Sunjay Cauligi

Gary Soeller

Brian Johannesmeyer

Fraser Brown

Riad S Wahby

John Renner

Benjamin Grégoire

Gilles Barthe

Ranjit Jhala

Deian Stefan

FaCT: A DSL for Timing-Sensitive Computation

Keywords: Cryptography, • Software and its engineering → General programming languages, • Theory domain-specific language, program transformation, cryptography

Real-world cryptographic code is often written in a subset of C intended to execute in constant-time, thereby avoiding timing side channel vulnerabilities. This C subset eschews structured programming as we know it: if-statements, looping constructs, and procedural abstractions can leak timing information when handling sensitive data. The resulting obfuscation has led to subtle bugs, even in widely-used highprofile libraries like OpenSSL.

To address the challenge of writing constant-time cryptographic code, we present FaCT, a crypto DSL that provides high-level but safe language constructs. The FaCT compiler uses a secrecy type system to automatically transform potentially timing-sensitive high-level code into low-level, constant-time LLVM bitcode. We develop the language and type system, formalize the constant-time transformation, and present an empirical evaluation that uses FaCT to implement core crypto routines from several open-source projects including OpenSSL, libsodium, and curve25519-donna. Our evaluation shows that FaCT's design makes it possible to write readable, high-level cryptographic code, with efficient, constant-time behavior.

CCS Concepts • Security and privacy →

Introduction

Despite many strides in language design over the past halfcentury, modern cryptographic routines are still typically written in C. This is good for speed but bad for keeping secrets. Like most general-purpose languages, C gives the programmer no way to denote which data is sensitive-and therefore gives the programmer no warnings about code that inadvertently divulges secrets.

One possible avenue for secret leaks is a timing sidechannel, wherein code executes for observably different time depending on the value of secret information. For example, a textbook implementation of RSA decryption takes a different amount of time depending on the individual key bits [START_REF] Kocher | Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[END_REF]each '1' bit requires an additional bignum multiplication and thus more time. The cumulative effects of these operations on the running time is large enough for the attacker to reconstruct the value of the secret key. Timing vulnerabilities like these are not merely of academic interest: they have been found in implementations of both RSA [START_REF] Brumley | Remote timing attacks are practical[END_REF] and AES [START_REF] Daniel | Cache-timing attacks on AES[END_REF][START_REF] Dag | Cache attacks and countermeasures: the case of AES[END_REF], where they allowed even remote network attackers to divine the values of secret keys.

The only recourse developers have to avoid timing vulnerabilities is to make their code ugly. Specifically, they use a selection of recipes to turn dangerous but readable code into safe but obfuscated code: they re-write potentially secretrevealing constructs like branches into low level sequences of assignments that operate in constant-time regardless of the values of secret data. For example, the readable if (secret) x = e which branches on a secret bit is replaced by x = (-secret & e) | (secret -1) & x which, unlike the branch, executes in the same amount of time no matter the value of secret.

This is a sorry state of affairs. First, developers apply the recipes in an ad-hoc way, and any untransformed computation is left vulnerable to attack. Second, the recipes obfuscate the code, making it harder to determine whether the routine is even computing the desired value. Third, it can be tricky for developers to correctly apply the recipes. For example, an attempt to use a recipe to fix a timing attack vulnerability in TLS [START_REF] Moeller | Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures[END_REF] led to the Lucky13 timing vulnerability in OpenSSL [START_REF] Nadhem | Lucky Thirteen: Breaking the TLS and DTLS record protocols[END_REF], and the purported fix for Lucky13 opened the door to yet another vulnerability [START_REF] Somorovsky | Curious Padding oracle in OpenSSL (CVE-2016-2107)[END_REF]!

In this paper, we introduce FaCT, a domain-specific language and compiler for writing readable and timing-secure cryptographic routines. FaCT lets developers write readable code using high-level control-flow constructs like branches and procedural abstractions, but then automatically compiles this code into efficient, constant-time executables. We develop FaCT via four contributions:

1. Language Design. Our first contribution is the design of a language for writing cryptographic code. The language allows programmers to use standard control-flow constructs like if and return statements. However, the language is equipped with an information-flow type system that programmers can use to specify which data are secret. The type system prevents leaks by ensuring that secrets do not explicitly or implicitly influence the public-visible outputs (§3).

2. Public Safety. Our second contribution is the observation that not all programs are amenable to constant-time compilation. Specifically, we show that naive application of constant-time recipes can mangle otherwise safe programs, causing memory errors or undefined behavior. We address this problem by introducing a notion called public safety that characterizes the source programs that can be compiled to constant-time without introducing errors (§3.2.3).

3. Constant-Time Compilation. Our third contribution is a compiler that automatically converts (public safe) source programs into constant-time executables. The FaCT compiler is based on the key insight that we can exploit the secrecy types to automatically apply the recipes that developers have hitherto applied by hand, and can do so systematically, i.e., exactly where needed to prevent the exposure of secrets via timing. We formalize the compiler with two transformations, return deferral and branch removal, and prove that compilation yields constant-time executables with source-equivalent semantics (§4).

Implementation & Evaluation.

Our final contribution is an implementation of FaCT that produces LLVM IR from high-level sources, and uses LLVM's clang to generate the final object or assembly file. We evaluate FaCT's usability with a user study, surveying students in an upper-level, undergraduate programming languages course at a U.S. university, where 57% of the participants found FaCT easier to write than C (compared to 15% who found C easier). We evaluate FaCT's expressiveness and performance by using our implementation to port 7 cryptographic routines from 3 widely used libraries: OpenSSL, libsodium, and curve25519-donna, totaling about 2400 lines of C source. The unoptimized FaCT code-which we formally guaranteed to be constant-time-is between 16-346% slower than the C equivalent. The clangoptimized FaCT code-which we empirically check to be constant-time using dudect [START_REF] Reparaz | Dude, is my code constant time?[END_REF]-is between 5% slower to 21% faster than the C equivalent, showing that FaCT yields readable constant-time code whose performance is competitive with C (§5).

We make all source and data available under an open source license at: https://fact.programming.systems.

Background

Some common C constructs-branches, returns, and array updates-can reveal secrets via timing channels. In this section, for each potentially dangerous construct, we explain: [START_REF] Agat | Transforming out timing leaks[END_REF] how that construct could introduce bugs in real-world projects; [START_REF] Nadhem | Lucky Thirteen: Breaking the TLS and DTLS record protocols[END_REF] how developers must use recipes to avoid the dangerous construct; and, [START_REF] Almeida | Jasmin: High-Assurance and High-Speed Cryptography[END_REF] how FaCT allows programmers to forgo recipes and write readable yet safe code.

Branching on Secret Values. A first class of vulnerability arises from directly branching on the value of a secretattackers can often reconstruct control flow through a program, and thus secret condition values (e.g., because the true branch takes orders of magnitude longer to execute than the false branch) [START_REF] Pornin | Why Constant-Time Crypto[END_REF]. To avoid this type of vulnerability, developers manually translate branching code to straightline code by replacing if-statements with constant-time bitmasks. Consider the following example from OpenSSL (edited slightly for brevity), which formats a message before computing a message authentication code (MAC):

for (j = 0; j < md_block_size; j++, k++) { b = data[k -header_length]; b = constant_time_select_8(is_past_c, 0x80, b); b = b & ~is_past_cp1; b &= ~is_block_b | is_block_a; block[j] = b; }
It's hard to tell, but this snippet (1) iterates over plaintext message data, (2) terminates the message with standarddefined 0x80, and (3) pads the terminated message to fill a hash block-all while keeping data secret. To this end, even the selection operator constant_time_select_8(mask, a, b) is a series of bitmasks:

(mask & a) | (~mask & b).
Translating each line of this OpenSSL code to FaCT leads to drastically more readable code:

for (uint64 j from 0 to md_block_size) { k += 1; b = is_past_c ? 0x80 : data[k -(len header)]; if (is_past_cp1 || (is_block_b && !is_block_a)) { b = 0; } block[j] = b; }
With FaCT, the programmer declares the sensitive variables as used in the conditions as secret. After doing so, they are free to use plain conditional expressions and ternary operators to compute the final value of b. The FaCT compiler automatically uses the type annotations to generate machine code equivalent to the C example. Early Termination. Both loops and procedures can terminate early depending on the value of a secret, thereby leaking the secret. A well-known padding oracle attack in older versions of OpenSSL exploits an early function return [START_REF] Vaudenay | Security Flaws Induced by CBC Padding -Applications to SSL, IPSEC, WTLS[END_REF]: a packet processing function would decrypt a packet and then check that the padding was valid, and, in the case of invalid padding, would return immediately. An attacker could exploit this to recover the SSL session key by sending specially crafted packets and use timing measurements to determine whether or not the padding of the decrypted packet was valid. Similarly, if the number of loop iterations in a program depends on a secret, attackers can use timing to uncover the value of that secret (e.g., in the Lucky13 attack [START_REF] Nadhem | Lucky Thirteen: Breaking the TLS and DTLS record protocols[END_REF]).

C programmers again use special recipes, turning idiomatic programs into hard-to-read constant-time code. Consider the following buffer comparison code from the libsodium cryptographic library:

for (i = 0; i < n; i++) d |= x[i] ^y[i]; return (1 & ((d -1) >> 8)) -1;
This snippet compares the first n bytes of the arrays x and y, returning 0 if they are the same, and -1 otherwise. To avoid leaking information about the contents of the arrays, though, the loop cannot simply return early when it detects differing values; instead, the programmer must maintain a "flag" (d), and update it at each iteration to signal success or failure. While iterating inside the loop, if the values x[i] and y[i] are the same, then x[i] ^y[i] will be 0, leaving d unchanged. However, if x[i] and y[i] are different, then their XOR will have at least one bit set, causing d to also have a non-zero value. After the loop, the code uses a complex shift-and-mask dance to collapse d into the value -1 if any bits are set, and 0 otherwise.

