ Γ, pc ⊔ rc

T-Assume

Γ ⊢ e : Boolℓ Γ′ = Γ ∧ e

ω, pc, βr ⊢ assume(e ) : Γ, rc→ Γ′, rc

Figure 4. (Subset of) FaCT statement typing rules.

T-Fn

pc = ω ( f )

Γ = {x⃗ : β⃗ }
βr is numeric or Bool

ω, pc, βr ⊢ S : Γ, Pub→ Γ′, rc′

ω ⊢ f (x⃗ : β⃗ ) { S } : βr

T-Fn-Extern

ω ( f ) = Pub

βr is numeric or Bool

ω ⊢ extern f (x⃗ : β⃗ ) : βr

Figure 5. (Subset of) FaCT procedure typing rules.

This code is memory safe as the branch condition ensures

that we only update buf[i] when i is within bounds. How-

ever, the update is predicated upon a secret condition. To

make the above code constant-time, we must ensure that

the access to buf[i] happens regardless of that condition,

or else the memory access pattern will reveal the secret.

Consequently, the constant-time recipes—that we discuss in

§4—would compile the code into:

cond = (i < secret_index);
buf[i] = ctselect(cond, 0, buf[i]);
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Such a naive transformation introduces a potential out-of-

bounds access. In other cases it can introduce yet different

kinds of undefined behavior.

Public Safety. We avoid the above problem with the key

observation that for a program to be amenable to constant-

time compilation, the source must be publicly safe: It must

be memory-safe and free from buffer overflows and unde-

fined behavior using only public-visible information, i.e., the

code must be safe even after removal of secret-dependent

control-flow. We formalize the notion of public safety in

FaCT’s type system by extending the type environment Γ
to track public-visible path conditions, using these condi-

tions to check safety. In Figures 3 and 4 these public safety

extensions are highlighted .

Public Views. We first define the judgment Γ ⊢i e to mean

that e is immutable in Γ; that is, e is only composed of con-

stants, immutable variables, array lengths, or operations

thereon. Next, we define the operation Γ ∧ e , which conjoins

Γ with a public view of the condition e: if e is a public bool

(Γ ⊢ e : BoolPub) and e is immutable (Γ ⊢i e), then Γ ∧ e
represents the environment Γ with the additional assump-

tion that e is true. Otherwise, Γ ∧ e = Γ, i.e., conjoining Γ
with a secret condition does not add any new assumptions

to Γ. Rules T-If and T-For in Figure 4 show how we prop-

agate public views, tracking (public) conditions and loop

ranges to use when type checking statements.

For cases where the public safety checker is incomplete,

we allow developers to add assumptions directly to the en-

vironment Γ with the assume primitive (Figure 1). This is

useful for aiding the checker by, e.g., adding preconditions

to a procedure.

Checking Public Safety. Finally, we define Γ ⇒ e to mean

that the conditions in Γ imply e . This is checked via an SMT

solver. We use this predicate in the expression typing rules

T-Arr-Get and T-Arr-View (Figure 3) to check that memory

accesses are never out of bounds. In the example program

given earlier, since the expression i < secret_index is of

type BoolSec, it is not added to Γ; thus the predicate Γ ⇒
i < len buf does not hold when typing the expression buf[i],

and the program (correctly) does not type check.

The FaCT type system also prevents undefined behavior

from invalid operand values (not shown in Figure 3). For

example, integer division has the additional requirement

Γ ⇒ e2 , 0, and the left- and right-shift operators have the

requirement Γ ⇒ 0 ≤ e2 < s where s is the bitwidth of e1.

4 Front-End Compiler
The FaCT compiler consists of two passes. The first pass is a

source to source transformation—it compiles well-typed code

into semantically equivalent FaCT constant-time code whose

observable timing is secret-independent. The second pass is

straightforward—it takes the secret-independent code and

Tr-Ret-Dec

Φ = (ω, {x⃗ : β⃗ }, βr ) Φ,ω ( f ), Pub ⊢ S → S ′

ω ⊢ f (β⃗ ) { S } : βr →

f (β⃗ ) { RefRW

[
βr
]
rval = init(βr );

RefRW[BoolSec] notRet = true;

S ′; return rval } : βr

Tr-Ret-Guard-Pub

Φ, pc, Pub ⊢ S → S ′

Φ, pc, Pub ⊢ S ⇝ S ′

Tr-Ret-Guard-Sec

Φ, pc, Sec ⊢ S → S ′

Φ, pc, Sec ⊢ S ⇝ if (notRet) { S ′ }

Tr-Ret

pc ⊔ rc = Sec

Φ, pc, rc ⊢ return e → rval := e; notRet := false

Tr-Ret-Seq

Φ = (ω, Γ, βr ) ω, pc, βr ⊢ S1 : Γ, rc→ Γ′, rc′

Φ, pc, rc ⊢ S1 → S ′
1

Φ, pc, rc′ ⊢ S2⇝ S ′
2

Φ, pc, rc ⊢ S1; S2 → S ′
1
; S ′

2

Tr-Ret-For

Φ = (ω, Γ, βr ) rc ⊑ rc
′

ω, pc, βr ⊢ S : Γ, rc′ → Γ′, rc′ Φ, pc, rc′ ⊢ S ⇝ S ′

Φ, pc, rc ⊢ for (x from e1 to e2) { S } →
for (x from e1 to e2) { S

′ }

Figure 6. Return deferral transformation rules.

generates LLVM bitcode. In the rest of the section, we thus

only describe and formalize FaCT’s transformation pass.

Since our type checker (§3.2) already ensures that memory

accesses, loop iterations, and variable-time instructions are

secret-independent, the transformations need only make

procedure returns and branches secret-independent. FaCT

does this in two steps, return deferral and branch removal.

The first step replaces secret-dependent return statements

by (1) creating a boolean that represents whether the pro-

cedure has returned and (2) conditioning all later code on

that boolean to prevent statements from executing after the

original procedure would have terminated. That is, return

deferral converts control flow in terms of secret returns

into control flow in terms of secret ifs.

The second step turns all secret-dependent conditional

branches into straight-line code. This includes both secret

if statements in the original source as well as those gener-

ated by return deferral. Thus, by eliminating secret ifs—the

last source of secret-dependent timing—this transformation

yields constant-time code.

4.1 Return Deferral
As previously mentioned, early returns that depend on se-

crets often leak information. Consider the following snippet:
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if (sec) { return 1; }
// long-running computation ...

Here, an attacker can determine whether sec is true by ob-

serving a quick computation, or false by observing a slow

computation.

FaCT prevents code from leaking such secrets by defer-

ring returns to the end of each procedure. For example, the

compiler transforms the above code to:

secret mut uint32 rval = 0;
secret mut bool notRet = true;
if (sec) { rval = 1; notRet = false; }
if (notRet) {

// long-running computation ...
}
return rval;

The new notRet variable tracks whether or not the proce-

dure would have returned, and any statement that could be

executed after the return is guarded by the notRet variable.

Finally, the actual return occurs at the very end of each

procedure, returning the value stored in rval.

Transformation Rules. We formalize return deferral us-

ing three kinds of rewrite rules, shown in Figure 6. The

first procedure-transformation rule ω ⊢ f (x⃗ : β⃗ ) { S } :

βr → f (x⃗ : β⃗ ) { S ′ } : βr is used to rewrite the body S of

a procedure f into a secret-independent body S ′. (This is
accomplished using the other two rewrite rules.) The sec-

ond guarded-execution rule Φ, pc, rc ⊢ S ⇝ S ′ transforms a

statement S , given a secrecy context pc, rc, into S ′ by making

implicit control flow (due to secret returns) explicit. Finally,

the return-elimination rule Φ, pc, rc ⊢ S → S ′ transforms

S into S ′ by replacing all secret returns with assignments.

Below, we walk though some of these rules in detail.

1. Procedure transformation. The Tr-Ret-Dec rule de-

clares two special (mutable) variables notRet and rval that

respectively hold the secret-dependent return state and the

value to be returned. The return state notRet is set to true,

while the return value rval is initialized to a default value for

its type. The rule then eliminates all secret returns from S and
inserts a (deferred) return after, as the very last statement

of the transformed body S ′.

2. Guarded Execution. Rules Tr-Ret-Guard-Pub and Tr-

Ret-Guard-Sec are used to transform statements that appear

after any secret returns. Both of these rules first eliminate

secret returns from S to obtain S ′. If the original statement

S is typed with rc = Sec, i.e., S may be preceded by a secret

return, then the rule Tr-Ret-Guard-Sec additionally guards

the execution of S ′ with the condition notRet.

3. Return Elimination. The bulk of the transformation is

done by the remaining rules in Figure 6. We omit rules where

we either do not transform the statement, or simply recur-

sively transform any sub-statements. Rule Tr-Ret replaces

secret returns by updating rval with the (deferred) return

value and setting notRet to false, to signal that subsequent

code should not be executed.

