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Nonlinear operation of resonant sensors based on weakly-coupled 

resonators: experimental investigation of an actively-coupled 

architecture 
Jérôme Juillard, Ali Mostafa, Pietro Maris Ferreira 

Abstract - This paper is aimed at the validation of a theoretical analysis of the properties 

of nonlinearly-operated weakly-coupled resonators (WCRs) for resonant sensing applications. 

In particular, we investigate the relationships between the operating point of such devices 

and different performance indicators, such as parametric sensitivity, sensitivity to drive level 

and to noise, and bandwidth. To this end, a couple of high-Q MEMS resonators exhibiting 

nonlinear restoring and damping forces are used. A careful characterization of the 

resonators and their associated electronics is made, resulting in a very good, 

quantitative fit between the experimental results and those predicted by theory. 

I Introduction 
Because of their large parametric sensitivity and their capacity to reject environmental drift, 

sensor architectures based on actively- and passively-coupled MEMS resonators are a subject of 

current research interest [1-4]. While the linear theory of operation of such devices is well-known 

[5-6], there is little theoretical background concerning their nonlinear (large oscillation 

amplitude) operation. However, some recent studies show there may be a practical interest to 

operating in such a regime, demonstrating, on a case-by-case basis, improvement in measurement 

range [7], signal-to-noise ratio [8], or drive voltage fluctuations [9] for example.  

In [10], we have presented a comprehensive theoretical framework for modeling WCRs subject 

to nonlinear restoring forces, as well as nonlinear damping forces. Based on our analysis, some 

common characteristics of nonlinear WCRs could be established. These properties are summed up in 

Appendix A of this paper. In this work, we aim at illustrating and commenting these properties in the 

context of an experimental study, far from the ideal framework of [10]. It should be stressed that we 

do not seek to demonstrate a hypothetical improvement in performance compared to 

“conventional” frequency-modulated resonant sensors, but merely to validate our theoretical 

analysis, provide some helpful examples and gain some critical insight.  

To this end, a discrete PCB implementation of the actively-coupled architecture shown in Fig. 1 

is used: it is a mutually injection-locked oscillator (MILO) consisting of two MEMS resonators, 

an analog front-end (AFE), and a digital mixer ensuring the active coupling of the resonators, as 

studied in [7]. The circuit and the MEMS resonators are described in detail in section II. In 

particular, the nonlinear characteristics of the resonators are established, and the connection 

between electrical measurements and theoretical framework is made. Section III is dedicated 

to an experimental sensitivity analysis of the system, aimed at validating the quasi-static 

properties of nonlinear WCRs established in [10] (and recapitulated in appendix A). Section IV is 

focused on the spectral analysis of the measured signals and illustrates the amplitude-dependent 

finite bandwidth of these systems. Section V is dedicated to a discussion and some concluding 

remarks. 
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Fig. 1 – System-level view of a MILO based on a digital mixer. 

 

Fig. 2 – Resonator mechanical structure (from [11]). The resonator is modeled as a clamped-clamped 

beam with an imperfect clamping condition (at the left end) preventing nonlinear hardening [12]. 

II Description of the setup1 

II-1 MEMS resonators 
The MEMS resonators used in these experiments are two vacuum-packaged resonant gauges taken 

from P90 pressure sensors, presented in [11] and characterized in detail in [12-13]. These one-port 

resonators, shown in Fig. 2, consist in an electrostatically-actuated and capacitively-detected silicon 

beam, with natural frequency �� � 69kHz and quality factor 	 � 2 � 10�. One end of the beam is 

                                                           

1 Note that, in the experiments of sections II, III and IV, no particular precaution is taken to control temperature, 

ambient pressure or other environmental factors. 



perfectly clamped while the other is attached to the membrane used as a pressure sensing element. As 

a consequence of this imperfect clamping condition, no stress-stiffening is observed in the gauges, 

even at very large oscillation amplitudes [12], electrostatic softening being the dominant source of 

nonlinearity as far as nonlinear restoring forces are concerned. As reported in [14], internal resonances 

also occur in these resonators outside of their nominal operating range, resulting in an apparent 

decrease of their quality factor. This may adequately be modelled as a nonlinear damping 

phenomenon, as shown in section II-3.  

Sym

bol 

Meaning Unit Sym

bol 

Meaning Unit 

�, � Displacement of resonators  ND �, � Mechanical amplitudes of 

resonators  

ND 

� Ratio of mechanical amplitudes ND � Phase difference of resonators (°) 

	 Quality factor ND � Nonlinear damping coefficient ND 

� Electromechanical coefficient ND ��� Static pull-in voltage (V) 

� Relative stiffness mismatch 

(mech. only).  