FaCT lets programmers avoid the "flag" contortions:

for (uint64 i from 0 to n) if (x[i] != y[i])
return -1; return 0;

With FaCT, the programmer can readily express returning -1 in the case of failure as the compiler automatically generates a special variable for the return value, and uses the secret type to translate returns-under-secret conditions into (constant-time) updates to this variable, producing machine code roughly equivalent to the C recipe above. Memory Access. Memory access patterns that depend on secret data can also inadvertently leak that secret data. An attacker co-located on the same machine as a victim process, for example, can easily infer secret memory access patterns by observing their own cache hits and misses [START_REF] Ge | A survey of microarchitectural timing attacks and countermeasures on contemporary hardware[END_REF][START_REF] Dag | Cache attacks and countermeasures: the case of AES[END_REF]; alarmingly, attackers might even learn such information across a datacenter-or even over the Internet [START_REF] Brumley | Remote timing attacks are practical[END_REF][START_REF] Ristenpart | Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds[END_REF].

To avoid leaking information via memory access patterns, developers rely on recipes that avoid accessing memory based on secrets. The following C code (from the "donna" Curve25519 implementation), for example, swaps the values of array a with array b based on the value of a secret (swap):

for (i = 0; i < 5; ++i) { const limb x = swap & (a[i] ^b[i]); a[i] ^= x; b[i] ^= x; }
To avoid leaking the value of the secret swap, the code always accesses both a[i] and b[i] at each loop iteration, and uses bitmask operations that only change them if swap is a mask of all 1-bits.

FaCT, again, makes such subterfuge unneccessary:

if (swap != 0) { for (uint64 i from 0 to 5) { secret uint64 tmp = a[i]; a[i] = b[i]; b[i] = tmp; } }
Once the programmer has marked swap as secret, the compiler will automatically synthesize masked array reads similar to those from the original Curve25519 code.

FaCT

FaCT is a high-level, strongly-typed C-like DSL, designed for writing constant-time crypto code. In this section, we describe the DSL and its type system, one that both disallows certain unsafe programs and specifies how the compiler should transform code to run in constant-time. 1 We describe the type-directed transformations in §4.

Procedure definitions fdef

::= | f (⃗ x : ⃗ β) { S } : β internal procedure | export f (⃗ x : ⃗ β) { S } : β exported procedure | extern f (⃗ x : ⃗ β) : β external procedure Statements S ::= | S; S sequence | β x = e variable declaration | β x = f (⃗ e) procedure call | e := e assignment | if (

Core Language

FaCT is designed to be embedded into existing crypto projects (e.g., OpenSSL), and not to be used as a standalone language. As such, FaCT "programs" are organized as collections of procedures. As shown in Figure 1, developers can export these procedures as C functions to the embedding environment. They can also import trusted procedures. This is especially useful when using FaCT to implement error-prone glue code around already known-safe C crypto primitives (e.g., building a block cipher mode that calls an AES primitive).

FaCT procedures are composed of a sequence of statements (e.g., if statements, for loops, etc.), which are themselves composed of expressions. Both statements and expressions are mostly standard. We only remark on the more notable language constructs we add to make writing cryptographic code more natural. First, FaCT includes a number of array primitives to capture common idioms in cryptographic routines, and to replace unsafe pointer arithmetic. The operation len e returns the length of an array e; zeros(β, e) creates an array of zeros of type β of length e; clone(e) copies the array e; and view(e 1 , e 2 , e l en) returns a slice of array e 1 starting at position e 2 and with length e l en . We introduce views to make up for the lack of pointers: views allow developers to efficiently compute on small pieces of large buffers.

Second, we provide vector primitives: parallel vector arithmetic and vector shuffle instructions. These instructions allow developers to implement crypto algorithms that leverage fast SIMD instructions (e.g., SSE4 in x86_64) without resorting to architecture-specific inline assembly or compiler intrinsics.

Third, we expose ctselect, a constant-time selection primitive. The operation ctselect(e 1 , e 2 , e 3) evaluates to either e 2 or e 3 , depending on whether e 1 is true or false, respectively. The compiler guarantees that ctselect compiles to constant-time code (e.g., as a series of bitmasks or the CMOV instruction on x86_64). Developers need not use ctselect directly; instead, they can use our higher-level if-statements, which our compiler transforms to such ctselects (§4).

Lastly, FaCT includes a declassify primitive that takes a secret expression as input and returns a public value. Developers can use this primitive to bypass FaCT's typing restrictions (described below) and explicitly make information public. This is useful, e.g., for implementing encryption: a buffer containing a secret message must be treated with care, but if the buffer is encrypted in-place, it is thereafter safe to declassify because it contains ciphertext.

Type System

The most important feature of the FaCT language is its static information-flow type system. We rely on this type system to: (1) provide a way for developers to demarcate the sensitivity of data-whether it is secret or public; (2) reject unsafe programs, i.e., programs that are not information-flow secure or cannot be safely transformed to constant-time code; and (3) direct the compiler when applying transformations. Below, we give an overview of our type system and explain how it fulfills the first two roles; we leave the third for §4.

Like previous information-flow type systems [START_REF] Andrew | JFlow: Practical mostly-static information flow control[END_REF][START_REF] Myers | Jif: Java information flow[END_REF][START_REF] Sabelfeld | Language-based information-flow security[END_REF][START_REF] Watt | CT-Wasm: Type-driven Secure Cryptography for the Web Ecosystem[END_REF], FaCT decorates each base type with a secret or public secrecy label 2 . Figure 2 summarizes our base types; they are largely standard. Reference types wrap another base type and inherit its secrecy label; they are also access controlled, i.e., they can be read-only or read-write. In the FaCT surface syntax, we disallow recursively-typed references-only references of integer and boolean types are expressible. Array types, like references, inherit the secrecy of their base type; arrays have a size which is either a statically known constant or dynamically determined (*). Struct types do not carry a secrecy label; instead, each struct field is individually labeled.

Developers explicitly specify labels when they declare variables and procedures. FaCT's type system, in turn, uses these labels to reject unsafe programs and specify how the compiler should transform high-level code that uses seemingly unsafe constructs (e.g., secret if-statements) to constanttime code. Below, we walk through our typing rules for expressions, statements, and procedures.

Expression Typing

FaCT's expression typing judgment Γ ⊢ e : β states that under the type context Γ, which maps variables to their declared types, the expression e has the type β. We write x : β ∈ Γ when variable x maps to type β in the context Γ.

Figure 3 gives the typing rules for the most interesting expressions. The rule for ctselect, for example, ensures that (1) the result is at least as secret as all the arguments to ctselect and (2) all the arguments can be cast to integerssince, internally, ctselect may be implemented as a series of constant-time bitmasks. The typing rules for other constructs similarly preserve secrecy.

The type system also disallows certain kinds of unsafe computations. For example, we reject programs that index memory based on secrets: the rules for T-Arr-Get and T-Arr-View ensure that array indices are public and in-bounds. The in-bounds checks are highlighted , and detailed in §3.2.3.

Statement and Procedure Typing

FaCT allows developers to write code whose control flow depends on sensitive data. Unfortunately, not all such code can be safely or efficiently transformed. For example, to safely allow writes to arrays using a secret-dependent index we must (transform the code to) write to all indices [START_REF] Mitchell | Information-flow control for programming on encrypted data[END_REF][START_REF] Planul | Oblivious program execution and path-sensitive non-interference[END_REF][START_REF] Rane | Raccoon: Closing Digital Side-Channels through Obfuscated Execution[END_REF]; such a transformation would be expensive, and FaCT instead disallows such computations. As such, typing rules for statements and procedures rely on a secrecy context, which comprises a pair of secrecy labels pc, rc called the path and return context, respectively. 2 Labels are partially ordered according to ⊑ as usual: Pub ⊑ ℓ and ℓ ⊑ Sec holds true for any label ℓ. The join of two labels is similarly standard: ℓ 1 ⊔ ℓ 2 is Sec if either label is Sec, and Pub otherwise. For brevity, we also use these operators on types (operating on the underlying label), much like previous work (e.g., [START_REF] Andrew | JFlow: Practical mostly-static information flow control[END_REF][START_REF] Myers | Jif: Java information flow[END_REF]).

The path context label pc for a statement is secret if the statement is contained within-i.e., is control-dependent upon-a secret branch. Since a procedure caller's path context must persist through to the callee's path context, the initial path context label of a procedure is secret if it is ever called from a secret context; otherwise the initial path context label is public. We use ω to map procedures to their initial path context labels.

The return context label rc for a statement is secret if the statement may be preceded by a return statement that is itself control-dependent on a secret value. A procedure's return context label is always initially public. Thus, the secrecy context (pc ⊔ rc) for a statement represents whether the flow of control (to get to the statement) can be influenced by secret values. For example, if the conditional expression of an if statement is secret, then the statements of each branch are judged with pc = Sec, and are thus typed under a secret context.

Statement Typing. FaCT's statement typing judgment is of the form ω, pc, β r ⊢ S : Γ, rc → Γ ′ , rc ′ , where β r is the return type of the procedure containing the statement S. This judgment states that, given a type-and security-context defined by ω, pc, β r and initial Γ, rc, the statement S: (1) can be safely compiled into constant-time code, and (2) yields a new updated type context Γ ′ and return context rc ′ . This typing judgment accounts for new variable declarations and ensures that the secrecy context influences subsequent statements. For example, if a return statement resides within a secret branch, then all statements executed after that branch must also be typed under a secret context, since their execution now depends on the return.

Figure 4 shows the most interesting statement typing rules. For example, (T-Asgn) checks that when updating a reference, the current secrecy context does not exceed the secrecy label of the value e 2 being assigned. This ensures that secret data cannot be leaked via control flow. Rules (T-If) and (T-Ret) account for such secret contexts; the latter additionally ensures that the procedure cannot return a value more sensitive than specified by the procedure return type.

Rule (T-For) is more restricting: it ensures that secrets do not influence the running time of for loops by requiring that the loop bounds-and therefore the number of iterationsbe public. The updated return context rc ′ must both be a fixpoint of the loop, and must be no lower than the original return context rc. In practice, our type checker only assigns rc ′ to be secret if it cannot assign it to be public.

The typing for procedure calls given by (T-Call) is slightly more complex. In particular, this rule ensures that procedures can only be called with suitable inputs and checks that the output type is compatible with the variable being assigned. To this end, we ensure that if the procedure f has visible effects, then its initial path context ω (f) must be at least the label of the calling context. This, in effect, ensures that in a secret context we cannot call procedures that (1) modify public parameters, i.e., take mutable public references as input parameters; (2) are externally defined and so possibly have publicly visible side-effects; or (3) are exported (toplevel) procedures.