Rule Tr-Ret-Seq handles sequenced statements S1; S2 by
guarding the execution of instructions in S2 against possi-
ble secret returns in S1. The rule first eliminates the secret

returns from the first block to get S ′
1
. Next, it extracts the

secrecy context rc
′
produced by type checking S1. Finally,

the rule uses rc
′
to derive a guarded version of the second

statement S ′
2
.

The Tr-Ret-For rule handles secret returns inside loops.

As control flow can jump back to the beginning of a loop, a

secret return inside a loop body S can affect the execution

of the entire body, as in the following example:

for (uint32 i from 0 to 5) {
b[i] = 1;
if (i == sec) { return i; }
a[i] = 2;

}

Here, if i == sec becomes true, the program must stop over-

writing the elements in both a and b. The rule accounts for

returns in the body S by using the secrecy context rc
′
from

type checking the body, and in turn, uses this to derive the

guarded form of the body S ′. In our example, the secret-

dependent return makes the return context rc
′ = Sec, and

so the entire body is guarded by notRet, to obtain the trans-

formed program:

for (uint32 i from 0 to 5) {
// for-loop rule
if (notRet) {

b[i] = 1;
if (i == sec) { rval = i; notRet = false; }
// sequencing rule
if (notRet) { a[i] = 2; }

}
}

4.2 Branch Removal
Return deferral eliminates secret returns by introducing

secret-dependent branches. In this section we eliminate

secret-dependent control flow as the final step towards pro-

ducing constant-time code.

To this end, FaCT replaces secret branches with constant-

time selections. Consider the following snippet:

if (sec1) { a[1] = 3; }
else if (sec2) { a[2] = 4; }

The updates to a[1] and a[2] are guarded by the secret

values sec1 and sec2 and, therefore, produce memory access

patterns that can reveal the values of those secrets when left

untransformed—this is the classic implicit flows problem [54].

We eliminate the implicit flow in two steps. First, we track

the control predicates that correspond to (the conjunction

of) the secret-conditions. Then, we perform both memory

writes, but use ctselect to preserve conditional semantics:
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Tr-Br-Dec

Φ = (ω, {x⃗ : β⃗ }, βr ) ω ( f ) = Pub Φ, true ⊢ S → S ′

ω ⊢ f (x⃗ : β⃗ ) { S } : βr → f (x⃗ : β⃗ ) { S ′ } : βr

Tr-Br-Dec-Sec

Φ = (ω, {x⃗ : β⃗ }, βr )
ω ( f ) = Sec Φ, callCtx ⊢ S → S ′

ω ⊢ f (x⃗ : β⃗ ) { S } : βr →

f (x⃗ : β⃗ , callCtx : BoolSec) { S
′ } : βr

Tr-Br-If

Φ = (ω, Γ, βr ) Γ ⊢ e : BoolSec freshmt , mf
Φ, (p &mt ) ⊢ S1 → S ′

1
Φ, (p &mf ) ⊢ S2 → S ′

2

Φ,p ⊢ if (e ) { S1 } else { S2 } →
{ BoolSec mt = e;

BoolSec mf = ¬mt ;

S ′
1
; S ′

2
}

Tr-Br-Assign

p , true

Φ,p ⊢ e1 := e2 →
e1 := ctselect(p, e2, e1)

Tr-Br-Call

ω ( f ) = Sec

Φ,p ⊢ β x = f (e⃗ ) →
β x = f (e⃗,p)

Figure 7. Rules for branch removal.

a[1] = ctselect( sec1 , 3, a[1]);
a[2] = ctselect(~sec1 & sec2, 4, a[2]);

Our general strategy is to transform each conditional array

assignment into a re-assignment to a conditional (ctselect).

Transforming code that calls procedures is less straight-

forward: if a procedure takes a mutable parameter, the pro-

cedure may update that parameter’s value in a way that is

visible to the caller. For example:

void foo(secret mut uint32 x) { x = 5; }
...
if (sec) {

foo(x);
// x is now 5

}

The transformation of this codemust ensure that updates to x

only occur if sec is true. We do so using a call-context param-

eter passed to callee foo; this parameter is the caller control

predicate—in this case, sec—which we use to guard updates

in foo. Our compiler converts the above into semantically

equivalent constant-time code:

void foo(secret mut uint32 x,
secret bool callCtx) {

x = ctselect(callCtx, 5, x);
}
...
foo(x, sec);
// x is 5 only if sec is true

Transformation Rules. We formalize branch removal us-

ing two kinds of rules, shown in Figure 7. The procedure trans-

formation ruleω ⊢ f (x⃗ : β⃗ ) { S } : βr → f (x⃗ ′ : β⃗ ′) { S ′ } : βr
transforms the body S of the procedure f to S ′, much like

for secret-return removals. This rule, however, additionally

extends f ’s set of parameters x⃗ to include the extra call-

context parameter callCtx. The statement transformation rule

Φ,p ⊢ S → S ′, transforms S to S ′ given context Φ and con-

trol predicate p. We walk though some of the rules below.

1. Procedure Transformation Rule. Both Tr-Br-Dec and

Tr-Br-Dec-Sec remove branches from procedures. Tr-Br-

Dec transforms procedures that do not depend on secret

contexts by transforming each procedure’s body S into S ′

using the initial control predicate true. Tr-Br-Dec-Sec, on

the other hand, transforms a procedure f if ω ( f ) = Sec, i.e.,

where f depends on the caller’s secret context. The rule

adds a new parameter secret bool callCtx that holds the

control predicate at each call-site, and then transforms the

body S starting with the initial control predicate callCtx.

2. Branch Elimination. The remaining rules in Figure 7 re-

move branches from statements. Rule Tr-Br-If, for example,

eliminates secret-dependent conditional branches by saving

the condition (resp. its negation) in the variablemt (resp.mf ).

The “then” statement S1 (resp. “else” statement S2) is then
transformed after conjoining mt (resp. mf ) to the control

predicate p. To prevent name collision when transforming

nested conditionals, the fresh metafunction guarantees that

allmt andmf variables have unique names. The declarations

ofmt ,mf and transformed branches S ′
1
, S ′

2
are sequenced to

obtain the final result.

Rule Tr-Br-Assign handles side-effecting assignment state-

ments, using the control predicate to ctselect the old or new

values. But, if the assignment occurs under the trivial con-

trol predicate (i.e., the literal true), the assignment is left

unchanged.

Finally, rule Tr-Br-Call handles calls toω-Sec procedures
f by explicitly passing the control predicate p as the call-

context parameter. This ensures that updates within f only

occur according to the caller’s control flow.

4.3 Compiler Correctness and Security
In this section, we prove that our compiler preserves se-

mantics and outputs constant-time procedures. To formalize

these claims, we define an instrumented semantics that de-

scribes procedure behavior and leakage, i.e., the sequence

of branches taken, the memory addresses accessed, and the

operands to variable-time instructions. Intuitively, a proce-

dure is constant-time if its leakage is not influenced by any

secret values [9].

In particular, we consider a big-step semantics of the form

F : (v⃗,h) ψ
−−→ (v,h′) where F is shorthand for a procedure

f (x⃗ : β⃗ ) { S } : βr , the term v⃗ represents the values of

parameters, h and h′ are heaps mapping pointers to values,
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v is the final value of the procedure, and ψ is the leakage.

The semantics is parametrized by an allocation function,

and the proofs of the claims below rely on several (minor)

assumptions on this function. We give these assumptions,

formal definition, and complete proofs in Appendix C.

We first prove the correctness of our compiler, using the

notationω ⊢ F → F ′ to denote the combined return deferral

and branch removal transformations. Compiler correctness

states that the compiler preserves the meaning of well-typed

statements. To account for new references and variables

that are introduced by the compiler pass itself, we show

equivalence of the final heaps h′ and h′′, i.e., for any pointer

p ′ in h′, there is an equivalent pointer p ′′ in h′′ such that

h′(p ′) and h′′(p ′′) are either equal values, or are themselves

equivalent pointers.

Theorem 4.1 (Compiler correctness). If ω ⊢ F → F ′ and
F ′ is well-typed, then F : (v⃗,h) ψ

−−→ (v,h′) implies that F ′ :
(v⃗,h) ψ ′

−−→ (v,h′′) and h′ and h′′ are equivalent.

Proof sketch. By induction on the derivation. □

Note that our compiler correctness theorem does not make

any claim about leakage. We separately prove that the com-

piler produces constant-time procedures. To this end, we

first define the notion of a constant-time procedure.