ND � Relative stiffness mismatch (incl. 

electrostatic softening) 

ND 

� Excitation force ND � Peak value of � ND 

� Random force ND � MILO phase-shift (°) 

 !"## Critical Duffing amplitude ND  $%&' Critical damping amplitude ND 

�( Bias voltage (V) )*+, Voltage at AFE output (V) 

)!-. Drive voltage  (V) )$/0 Peak value of )!-. (V) 

)1*2� Voltage at comparator output (V) 3� Capacitance of resonator (F) 

3# AFE feedback capacitance (F) �# AFE feedback resistance (Ω) 

Table 1 – Main notations used in the paper. A suffixed �, resp. �, means the value applies only to 

resonator �, resp. � (e.g. �5).  

II-1-a Simplified model of the resonators 

Each resonator is accurately described by a single-DOF non-dimensional model resulting from the 

Galerkin projection of the electrostatically-actuated Euler-Bernoulli beam equation on the first 

clamped-clamped beam eigenmode [15]: 

61 7 �8� 7 9 :;< 7 �5�=	? $5$@ 7 $A5
$@A B �5 C:D0<6@8E

A
6:F58G/A 7 �56I8,  (1-a) 

61 J �8� 7 K :;L 7 �M�=	N $M$@ 7 $AM
$@A B �M 9:D0L6@8?

A

6:FM8G/A 7 �M6I8,  (1-b) 

where � or � designates the relative displacement of the center of the beam with respect to the 

electrostatic gap, � is a parameter representing the mechanical detuning of the resonators with respect 

to their average unbiased natural frequency, �5 and �M are electromechanical transduction coefficients 

(see below), �56I8 and �M6I8 are independent random forces acting on the resonators, and )5 ≪ 1 



(resp. )M) is the ratio of the drive voltage )!-.56I8 (resp. )!-.M6I8) of the resonator to its DC bias 

voltage �(5 (resp. �(M). For a clamped-clamped beam resonator, static pull-in occurs at 40% of the 

gap, as a static analysis of (1) shows. The expression of the electromechanical coefficient is then 

simply: 

� B =
P 9QP?

Q/= � 9.R.ST?
= � 0.186 � 9.R.ST?

=
,  (2) 

where ��� is the value of the pull-in voltage of the resonator. 

Dropping the the )5= and )M= terms in (1), and the terms resulting in DC or 2Ω	 components of the 

restoring force, we obtain: 

� 91 7 � J Q
= �5 J QP

:W �5�=? 7 9 :;< 7 �5�=	? $5$@ 7 $A5
$@A � =X<

6:F58GA
)56I8 7 �56I8.  (3-a) 

� 91 J � J Q
= �M J QP

:W �M�=? 7 K :;L 7 �M�=	N $M$@ 7 $AM
$@A �

=XL
6:FM8GA

)M6I8 7 �M6I8.  (3-b) 

Note that the resulting model is nearly identical to (A-1), in appendix A, the main difference being the 

actuation nonlinearity appearing on the right-hand side, which is known to induce waveform-

dependent phenomena [12]. This effect is specifically studied in section II-2-b. 

II-1-b Electrostatic tuning of the resonators 

The proper operation point of MILOs is when the resonators have zero stiffness mismatch, i.e. when  

2� J Q
= C�5 J �ME B 0.  (4) 

Thus, it is possible to tune the resonators by setting their bias voltages so that (4) is verified. From this 

operation point, changing the bias voltage of resonator � by a small amount from �(M to �(M 7 Y�(M, 

for instance, simulates a relative mechanical stiffness mismatch Y� according to: 

Y� B Q
= �M

Z.RL
.RL .  (5) 

Note that changing the bias voltage of a resonator also changes its Duffing coefficient and the 

amplitude of its driving force.  

Measuring the MILO’s oscillation frequency at small oscillation amplitudes for different bias voltages 

yields the following relation between the electromechanical transduction coefficient and bias voltage 

�5,M � [ � �(5,M=  (6) 

with [ B 3.35 � 10FW. According to (2), this corresponds to a pull-in voltage equal to 235V. 



 

Fig. 3 – Schematic of the studied MILO, consisting of (i) MEMS resonators, (ii) feedthrough 

compensation stages, (iii) readout stages, (iv) comparators and (v) logic gates. The resistive bridges 

used for setting drive voltage values have been omitted, and passive bandpass filters at the 

comparators inputs as well. The arrows correspond to the phasor representation of the signals in the 

system when � B 0 and � B 90°. With � B 45°, the digital mixer generates actuation voltages (purple 

arrows) with a 90° phase-lead with respect to the mechanical motion.  