T-Ct-Sel Γ ⊢ e 1 : Bool ℓ β is numeric or Bool Γ ⊢ e 2 : β Γ ⊢ e 3 : β Γ ⊢ ctselect(e 1 , e 2 , e 3) : β ⊔ ℓ T-Arr-Get Γ ⊢ e 1 : Arr sz β Γ ⊢ e 2 : UInt s Pub Γ ⇒ e 2 <
Procedure Typing. Figure 5 shows rules for typing procedure definitions. FaCT's procedure typing judgment is of the form ω ⊢ f (⃗ x : ⃗ β) { S } : β r , which states that under ω, the procedure f with named parameters ⃗

x of types ⃗ β has return type β r . Procedures in FaCT may only return simple types (i.e., boolean values or integers), but there are no such restrictions on the types of parameters. When typing procedures, the initial type context Γ is formed from the procedure's parameters, and the initial path context pc is given by ω (f). The return context rc always starts as Pub, as the procedure body S (vacuously) has no preceding secretdependent return statements. The return type β r is taken from the procedure definition. If the body S is well-typed under these initial contexts, then the procedure itself is considered well-typed.

Public Safety

The FaCT type system ensures that procedures can be transformed using constant-time recipes without giving up safety. Naively applying recipes can inadvertently introduce safety and security vulnerabilities while making the code constanttime. Consider the following procedure: T-Fn This code is memory safe as the branch condition ensures that we only update buf[i] when i is within bounds. However, the update is predicated upon a secret condition. To make the above code constant-time, we must ensure that the access to buf[i] happens regardless of that condition, or else the memory access pattern will reveal the secret. Consequently, the constant-time recipes-that we discuss in §4-would compile the code into:

ω, pc, β r ⊢ if (e) { S 1 } else { S 2 } : Γ, rc → Γ, rc 1 ⊔ rc 2 T-For Γ ⊢ e 1 : UInt Pub Γ ⊢ e 2 : UInt Pub Γ ′ = Γ, x : UInt Pub ∧ e 1 ≤ x < e 2 rc ⊑ rc ′ ω, pc, β r ⊢ S : Γ ′ , rc ′ → Γ ′′ , rc ′ ω, pc, β r ⊢ for (x from e 1 to e 2) { S } : Γ, rc → Γ, rc ′ T-Ret Γ ⊢ e : β r pc ⊔ rc ⊑ β r ω, pc, β r ⊢ return e : Γ, rc → Γ, pc ⊔ rc T-Assume Γ ⊢ e : Bool ℓ Γ ′ = Γ ∧ e ω, pc, β r ⊢ assume(e) : Γ, rc → Γ ′ , rc
pc = ω (f) Γ = {⃗ x : ⃗ β } β r is numeric or Bool ω, pc, β r ⊢ S : Γ, Pub → Γ ′ , rc ′ ω ⊢ f (⃗ x : ⃗ β) { S } : β r T-Fn-Extern ω (f) = Pub β r is numeric or Bool ω ⊢ extern f (⃗ x : ⃗ β) : β r
cond = (i < secret_index); buf[i] = ctselect(cond, 0, buf[i]);
Such a naive transformation introduces a potential out-ofbounds access. In other cases it can introduce yet different kinds of undefined behavior.

Public Safety. We avoid the above problem with the key observation that for a program to be amenable to constanttime compilation, the source must be publicly safe: It must be memory-safe and free from buffer overflows and undefined behavior using only public-visible information, i.e., the code must be safe even after removal of secret-dependent control-flow. We formalize the notion of public safety in FaCT's type system by extending the type environment Γ to track public-visible path conditions, using these conditions to check safety. In Figures 3 and4 4 show how we propagate public views, tracking (public) conditions and loop ranges to use when type checking statements.

For cases where the public safety checker is incomplete, we allow developers to add assumptions directly to the environment Γ with the assume primitive (Figure 1). This is useful for aiding the checker by, e.g., adding preconditions to a procedure.

Checking Public Safety. Finally, we define Γ ⇒ e to mean that the conditions in Γ imply e. This is checked via an SMT solver. We use this predicate in the expression typing rules T-Arr-Get and T-Arr-View (Figure 3) to check that memory accesses are never out of bounds. In the example program given earlier, since the expression i < secret_index is of type Bool Sec , it is not added to Γ; thus the predicate Γ ⇒ i < len buf does not hold when typing the expression buf[i], and the program (correctly) does not type check.

The FaCT type system also prevents undefined behavior from invalid operand values (not shown in Figure 3). For example, integer division has the additional requirement Γ ⇒ e 2 0, and the left-and right-shift operators have the requirement Γ ⇒ 0 ≤ e 2 < s where s is the bitwidth of e 1 .

Front-End Compiler

The FaCT compiler consists of two passes. The first pass is a source to source transformation-it compiles well-typed code into semantically equivalent FaCT constant-time code whose observable timing is secret-independent. The second pass is straightforward-it takes the secret-independent code and

Tr-Ret-Dec Φ = (ω, {⃗ x : ⃗ β }, β r) Φ, ω (f), Pub ⊢ S → S ′ ω ⊢ f (⃗ β) { S } : β r → f (⃗ β) { Ref RW β r rval = init(β r); Ref RW [Bool Sec] notRet = true; S ′ ; return rval } : β r Tr-Ret-Guard-Pub Φ, pc, Pub ⊢ S → S ′ Φ, pc, Pub ⊢ S ⇝ S ′ Tr-Ret-Guard-Sec Φ, pc, Sec ⊢ S → S ′ Φ, pc, Sec ⊢ S ⇝ if (notRet) { S ′ } Tr-Ret pc ⊔ rc = Sec Φ, pc, rc ⊢ return e → rval := e; notRet := false Tr-Ret-Seq Φ = (ω, Γ, β r) ω, pc, β r ⊢ S 1 : Γ, rc → Γ ′ , rc ′ Φ, pc, rc ⊢ S 1 → S ′ 1 Φ, pc, rc ′ ⊢ S 2 ⇝ S ′ 2 Φ, pc, rc ⊢ S 1 ; S 2 → S ′ 1 ; S ′ 2 Tr-Ret-For Φ = (ω, Γ, β r) rc ⊑ rc ′ ω, pc, β r ⊢ S : Γ, rc ′ → Γ ′ , rc ′ Φ, pc, rc ′ ⊢ S ⇝ S ′
Φ, pc, rc ⊢ for (x from e 1 to e 2) { S } → for (x from e 1 to e 2) { S ′ } Figure 6. Return deferral transformation rules.

generates LLVM bitcode. In the rest of the section, we thus only describe and formalize FaCT's transformation pass. Since our type checker (§3.2) already ensures that memory accesses, loop iterations, and variable-time instructions are secret-independent, the transformations need only make procedure returns and branches secret-independent. FaCT does this in two steps, return deferral and branch removal.

The first step replaces secret-dependent return statements by (1) creating a boolean that represents whether the procedure has returned and (2) conditioning all later code on that boolean to prevent statements from executing after the original procedure would have terminated. That is, return deferral converts control flow in terms of secret returns into control flow in terms of secret ifs.

The second step turns all secret-dependent conditional branches into straight-line code. This includes both secret if statements in the original source as well as those generated by return deferral. Thus, by eliminating secret ifs-the last source of secret-dependent timing-this transformation yields constant-time code.

Return Deferral

As previously mentioned, early returns that depend on secrets often leak information. Consider the following snippet: if (sec) { return 1; } // long-running computation ...

Here, an attacker can determine whether sec is true by observing a quick computation, or false by observing a slow computation.

FaCT prevents code from leaking such secrets by deferring returns to the end of each procedure. For example, the compiler transforms the above code to:

secret mut uint32 rval = 0; secret mut bool notRet = true; if (sec) { rval = 1; notRet = false; } if (notRet) { // long-running computation ... } return rval;
The new notRet variable tracks whether or not the procedure would have returned, and any statement that could be executed after the return is guarded by the notRet variable. Finally, the actual return occurs at the very end of each procedure, returning the value stored in rval. Transformation Rules. We formalize return deferral using three kinds of rewrite rules, shown in Figure 6. The first procedure-transformation

rule ω ⊢ f (⃗ x : ⃗ β) { S } : β r → f (⃗ x : ⃗ β) { S ′ } : β r
is used to rewrite the body S of a procedure f into a secret-independent body S ′ . (This is accomplished using the other two rewrite rules.) The second guarded-execution rule Φ, pc, rc ⊢ S ⇝ S ′ transforms a statement S, given a secrecy context pc, rc, into S ′ by making implicit control flow (due to secret returns) explicit. Finally, the return-elimination rule Φ, pc, rc ⊢ S → S ′ transforms S into S ′ by replacing all secret returns with assignments. Below, we walk though some of these rules in detail.

1. Procedure transformation. The Tr-Ret-Dec rule declares two special (mutable) variables notRet and rval that respectively hold the secret-dependent return state and the value to be returned. The return state notRet is set to true, while the return value rval is initialized to a default value for its type. The rule then eliminates all secret returns from S and inserts a (deferred) return after, as the very last statement of the transformed body S ′ . 2. Guarded Execution. Rules Tr-Ret-Guard-Pub and Tr-Ret-Guard-Sec are used to transform statements that appear after any secret returns. Both of these rules first eliminate secret returns from S to obtain S ′ . If the original statement S is typed with rc = Sec, i.e., S may be preceded by a secret return, then the rule Tr-Ret-Guard-Sec additionally guards the execution of S ′ with the condition notRet.

3. Return Elimination. The bulk of the transformation is done by the remaining rules in Figure 6. We omit rules where we either do not transform the statement, or simply recursively transform any sub-statements. Rule Tr-Ret replaces secret returns by updating rval with the (deferred) return value and setting notRet to false, to signal that subsequent code should not be executed.