Definition 4.2. A procedure F where ω ⊢ F is constant-

time iff for every pair of executions F : (v⃗1,h1)
ψ1
−−→ (v1,h

′
1
)

and F : (v⃗2,h2)
ψ2
−−→ (v2,h

′
2
), we have v⃗1,h1 ≡ v⃗2,h2 implies

ψ1 = ψ2, where ≡ is a suitably parametrized notion of equiv-

alence (e.g., public or “low” equivalence [5, 9, 61]).

Much like CT-Wasm [61], we cannot prove that all FaCT

procedures are constant-time—FaCT allows procedures to de-

classify secret data and call external procedures over which

it has no control. We can, however, provide guarantees for a

safe subset of declassify-free procedures, i.e., procedures that

do not contain any declassify statements nor call other pro-

cedures unless they too are declassify-free (and not extern).

Theorem 4.3 (Compiler security). If F is declassify-free and

ω ⊢ F → F ′, then F ′ is constant-time.

Proof sketch. We define two additional type systems that

impose stricter constraints on programs, and prove type-

preservation for return deferral and branch removal. We

then conclude by proving that the final type system guaran-

tees that programs are constant-time. It is important to note

that these type systems are merely proof artifacts, i.e., type

checking is not performed again after transformations.

Informally, the two type systems are incremental restric-

tions on the FaCT type system. The first type system, which

we denote by ⊢rd , rejects programs that contain secret re-

turns; the second type system, denoted ⊢ct , rejects programs

that branch on secrets.

We then establish type-preservation for return deferral

and branch removal:

▶ If ω ⊢ F and ω ⊢rd F → F ′ then ω ⊢rd F ′.
▶ If ω ⊢rd F and ω ⊢ct F → F ′ then ω ⊢ct F ′.

Both are proved by induction on derivations, using adequate

ancillary statements for the induction to go through.

We conclude by proving that ⊢ct guarantees that pro-

grams are constant-time. The proof follows from a “locally

preserves” unwinding lemma, stating that equivalent states

yield equivalent final configurations and equal leakage. □

5 Implementation and Evaluation
We implement a prototype compiler for FaCT in ∼6000 lines

of OCaml. The compiler transforms FaCT source code into

LLVM IR, which it passes to clang (version 6.0.1) to generate
assembly or object code. The compiler uses the Z3 SMT

solver [28] to check public safety assertions (§3.2.3).

We evaluate FaCT by asking the following questions:

▶ Is FaCT expressive enough to implement real-world cryp-

tographic algorithms?

▶ Does FaCT produce constant-time code?

▶ What is FaCT’s performance overhead?

▶ Compared to C, does FaCT improve non-experts’ experi-

ence reading and writing constant-time code?

We answer the first three questions with case studies in

which we integrate FaCT into real-world projects (§5.1). We

find that FaCT is expressive enough to implement a range

of cryptographic primitives. We use dudect [51] to empir-

ically check that our implementations, including compiler

optimizations, are constant-time. We find that, compared

to optimized C code, unoptimized FaCT code runs 16–346%

more slowly, while optimized FaCT code ranges from 5%

slower to 21% faster.

We answer the fourth question with a study comparing

user experiences reading and writing FaCT and C (§5.2). In

sum, a plurality of participants found FaCT easier to read

than C, and a majority found FaCT easier to write.

5.1 Case Studies
We integrate FaCT into three popular open source libraries

by porting pieces of these libraries from C to FaCT:

▶ The NaCl secretbox API for symmetric-key authenticated

encryption and decryption. We port the entire libsodium

(version 1.0.16) [29] secretbox API, including the two un-

derlying primitives, the Poly1305 message authentication

code (MAC) and the XSalsa20 stream cipher.

▶ The Curve25519 Elliptic-Curve Diffie-Hellman (ECDH)

primitive for asymmetric key exchange. We port Adam

Langley’s curve25519-donna library [35] in whole.

▶ The OpenSSL [44] ssl3_cbc_digest_record function used

to verify decrypted SSLv3 messages. At its core, this func-

tion computes the MAC of a padded message without re-

vealing the padding length. Our implementation invokes

OpenSSL’s SHA-1 hash primitive as an extern (§3.1).
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Table 1. Case study summary: lines of code (per cloc) and
uses of assume (#A), declassify (#D), and extern (#E).

Case study Lines of code #A #D #EC FaCT

libsodium secretbox 984 1068 16 1 0

curve25519-donna 310 342 0 0 0

OpenSSL record validate 92 91 3 0 2

OpenSSL MEE-CBC 201 219 10 1 4

▶ The OpenSSL aesni_cbc_hmac_sha1_cipher function used

in the MAC-then-Encode-then-CBC-Encrypt (MEE-CBC)

construction. This function performsAES-CBC decryption

and then verifies the MAC and padding of the decrypted

message. Our implementation invokes OpenSSL’s AES

and SHA-1 primitives as externs.

We choose these functions because they (1) are complex

enough to exercise all of the FaCT language features; (2) im-

plement a range of algorithms; and (3) demonstrate that

FaCT can be used in different settings, from implementing

individual procedures to large portions of libraries.

Method. We port in three steps. First, we port the C code

to FaCT by translating C constructs to their corresponding

FaCT counterparts. During this translation process, we label

sensitive messages, keys, etc. as secret, and add assume and

declassify statements as appropriate to ensure the code

typechecks (§5.1.1); we also replace “bit hacks” (§2) with

high-level FaCT constructs (e.g., if). Second, we check the

correctness of our ports using each library’s test harness, and

we empirically check that the ports are constant-time using

dudect (§5.1.2). Finally, we use each library’s benchmarking

suite to compare our ports to the C implementations (§5.1.3).

5.1.1 Expressiveness
Table 1 summarizes our ports. FaCT implementations are

at worst ∼10% longer than the corresponding C code. Much

of the extra length is because FaCT does not have a macro

system; instead, we translated macro definitions and then

manually expanded them. (We note that it would be straight-

forward to instead use the C preprocessor with FaCT.) FaCT

code is also more verbose than C when processing buffers:

since FaCT has no pointer arithmetic, FaCT code must use

extra variables to track offsets into arrays.

Our ports make sparing use of extern, declassify, and

assume. For example, our ports use assume to help the pub-

lic safety verifier track values through memory and reason

across procedure and language boundaries.We declassify in

two cases: in libsodium secretbox decryption and inOpenSSL

MEE-CBC verification; these declassifications are permit-

ted by the libraries’ respective attacker models [19, 26, 36].

Finally, we use extern to invoke existing primitives (e.g.,

OpenSSL’s SHA-1 implementation).

Table 2. Overhead of FaCT ports compared to optimized C,

for each benchmark. secretbox results are for encryption

and decryption overhead, respectively.

Benchmark % Overhead of FaCT
Unoptimized Optimized

secretbox (reference) 345.57/373.49% -20.92/-14.56%

secretbox (vectorized) 427.21/427.09% -6.54/-4.99%

curve25519-donna 144.42% 2.21%

OpenSSL record validate 30.13–35.16% 0.64–4.62%

OpenSSL MEE-CBC 16.15–31.97% -2.56–4.16%

5.1.2 Security
Weprove that FaCT’s transformations produce constant-time

code (§4.3), but this applies only to the unoptimized LLVM

IR produced by the FaCT compiler.
3
Since we use clang to

generate optimized object code, an LLVM optimization pass

might break FaCT’s constant-time guarantees.

To empirically check that our case study implementations

run in constant-time, even after optimization, we use the

dudect [51] analysis tool. At a high level, dudect tests for
constant-time execution by running the code under test for a

large number of iterations and collecting timing information

using the CPU’s cycle counters. It then tests the collected

timing information for statistically significant variation in

execution time that are correlated with changes to secret

inputs. In our evaluation, we configure dudect to collect

50 million measurements for each benchmark. It finds no

statistically significant timing variation.

Several other works concerned with constant-time crypto

implementation [8, 51, 55, 61] have reported using dudect.
In our testing, we found the tool to quickly and reliably

find timing differences in buggy code. We note, however,

that dudect is only a check—not a proof—of constant-time

behavior; we discuss further in Section 6.

5.1.3 Performance
Table 2 shows the performance cost of porting C to FaCT.

We benchmark each implementation on an Intel i7-6700K

at 4GHz with 64GB of RAM using clang 6.0.1. We compare

both unoptimized and optimized FaCT implementations with

C implementations that are compiled at the corresponding

project’s default optimization level.
4
Our optimized FaCT

code uses the same optimization flags as the C code.

For libsodium and curve25519-donna, we use the library’s

benchmarking suites. We measure the mean of ∼224 and

∼217 iterations, respectively, and report the median of five

such measurements. For the OpenSSL implementations, we

use OpenSSL’s s_server and s_client commands to mea-

sure throughput when transferring 256MB, 1GB, and 4GB

files. We compute the median throughput of five transfers at

3
And to procedures that do not use declassify.

4
For OpenSSL, -O3; for other projects, -O2.
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each file size, and report the minimum and maximum result;

overhead was uncorrelated with file size.