II-2 Electronic circuit and transduction 
A schematic of the studied MILO is represented in Fig. 3. The angle � B �$`@ 7 �ab&' 7 �%a@ is the 

sum of �$`@	, the phase-shift resulting from the detection transducer and analog front-end (AFE), 

�ab&', the phase-shift resulting from the comparator, and �%a@ the phase-shift resulting from the 

driving stage and actuation transducer at the digital mixer output. Angle � is an important parameter, 

since it sets the value of the phase between the resonator motion (�6I8, �6I8) and the excitation signal 

(�56I8, �M6I8) in each loop, which must be 90° for each resonator to be nominally driven at resonance. 

Setting � B 45° guarantees that this is indeed the case, as illustrated in Fig. 3, where �$`@ B J135°, 
�ab&' B 180° and �%a@ B 0°. We first give a general description of this circuit, before focusing on 

how motional oscillation amplitudes or actuation forces may be derived from the electrical signals.  

II-2-a General description of the oscillator loop 

The motional signals are amplified with transimpedance amplifiers, with equal values of the resistive 

and capacitive part of the feedback impedance at resonance, i.e. 3# B 15pF, �# B 160kΩ �
1/2e��3#. This results in a 45° phase-lag compared to a regular charge amplifier (with �# ≫
1/2e��3#). The output voltage )*+,5 then satisfies 

$
$@ 6)*+,58 7 )*+,5 B J .R<

=
1g
1h

$5
$@ � :

6:F58G/A, (7) 

where 3� � 0.5pF is the nominal capacitance of the resonator. Note that the capacitance changes as 

the inverse of the square root of � because of the non-uniform deformation along the length of the 

beam [15]. Note also that (7) only holds provided capacitive feedthrough is properly cancelled. In our 

setup, feedthrough cancellation is enforced via an active attenuator stage in parallel with the resonator, 

as illustrated in Fig. 3. Low-noise, high-speed AD8065 operational amplifiers are used for these two 

stages.  



The binary-valued drive signals )!-.5 and )!-.M	, with peak values )$/05 and 	)$/0M, are generated 

through a set of comparators (AD8561), logic gates (74HCT04 and 74HCT08) and potentiometers, as 

in [7]. Passive bandpass filters are used at the comparator inputs to attenuate unwanted signals below 

6kHz or above 600kHz. A small amount of high-frequency hysteresis is also introduced, as proposed 

in [16]. All in all, simulations and measurements show that the phase delay introduced by the mixer is 

nearly independent of the amplitude or the harmonicity of its inputs, so that the electronics enforce the 

condition � B 45° regardless of the oscillation amplitude, provided it is significantly higher than a few 

mV. 

Small and large-amplitude waveforms are shown in Fig. 4, highlighting the efficiency of the 

feedthrough removal, and also the distortion resulting from the detection nonlinearity for large values 

of motional oscillation amplitudes � and �.  

 

Fig. 4 – Typical waveforms at the AFE outputs and at the resistive bridge outputs when �(5 B 40V, 

and �(M � 36V, so that � � 90°, in the cases (a) )$/05 B )$/0M B 100mV, and (b) )$/05 B )$/0M B
1V. 

II-2-b Transduction 

From (7), one may determine the relation between the RMS value at the amplifier output, which is 

measured in our experiments, and the mechanical oscillation amplitude. To this end, the solution of (7) 

is calculated assuming the input �6I8 is harmonic, i.e. �6I8 B � sinΩI, and approximating the output 

)*+,5 with harmonic balance (20 harmonics are used). Then a simple model is fitted to infer � from 

the RMS value of )*+,5: 

� B n
:D�.PnA,  (8-a) 

o B 4 1h1g
pqr60stu<8

.R< . (8-b) 

with 0.8% accuracy up to 50% of the gap. In our setup, the ratio 3#/3� is measured to be equal to 35.  