Rule Tr-Ret-Seq handles sequenced statements S 1 ; S 2 by guarding the execution of instructions in S 2 against possible secret returns in S 1 . The rule first eliminates the secret returns from the first block to get S ′ 1 . Next, it extracts the secrecy context rc ′ produced by type checking S 1 . Finally, the rule uses rc ′ to derive a guarded version of the second statement S ′ 2 . The Tr-Ret-For rule handles secret returns inside loops. As control flow can jump back to the beginning of a loop, a secret return inside a loop body S can affect the execution of the entire body, as in the following example:

for (uint32 i from 0 to 5) { b[i] = 1; if (i == sec) { return i; } a[i] = 2; }
Here, if i == sec becomes true, the program must stop overwriting the elements in both a and b. The rule accounts for returns in the body S by using the secrecy context rc ′ from type checking the body, and in turn, uses this to derive the guarded form of the body S ′ . In our example, the secretdependent return makes the return context rc ′ = Sec, and so the entire body is guarded by notRet, to obtain the transformed program:

for (uint32 i from 0 to 5) { // for-loop rule if (notRet) { b[i] = 1; if (i == sec) { rval = i; notRet = false; } // sequencing rule if (notRet) { a[i] = 2; } } }

Branch Removal

Return deferral eliminates secret returns by introducing secret-dependent branches. In this section we eliminate secret-dependent control flow as the final step towards producing constant-time code.

To this end, FaCT replaces secret branches with constanttime selections. Consider the following snippet:

if (sec1) { a[1] = 3; } else if (sec2) { a[2] = 4; }
The updates to a [START_REF] Agat | Transforming out timing leaks[END_REF] and a [START_REF] Nadhem | Lucky Thirteen: Breaking the TLS and DTLS record protocols[END_REF] are guarded by the secret values sec1 and sec2 and, therefore, produce memory access patterns that can reveal the values of those secrets when left untransformed-this is the classic implicit flows problem [START_REF] Sabelfeld | Language-based information-flow security[END_REF]. We eliminate the implicit flow in two steps. First, we track the control predicates that correspond to (the conjunction of) the secret-conditions. Then, we perform both memory writes, but use ctselect to preserve conditional semantics:

Tr-Br-Dec Φ = (ω, {⃗ x : ⃗ β }, β r) ω (f) = Pub Φ, true ⊢ S → S ′ ω ⊢ f (⃗ x : ⃗ β) { S } : β r → f (⃗ x : ⃗ β) { S ′ } : β r Tr-Br-Dec-Sec Φ = (ω, {⃗ x : ⃗ β }, β r) ω (f) = Sec Φ, callCtx ⊢ S → S ′ ω ⊢ f (⃗ x : ⃗ β) { S } : β r → f (⃗ x : ⃗ β, callCtx : Bool Sec) { S ′ } : β r Tr-Br-If Φ = (ω, Γ, β r) Γ ⊢ e : Bool Sec fresh m t , m f Φ, (p & m t) ⊢ S 1 → S ′ 1 Φ, (p & m f) ⊢ S 2 → S ′ 2 Φ, p ⊢ if (e) { S 1 } else { S 2 } → { Bool Sec m t = e; Bool Sec m f = ¬m t ; S ′ 1 ; S ′
ω (f) = Sec Φ, p ⊢ β x = f (⃗ e) → β x = f (⃗ e, p)
Figure 7. Rules for branch removal.

a[1] = ctselect(sec1 , 3, a[1]); a[2] = ctselect(~sec1 & sec2, 4, a[2]);
Our general strategy is to transform each conditional array assignment into a re-assignment to a conditional (ctselect).

Transforming code that calls procedures is less straightforward: if a procedure takes a mutable parameter, the procedure may update that parameter's value in a way that is visible to the caller. For example:

void foo(secret mut uint32 x) { x = 5; } ... if (sec) { foo(x); // x is now 5 }
The transformation of this code must ensure that updates to x only occur if sec is true. We do so using a call-context parameter passed to callee foo; this parameter is the caller control predicate-in this case, sec-which we use to guard updates in foo. Our compiler converts the above into semantically equivalent constant-time code: void foo(secret mut uint32 x, secret bool callCtx) { x = ctselect(callCtx, 5, x); } ... foo(x, sec); // x is 5 only if sec is true Transformation Rules. We formalize branch removal using two kinds of rules, shown in Figure 7. The procedure transformation rule ω ⊢ f (⃗ x : ⃗ β) { S } : β r → f (⃗ x ′ : ⃗ β ′) { S ′ } : β r transforms the body S of the procedure f to S ′ , much like for secret-return removals. This rule, however, additionally extends f 's set of parameters ⃗

x to include the extra callcontext parameter callCtx. The statement transformation rule Φ, p ⊢ S → S ′ , transforms S to S ′ given context Φ and control predicate p. We walk though some of the rules below. 1. Procedure Transformation Rule. Both Tr-Br-Dec and Tr-Br-Dec-Sec remove branches from procedures. Tr-Br-Dec transforms procedures that do not depend on secret contexts by transforming each procedure's body S into S ′ using the initial control predicate true. Tr-Br-Dec-Sec, on the other hand, transforms a procedure f if ω (f) = Sec, i.e., where f depends on the caller's secret context. The rule adds a new parameter secret bool callCtx that holds the control predicate at each call-site, and then transforms the body S starting with the initial control predicate callCtx.

2. Branch Elimination. The remaining rules in Figure 7 remove branches from statements. Rule Tr-Br-If, for example, eliminates secret-dependent conditional branches by saving the condition (resp. its negation) in the variable m t (resp. m f). The "then" statement S 1 (resp. "else" statement S 2) is then transformed after conjoining m t (resp. m f) to the control predicate p. To prevent name collision when transforming nested conditionals, the fresh metafunction guarantees that all m t and m f variables have unique names. The declarations of m t , m f and transformed branches S ′ 1 , S ′ 2 are sequenced to obtain the final result.

Rule Tr-Br-Assign handles side-effecting assignment statements, using the control predicate to ctselect the old or new values. But, if the assignment occurs under the trivial control predicate (i.e., the literal true), the assignment is left unchanged.

Finally, rule Tr-Br-Call handles calls to ω-Sec procedures f by explicitly passing the control predicate p as the callcontext parameter. This ensures that updates within f only occur according to the caller's control flow.

Compiler Correctness and Security

In this section, we prove that our compiler preserves semantics and outputs constant-time procedures. To formalize these claims, we define an instrumented semantics that describes procedure behavior and leakage, i.e., the sequence of branches taken, the memory addresses accessed, and the operands to variable-time instructions. Intuitively, a procedure is constant-time if its leakage is not influenced by any secret values [START_REF] Barthe | System-level non-interference for constant-time cryptography[END_REF].

In particular, we consider a big-step semantics of the form

F : (⃗ v, h) ψ --→ (v, h ′)
where F is shorthand for a procedure f (⃗ x : ⃗ β) { S } : β r , the term ⃗ v represents the values of parameters, h and h ′ are heaps mapping pointers to values, v is the final value of the procedure, and ψ is the leakage. The semantics is parametrized by an allocation function, and the proofs of the claims below rely on several (minor) assumptions on this function. We give these assumptions, formal definition, and complete proofs in Appendix C.

We first prove the correctness of our compiler, using the notation ω ⊢ F → F ′ to denote the combined return deferral and branch removal transformations. Compiler correctness states that the compiler preserves the meaning of well-typed statements. To account for new references and variables that are introduced by the compiler pass itself, we show equivalence of the final heaps h ′ and h ′′ , i.e., for any pointer p ′ in h ′ , there is an equivalent pointer p ′′ in h ′′ such that h ′ (p ′) and h ′′ (p ′′) are either equal values, or are themselves equivalent pointers.

Theorem 4.1 (Compiler correctness). If ω ⊢ F → F ′ and F ′ is well-typed, then F : (⃗ v, h) ψ --→ (v, h ′) implies that F ′ : (⃗ v, h) ψ ′ --→ (v, h ′′
) and h ′ and h ′′ are equivalent.

Proof sketch. By induction on the derivation. □ Note that our compiler correctness theorem does not make any claim about leakage. We separately prove that the compiler produces constant-time procedures. To this end, we first define the notion of a constant-time procedure. Definition 4.2. A procedure F where ω ⊢ F is constanttime iff for every pair of executions F :

(⃗ v 1 , h 1) ψ 1 --→ (v 1 , h ′ 1) and F : (⃗ v 2 , h 2) ψ 2 --→ (v 2 , h ′ 2), we have ⃗ v 1 , h 1 ≡ ⃗ v 2 , h 2 implies ψ 1 = ψ 2 ,
where ≡ is a suitably parametrized notion of equivalence (e.g., public or "low" equivalence [START_REF] Almeida | Verifying constant-time implementations[END_REF][START_REF] Barthe | System-level non-interference for constant-time cryptography[END_REF][START_REF] Watt | CT-Wasm: Type-driven Secure Cryptography for the Web Ecosystem[END_REF]).

Much like CT-Wasm [START_REF] Watt | CT-Wasm: Type-driven Secure Cryptography for the Web Ecosystem[END_REF], we cannot prove that all FaCT procedures are constant-time-FaCT allows procedures to declassify secret data and call external procedures over which it has no control. We can, however, provide guarantees for a safe subset of declassify-free procedures, i.e., procedures that do not contain any declassify statements nor call other procedures unless they too are declassify-free (and not extern).

Theorem 4.3 (Compiler security). If F is declassify-free and ω

⊢ F → F ′ , then F ′ is constant-time.
Proof sketch. We define two additional type systems that impose stricter constraints on programs, and prove typepreservation for return deferral and branch removal. We then conclude by proving that the final type system guarantees that programs are constant-time. It is important to note that these type systems are merely proof artifacts, i.e., type checking is not performed again after transformations.

Informally, the two type systems are incremental restrictions on the FaCT type system. The first type system, which we denote by ⊢ rd , rejects programs that contain secret returns; the second type system, denoted ⊢ ct , rejects programs that branch on secrets.

We then establish type-preservation for return deferral and branch removal:

▶ If ω ⊢ F and ω ⊢ rd F → F ′ then ω ⊢ rd F ′ . ▶ If ω ⊢ rd F and ω ⊢ ct F → F ′ then ω ⊢ ct F ′ .
Both are proved by induction on derivations, using adequate ancillary statements for the induction to go through.

We conclude by proving that ⊢ ct guarantees that programs are constant-time. The proof follows from a "locally preserves" unwinding lemma, stating that equivalent states yield equivalent final configurations and equal leakage. □

Implementation and Evaluation

We implement a prototype compiler for FaCT in ∼6000 lines of OCaml. The compiler transforms FaCT source code into LLVM IR, which it passes to clang (version 6.0.1) to generate assembly or object code. The compiler uses the Z3 SMT solver [START_REF] De | Z3: An efficient SMT solver[END_REF] to check public safety assertions (§3.2.3).