For most benchmarks, we find that optimized FaCT is

comparable to C: the overhead is never more than 5%. No-

tably, the FaCT implementation of libsodium secretbox is

15-20% faster than the C reference implementation. We at-

tribute this speedup to vectorization: inspecting the XSalsa20

assembly code, we find that clang generates vector instruc-

tions for the FaCT implementation, but not for C. To explore

this discrepancy, we measure performance of secretboxwith

XSalsa20 explicitly vectorized (using vectors in FaCT, intrin-

sics in C). In this case, FaCT is still 5-6% faster than C, but

this speedup appears to be an artifact of LLVM’s applying

different optimizations to different code.

5.2 User Study
We evaluate the usability of FaCT by conducting a user study

as part of an upper-level, undergraduate programming lan-

guages course at UC San Diego.
5
Prior to the study, we dedi-

cated three lectures to timing side-channels, constant-time

programming in general, and constant-time programming

specifically in C and FaCT. As an optional assignment, stu-

dents were asked to (1) explain the behavior of constant-time

code written in C and FaCT, and (2) implement constant-

time algorithms in both C and FaCT. Of the 129 enrolled

students, 77 completed the study over a nine-day period. We

describe methods and conclusions below; in Appendix B, we

give further lessons from the study, e.g., compilation errors

participants ran into frequently.

Method. The user study is a sequence of web-based tasks.

For each task, the participant is first given a warm-up code

comprehension question, whose answer is subsequently re-

vealed. The participant is then given a second, related ques-

tion. This question is repeated twice, in C and in FaCT; we

randomize the order of the languages per participant, i.e.,

half the participants’ tasks are in C and then FaCT, and vice-

versa. On a given question, participants can repeatedly check

partial answers for correctness; once finished, the participant

submits a final answer, which can no longer be viewed or

revised. A task is complete if the participant submits a final

answer for both C and FaCT; we discard incomplete tasks.

The user study was built on an earlier version of FaCT

which did not enforce public memory safety. Nevertheless,

we believe the results largely translate to the version pre-

sented in this paper, because the surface language did not

change significantly.

5.2.1 Understanding Constant-Time Code
To evaluate participants’ understanding of C and FaCT code,

we asked them to describe the behavior of two functions.

The first function takes two input buffers—a header and a

message—and copies the header and message to an output

5
Our study was reviewed and exempted by the IRB.

Table 3. Number of participants (out of 77) that submit-

ted correct and constant-time solution for each task. The

check_pkcs7_padding task was misconfigured, and marked

variable-time code as constant-time (16 submissions); we re-

port these numbers for completeness (§5.2.2).

Programming task FaCT C

remove_secret_padding 62 49

check_pkcs7_padding 35 32 (16)

remove_pkcs7_padding 34 24

buffer and adds padding up to a fixed size. The second func-

tion implements long division: it computes a quotient and

remainder, writes each to an output buffer, and returns a

status code indicating success or failure.

We graded participants on their ability to correctly de-

scribe each function’s behavior. In both cases, we find that

participants showed slightly better understanding of FaCT

than of C: for the first function, the mean score was 57% for

FaCT and 53% for C; for the second, it was 40% for FaCT

and 32% for C. Participants also reported a slight preference

for FaCT; specifically, 31 participants found FaCT easier to

understand compared to 10 that found C easier and 28 that

reported similar difficulty.

5.2.2 Writing Constant-Time Code
To evaluate participants’ ability to write constant-time code

in FaCT and C, we had them implement three functions:

▶ remove_secret_padding: given a buffer and secret length,
this function removes any secret padding, i.e., sets every

element of the buffer past the length to zero.

▶ check_pkcs7_padding: this function checks whether a

supplied buffer contains a valid PKCS#7 [33] message.

▶ remove_pkcs7_padding: this function removes padding

from a supplied buffer, if it contains a valid message.

Participants could compile their code, run a test suite, and,

for C code, check constant-time correctness with ct-verif [5].
They could also give up on a task and move to the next one.

Table 3 summarizes our findings. Of the 68 participants

that completed the first task, 62 submitted correct and constant-

time FaCT code, and 49 submitted correct and constant-time

C code. For the third task, 34 participants submitted correct,

constant-time FaCT code compared to 24 participants for C.

In the survey, 40 participants reported finding FaCT easier

to write, 11 found C easier, and 18 found them similar.

We cannot draw conclusions from check_pkcs7_padding,
because the task had a bug that incorrectly marked variable-

time code as constant-time; only 16 of the 32 C submissions

marked “correct” were constant-time. The bug was limited

to this task, but because check_pkcs7_padding is required

for remove_pkcs7_padding, some participants needed to

correct their code to pass the third task.
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6 Limitations and Future Work
We think FaCT makes it easier to write constant-time code,

but it is not perfect. Limitations and future work include:

The type system. The type system lacks polymorphism and

flow sensitivity [42, 54], which reduces both expressivity and

performance. For example, our type system cannot express a

program that branches on a buffer’s public contents and then

decrypts the buffer in-place, upgrading its label to secret.

We leave such extensions to future work.

The public safety checker. FaCT’s public safety checker

does not reason about mutable variables or properties across

function calls. For example, indexing an array based on a

mutable variable requires assume-ing the index is in bounds.

The brittleness of constant-time behavior. FaCT’s com-

piler only guarantees constant-time behavior for the LLVM

IR that it produces. Crucially, this means that LLVM’s op-

timization passes and lowering to assembly can introduce

variable-time behavior. Though many optimizations do pre-

serve constant-time property [10], FaCT relies on dudect to
empirically check that a piece of code is constant-time.

Sound, symbolic verification of constant-time behavior

using ct-verif [5] would give much stronger guarantees. Un-

fortunately, ct-verif currently has limited support for de-

classification and vector instructions. Extending ct-verif to
support these primitives and applying it to optimized FaCT

code is future work.

The evaluation. Our evaluation of FaCT is preliminary

and thus incomplete. For example, we relied on extern ver-

sions of SHA-1 and AES (§5.1) because we preferred to focus

on porting higher-level OpenSSL functions with a history

of timing attacks. Moreover, some of the low-level primi-

tives we ported (XSalsa20, Poly1305, and Curve25519) were

explicitly designed for ease of constant-time implementa-

tion [14, 15, 17]. Future work is expanding FaCT’s repertoire

with potentially more challenging algorithms.

Finally, our user study has limited scope and involves only

non-expert users; remedying these issues is also future work.

7 Related Work
This work supersedes an initial design we previously de-

scribed in [24]. In particular, we present a design and imple-

mentation of a DSL for writing constant-time crypto, provide

a formal semantics and security guarantees for FaCT, and

evaluate FaCT on several dimensions; in [24] we outlined the

vision for such a DSL. Our implementation and formaliza-

tion efforts revealed insights previously missed in [24]—e.g.,

the need for public safety (§3.2.3) and challenges with using

ct-verif [5] to verify code with inline declassifications. At

the same time, in this paper, we did not explore parts of the

design space outlined in [24]—e.g., we do not expose some

hardware-specific instructions like add-with-carry, which

could simplify asymmetric-key crypto implementations.

Domain-Specific Languages. There are several efforts de-
signing DSLs for implementing cryptographic primitives

and protocols. Bernstein’s qhasm is a low-level portable as-

sembly for writing high-speed crypto routines [16]; it does

not distinguish secret data from public data, so does not

prevent information leaks by construction.

Vale [21] and Jasmin [3] are DSLs for writing and verify-

ing high-performance assembly code. Vale developers write

platform-independent assembly code and specify the tar-

get architecture; the Vale compiler uses Dafny to verify se-

mantics and non-interference. Jasmin allows developers to

use architecture-specific instructions alongside higher-level

code, and the verified Jasmin compiler rejects non-constant-

time programs. Low* is a higher-level, embedded (in F*)

DSL that compiles to verified constant-time C [49]. The veri-

fied NaCl [18] library, HACL* [67], is written in Low*. CT-
Wasm [61] is a formally verified extension to the WebAssem-

bly language [62] for writing crypto code in the browser.

CT-Wasm uses a strict label-based type system to enforce its

constant-time policy. These languages provide support for

high-level control flow constructs and procedures, but they

require developers to manually write constant-time code.

Constant-Time Toolkit (CTTK) is a C library [47] that

follows recipes in [27, 48] to provide functions—including

low-level constant-time primitives—for crypto libraries, but

developers must compose these low-level blocks.

Verification. There is a growing body of work on both build-
ing verified cryptographic implementations and verifying

existing libraries. Bhargavan et. al verify an implementation

of TLS, including low-level cryptographic primitives [20].