With the same approach, one may also determine how the amplitude of the actuation force is related to 

that of the drive voltage. Two opposing effects result in a nearly linear relation between these two 

quantities. First of all, as a result of detection nonlinearity, )*+,5 and )*+,M become distorted at large 

oscillation amplitudes (see. Fig. 4-b). Consequently, the width of the pulses delivered to the resonators 

(which depends on when )*+,5 and )*+,M change signs) is a monotonically decreasing function of 

amplitude, going from 24.5% duty-cycle when � B � B 0.1, to 23% when � B � B 0.5. This 

phenomenon tends to make the drive less efficient at large oscillation amplitudes, since less energy per 

cycle is injected into the resonators. However, actuation nonlinearity tends to make electrostatic drive 

more efficient as the oscillation amplitude increases (ultimately leading to resonant pull-in [15]). Our 



simulations, which take these two opposing effects into account, show that the relation between the 

amplitude of the force acting on one resonator and its drive voltage is nearly linear and independent of 

oscillation amplitude, with a 3.5% worst-case error when � B � B 0.5. One may then neglect these 

two phenomena altogether and consider, for the purpose of fitting to experimental data, that both 

resonators are excited by 25% duty-cycle square waves, with peak value: 

�5,M � 2 � �5,M � 0vwx<,L
.R<,L .  (9) 

II-3 Characterization of nonlinear damping 
The presence of nonlinear damping in the resonators used in the present work was observed, but not 

fully characterized, in [14]. Here, this phenomenon is evidenced by the fact that, between Fig. 4-a and 

Fig. 4-b, the oscillation amplitude at the amplifier output increases by a factor which is much less than 

10, although the drive voltage goes from 100mV to 1V. One may precisely estimate the quadratic 

damping coefficients of the resonators through the relation between their oscillation amplitude and 

their excitation force. Indeed, when the resonators oscillate in quadrature, a first-harmonic, steady-

state analysis of (3) (see appendix B) yields: 

� 9 :;< 7
:
��5�=? B �5 √=z ,  � K :;L 7

:
��M�=N B �M √=z  (10) 

where �5 and �M are given by (9).  

 

Fig. 5 – Characterization of nonlinear damping. Experimental measurements (circles) and quadratic 

fits (full lines). The dashed line corresponds to what would be obtained with a linear model of 

damping.  

We represent in Fig. 5 the experimental curves of the �5/� and �M/� ratios obtained with �(5 B 40� 

and �(M B 36�, for drive voltages ranging between 50mV and 1V. For each point, the value of the 

oscillation amplitude is obtained from the measured RMS voltage through (8), and the value of the 

force is derived from (9). This figure confirms the quadratic dependence of the damping coefficient to 

the oscillation amplitude. The (inverse of the) quality factor of each resonator is given by the 

horizontal line.  
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Repeating this experiment for other values of �(5 and �(M shows that quality factors 	5 and 	M do not 

depend on bias voltage, but that coefficients �5 and �M do. This observation is consistent with the 

hypothesis that, in our MEMS devices, nonlinear damping results from internal resonance, as 

considered in [14].  

III Experimental sensitivity analysis 

III-1 Experimental protocol 
We are interested in verifying the consistency of the properties established in [10], and summed up in 

Appendix A, regarding the sensitivity to mismatch and the sensitivity to intrinsic noise of MILOs in 

the nonlinear regime. In this sub-section, we explain how these quantities may be experimentally 

assessed.  

III-1-a Sensitivity to mismatch 

Sensitivity to mismatch is straightforward to measure. This is done in two steps. First, for a given peak 

drive voltage )$/05 B )$/0M, and a given value of �(5, one adjusts �(M so that the two resonators 

oscillate in quadrature (� B 90°) – practically, this condition is obtained by finding the value of �(M 

for which the duty cycle of )!-.5 is equal to that of )!-.M. The corresponding mechanical oscillation 

amplitudes (� and �) and amplitude ratio � B �/� are estimated from the RMS values of )*+,5 and 

)*+,M with (8).  

Then, a stiffness variation is induced by changing the value of �(M by Y�(M (by an “infinitesimal” 

amount, about 1% in all of our experiments), with the corresponding change in � given by (5). The 

resulting phase difference variation Y� and amplitude variations Y� and Y� are measured.  

The sensitivity to mismatch can then be calculated by differentiating the results obtained in the two 

steps with respect to �. These two steps are repeated for different values of the drive voltage (ranging 

between 50mV and 1V) and of the bias voltage �(5 (from 25V to 40V).  