We evaluate FaCT by asking the following questions: ▶ Is FaCT expressive enough to implement real-world cryptographic algorithms? ▶ Does FaCT produce constant-time code? ▶ What is FaCT's performance overhead? ▶ Compared to C, does FaCT improve non-experts' experience reading and writing constant-time code? We answer the first three questions with case studies in which we integrate FaCT into real-world projects (§5.1). We find that FaCT is expressive enough to implement a range of cryptographic primitives. We use dudect [START_REF] Reparaz | Dude, is my code constant time?[END_REF] to empirically check that our implementations, including compiler optimizations, are constant-time. We find that, compared to optimized C code, unoptimized FaCT code runs 16-346% more slowly, while optimized FaCT code ranges from 5% slower to 21% faster.

We answer the fourth question with a study comparing user experiences reading and writing FaCT and C (§5.2). In sum, a plurality of participants found FaCT easier to read than C, and a majority found FaCT easier to write.

Case Studies

We integrate FaCT into three popular open source libraries by porting pieces of these libraries from C to FaCT: ▶ The NaCl secretbox API for symmetric-key authenticated encryption and decryption. We port the entire libsodium (version 1.0.16) [START_REF] Denis | libsodium[END_REF] secretbox API, including the two underlying primitives, the Poly1305 message authentication code (MAC) and the XSalsa20 stream cipher. ▶ The Curve25519 Elliptic-Curve Diffie-Hellman (ECDH) primitive for asymmetric key exchange. We port Adam Langley's curve25519-donna library [START_REF] Langley | curve25519-donna[END_REF] in whole. ▶ The OpenSSL [START_REF]OpenSSL[END_REF] ssl3_cbc_digest_record function used to verify decrypted SSLv3 messages. At its core, this function computes the MAC of a padded message without revealing the padding length. Our implementation invokes OpenSSL's SHA-1 hash primitive as an extern (§3.1). ▶ The OpenSSL aesni_cbc_hmac_sha1_cipher function used in the MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) construction. This function performs AES-CBC decryption and then verifies the MAC and padding of the decrypted message. Our implementation invokes OpenSSL's AES and SHA-1 primitives as externs. We choose these functions because they (1) are complex enough to exercise all of the FaCT language features; (2) implement a range of algorithms; and (3) demonstrate that FaCT can be used in different settings, from implementing individual procedures to large portions of libraries.

Method. We port in three steps. First, we port the C code to FaCT by translating C constructs to their corresponding FaCT counterparts. During this translation process, we label sensitive keys, etc. as secret, and add assume and declassify statements as appropriate to ensure the code typechecks (§5.1.1); we also replace "bit hacks" (§2) with high-level FaCT constructs (e.g., if). Second, we check the correctness of our ports using each library's test harness, and we empirically check that the ports are constant-time using dudect (§5.1.2). Finally, we use each library's benchmarking suite to compare our ports to the C implementations (§5.1.3).

Expressiveness

Table 1 summarizes our ports. FaCT implementations are at worst ∼10% longer than the corresponding C code. Much of the extra length is because FaCT does not have a macro system; instead, we translated macro definitions and then manually expanded them. (We note that it would be straightforward to instead use the C preprocessor with FaCT.) FaCT code is also more verbose than C when processing buffers: since FaCT has no pointer arithmetic, FaCT code must use extra variables to track offsets into arrays.

Our ports make sparing use of extern, declassify, and assume. For example, our ports use assume to help the public safety verifier track values through memory and reason across procedure and language boundaries. We declassify in two cases: in libsodium secretbox decryption and in OpenSSL MEE-CBC verification; these declassifications are permitted by the libraries' respective attacker models [START_REF] Daniel | The security impact of a new cryptographic library[END_REF][START_REF] Coppens | Practical mitigations for timing-based side-channel attacks on modern x86 processors[END_REF][START_REF] Langley | ImperialViolet -Lucky Thirteen attack on TLS CBC[END_REF]. Finally, we use extern to invoke existing primitives (e.g., OpenSSL's SHA-1 implementation).

Security

We prove that FaCT's transformations produce constant-time code (§4.3), but this applies only to the unoptimized LLVM IR produced by the FaCT compiler. 3 Since we use clang to generate optimized object code, an LLVM optimization pass might break FaCT's constant-time guarantees.

To empirically check that our case study implementations run in constant-time, even after optimization, we use the dudect [START_REF] Reparaz | Dude, is my code constant time?[END_REF] analysis tool. At a high level, dudect tests for constant-time execution by running the code under test for a large number of iterations and collecting timing information using the CPU's cycle counters. It then tests the collected timing information for statistically significant variation in execution time that are correlated with changes to secret inputs. In our evaluation, we configure dudect to collect 50 million measurements for each benchmark. It finds no statistically significant timing variation.

Several other works concerned with constant-time crypto implementation [START_REF] Aumasson | Automated testing of crypto software using differential fuzzing[END_REF][START_REF] Reparaz | Dude, is my code constant time?[END_REF][START_REF] Simon | What You Get is What You C: Controlling Side Effects in Mainstream C Compilers[END_REF][START_REF] Watt | CT-Wasm: Type-driven Secure Cryptography for the Web Ecosystem[END_REF] have reported using dudect.

In our testing, we found the tool to quickly and reliably find timing differences in buggy code. We note, however, that dudect is only a check-not a proof-of constant-time behavior; we discuss further in Section 6.

Performance

Table 2 shows the performance cost of porting C to FaCT. We benchmark each implementation on an Intel i7-6700K at 4GHz with 64GB of RAM using clang 6.0.1. We compare both unoptimized and optimized FaCT implementations with C implementations that are compiled at the corresponding project's default optimization level. 4 Our optimized FaCT code uses the same optimization flags as the C code.

For libsodium and curve25519-donna, we use the library's benchmarking suites. We measure the mean of ∼2 24 and ∼2 17 iterations, respectively, and report the median of five such measurements. For the OpenSSL implementations, we use OpenSSL's s_server and s_client commands to measure throughput when transferring 256MB, 1GB, and 4GB files. We compute the median throughput of five transfers at 3 And to procedures that do not use declassify. 4 For OpenSSL, -O3; for other projects, -O2. each file size, and report the minimum and maximum result; overhead was uncorrelated with file size.

For most benchmarks, we find that optimized FaCT is comparable to C: the overhead is never more than 5%. Notably, the FaCT implementation of libsodium secretbox is 15-20% faster than the C reference implementation. We attribute this speedup to vectorization: inspecting the XSalsa20 assembly code, we find that clang generates vector instructions for the FaCT implementation, but not for C. To explore this discrepancy, we measure performance of secretbox with XSalsa20 explicitly vectorized (using vectors in FaCT, intrinsics in C). In this case, FaCT is still 5-6% faster than C, but this speedup appears to be an artifact of LLVM's applying different optimizations to different code.

User Study

We evaluate the usability of FaCT by conducting a user study as part of an upper-level, undergraduate programming languages course at UC San Diego. 5 Prior to the study, we dedicated three lectures to timing side-channels, constant-time programming in general, and constant-time programming specifically in C and FaCT. As an optional assignment, students were asked to (1) explain the behavior of constant-time code written in C and FaCT, and (2) implement constanttime algorithms in both C and FaCT. Of the 129 enrolled students, 77 completed the study over a nine-day period. We describe methods and conclusions below; in Appendix B, we give further lessons from the study, e.g., compilation errors participants ran into frequently. Method. The user study is a sequence of web-based tasks. For each task, the participant is first given a warm-up code comprehension question, whose answer is subsequently revealed. The participant is then given a second, related question. This question is repeated twice, in C and in FaCT; we randomize the order of the languages per participant, i.e., half the participants' tasks are in C and then FaCT, and viceversa. On a given question, participants can repeatedly check partial answers for correctness; once finished, the participant submits a final answer, which can no longer be viewed or revised. A task is complete if the participant submits a final answer for both C and FaCT; we discard incomplete tasks.

The user study was built on an earlier version of FaCT which did not enforce public memory safety. Nevertheless, we believe the results largely translate to the version presented in this paper, because the surface language did not change significantly.

Understanding Constant-Time Code

To evaluate participants' understanding of C and FaCT code, we asked them to describe the behavior of two functions. The first function takes two input buffers-a header and a message-and copies the header and message to an output buffer and adds padding up to a fixed size. The second function implements long division: it computes a quotient and remainder, writes each to an output buffer, and returns a status code indicating success or failure.

We graded participants on their ability to correctly describe each function's behavior. In both cases, we find that participants showed slightly better understanding of FaCT than of C: for the first function, the mean score was 57% for FaCT and 53% for C; for the second, it was 40% for FaCT and 32% for C. Participants also reported a slight preference for FaCT; specifically, 31 participants found FaCT easier to understand compared to 10 that found C easier and 28 that reported similar difficulty.

Writing Constant-Time Code

To evaluate participants' ability to write constant-time code in FaCT and C, we had them implement three functions: ▶ remove_secret_padding: given a buffer and secret length, this function removes any secret padding, i.e., sets every element of the buffer past the length to zero. ▶ check_pkcs7_padding: this function checks whether a supplied buffer contains a valid PKCS#7 [START_REF] Kaliski | PKCS #7: Cryptographic Message Syntax Version 1[END_REF] message. ▶ remove_pkcs7_padding: this function removes padding from a supplied buffer, if it contains a valid message. Participants could compile their code, run a test suite, and, for C code, check constant-time correctness with ct-verif [START_REF] Almeida | Verifying constant-time implementations[END_REF]. They could also give up on a task and move to the next one.

Table 3 summarizes our findings. Of the 68 participants that completed the first task, 62 submitted correct and constanttime FaCT code, and 49 submitted correct and constant-time C code. For the third task, 34 participants submitted correct, constant-time FaCT code compared to 24 participants for C. In the survey, 40 participants reported finding FaCT easier to write, 11 found C easier, and 18 found them similar.

We cannot draw conclusions from check_pkcs7_padding, because the task had a bug that incorrectly marked variabletime code as constant-time; only 16 of the 32 C submissions marked "correct" were constant-time. The bug was limited to this task, but because check_pkcs7_padding is required for remove_pkcs7_padding, some participants needed to correct their code to pass the third task.