Barthe et. al [9] verify constant-time properties of various

PolarSSL implementations. Ye et. al [64] verify the mbedTLS

implementation of HMAC-DRBG. Appel [7] and Beringer

et. al [12] respectively verify OpenSSL’s implementation

of SHA-256 and HMAC. Tsai et. al [59] verify core parts of

X25519. Almeida et. al [4] verify AWS Lab’s s2nMEE-CBC im-

plementation (after identifying a vulnerability); they also ver-

ify security properties of NaCl libraries [6]. Erbsen et. al [31]

synthesize and verify elliptic curve implementations from

high-level descriptions. Almeida et. al develop ct-verif [5]
and verify constant-time properties of several cryptographic

algorithms. Many of these verification efforts are specific

to the projects being analyzed. Additionally, developers still

bear the burden of manually writing constant-time code,

which FaCT aims to alleviate.

General Techniques for Eliminating Timing Channels.
FaCT uses an information flow control type system to elimi-

nate programs that may introduce information leaks or are

otherwise inefficient (or impossible) to transform to constant-

time. Our label-based type system is a standard IFC type

system [54] that borrows explicit mutability from ownership-

based systems [25]. Previous solutions have also relied on

type- and static-analysis techniques (e.g., [9, 30, 53, 58, 65])
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to address timing leaks. FaCT automatically transforms se-

cret sub-computations into constant-time straight-line code.

Our approach follows several previous efforts on eliminating

timing channels via source code transformations [1, 11, 40,

43, 46, 50]. Most similar in ethos is SC-Eliminator [63]. This

system takes as input a program and a list of secrets, and

uses tag propagation to transform LLVM IR into its constant-

time equivalent. Though both projects perform transforma-

tions, they use orthogonal approaches: SC-Eliminator re-

pairs already-existing code, while FaCT is a language for

writing such code from the start. Finally, many other ef-

forts employ system-level techniques to eliminate and detect

timing-channels [22, 32, 37, 51, 57, 66].

A FaCT Grammar

Program

program ::=
[
fdef | sdef

]
. . .

Structure definition

sdef ::= struct name { β x ; . . . }

Procedure definitions

fdef ::=

| f (x⃗ : β⃗ ) { S } : β internal procedure

| export f (x⃗ : β⃗ ) { S } : β exported procedure

| extern f (x⃗ : β⃗ ) : β external procedure

Statements

S ::=

| { S } block

| S ; S sequence

| β x = e variable declaration

| β x = f (e⃗ ) procedure call

| f (e⃗ ) void procedure call

| e := e assignment

| e ⊕= e binop assignment

| if (e ) { S } conditional[
else if (e ) { S }

]
. . .[

else { S }
]

| for (x from e to e ) { S } range-for

| return e | return return

Binary ops

⊕ ::=

| + | - | * | / | % arithmetic

| == | != equality

| < | <= | > | >= comparison

| && | || logical

| & | | | ^ bitwise

| << | >> bitshift

| <<< | >>> bit rotate

Unary ops

⊖ ::=

| ! boolean not

| - negate

| ~ bitwise not

Expressions

e ::=

| (e ) parentheses

| true | false boolean literal

| n numeric literal

| x variable

| ⊖ e unary op

| e ⊕ e binary op

| e ? e : e ternary op

| ctselect(e, e, e ) constant-time selection

| UInt
s (e ) | Ints (e ) numeric cast

| [e, . . . ] array literal

| e[e] array get

| len e array length

| zeros(β , e ) zero array

| clone(e ) array clone

| view(e, e, e ) array view

| ref e reference

| deref e dereference

| ⟨n, . . .⟩ vector literal

| e⟨n, . . .⟩ vector select/shuffle

| {x : e, . . . } struct literal

| e .x struct access

| f (e⃗ ) procedure expression

| declassify(e ) declassify

| assume(e ) assume

B User study
The user study enabled 77 people to write programs with

FaCT; in doing so, we wanted to know: what did participants

struggle with when writing FaCT code? We answer this ques-

tion by analyzing program errors to see how participants

failed at writing FaCT programs. We classify the errors into

the following categories:

▶ Syntax: The program does not have valid syntax.

▶ Type: The program is not well-typed.

▶ Label: The program attempts to leak a secret value to a

public variable.

▶ Memory: A segmentation fault occurred at runtime.

▶ Correctness: The program compiles and runs, but fails a

unit test.

The occurrences of each error are reported in Table 4. The

problem tasks PT1, PT2, and PT3 are remove_secret_padding,

check_pkcs7_padding, and remove_pkcs7_padding respectively,
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Table 4. The number of occurrences of each kind of error

when users compiled FaCT code.

Error type PT1 PT2 PT3

Syntax 277 313 90

Type 40 423 143

Label 73 613 94

Memory 0 104 3

Correctness 124 560 137

Other 45 191 53

described in §5.2. The information we collected about syntax

and type errors led to changes in the compiler and language

design. For example, the majority of the type errors were

due to incompatible integer types—we added implicit casting

so that the compiler could assist the programmer. We also

improved the compiler to prevent memory errors at com-

pile time with the addition of the public safety checker (as

described in §3.2.3).

We observe a total of 780 label errors—in FaCT this is

a compilation error, but would result in a security vulner-

ability in languages (like C) without knowledge of public

and secret values. This number is not surprising, as the par-

ticipants were not used to programming with a defensive

security mindset.

Participants encountered a large number of correctness

errors as well. We observe a total of 821 correctness errors

across the three programming tasks. The high number of cor-

rectness errors is not isolated to the FaCT tasks—we observe

1199 total correctness errors for the C tasks.

Additionally, we find that participants required fewer

attempts as a whole to produce a correct FaCT program

than a correct C program for remove_secret_padding and

remove_pkcs7_padding. We graph the CDF of the number of

correctness errors each user encountered per programming

task in Figure 8. As shown, when writing FaCT code, 90%

of participants encountered fewer than 5 correctness errors

for remove_secret_padding and 4 for check_pkcs7_padding,

compared to 12 and 13 for C code. The number of correctness

errors are about the same per user for check_pkcs7_padding—

90% saw fewer than 21 for FaCT and 20 for C.

We find a total of 250 other errors for the FaCT program-

ming tasks. Individually, these errors occurred infrequently

and are not unique or interesting to FaCT since they are com-

mon programming errors (e.g., passing too many arguments

to a function).

C Deferred definitions and proofs
C.1 Semantics
We define the behavior of expressions, statements and func-

tions using an instrumented big-step semantics. Informally,

the big-step semantics relates initial configurations, final con-

figurations, and leakages. Initial configurations are triples of

Figure 8. These graphs show the CDF of number of times a

user failed the unit tests for each programming task in both

FaCT and C.

the form (C, ρ,h) where C is an expression, a statement or a

function, ρ is an environment mapping variables to values,

and h is a heap mapping pointers to values.
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Expr-step

(e, ρ,h) ψ
−−→ (v,h)

Stmt-step

(S, ρ,h) ψ
−−→ (ν ,h)

ref

(e, ρ,h) ψ
−−→ (v,h′)

fresh(h′,v ) = (p,h′′)

(ref e, ρ,h) ψ
−−→ (p, ρ,h′′)

array-get

(e1, ρ,h)
ψ1
−−→ ([v0, . . . ,vk ],h

′)
(e2, ρ,h

′) ψ2
−−→ (n,h′′) 0 ≤ n < k

(e1[e2], ρ,h)
ψ1 +ψ2 + Arr (n)−−−−−−−−−−−−→ (vn ,h

′′)

seq-ret

(i, ρ,h) ψ
−−→ (v,h′)

(i; S, ρ,h) ψ
−−→ (v,h′)

seq-noret

(i, ρ,h) ψ1
−−→ (ρ ′,h′)

(S, ρ ′,h′) ψ2
−−→ (ν ,h′′)

(i; S, ρ,h) ψ1 +ψ2
−−−−−→ (ν ,h′′)

vardec

(e, ρ,h) ψ
−−→ (v,h′)

(x = e, ρ,h) ψ
−−→ (ρ[x ← v],h′)

assign

(e1, ρ,h)
ψ1
−−→ (p,h′)

(e2, ρ,h
′) ψ2
−−→ (v,h′′)

(e1 := e2, ρ,h)
ψ1 +ψ2
−−−−−→ (ρ,h′′[p ← v])

return

(e, ρ,h) ψ
−−→ (v,h′)

(return e, ρ,h) ψ
−−→ (v,h′)

block

(S, ρ,h) ψ
−−→ (ν ,h′)

({S }, ρ,h) ψ
−−→ (ν ,h′)

fn-call

(e1, ρ,h)
ψ1
−−→ (v1,h1) . . . (en , ρ,hn−1)

ψn
−−−→ (vn ,hn )

(F , v⃗,hn )
ψ
−−→ (v,h′)

(x = f (e⃗ ), ρ,h) Σψi +ψ
−−−−−−→ (ρ[x ← v],h′)

fn

(F .S, [F .x⃗ ← v⃗],h) ψ
−−→ (v,h′)

(F , v⃗,h) ψ
−−→ (v,h′)

if

(e, ρ,h) ψ
−−→ (b,h′)

(Sb , ρ,h
′) ψb−−−→ (ν ,h′′)

(if ∗ℓ e then St else Sf, ρ,h)
ψ + if ∗ (ℓ, b ) +ψb−−−−−−−−−−−−−→ (ν ,h′′)

for

(e1, ρ,h)
ψ1
−−→ (n1,h1) (e2, ρ,h1)

ψ2
−−→ (n2,h2)

(if ∗ℓ n1 < n2 then {{i = n1; S };
for ∗ℓ i = n1 + 1 to n2 do S }, ρ,h2)

ψ
−−→ (ν ,h′)

(for ∗ℓ i = n1 to n2 do S }, ρ,h) ψ1 +ψ2 +ψ
−−−−−−−−→ (ν ,h′)

Figure 9. Big-step semantics.