III-1-b Sensitivity to noise 

Sensitivity to noise is more tricky to determine. However, this quantity may be assessed by purely 

deterministic means. In our first harmonic analysis, the effect of thermomechanical noise in the system 

amounts to four independent force components (�ab{5, �ab{M, �{|}5, �{|}M) acting on the resonators 

(see appendices A and B). In particular, from (B-2), we see that a quasi-static variation Y�M of �M has 

the same impact on amplitude ratio � as �ab{M, and we find: 

~ �-��L~ B
:
z ��-�}�. (11) 

Furthermore, for large oscillation amplitudes (with respect to either  !"## or  $%&'), we also have 

~����L~ B
:
z ����}�. (12) 

Hence, the sensitivity to noise may be determined in a two-step process, as above, but this time the 

second step consists in changing the value of )$/0M by a small amount Y)$/0M (from 20mV to 50mV, 

as )$/0M changes from 100mV to 1V), with the corresponding change in driving force given by (9) 

Y�M B 2 � �M � Z0vwxL
.RL .  (13) 

III-1-c Model comparison 

All the model parameters are summed up in table 2. Except for 3#/3�, all the parameters are obtained 

by characterizing the resonators, as explained in section II: the value of [ is obtained by measuring the 



electrostatically-induced frequency shift, while damping related parameters are obtained by fitting 

parabolas to the �5/� vs. � and �M/� vs. � curves. Note that this last step requires 3#/3� to be known. 

The values of 	5,M and �5,M given in table 1 are those obtained for 3#/3� B 32.5. This value of 32.5 is 

within component tolerances of the nominal value (equal to 30) of 3#/3�, and gives a slightly better fit 

between the model and the experimental results, as shown in the following sections.  

Parameter 3#/3�	  [  	 � 

Unit no dim. VF= no dim. no dim. 

Condition    �(5 B 25V �(5 B 40V 

Resonator � 32.5 3.35 � 10FW 
19.5 � 10Q 11.7 � 10FQ 6.68 � 10FQ 

Resonator � 14.4 � 10Q 1.73 � 10FQ 2.66 � 10FQ 

Table 2 – Numerical values of model parameters.  

III-2 Results  
Experimental results obtained with the protocol described in the previous section are shown in Fig. 6. 

The results obtained with a quasi-static model of the fluctuations (continuous lines) are superposed to 

the experimental data (crosses and circles). In order to improve the readability of this experimental 

sensitivity analysis, the sensitivities to noise and to mismatch are represented versus the average 

oscillation amplitude  %0� B 6� 7 �8/2.  

 

Fig. 6 – Experimental (circles and crosses) and simulated (full lines) sensitivities of the MILO with 

different operating conditions. Blue corresponds to phase difference, red to amplitude ratio. Vertical 



dashed lines correspond to the average critical Duffing (magenta) and damping (green) amplitudes of 

the resonators. 

We can verify that there is a very good fit between the model and the experimental data. There is a 

quantitative fit for most curves over several orders of magnitude, except in the case of sensitivity to 

mismatch at �(5 B 25�, where the model systematically overestimates sensitivity by about 3dB. 

However, even in that case, the experimental and simulated results have highly similar trends. 

Thereby, the theoretical analysis of [10] is validated.  

The two sets of results are qualitatively different in the sense that, in the case �(5 B 25� (and �(M �
17�), the average critical Duffing amplitude is about twice as large as in the case �(5 B 40� (and 

�(M � 36�) - 11% of the gap, as opposed to 6% of the gap. On the other hand, the critical damping 

amplitude is relatively unchanged - 28% of the gap in the first case, and 26% in the second. Thus, in 

the case �(5 B 40�, there is a wider region in which nonlinear stiffening dominates, in which the 

sensitivity to force (and hence to intrinsic noise) of the phase-difference decreases at a much slower 

rate than its sensitivity to mismatch. In the same region, the sensitivity to force of the amplitude ratio 

decreases with  %0� much faster than that of the phase difference. Since the sensitivities to mismatch 

of these two quantities decrease at approximately the same rate, the FOMs of the different output 

metrics (extrapolated from our model) are quite different, depending on whether �(5 B 25V or �(5 B40V, as shown in Fig. 7.  

 

Fig. 7 – Extrapolated FOM of amplitude ratio (red) and of phase difference (blue), for �(5 B 25� (a) 

and �(5 B 40� (b) vs. oscillation amplitude. Vertical dashed lines correspond to the average critical 

Duffing (magenta) and damping (green) amplitudes of the resonators. The dotted lines represent the 

ratio of sensitivity to mismatch over sensitivity to force. 