Limitations and Future Work

We think FaCT makes it easier to write constant-time code, but it is not perfect. Limitations and future work include:

The type system. The type system lacks polymorphism and flow sensitivity [START_REF] Myers | Jif: Java information flow[END_REF][START_REF] Sabelfeld | Language-based information-flow security[END_REF], which reduces both expressivity and performance. For example, our type system cannot express a program that branches on a buffer's public contents and then decrypts the buffer in-place, upgrading its label to secret. We leave such extensions to future work. The public safety checker. FaCT's public safety checker does not reason about mutable variables or properties across function calls. For example, indexing an array based on a mutable variable requires assume-ing the index is in bounds. The brittleness of constant-time behavior. FaCT's compiler only guarantees constant-time behavior for the LLVM IR that it produces. Crucially, this means that LLVM's optimization passes and lowering to assembly can introduce variable-time behavior. Though many optimizations do preserve constant-time property [START_REF] Barthe | Secure compilation of side-channel countermeasures: the case of cryptographic "constant-time[END_REF], FaCT relies on dudect to empirically check that a piece of code is constant-time.

Sound, symbolic verification of constant-time behavior using ct-verif [START_REF] Almeida | Verifying constant-time implementations[END_REF] would give much stronger guarantees. Unfortunately, ct-verif currently has limited support for declassification and vector instructions. Extending ct-verif to support these primitives and applying it to optimized FaCT code is future work. The evaluation. Our evaluation of FaCT is preliminary and thus incomplete. For example, we relied on extern versions of SHA-1 and AES (§5.1) because we preferred to focus on porting higher-level OpenSSL functions with a history of timing attacks. Moreover, some of the low-level primitives we ported (XSalsa20, Poly1305, and Curve25519) were explicitly designed for ease of constant-time implementation [START_REF] Daniel | The Poly1305-AES message-authentication code[END_REF][START_REF] Daniel | Curve25519: new Diffie-Hellman speed records[END_REF][START_REF] Daniel | The Salsa20 family of stream ciphers[END_REF]. Future work is expanding FaCT's repertoire with potentially more challenging algorithms.

Finally, our user study has limited scope and involves only non-expert users; remedying these issues is also future work.

Related Work

This work supersedes an initial design we previously described in [START_REF] Cauligi | FaCT: A Flexible, Constant-Time Programming Language[END_REF]. In particular, we present a design and implementation of a DSL for writing constant-time crypto, provide a formal semantics and security guarantees for FaCT, and evaluate FaCT on several dimensions; in [START_REF] Cauligi | FaCT: A Flexible, Constant-Time Programming Language[END_REF] we outlined the vision for such a DSL. Our implementation and formalization efforts revealed insights previously missed in [START_REF] Cauligi | FaCT: A Flexible, Constant-Time Programming Language[END_REF]-e.g., the need for public safety (§3.2.3) and challenges with using ct-verif [START_REF] Almeida | Verifying constant-time implementations[END_REF] to verify code with inline declassifications. At the same time, in this paper, we did not explore parts of the design space outlined in [START_REF] Cauligi | FaCT: A Flexible, Constant-Time Programming Language[END_REF]-e.g., we do not expose some hardware-specific instructions like add-with-carry, which could simplify asymmetric-key crypto implementations. Domain-Specific Languages. There are several efforts designing DSLs for implementing cryptographic primitives and protocols. Bernstein's qhasm is a low-level portable assembly for writing high-speed crypto routines [START_REF] Daniel | qhasm: tools to help write high-speed software[END_REF]; it does not distinguish secret data from public data, so does not prevent information leaks by construction.

Vale [START_REF] Bond | Vale: Verifying High-Performance Cryptographic Assembly Code[END_REF] and Jasmin [START_REF] Almeida | Jasmin: High-Assurance and High-Speed Cryptography[END_REF] are DSLs for writing and verifying high-performance assembly code. Vale developers write platform-independent assembly code and specify the target architecture; the Vale compiler uses Dafny to verify semantics and non-interference. Jasmin allows developers to use architecture-specific instructions alongside higher-level code, and the verified Jasmin compiler rejects non-constanttime programs. Low* is a higher-level, embedded (in F*) DSL that compiles to verified constant-time C [START_REF] Protzenko | Verified Low-Level Programming Embedded in F*[END_REF]. The verified NaCl [START_REF] Daniel | Cryptography in NaCl[END_REF] library, HACL* [START_REF] Zinzindohoué | HACL*: A verified modern cryptographic library[END_REF], is written in Low*. CT-Wasm [START_REF] Watt | CT-Wasm: Type-driven Secure Cryptography for the Web Ecosystem[END_REF] is a formally verified extension to the WebAssembly language [START_REF]WebAssembly[END_REF] for writing crypto code in the browser. CT-Wasm uses a strict label-based type system to enforce its constant-time policy. These languages provide support for high-level control flow constructs and procedures, but they require developers to manually write constant-time code.

Constant-Time Toolkit (CTTK) is a C library [START_REF] Pornin | Constant-Time Toolkit[END_REF] that follows recipes in [START_REF]Cryptography Coding Standard[END_REF][START_REF] Pornin | Why Constant-Time Crypto[END_REF] to provide functions-including low-level constant-time primitives-for crypto libraries, but developers must compose these low-level blocks.

Verification. There is a growing body of work on both building verified cryptographic implementations and verifying existing libraries. Bhargavan et. al verify an implementation of TLS, including low-level cryptographic primitives [START_REF] Bhargavan | Implementing TLS with verified cryptographic security[END_REF]. Barthe et. al [START_REF] Barthe | System-level non-interference for constant-time cryptography[END_REF] verify constant-time properties of various PolarSSL implementations. Ye et. al [START_REF] Ye | Verified correctness and security of mbedTLS HMAC-DRBG[END_REF] verify the mbedTLS implementation of HMAC-DRBG. Appel [START_REF] Appel | Verification of a cryptographic primitive: SHA-256[END_REF] and Beringer et. al [START_REF] Beringer | Verified Correctness and Security of OpenSSL HMAC[END_REF] respectively verify OpenSSL's implementation of SHA-256 and HMAC. Tsai et. al [START_REF] Tsai | Certified Verification of Algebraic Properties on Low-Level Mathematical Constructs in Cryptographic Programs[END_REF] verify core parts of X25519. Almeida et. al [START_REF] Almeida | Verifiable Side-Channel Security of Cryptographic Implementations: Constant-Time MEE-CBC[END_REF] verify AWS Lab's s2n MEE-CBC implementation (after identifying a vulnerability); they also verify security properties of NaCl libraries [START_REF] Almeida | Formal verification of side-channel countermeasures using selfcomposition[END_REF]. Erbsen et. al [START_REF] Erbsen | Systematic Generation of Fast Elliptic Curve Cryptography Implementations[END_REF] synthesize and verify elliptic curve implementations from high-level descriptions. Almeida et. al develop ct-verif [START_REF] Almeida | Verifying constant-time implementations[END_REF] and verify constant-time properties of several cryptographic algorithms. Many of these verification efforts are specific to the projects being analyzed. Additionally, developers still bear the burden of manually writing constant-time code, which FaCT aims to alleviate.

General Techniques for Eliminating Timing Channels.

FaCT uses an information flow control type system to eliminate programs that may introduce information leaks or are otherwise inefficient (or impossible) to transform to constanttime. Our label-based type system is a standard IFC type system [START_REF] Sabelfeld | Language-based information-flow security[END_REF] that borrows explicit mutability from ownershipbased systems [START_REF] Clarke | Ownership Types for Flexible Alias Protection[END_REF]. Previous solutions have also relied on type-and static-analysis techniques (e.g., [START_REF] Barthe | System-level non-interference for constant-time cryptography[END_REF][START_REF] Doychev | Cacheaudit: A tool for the static analysis of cache side channels[END_REF][START_REF] Rodrigues | Sparse representation of implicit flows with applications to side-channel detection[END_REF][START_REF] Svenningsson | Specification and verification of side channel declassification[END_REF][START_REF] Zhang | A hardware design language for timing-sensitive informationflow security[END_REF]) to address timing leaks. FaCT automatically transforms secret sub-computations into constant-time straight-line code. Our approach follows several previous efforts on eliminating timing channels via source code transformations [START_REF] Agat | Transforming out timing leaks[END_REF][START_REF] Barthe | Preventing timing leaks through transactional branching instructions[END_REF][START_REF] Molnar | The Program Counter Security Model: Automatic Detection and Removal of Control-Flow Side Channel Attacks[END_REF][START_REF] Van Chan Ngo | Verifying and synthesizing constant-resource implementations with types[END_REF][START_REF] Planul | Oblivious program execution and path-sensitive non-interference[END_REF][START_REF] Rane | Raccoon: Closing Digital Side-Channels through Obfuscated Execution[END_REF]. Most similar in ethos is SC-Eliminator [START_REF] Wu | Eliminating Timing Side-channel Leaks Using Program Repair[END_REF]. This system takes as input a program and a list of secrets, and uses tag propagation to transform LLVM IR into its constanttime equivalent. Though both projects perform transformations, they use orthogonal approaches: SC-Eliminator repairs already-existing code, while FaCT is a language for writing such code from the start. Finally, many other efforts employ system-level techniques to eliminate and detect timing-channels [START_REF] Braun | Robust and efficient elimination of cache and timing side channels[END_REF][START_REF] Ge | A survey of microarchitectural timing attacks and countermeasures on contemporary hardware[END_REF][START_REF] Liu | Memory trace oblivious program execution[END_REF][START_REF] Reparaz | Dude, is my code constant time?[END_REF][START_REF] Stefan | Eliminating cache-based timing attacks with instruction-based scheduling[END_REF][START_REF] Zhou | A software approach to defeating side channels in last-level caches[END_REF]. described in §5.2. The information we collected about syntax and type errors led to changes in the compiler and language design. For example, the majority of the type errors were due to incompatible integer types-we added implicit casting so that the compiler could assist the programmer. We also improved the compiler to prevent memory errors at compile time with the addition of the public safety checker (as described in §3.2.3). We observe a total of 780 label errors-in FaCT this is a compilation error, but would result in a security vulnerability in languages (like C) without knowledge of public and secret values. This number is not surprising, as the participants were not used to programming with a defensive security mindset.

Participants encountered a large number of correctness errors as well. We observe a total of 821 correctness errors across the three programming tasks. The high number of correctness errors is not isolated to the FaCT tasks-we observe 1199 total correctness errors for the C tasks.