Definition C.1 (Values). The set of values is defined by the

following syntax:

v ::= n integer

| b boolean

| p pointer

| [v1; . . . ;vn] array of size n
| {x1 = v1, . . . ,xn = vn } structure

An environment is defined as a partial mapping from vari-

ables to values, and a heap is defined as a partial mapping

from pointers to values. We say that a pointer p is allocated

in a heap h, written p ∈ h, if h(p) is defined. If p ∈ h then the

associated value to p can be updated: h[p ← v]. The associ-
ated values of other pointers are unchanged. We assume we

are given a deterministic operator fresh for creating and ini-

tializing a fresh pointer: fresh(h,v ) = (p,h′). This operator
satisfies:

▶ p is a fresh pointer, i.e., p < h
▶ The associated value of p is v , i.e., h′(p) = v
▶ Other pointers are unchanged, i.e., ∀p ′, h(p ′) = h′(p ′)

We further assume the existence of an equivalence relation

≈ on heaps such that:

▶ ≈ is stable by allocation: If fresh(h1,v1) = (p1,h
′
1
)

and fresh(h2,v2) = (p2,h
′
2
) and h1 ≈ h2 then p1 = p2

and h′
1
≈ h′

2
.

▶ ≈ is stable by update: if h1 ≈ h2 then h1[p ← v1] ≈
h2[p ← v2].

A final configuration is either a pair consisting of a value

and a heap, or of an environment and a heap. In particular,

the semantics of expressions (e, ρ,h) ψ
−−→ (v,h′) returns a

value and a new heap (creation of fresh reference). Here,ψ
corresponds to the leakage of the evaluation of e . The seman-

tics of statements is given by two judgments of similar form:

(S, ρ,h) ψ
−−→ (ρ ′,h′) and (S, ρ,h) ψ

−−→ (v,h′). These judgments

correspond to statements that do not and do return values,

respectively. Again,ψ is the leakage produced by the evalu-

ation of the statement. Finally, the semantics of a function

is modelled by a judgment of the form ( f , v⃗,h) ψ
−−→ (v ′,h′),

where v⃗ denotes the values of the parameters of the function,

and v ′ is the return value (we only consider functions that

return a value). Figure 9 presents the semantics. Rules are

standard, with the exception of leakage. Primarily, array ac-

cesses leak the index at which they are accessed, conditionals

leak their control flow, and other rules combine leakage of

sub-computations according to evaluation order. Note that

in the rules for conditionals and for loops we assume that

the guard of the statement is identified by a unique label,

which we record in the leakage.

C.2 Return deferral
We prove that return deferral is correct, i.e., preserves the

behavior of programs; and secure, which we formalize as a

type-preservation result.
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Rules

Γ ⊢ e : β
pc, βr ⊢ S : Γ → Γ′

ω ⊢ βr f (x⃗ : β⃗ ) { S }

seq

pc, βr ⊢ S1 : Γ → Γ′

pc, βr ⊢ S2 : Γ
′ → Γ′′

pc, βr ⊢ S1; S2 : Γ → Γ′′

var-dec

Γ ⊢ e : β
Γ′ = Γ,x : β

pc, βr ⊢ β x = e : Γ → Γ′

var-dec-fn-call

f : (β⃗ ) → β
hasMut( f ) ⇒ pc ⊑ ω ( f )

Γ ⊢ ei : βi Γ′ = Γ,x : β

pc, βr ⊢ β x = f (e⃗ ) : Γ → Γ′

assign

Γ ⊢ e1 : RefW
[
β
]

Γ ⊢ e2 : β pc ⊑ β

pc, βr ⊢ e1 := e2 : Γ → Γ

if

Γ ⊢ e : Boolℓ
pc ⊔ ℓ, βr ⊢ S1 : Γ → Γ1
pc ⊔ ℓ, βr ⊢ S2 : Γ → Γ2

pc, βr ⊢ if (e ) { S1 } else { S2 } : Γ → Γ

for-range

Γ ⊢ e1 : UIntSec Γ ⊢ e2 : UIntSec
Γ′ = Γ,x : UIntSec pc, βr ⊢ S : Γ′ → Γ′′

pc, βr ⊢ for (x from e1 to e2) { S } : Γ → Γ

return

Γ ⊢ e : βr
pc ⊑ βr

pc, βr ⊢ return e : Γ → Γ

fn-dec

pc = ω ( f ) Γ = {x⃗ : β⃗ }
pc, βr ⊢ S : Γ, Pub→ Γ′

ω ⊢ βr f (x⃗ : β⃗ ) { S }

Figure 10. Type system ⊢rd for return deferral.

Type system and type-preservation. We define a variant

of the type system that only allows return statements in

Pub contexts. The judgments are thus of the form pc, βr ⊢

S : Γ → Γ′ or ω ⊢ βr f (x⃗ : β⃗ ) { S }, i.e., the return context

label is omitted. The typing rules for statements are given in

Figure 10; rules for expressions do not change.

We prove that return deferral transforms typeable expres-

sions (resp. statements and procedures) of the source type

system into typeable expressions (resp. statements and pro-

cedures) of the ⊢rd type system.

First, we prove preliminary lemmas.

Lemma C.2. If ω, pc, βr ⊢ S : Γ, rc→ Γ′, rc′ then rc ⊑ rc
′
.

Lemma C.3 (PC subtyping type system for return deferral).
For all pc

1
⊑ pc

2
, if pc

2
, βr ⊢ S : Γ → Γ′ then

pc
1
, βr ⊢ S : Γ → Γ′.

Proof. By induction on pc
2
, βr ⊢ S : Γ → Γ′. □

Lemma C.4 (Type preservation for return deferral).
If ω, pc, βr ⊢ S : Γ, rc→ Γ′, rc′:

1. Φ, pc, rc ⊢ S → S ′ then pc ⊔ rc, βr ⊢ S ′ : Γ → Γ′

2. Φ, pc, rc ⊢ S ⇝ S ′ then pc ⊔ rc, βr ⊢ S ′ : Γ → Γ′

where Γ = Γ[notRet, rval← RefRW[Bool] , RefRW
[
βr
]
].

Proof. We start by proving (2). Assuming that (1) holds for a

given S , we prove that (2) holds for S . By case on rc:

▶ If rc is Pub then Φ, pc, rc ⊢ S ⇝ S ′ is Φ, pc, rc ⊢ S →
S ′, and we can trivially conclude using (1).

▶ If rc is Sec we should prove

pc ⊔ Sec, βr ⊢ if (deref notRet){S ′} : Γ → Γ′. By

hypothesis we have pc ⊔ Sec, βr ⊢ S ′ : Γ → Γ′ and
we can apply the IF rule of type system 2 to conclude

(where l is Sec).

We now prove (1) by induction on S . The cases for (var-dec,
assign, if, for-range, return) are trivial.

▶ If S = S1; S2 then we have S ′ = S ′
1
; S ′

2
where

ω, pc, rc ⊢ S1 : Γ, rc→ Γ′, rc′

Φ, pc, rc ⊢ S1 → S ′
1

ω ′, pc, rc′ ⊢ S2 : Γ
′, rc′ → Γ′′, rc′′

Φ′, pc, rc′ ⊢ S2⇝ S ′
2

By induction hypothesis, we have pc ⊔ rc, βr ⊢ S ′
1
:

Γ → Γ′ and by (2) (using the induction hypothesis on

S2) we have pc ⊔ rc
′, βr ⊢ S ′

2
: Γ′ → Γ′′. Since rc ⊑ rc

′

(by lemma C.2), we can apply lemma C.3 to obtain

pc ⊔ rc, βr ⊢ S ′
2
: Γ′ → Γ′′ and conclude.