Systematic errors may result from our overlooking the dependence on bias voltage of a system 

parameter: for example, the static deformation of the resonator beam (and consequently 3#/3�), which 

is bias voltage-dependent, is not accounted for. Moreover the expressions of the electrostatic force 

used in (1) and that of the motional current used in (7) are valid in the case of an initially straight 

clamped-clamped beam oscillating along its first eigenmode [15], whereas, in the present case, the 

beam has a pressure-induced initial deformation, which also influences the electrostatic softening 

coefficient. However, we do not have sufficient data to accurately account for these effects and must 

content ourselves with the current model. Measurement errors are of a different nature depending on 

whether the oscillation amplitude is small or large (the amplitude span of our experiment is from 

0.05% to 50% of the gap): at small amplitudes, the sensitivity to mismatch is large (on the order of 

14 � 10Q), making it difficult to manually tune �(M to obtain � B 90°. Furthermore, the sensitivity to 



driving force fluctuations (and more generally to noise) is also large, which results in unstable 

readings. At large amplitudes, both sensitivities are considerably reduced (by about one order of 

magnitude, concerning the sensitivity to mismatch), and are therefore more difficult to estimate 

because of the limited accuracy of the oscilloscope (MSO5204) used in these experiments. 

IV Spectral analysis  
In this section, we seek to validate the results established in [10] regarding the dynamic behavior of 

WCRs, through an analysis of the spectra of different output metrics. 

IV-1 Experimental protocol 
The spectra presented in this section are obtained by setting �(5 B 40�, and �(M � 36� so that the 

resonators oscillate in quadrature. Then 50 consecutive 4-second-long acquisitions of )*+,5 and 

)*+,M are taken with a high-resolution 2-channel digitizer (Alazar ATS660, 16-bit digitizer) at a 

sampling frequency of 500 kHz. For each acquisition, )*+,5= , )*+,M=  and )*+,5 � )*+,M are averaged 

with a sliding window, yielding an estimate of the fluctuations of � and � over time. Reduced-

variance spectra are then obtained by averaging the 50 periodograms resulting from each acquisition 

(Bartlett’s method).  

 

 

Fig. 8 – Experimental phase difference (a) and amplitude ratio (b) spectra, at three different drive 

amplitudes. Simulated spectra of phase difference (c) and amplitude ratio (d) accounting for bias 

voltage noise.   

IV-2 Results 
The power spectra of the fluctuations of � and � obtained at three oscillation amplitudes ( %0� 

varying from 0.26 to 0.46) are represented in Fig. 8-a and Fig. 8-b. The measured noise levels are 
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much larger than the thermomechanical noise floor or than our digitizer’s. They are consistent with the 

voltage fluctuations of the power supplies, which result, through �(5 and �(M, in additive 

measurement noise at the AFE outputs, and in a slow drift of � around 0. More precisely, assuming 

�(56I8 B �(5����� 7 Y�(56I8, equation (7) becomes:  

$
$@ 6)*+,58 7 )*+,5 � J .R<������

=
1g
1h

$5
$@ � :

6:F58GA
J 1g

1h
$Z.R<
$@ ,   (14) 

and (4-5) yield: 

Y�6I8 � J Q
=[�(5����� � Y�(56I8. (15) 

The superposition of these two effects can partly explain the measured spectra: measurement noise 

results in a white noise floor, while the signal transfer function (STF) of the output metrics – equations 

(36-38) in [10] – amplifies the variations of � around 0. The simulated spectra accounting for bias 

voltage fluctuations are shown in Fig. 8-c and 8-d. 

We find a rather good agreement between the experimental and simulated spectra of �. The level of 

the measured fluctuations corresponds to what is theoretically predicted when accounting only for bias 

voltage fluctuations. The same characteristic bump is found near the cutoff frequency, although it is a 

little less marked in the experimental spectra, and the value of the cutoff frequency increases with 

oscillation amplitude in the same proportions. At very low frequency offset, the experimental 

spectrum of � is dominated by flicker noise: this is only partly explained by bias voltage drift, which 

suggests that another phenomenon, such as intrinsic mechanical stiffness fluctuations [17] or quality 

factor fluctuations, may be at work.  

The comparison of the experimental and simulated spectra of � is more puzzling, in the sense that the 

resonance peak marking the cutoff frequency is much less marked in the experimental spectra than in 

theory. However, this may be a consequence of fluctuations of the cutoff frequency (resulting from the 

bias-voltage dependence of some of the system parameters, for example) over the time required for 

doing the 50 measurements. These fluctuations can probably not be considered infinitesimal (and may 

not fall into the framework of analysis of [10]), which may explain the spread-out peak in the 

spectrum of �. Finally, it is interesting to note that there is a quantitative fit between theory and 

experiment as far as flicker is concerned: thus, one can probably rule out mechanical stiffness 

fluctuations (which would affect equally both � and �) as the cause of the low frequency fluctuations 

of �.  