Additionally, we find that participants required fewer attempts as a whole to produce a correct FaCT program than a correct C program for remove_secret_padding and remove_pkcs7_padding. We graph the CDF of the number of correctness errors each user encountered per programming task in Figure 8. As shown, when writing FaCT code, 90% of participants encountered fewer than 5 correctness errors for remove_secret_padding and 4 for check_pkcs7_padding, compared to 12 and 13 for C code. The number of correctness errors are about the same per user for check_pkcs7_padding-90% saw fewer than 21 for FaCT and 20 for C.

We find a total of 250 other errors for the FaCT programming tasks. Individually, these errors occurred infrequently and are not unique or interesting to FaCT since they are common programming errors (e.g., passing too many arguments to a function).

C Deferred definitions and proofs C.1 Semantics

We define the behavior of expressions, statements and functions using an instrumented big-step semantics. Informally, the big-step semantics relates initial configurations, final configurations, and leakages. Initial configurations are triples of An environment is defined as a partial mapping from variables to values, and a heap is defined as a partial mapping from pointers to values. We say that a pointer p is allocated in a heap h, written p ∈ h, if h(p) is defined. If p ∈ h then the associated value to p can be updated: h[p ← v]. The associated values of other pointers are unchanged. We assume we are given a deterministic operator fresh for creating and initializing a fresh pointer: fresh(h, v) = (p, h ′). This operator satisfies:

-step (e, ρ, h) ψ --→ (v, h) Stmt-step (S, ρ, h) ψ --→ (ν, h) ref (e, ρ, h) ψ --→ (v, h ′) fresh(h ′ , v) = (p, h ′′) (ref e, ρ, h) ψ --→ (p, ρ, h ′′) array-get (e 1 , ρ, h) ψ 1 --→ ([v 0 , . . . , v k], h ′) (e 2 , ρ, h ′) ψ 2 --→ (n, h ′′) 0 ≤ n < k (e 1 [e 2], ρ, h) ψ 1 + ψ 2 + Ar r (n) ------------→ (v n , h ′′) seq-ret (i, ρ, h) ψ --→ (v, h ′) (i; S, ρ, h) ψ --→ (v, h ′) seq-noret (i, ρ, h) ψ 1 --→ (ρ ′ , h ′) (S, ρ ′ , h ′) ψ 2 --→ (ν, h ′′) (i; S, ρ, h) ψ 1 + ψ 2 -----→ (ν, h ′′) vardec (e, ρ, h) ψ --→ (v, h ′) (x = e, ρ, h) ψ --→ (ρ[x ← v], h ′) assign (e 1 , ρ, h) ψ 1 --→ (p, h ′) (e 2 , ρ, h ′) ψ 2 --→ (v, h ′′) (e 1 := e 2 , ρ, h) ψ 1 + ψ 2 -----→ (ρ, h ′′ [p ← v]) return (e, ρ, h) ψ --→ (v, h ′) (return e, ρ, h) ψ --→ (v, h ′) block (S, ρ, h) ψ --→ (ν, h ′) ({S }, ρ, h) ψ --→ (ν, h ′) fn-call (e 1 , ρ, h) ψ 1 --→ (v 1 , h 1) . . . (e n , ρ, h n-1) ψn ---→ (v n , h n) (F , ⃗ v, h n) ψ --→ (v, h ′) (x = f (⃗ e), ρ, h) Σψ i + ψ ------→ (ρ[x ← v], h ′) fn (F .S, [F .⃗ x ← ⃗ v], h) ψ --→ (v, h ′) (F , ⃗ v, h) ψ --→ (v, h ′) if (e, ρ, h) ψ --→ (b, h ′) (S b , ρ, h ′) ψ b ---→ (ν, h ′′) (if * ℓ e then S t else S f , ρ, h) ψ + if * (ℓ, b) + ψ b -------------→ (ν, h ′′) for (e 1 , ρ, h) ψ 1 --→ (n 1 , h 1) (e 2 , ρ, h 1) ψ 2 --→ (n 2 , h 2) (if * ℓ n 1 < n 2 then {{i = n 1 ; S }; for * ℓ i = n 1 + 1 to n 2 do S }, ρ, h 2) ψ --→ (ν, h ′) (for * ℓ i = n 1 to n 2 do S }, ρ, h) ψ 1 + ψ 2 + ψ --------→ (ν, h ′)
▶ p is a fresh pointer, i.e., p h ▶ The associated value of p is v, i.e., h ′ (p) = v ▶ Other pointers are unchanged, i.e., ∀p ′ , h(p ′) = h ′ (p ′)

We further assume the existence of an equivalence relation ≈ on heaps such that:

▶ ≈ is stable by allocation: If fresh(h 1 , v 1) = (p 1 , h ′ 1) and fresh(h 2 , v 2) = (p 2 , h ′ 2) and h 1 ≈ h 2 then p 1 = p 2 and h ′ 1 ≈ h ′ 2 . ▶ ≈ is stable by update: if

h 1 ≈ h 2 then h 1 [p ← v 1] ≈ h 2 [p ← v 2].
A final configuration is either a pair consisting of a value and a heap, or of an environment and a heap. In particular, the semantics of expressions (e, ρ, h) ψ --→ (v, h ′) returns a value and a new heap (creation of fresh reference). Here, ψ corresponds to the leakage of the evaluation of e. The semantics of statements is given by two judgments of similar form: (S, ρ, h) ψ --→ (ρ ′ , h ′) and (S, ρ, h) ψ --→ (v, h ′). These judgments correspond to statements that do not and do return values, respectively. Again, ψ is the leakage produced by the evaluation of the statement. Finally, the semantics of a function is modelled by a judgment of the form (f , ⃗ v, h) ψ --→ (v ′ , h ′), where ⃗ v denotes the values of the parameters of the function, and v ′ is the return value (we only consider functions that return a value). Figure 9 presents the semantics. Rules are standard, with the exception of leakage. Primarily, array accesses leak the index at which they are accessed, conditionals leak their control flow, and other rules combine leakage of sub-computations according to evaluation order. Note that in the rules for conditionals and for loops we assume that the guard of the statement is identified by a unique label, which we record in the leakage.

C.2 Return deferral

We prove that return deferral is correct, i.e., preserves the behavior of programs; and secure, which we formalize as a type-preservation result. Type system and type-preservation. We define a variant of the type system that only allows return statements in Pub contexts. The judgments are thus of the form pc, β r ⊢ S : Γ → Γ ′ or ω ⊢ β r f (⃗ x : ⃗ β) { S }, i.e., the return context label is omitted. The typing rules for statements are given in Figure 10; rules for expressions do not change.

We prove that return deferral transforms typeable expressions (resp. statements and procedures) of the source type system into typeable expressions (resp. statements and procedures) of the ⊢ rd type system.

First, we prove preliminary lemmas. Proof. We start by proving [START_REF] Nadhem | Lucky Thirteen: Breaking the TLS and DTLS record protocols[END_REF]. Assuming that (1) holds for a given S, we prove that (2) holds for S. By case on rc: ▶ If rc is Pub then Φ, pc, rc ⊢ S ⇝ S ′ is Φ, pc, rc ⊢ S → S ′ , and we can trivially conclude using [START_REF] Agat | Transforming out timing leaks[END_REF].

▶ If rc is Sec we should prove pc ⊔ Sec, β r ⊢ if (deref notRet){S ′ } : Γ → Γ ′ . By hypothesis we have pc ⊔ Sec, β r ⊢ S ′ : Γ → Γ ′ and we can apply the IF rule of type system 2 to conclude (where l is Sec).

We now prove (1) by induction on S. The cases for (var-dec, assign, if, for-range, return) are trivial.

▶ If S = S 1 ; S 2 then we have S ′ = S ′ 1 ; S ′ 2 where ω, pc, rc ⊢ S 1 : Γ, rc → Γ ′ , rc ′ Φ, pc, rc ⊢ S 1 → S ′ 1 ω ′ , pc, rc ′ ⊢ S 2 : Γ ′ , rc ′ → Γ ′′ , rc ′′ Φ ′ , pc, rc ′ ⊢ S 2 ⇝ S ′ 2 By induction hypothesis, we have pc ⊔ rc, β r ⊢ S ′ 1 : Γ → Γ ′ and by (2) (using the induction hypothesis on S 2) we have pc ⊔ rc ′ , β r ⊢ S ′ 2 : Γ ′ → Γ ′′ . Since rc ⊑ rc ′ (by lemma C.2), we can apply lemma C.3 to obtain pc ⊔ rc, β r ⊢ S ′ 2 : Γ ′ → Γ ′′ and conclude. ▶ If S = β x = f (⃗ e), we can conclude by induction hypothesis (f .S can be seen as a sub-statement of S since there is no recursion). □ Preservation of semantics. We now prove the preservation of semantics for return deferral. Since the compilation introduces references and variables, the correctness lemmas should take this into account. Given a partial mapping m from pointers to pointers, we say that two values v and v ′

Figure 1 .

 1 Figure 1. (Subset of) FaCT grammar.

Figure 2 .

 2 Figure 2. FaCT types.

len e 1 Γ 2 ΓFigure 3 .

 123 Figure 3. (Subset of) FaCT expression typing rules.

Figure 4 .

 4 Figure 4. (Subset of) FaCT statement typing rules.

Figure 5 .

 5 Figure 5. (Subset of) FaCT procedure typing rules.

2 }

 2 Tr-Br-Assign p true Φ, p ⊢ e 1 := e 2 → e 1 := ctselect(p, e 2 , e 1) Tr-Br-Call

Figure 8 .

 8 Figure 8. These graphs show the CDF of number of times a user failed the unit tests for each programming task in both FaCT and C.

Expr

Figure 9 .

 9 Figure 9. Big-step semantics.

Figure 10 .

 10 Figure 10. Type system ⊢ rd for return deferral.

Lemma C. 2 .