▶ If S = β x = f (e⃗ ), we can conclude by induction

hypothesis (f .S can be seen as a sub-statement of S
since there is no recursion).

□

Preservation of semantics. We now prove the preserva-

tion of semantics for return deferral. Since the compilation

introduces references and variables, the correctness lemmas

should take this into account. Given a partial mapping m
from pointers to pointers, we say that two values v and v ′
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Bool

b ≃m b
Int

i ≃m i

Ref

p2 =m(p1)

p1 ≃m p2

Arr

vi ≃m wi

[v0; . . . ;vn] ≃m [w0; . . . ;wn]

Struct

vi ≃m wi

{x1 = v1, . . . ,xn = vn } ≃m {x1 = w1, . . . ,xn = wn }

Heap

∀p1 p2, m(p1) = p2 ⇒ h1 (p1) ≃m h2 (p2)

h1 ≃m h2

Env

∀x , Defined ρ (x ) ⇒ Defined ρ ′(x ) and ρ (x ) ≃m ρ ′(x )

ρ ≃m ρ ′

Figure 11. Values equivalence.

are in relation form,v ≃m v ′ if they are equal up to pointers.
Figure 11 defines this relation. The relation is extended to

heaps h ≃m h′ (rule Heap), if for all pointers p inm we have

h(p) ≃m h′(m(p)). The relation is extended to environments

(rule Env): for all defined variables x in ρ, x should be defined

in ρ ′ and the associated values should be in relation form.

Lemma C.5 (Preservation of semantics for return defer-

ral). Let ρ1 ≃m ρ ′
1
and ρ ′

1
(notRet) = pr and ρ

′
1
(rval) = pv

and h1 ≃m h′
1
and h′

1
(pr ) = true and h′

1
(pv ) = init(βr ). If

Φ, pc, rc ⊢ S → S ′ and (S, ρ1,h1) −→ (ν ,h2), then there exists

ν ′, m′,h′
2
such that m ⊑ m′ and (S ′, ρ ′

1
,h′

1
) −→ (ν ′,h′

2
) and

h2 ≃m′ h
′
2
:

▶ If ν = ρ2 then there exists ρ ′
2
such that ν ′ = ρ ′

2
and

ρ2 ≃m′ ρ
′
2
and ρ ′

2
(notRet) = pr and ρ

′
2
(rval) = pv and

h′
2
(pr ) = true and h′

2
(pv ) = init(βr ).

▶ If ν = v , there exists v ′ such that v ≃m′ v
′
and ν ′ = v ′,

or there exists ρ ′
2
such that ν ′ = ρ ′

2
and ρ ′

2
(notRet) = pr

and ρ ′
2
(notRet) = pv and h′

2
(pr ) = false and h′

2
(pv ) =

v ′ and v ≃m′ v
′
.

Furthermore, if h1 ≃m h′
1
and v⃗ ≃m v⃗ ′ and ω ⊢ F → F ′

and (F , v⃗,h1) −→ (v,h2) then there exists v ′, m′, h′
2
such that

v ≃m′ v
′
and h2 ≃m′ h

′
2
and (F ′, v⃗ ′,h′

1
) −→ (v ′,h′

2
).

Proof. The proof is done by mutual induction on Φ, pc, rc ⊢
S → S ′ and (F , v⃗,h1) −→ (v,h2). The case for functions is a
direct consequence of the case for statements. For statements,

the interesting case is the one for sequencing, i.e., S = S1; S2.
If S1 returns in a Sec context then S ′

1
will not immediately

return, but after its execution notRet will be false. So S ′
2
=

if (notRet) { S ′′
2
} will immediately terminate. □

C.3 Branch removal
We prove that branch removal is correct, i.e., preserves the

behavior of programs, and secure. For the latter, we define

a new type system ⊢ct, show that branch removal returns

programs that are typeable with respect to ⊢ct, and that

typeable programs are constant-time.

Type system and type-preservation. The type system ma-

nipulates judgments of the form βr ⊢ S : Γ → Γ′ and

⊢ βr f (x⃗ : β⃗ ) { S }. Notably, the path context label is omit-

ted. Since we require that statements no longer branch on

secrets, we can assume that the path context label is public

throughout execution.

Figure 12 presents the typing rules for statements in ⊢ct.

Rules for expressions do not change.

We prove that branch removal transforms expressions

(resp. statements and procedures) typeable in ⊢rd into ex-

pressions (resp. statements and procedures) typeable in ⊢ct.

Lemma C.6. If Φ,p ⊢ S → S ′ and p, βr ⊢ S : Γ → Γ′

then βr ⊢ S ′ : Γp → Γ′p , where p is Pub if p = true, Sec

otherwise and Γp = Γ[vars(p) ← BoolSec] and vars(p) is the
set of variables in p.

Proof. By induction on S . □

Typeable programs are constant-time. We start by defin-

ing an equivalence between heaps. We index equivalence

by a partial mapping t from pointers to types. Note that

such partial mappings are naturally equipped with a partial

order relation: we write that t1 ⊑ t2 if for all p, β such that

t1 (p) = β we have t2 (p) = β .
We define a relation v1 ≡β,t v2 between values saying

that the two values v1 and v2 are in relation with respect to

the type β and the partial mapping t . The relation imposes

that the values have type β and are equal according to the

security level. For example, base values (booleans and inte-

gers) must be equal if their level is Pub but can be arbitrary

otherwise. For pointers, the relation imposes that the two

pointers are equal and the mapping t should associate a type
β ′ such that β ′ ⊑ β . The relation h1 ≡t h2 is extended to

heaps in the following way: the two heaps should be in re-

lation for ≈, and for all pointers p such thatm(p) = β , the
associated values should be in relation with respect to t and
β : h1 (p) ≡β,t h2 (p). The relation is extended to environ-

ments naturally: ρ1,h1 ≡Γ,t ρ2,h2. The relation is extended
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Rules

Γ ⊢ e : β
βr ⊢ S : Γ → Γ′

⊢ βr f (x⃗ : β⃗ ) { S }

seq

βr ⊢ S1 : Γ → Γ′

βr ⊢ S2 : Γ
′ → Γ′′

βr ⊢ S1; S2 : Γ → Γ′′

var-dec

Γ ⊢ e : β
Γ′ = Γ,x : β

βr ⊢ β x = e : Γ → Γ′

var-dec-fn-call

f : (β⃗ ) → β
Γ ⊢ ei : βi Γ′ = Γ,x : β

βr ⊢ β x = f (e⃗ ) : Γ → Γ′

assign

Γ ⊢ e1 : RefW
[
β
]

Γ ⊢ e2 : β

βr ⊢ e1 := e2 : Γ → Γ

if

Γ ⊢ e : BoolPub
βr ⊢ S1 : Γ → Γ1
βr ⊢ S2 : Γ → Γ2

βr ⊢ if (e ) { S1 } else { S2 } : Γ → Γ

for-range

Γ ⊢ e1 : UIntPub Γ ⊢ e2 : UIntPub
Γ′ = Γ,x : UIntPub βr ⊢ S : Γ′ → Γ′′

βr ⊢ for (x from e1 to e2) { S } : Γ → Γ

return

Γ ⊢ e : βr

βr ⊢ return e : Γ → Γ

fn-dec

Γ = {x⃗ : β⃗ }
βr ⊢ S : Γ → Γ′

⊢ βr f (x⃗ : β⃗ ) { S }

Figure 12. Type system ⊢ct for constant-time.

to final configurations in a straightforward manner. The

formal definition is given in Figure 13.

We prove some preliminary lemmas.

Lemma C.7 (Stability of type interpretation). For all partial

maps t and t ′ such that t ⊑ t ′ the following properties hold:

1. For all v1 v2, if v1 ≡β,t v2 then v1 ≡β,t ′ v2
2. For all heaps h1 h2 h

′
1
h′
2
such that h′

1
≡t ′ h

′
2
, ρ1,h1 ≡β,t

ρ2,h2 ⇒ ρ1,h
′
1
≡β,t ρ2,h

′
2

Proof. We prove (1) by induction on v1,h1 ≡β,t v2,h2. The
only interesting case is for Ref, which follows directly from

definitions of t ⊑ t ′. (2) is a direct consequence of (1). □

Lemma C.8 (Reference creation). If h1 ≡t h2 and
fresh(h1,v1) = (p1,h

′
1
) and fresh(h2,v2) = (p2,h

′
2
) and

v1 ≡b,t v2 then p1 = p2 and h
′
1
≡m[p1←β ] h

′
2
.