IV-3 Input-referred noise 
One may calculate the spectrum of the input-referred noise for a given output-metric by dividing the 

estimated spectrum of its fluctuations (Fig. 8-c for �, Fig. 8-d for �) by its signal transfer function  

���� or ���- (B-3). The results are shown in Fig. 9. Regardless of the oscillation amplitude, input-

referred noise is always smaller for � than for �. To determine whether nonlinear operation is 

interesting or not in the context of a given application, one may determine the power of input-referred 

noise over a given frequency bandwidth. For example, if we consider the [0,100Hz] bandwidth, we 

can see from Fig. 9 that there would indeed be a great interest in nonlinear operation, in particular for 

the amplitude ratio output metric: the power of input-referred noise is divided by 15 for �, and by 4 

for �, as )$/0 goes from 250mV to 1V. On the other hand, if we consider the [0,10Hz] bandwidth, 

then nonlinear operation only makes things worse: the power of input-referred noise is then multiplied 

by 4 for �, and by 1.1 for �, as )$/0 goes from 250mV to 1V. 



 

Fig. 9 – Input-referred noise (fluctuations of �) estimated from the spectra of Fig. 8-c and 8-d. 

V Conclusion 
This paper provides, for the first time, an experimental proof of several results postulated in [10] for 

nonlinear WCRs with a critical Duffing amplitude smaller than the critical damping amplitude 

( !"## <  $%&'). Using two matched resonators displaying such nonlinear behavior, we have 

verified:  

- the similar decrease in parametric sensitivity of � and � in WCRs operated above  !"##.  

- the improved robustness to drive-level fluctuations (and hence to intrinsic oscillator noise) of 

� between  !"## and  $%&'. 

- the amplitude-dependence of the bandwidth in which � and � are sensitive to intrinsic noise 

and to stiffness mismatch �. 

These experimental results were found to be in quantitative agreement with our simulations, which 

validates the analysis in [10].  

As mentioned in section I, sensor performance was not our primary concern. Still, the results presented 

in this paper may be analyzed in this respect. We have shown that, in the current setup, operating at a 

large oscillation amplitude results in a wider bandwidth for both � and �, and that the input-referred 

noise of both output metrics decreased with oscillation amplitude over a 100Hz bandwidth, but 

increased over a 10Hz bandwidth. Our calculations also showed � to have smaller input-referred noise 

than �. However, this should not be considered a definitive or a general result, but is probably quite 

specific to our resonators, with predominant damping nonlinearity, and to our circuit and 

instrumentation setup, with bias voltage fluctuations shadowing all other noises in the system.  

Finally, several questions remain unanswered, and require further investigation. First, the spread-out 

outlook of the peaks in the observed experimental spectra is unexplained, although some hypotheses 

were formulated as to this phenomenon. One may then refine the models in [10] to account for flicker, 

drift and finite fluctuations of the system parameters, for example by using a non-perturbed model 

such as (7) in [10] or multiple-scale analysis [18]. More practically, one may also try to reproduce the 

experiments in a carefully controlled environment, or with better-matched resonators (which would 

more efficiently reject common-mode variations).  

Another point that requires further study is the behavior of WCRs when damping nonlinearity 

dominates: first, as mentioned in [10], there does not seem to be a definitive theory linking 



thermomechanical noise to nonlinear damping. Decreasing (bias voltage) noise in our setup may then 

help us investigate this phenomenon. Alternatively, other resonators with increased damping, in 

particular MEMS resonators operated in ambient atmospheric pressure and subject to squeezed-film 

damping, may be better suited to this investigation. 
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Appendix A 
Here the main results from [10] are summed up, in the case of two nominally-identical resonators 

governed by the (non-dimensionalized) equations: 

61 7 � 7 �5�=8� 7 9 :;< 7 �5�=? $5$@ 7 $A5
$@A B �5 9�, $5$@ , �, $M$@? 7 �56I8, (A-1-a) 

C1 J � 7 �M�=E� 7 K :
;L 7 �M�=N $M$@ 7 $AM

$@A B �M 9�, $5$@ , �, $M$@? 7 �M6I8, (A-1-b) 

where I is time, � and � are the motional signals, with amplitudes � and � and phase difference �, �5 

and �M are the forces used for driving the resonators and coupling them, �5 and �M are independent 

random forces typically resulting from thermomechanical fluctuations (“intrinsic” noise sources), 	5,M	 
are the resonators’ quality factors, �5,M are nonlinear (Duffing) stiffness coefficients, �5,M ≥ 0 are 

nonlinear damping coefficients and � is (half) the relative stiffness mismatch one seeks to measure. It 

is shown in [10] that the properties of passively- or actively-coupled resonators are highly amplitude-

dependent. In the case of mutually injection-locked oscillators (MILOs), most relevant to the present 

paper, important “cutoff” amplitudes are the critical Duffing amplitude, defined as 