 2 If ω, pc, β r ⊢ S : Γ, rc → Γ ′ , rc ′ then rc ⊑ rc ′ .Lemma C.3 (PC subtyping type system for return deferral). For all pc1 ⊑ pc 2 , if pc 2 , β r ⊢ S : Γ → Γ ′ then pc 1 , β r ⊢ S : Γ → Γ ′ . Proof. By induction on pc 2 , β r ⊢ S : Γ → Γ ′ . □ Lemma C.4 (Type preservation for return deferral). If ω, pc, β r ⊢ S : Γ, rc → Γ ′ , rc ′ : 1. Φ, pc, rc ⊢ S → S ′ then pc ⊔ rc, β r ⊢ S ′ : Γ → Γ ′ 2. Φ, pc, rc ⊢ S ⇝ S ′ then pc ⊔ rc, β r ⊢ S ′ : Γ → Γ ′ where Γ = Γ[notRet, rval ← Ref RW [Bool] , Ref RW β r].

 e) { S } else { S } conditional |for (x from e to e) { S } range-for |

		return e	return
	Expressions	
	e ::=		
	|	true | false	boolean literal
	|	n	numeric literal
	|	x	variable
	|	⊖ e	unary op
	|	e ⊕ e	binary op
	|	e[e]	array get
	|	len e	array length
	|	zeros(β, e)	zero array
	|	clone(e)	array clone
	|	view(e, e, e)	array view
	|	declassify(e)	declassify
	|	assume(e)	assume
	|	ref e	reference
	|	deref e	dereference
	|	ctselect(e, e, e) constant-time selection

 these public safety extensions are highlighted .

Public Views. We first define the judgment Γ ⊢ i e to mean that e is immutable in Γ; that is, e is only composed of constants, immutable variables, array lengths, or operations thereon. Next, we define the operation Γ ∧ e, which conjoins Γ with a public view of the condition e: if e is a public bool (Γ ⊢ e : Bool Pub) and e is immutable (Γ ⊢ i e), then Γ ∧ e represents the environment Γ with the additional assumption that e is true. Otherwise, Γ ∧ e = Γ, i.e., conjoining Γ with a secret condition does not add any new assumptions to Γ. Rules T-If and T-For in Figure

Table 1 .

 1 Case study summary: lines of code (per cloc) and uses of assume (#A), declassify (#D), and extern (#E).

	Case study	Lines of code #A #D #E C FaCT
	libsodium secretbox	984	1068	16	1	0
	curve25519-donna	310	342	0	0	0
	OpenSSL record validate 92	91	3	0	2
	OpenSSL MEE-CBC	201	219	10	1	4

Table 2 .

 2 Overhead of FaCT ports compared to optimized C, for each benchmark. secretbox results are for encryption and decryption overhead, respectively.

	Benchmark	% Overhead of FaCT Unoptimized Optimized
	secretbox (reference)	345.57/373.49% -20.92/-14.56%
	secretbox (vectorized)	427.21/427.09%	-6.54/-4.99%
	curve25519-donna	144.42%	2.21%
	OpenSSL record validate 30.13-35.16%	0.64-4.62%
	OpenSSL MEE-CBC	16.15-31.97%	-2.56-4.16%

Table 3 .

 3 Number of participants (out of 77) that submitted correct and constant-time solution for each task. The check_pkcs7_padding task was misconfigured, and marked variable-time code as constant-time (16 submissions); we report these numbers for completeness (§5.2.2).

	Programming task	FaCT	C
	remove_secret_padding	62	49
	check_pkcs7_padding	35	32 (16)
	remove_pkcs7_padding	34	24

Table 4 .

 4 The number of occurrences of each kind of error when users compiled FaCT code.

	Error type PT1 PT2 PT3
	Syntax	277 313	90
	Type	40	423 143
	Label	73	613	94
	Memory	0	104	3
	Correctness 124 560 137
	Other	45	191	53

The surface language as used by developers is slightly less verbose than the core language presented in this section. For example, our surface syntax allows procedures to be called in expressions; FaCT desugars such expressions into core language procedure-call statements. We refer to both the surface and core languages as FaCT.

void potential_oob(secret mut uint32[] buf , public uint64 i , secret uint64 secret_index) { assume(secret_index <= len buf); if (i < secret_index) buf[i] = 0; ... } T-Call ω ⊢ f (⃗ β) : β hasEffects(f) ⇒ pc ⊔ rc ⊑ ω (f) Γ ⊢ e i : β i Γ ′ = Γ, x : β ω, pc, β r ⊢ β x = f (⃗ e) : Γ, rc → Γ ′ , rc T-Asgn Γ ⊢ e 1 : Ref W β Γ ⊢ e 2 : β pc ⊔ rc ⊑ β ω, pc, β r ⊢ e 1 := e 2 : Γ, rc → Γ, rc T-If Γ ⊢ e : Bool ℓ ω, pc ⊔ ℓ, β r ⊢ S 1 : Γ ∧ e , rc → Γ 1 , rc 1 ω, pc ⊔ ℓ, β r ⊢ S 2 : Γ ∧ ¬e , rc → Γ 2 , rc 2

Our study was reviewed and exempted by the IRB.

Acknowledgments

We thank the anonymous PLDI and PLDI AEC reviewers and our shepherd Limin Jia for their suggestions and insightful comments. We thank the participants of the Dagstuhl Seminar on Secure Compilation for early feedback on this work, especially Tamara Rezk. We thank Ariana Mirian for handling the IRB for our user study, Shravan Narayan for his help in understanding the subtleties of LLVM, and Joseph Jaeger and Jess Sorrell for helping us understand elliptic curve implementations. We also thank the CSE 130 TAs for their help in testing our user study, and the CSE 130 students for participating in the user study. This work was supported in part by gifts from Fujitsu and Cisco, by the National Science Foundation under Grant Number CNS-1514435, by ONR Grant N000141512750, and by the CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

A FaCT Grammar

Proof. The proof is done by mutual induction on Φ, pc, rc

The case for functions is a direct consequence of the case for statements. For statements, the interesting case is the one for sequencing, i.e., S = S 1 ; S 2 . If S 1 returns in a Sec context then S ′ 1 will not immediately return, but after its execution notRet will be false. So S ′ 2 = if (notRet) { S ′′ 2 } will immediately terminate. □

C.3 Branch removal

We prove that branch removal is correct, i.e., preserves the behavior of programs, and secure. For the latter, we define a new type system ⊢ ct , show that branch removal returns programs that are typeable with respect to ⊢ ct , and that typeable programs are constant-time.

Type system and type-preservation. The type system manipulates judgments of the form β r ⊢ S :

Notably, the path context label is omitted. Since we require that statements no longer branch on secrets, we can assume that the path context label is public throughout execution.

Figure 12 presents the typing rules for statements in ⊢ ct . Rules for expressions do not change.

We prove that branch removal transforms expressions (resp. statements and procedures) typeable in ⊢ rd into expressions (resp. statements and procedures) typeable in ⊢ ct .

Type system ⊢ ct for constant-time.

to final configurations in a straightforward manner. The formal definition is given in Figure 13. We prove some preliminary lemmas.

Lemma C.7 (Stability of type interpretation). For all partial maps t and t ′ such that t ⊑ t ′ the following properties hold:

Proof. We prove (1) by induction on v 1 , h 1 ≡ β,t v 2 , h 2 . The only interesting case is for Ref, which follows directly from definitions of t ⊑ t ′ . (2) is a direct consequence of [START_REF] Agat | Transforming out timing leaks[END_REF].

and the property follows from h 1 ≡ t h 2 .

□

We now prove that typeable expressions and statements are constant-time.

Lemma C.9 (Typing constant-time, expressions).

Proof. By induction on Γ ⊢ e : β. We do only the interesting cases:

▶ Case e = e 1 [e 2], we have

Γ ⊢ e 1 : Arr β, e l en Γ ⊢ e 2 : UInt Pub By induction hypothesis on e 1 there exists t ′ such that

By lemma C.7, we have ρ 1 , h ′′ 1 ≡ Γ,t ′′ ρ 2 , h ′′ 2 and we can apply the induction hypothesis on e 2 to get:

So n 1 = n 2 and by lemma C.7 we get [w 1 ; . . . ;

which allows to conclude v 1 ≡ β,t ′ v 2 . We conclude by using t ′ as witness.

Rule ▶ Case e = Ref[e ′], we have

By induction hypothesis on e ′ we get

We can conclude the proof by using

and use lemma C.8. □ Lemma C.10 (Typing constant-time: statements).

. ▶ Cases seq-ret, seq-noret, and block are trivial. ▶ Cases vardec, assign, return, if and fn-call follow from lemmas C.9 and C.7. ▶ The last case, for, is almost a direct consequence of the induction hypothesis, the only difficulty being to prove that the statement is well-typed:

Preservation of semantics. Finally, we prove that branch removal preserves the semantics of programs. The proof is performed in two steps. First, we show that if the value of the control predicate is false then the code does not modify the initial heap; it can only create fresh references.

Lemma C.11. Let m a partial mapping on pointers. Assume that p is not trivially true (i.e., p is not the literal true) and

Furthermore, assume that p is not trivially true and ω ⊢ F → F ′ and ω (f) = Sec and h ≃ m h ′ 1 and F is well typed and

Proof. By mutual induction on S and F . The key point of the proof is to notice that if p is not trivially true then the pc used for type-checking is necessarily Sec, so there is no return statement in S ′ . □

We now prove that if the control predicate evaluates to true then the semantics of statements and functions are preserved.

Lemma C.12. Let m be a partial mapping on pointers. Assume Φ, p ⊢ S → S ′ and h 1 ≃ m h ′ 1 and ρ 1 ≃ m ρ ′ 1 and pc, β r ⊢ S : Γ → Γ ′ and pc = (if p = true then Sec else Pub) and (S, ρ 1 , h 1) - → (ν, h 2) and (S ′ , ρ ′ 1 , h ′ 1) - → (ν ′ , h ′ 2) (i.e., S ′ is safe). If (p, ρ ′ , h ′ 1) - → true then there exists m ′ such that m ⊑ m ′ and h 2 ≃ m ′ h ′ 2 and ν ≃ m ′ ν ′ . Furthermore, assume that ω ⊢ F → F ′ and F is well typed and (F , ⃗ v, h 1) - → (v, h 2) and

then there exists m ′ such that m ⊑ m ′ and h 2 ≃ m ′ h ′ 2 and v ≃ m ′ v ′ . Else, if ω (f) = Sec and (F ′ , (⃗ v ′ , true), h ′ 1) - → (v ′ , h ′ 2) then there exists m ′ such that m ⊑ m ′ and h 2 ≃ m ′ h ′ 2 and v ≃ m ′ v ′ .

Proof. By mutual induction on S and F . □