Proof. h1 ≡t h2 implies h1 ≈ h2, so p1 = p2 and h′
1
≈ h′

2
. It

remains to prove ∀p β ′, m[p1 ← β](p) = β ′ ⇒ h′
1
(p) ≡β ′,t

h′
2
(p). If p = p1 then m[p1 ← β](p) = β and h′i (p) = vi

and we have v1 ≡β,t v2 by hypothesis. Else p , p1 and

m[p1 ← β](p) = m(p) and h′i (p) = hi (p) and the property

follows from h1 ≡t h2. □

We now prove that typeable expressions and statements

are constant-time.

Lemma C.9 (Typing constant-time, expressions).

ρ1,h1 ≡Γ,t ρ2,h2
Γ ⊢ e : β
(e, ρ1,h1)

ψ1
−−→ (v1,h

′
1
)

(e, ρ2,h2)
ψ2
−−→ (v2,h

′
2
)




⇒ ∃t ′,




t ⊑ t ′

h′
1
≡t ′ h

′
2

ψ1 = ψ2

v1 ≡β,t ′ v2

Proof. By induction on Γ ⊢ e : β . We do only the interesting

cases:

▶ Case e = e1[e2], we have

(e1, ρ1,h1)
ψ ′
1−−−→ ([w1; . . . ;wk1],h

′′
1
)

(e1, ρ2,h2)
ψ ′
2−−−→ ([w ′

1
; . . . ;w ′k2],h

′′
2
)

(e2, ρ1,h
′
1
)

ψ ′′
1−−−→ (n1,h

′
1
)

(e2, ρ2,h
′
2
)

ψ ′′
2−−−→ (n2,h

′
2
)

v1 = wn1
v2 = w

′
n2

ψ1 = ψ
′
1
+ψ ′′

1
+ Arr[n1]

ψ2 = ψ
′
2
+ψ ′′

2
+ Arr[n2]

Γ ⊢ e1 : Arr
[
β, elen

]
Γ ⊢ e2 : UInt

Pub

By induction hypothesis on e1 there exists t
′
such that

t ⊑ t ′′ h′′
1
≡t ′′ h

′′
2

ψ ′
1
= ψ ′

2

[w1; . . . ;wk1] ≡Arr[β,elen],t ′′ [w
′
1
; . . . ;w ′k2]

By lemma C.7, we have ρ1,h
′′
1
≡Γ,t ′′ ρ2,h

′′
2
and we can

apply the induction hypothesis on e2 to get:

t ′′ ⊑ t ′ h′
1
≡t ′ h

′
2

ψ ′′
1
= ψ ′′

2

n1 ≡UIntPub,t ′ n2

So n1 = n2 and by lemma C.7 we get

[w1; . . . ;wk1] ≡Arr[β,elen],t ′ [w
′
1
; . . . ;w ′k2]

which allows to conclude v1 ≡β,t ′ v2. We conclude by

using t ′ as witness.
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Rule

v1 ≡β,t v2
h1 ≡m h2

ρ1,h1 ≡Γ,t ρ2,h2

Bool

ℓ = Pub⇒ b1 = b2

b1 ≡Boolℓ,t b2

Int

ℓ = Pub⇒ is
1
= is

2

is
1
≡Ints

ℓ
,t i

s
2

UInt

ℓ = Pub⇒ is
1
= is

2

is
1
≡UInts

ℓ
,t i

s
2

Ref

m(p) = β ′ β ′ ⊑ β

p ≡
Refx[β],t p

Arr

vi ≡β,t wi

[v0; . . . ;vn] ≡Arr[β,⋆],t [w0; . . . ;wn]

Struct

vi ≡βi ,t wi

{x1 = v1, . . . ,xn = vn } ≡{x1:β1, ...,xn :βn },t {x1 = w1, . . . ,xn = wn }

Heap

h1 ≈ h2
∀p β, m(p) = β ⇒ h1 (p) ≡β,t h2 (p)

h1 ≡t h2

Env

∀x ,x ∈ Γ ⇒ ρ1 (x ) ≡Γ(x ),t ρ2 (x )
h1 ≡t h2

ρ1,h1 ≡Γ,t ρ2,h2

NoRet

ρ1,h1 ≡Γ,t ρ2,h2

ρ1,h1 ≡Γ,βr ,t ρ2,h2

Ret

v1,h1 ≡βr ,t v2,h2
h1 ≡t h2

v1,h1 ≡Γ,βr ,t v2,h2

Figure 13. Type interpretation.

▶ Case e = Ref[e ′], we have

(e ′, ρ1,h1)
ψ ′
1−−→ (v ′

1
,h′′

1
)

(e ′, ρ2,h2)
ψ ′
2−−→ (v ′

2
,h′′

2
)

fresh(h′′
1
,v ′

1
) = (p1,h

′
1
)

fresh(h′′
2
,v ′

2
) = (p2,h

′
2
)

v1 = p1 v2 = p2
Γ ⊢ e ′ : β ′ β = RefRW

[
β ′
]

By induction hypothesis on e ′ we get

t ⊑ t ′′ h′′
1
≡t ′′ h

′′
2

ψ ′
1
= ψ ′

2

v ′
1
≡β ′,t ′′ v

′
2

We can conclude the proof by using

t ′ = t ′′[p1 ← β ′]

and use lemma C.8.

□

Lemma C.10 (Typing constant-time: statements).

ρ1,h1 ≡Γ,t ρ2,h2
βr ⊢ S : Γ → Γ′

(S, ρ1,h1)
ψ1
−−→ (ν1,h

′
1
)

(S, ρ2,h2)
ψ2
−−→ (ν2,h

′
2
)




⇒ ∃t ′,



t ⊑ t ′

ψ1 = ψ2

ν1,h1 ≡Γ,βr ,t ν2,h2

Proof. By induction on (S, ρ1,h1)
ψ1
−−→ (ν1,h

′
1
).

▶ Cases seq-ret, seq-noret, and block are trivial.

▶ Cases vardec, assign, return, if and fn-call follow

from lemmas C.9 and C.7.

▶ The last case, for, is almost a direct consequence of

the induction hypothesis, the only difficulty being to

prove that the statement is well-typed:

βr ⊢
if ∗ℓ n1 < n2 then {{i = n1; S };
for ∗ℓ i = n1 + 1 to n2 do S } : Γ → Γ

□

Preservation of semantics. Finally, we prove that branch
removal preserves the semantics of programs. The proof is

performed in two steps. First, we show that if the value of

the control predicate is false then the code does not modify

the initial heap; it can only create fresh references.

Lemma C.11. Letm a partial mapping on pointers. Assume

that p is not trivially true (i.e., p is not the literal true) and

Φ,p ⊢ S → S ′ and h ≃m h′
1
and ρ ≃m ρ ′

1
and Sec, βr ⊢

S : Γ → Γ′ and (S ′, ρ ′
1
,h′

1
) −→ (ν ′,h′

2
) (i.e., S ′ is safe). If

(p, ρ ′,h′
1
) −→ false then h ≃m h′

2
and there exists ρ ′

2
such

that ν ′ = ρ ′
2
and ρ ≃m ρ ′

2
.

Furthermore, assume that p is not trivially true and ω ⊢
F → F ′ and ω ( f ) = Sec and h ≃m h′

1
and F is well typed and

(F ′, (v⃗ ′, false),h′
1
) −→ (v ′,h′

2
). Then h ≃m h′

2
.

Proof. By mutual induction on S and F . The key point of the

proof is to notice that if p is not trivially true then the pc used

for type-checking is necessarily Sec, so there is no return

statement in S ′. □

We now prove that if the control predicate evaluates to

true then the semantics of statements and functions are

preserved.

Lemma C.12. Letm be a partial mapping on pointers. As-

sume Φ,p ⊢ S → S ′ and h1 ≃m h′
1
and ρ1 ≃m ρ ′

1
and

pc, βr ⊢ S : Γ → Γ′ and pc = (if p = true then Sec else Pub)
and (S, ρ1,h1) −→ (ν ,h2) and (S ′, ρ ′

1
,h′

1
) −→ (ν ′,h′

2
) (i.e., S ′ is

safe). If (p, ρ ′,h′
1
) −→ true then there existsm′ such thatm ⊑m′

and h2 ≃m′ h
′
2
and ν ≃m′ ν

′
.

Furthermore, assume that ω ⊢ F → F ′ and F is well typed

and (F , v⃗,h1) −→ (v,h2) and h1 ≃m h′
1
and v⃗ ≃m v⃗ ′. If ω ( f ) =

Pub and (F ′, v⃗ ′,h′
1
) −→ (v ′,h′

2
) then there existsm′ such that

m ⊑m′ and h2 ≃m′ h
′
2
and v ≃m′ v

′
. Else, if ω ( f ) = Sec and

(F ′, (v⃗ ′, true),h′
1
) −→ (v ′,h′

2
) then there exists m′ such that

m ⊑m′ and h2 ≃m′ h
′
2
and v ≃m′ v

′
.

Proof. By mutual induction on S and F . □
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