 !"## B � =
Q|�|;,  (A-2) 

and the critical damping amplitude as:  

 $%&' B =
��;  (A-3) 

when 	5,M B 	, �5,M B �, �5,M B �. The expressions of these threshold amplitudes in the case of 

mode-localized oscillators (MOLOs) are obtained by substituting |�| for 1/	 in (A-2) and (A-3), 

where � is the (non-dimensional) coupling stiffness of the resonators. With these definitions in mind, 

assuming the two resonators nominally oscillate at the same amplitude � B � B   when � B 0, the 

following properties hold: 

- if  ≫  !"## or  ≫  $%&', the parametric sensitivity to relative stiffness mismatch � of the 

amplitude ratio � B �/� and of the phase difference � - only relevant for MILOs - decrease 

as 1/ =. 

- if  $%&' ≫  ≫  !"## (dominant stiffness nonlinearity), at most one oscillation state is 

stable, depending on the sign of the Duffing parameter �, and on another system parameter: 

feedback phase � in the case of MILOs, coupling stiffness � in the case of MOLOs operating 

near the veering zone. Furthermore, 

o the sensitivity to intrinsic  noise of � decreases as	1/ Q. 

o the sensitivity to intrinsic noise of � decreases as 1/ . 



- if  ≫  $%&' (dominant damping nonlinearity), the sensitivity to intrinsic noise of � 

decreases as 1/ Q. 

These properties are limited to a finite bandwidth of quasi-static fluctuations, and an equally finite 

range of values of � close to � B 0. They are valid for MILOs and MOLOs indifferently, the only 

difference being the definition of the threshold amplitudes.  

Appendix B 
In the case of a system governed by (A-1), in which coupling is enforced through a digital MILO 

architecture (Fig. 1) with � B 45°, the slow dynamics of amplitudes �6I8, �6I8 and phase difference 

�6I8 are governed by:  

�� B J9 :;< 7
:
��5�=? �= 7 :

= 9�<z 9√== 7 sin 9z� 7 �?? 7 �ab{5? (B-1-a) 

�� B JK :;L 7
:
��M�=N �= 7 :

= 9
�L
z 9√== J sin 9z� J�?? 7 �ab{M? (B-1-b) 

�� B J9� 7 Q
� �5�= J Q

� �M�=? 7 :
=� 9�<z 9√== 7 cos 9z� 7 �?? 7 �{|}5? J :

=� 9
�L
z 9√== J cos 9z� J �?? 7

�{|}M? (B-1-b) 

where a dot denotes differentiation with respect to time, �5,M are the peak values of the binary valued 

force delivered to the resonators, and �ab{5,M, �{|}5,M are quadrature and in-phase random fluctuations. 

The steady-state values of �, � and � are found by solving (B-1) after cancelling out the time-

derivatives terms on the left-hand side and the random fluctuations. In the simplest case when 	5,M B
	, �5,M B �, �5,M B �, �5,M B � and � B 0, the steady-state verifies � B � B   and � B 90°. 
Perturbation of (B-1) around this steady-state yields  

Z��
� B J :

= 9:; 7 Q
�� =? Z�� J :

� 9:; 7 :
�� =? Y� 7 :

=� 9�ab{5 7 √=
z Y�5? (B-2-a) 

Z��
� B J :

= 9:; 7 Q
�� =? Z�� 7 :

� 9:; 7 :
�� =?Y� 7 :

=� 9�ab{M 7 √=
z Y�M? (B-2-b) 

Y�� B J Q
� � = 9Z�� J Z�

� ? J :
= 9:; 7 :

�� =?Y� J Y� 7 :
=� C�{|}5 J �{|}ME (B-2-c) 

where prefix Y denotes an infinitesimal perturbation of the system’s state and of parameters � and �5,M. 

The transfer functions between fluctuating parameters or noise and phase Y� or amplitude ratio Y� B
6Y� J Y�8/  are straightforward to derive from this set of linear ordinary differential equations, and 

quasistatic fluctuations of the system’s state are obtained by dropping time derivatives from (B-2) 

altogether. In particular, the expressions of the signal transfer functions between fluctuations of � and 

output metrics � or � are:  

���-6�8 B
�
A9��D����A?

'AD9��D�A��A?'D�A9��D����A?9�A9��DG���A?FG���A?
,  (B-3-a) 

����6�8 B J 'D�A9��DG���A?
'AD9��D�A��A?'D�A9��D����A?9�A9��DG���A?FG���A?

. (B-3-b) 
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