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Abstract

Inspired by Nisan’s characterization of noncommutative complexity (Nisan 1991), we study
different notions of nonnegative rank, associated complexity measures and their link with mono-
tone computations. In particular we answer negatively an open question of Nisan asking whether
nonnegative rank characterizes monotone noncommutative complexity for algebraic branching
programs. We also prove a rather tight lower bound for the computation of elementary sym-
metric polynomials by algebraic branching programs in the monotone setting or, equivalently,
in the homogeneous syntactically multilinear setting.

1 Introduction

Measures based on rank are one of the main tools to prove lower bounds in algebraic complexity
theory. The complexity of first-order partial derivatives is the key ingredient for the best lower
bound known for general circuits [2]. When looking at higher-order partial derivatives, one can
consider their rank: the rank of partial derivatives, and some variants, have been intensively used
to obtain lower bounds on restricted models [20, 21, 18]. Nisan [19] provided one of the earliest and
cleanest examples of such a measure: when computing a polynomial over noncommuting variables
by a so-called algebraic branching program, it gives an exact characterization of the complexity.1

To state this result more precisely, let us give here the definition of algebraic branching programs
used in [19].

Definition 1. An algebraic branching program (ABP) is a layered directed acyclic graph with a
source s and a sink t. The first layer contains only the source s, the last layer contains only the
sink t. Edges can only appear between vertices of successive layers and carry a weight which is a
linear form of the variables. The weight of a path from s to t is the product of the weights of its
edges. The (homogeneous) polynomial computed by the ABP is the sum of the weights of the paths
from s to t. The width of a layer is the number of vertices on that layer.

1It was noticed in [8] (see also [17]) that this result actually follows from an older characterization for word
series [11]. This characterization was also extended to tree series in [5], which can be applied to circuits.
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This definition makes sense both in the usual case of commuting variables and in the case of
noncommuting variables, over a free algebra, which we consider for the moment. For a noncom-
mutative homogeneous polynomial P of degree d over variables in X, define matrices Mi(P ), for
0 6 i 6 d: the rows of Mi(P ) are indexed by all possible monomials u over X of degree i, the
columns are indexed by all possible monomials v over X of degree d− i, and the coefficient (u, v) of
Mi(P ) is the coefficient of the monomial uv in P . We call this matrix the i-th Nisan matrix of P .
The characterization is then expressed by the following theorem.

Theorem 1 (Nisan [19], Fliess [11]). The size of a smallest ABP computing a noncommutative
polynomial P is the sum of the ranks of its Nisan matrices, i.e.,

∑d
i=0 rkMi(P ). More precisely,

the value rkMi(P ) is the width of the i-th layer in a smallest ABP computing P . It is also the
smallest possible width of the i-th layer in any ABP computing P .

Nisan also considers the case of monotone noncommutative computations. In this case Nisan
does not obtain a characterization of monotone noncommutative complexity, but a sufficient tool
for lower bounds, using the notion of nonnegative rank.

Definition 2. An ABP over an ordered field is called monotone if all coefficients of linear forms
on the edges are nonnegative.

Definition 3. The nonnegative rank of a nonnegative matrix M , rk+M , is the smallest integer r
such that M can be written as a sum of r rank-1 nonnegative matrices.

Proposition 1 (Nisan [19]). For a polynomial P with nonnegative coefficients, the value rk+Mi(P )
is the smallest possible width of the i-th layer in a monotone ABP computing P . The size of a
smallest monotone ABP computing P is therefore at least

∑d
i=0 rk+Mi(P ).

Nisan [19] leaves the tightness of the inequality in Proposition 1 as an open question: does
nonnegative rank also provide a characterization of monotone noncommutative complexity? One
of our main results is a negative answer to this question (Theorem 6).

Before that, we consider in Section 2 a more general notion of monotone computation, which we
call weakly monotone. Where monotonicity completely disallows cancellations, weak monotonicity
allows them as long as any monomial appearing in the computation also appears in the end result.
In other words, cancellations can be used to obtain the specific coefficients of a polynomial, but not
to produce and then cancel out monomials outside the support of the polynomial. We strengthen
Proposition 1 for weakly monotone noncommutative ABPs using a new rank measure. We then
obtain a separation showing that weakly monotone noncommutative arithmetic formulas can be
exponentially more powerful than monotone noncommutative ABPs. Thus weakly monotone lower
bounds are stronger than monotone lower bounds.

In Section 3 we prove Theorem 6, answering Nisan’s question, and more generally explore
the link between nonnegative rank measures and the size of monotone noncommutative algebraic
branching programs.

Finally, in Section 4 we focus on proving lower bounds for monotone commutative ABPs, build-
ing on ideas from the previous sections to develop new tools. Imposing monotonicity as a restriction
on arithmetic computations to prove lower bounds has a long history [22, 15], which often involves
hard polynomials and yields exponential lower bounds. We focus here on the elementary symmetric
polynomials en,k.
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While it is known that the elementary symmetric polynomials en,k require monotone, or even ho-
mogeneous multilinear, formulas of size kΩ(k)n [13], these can be efficiently computed: by arithmetic
circuits of size O(n log k) [2]; by depth-3 arithmetic formulas of size O(n2), using interpolation; by
monotone ABPs of size O(k(n− k)) by the following simple dynamic programming construction.

Apart from s and t, the ABP for en,k has layers indexed by 1 6 i 6 k−1; the i-th layer contains
n− k + 1 vertices ui,1, . . . , ui,n−k+1; vertex ui,j sends an edge of weight xi+` to vertex ui+1,` for all
2 6 i 6 k − 2 and j 6 ` 6 n− k + 1; s sends an edge of weight x` to u1,` and uk−1,` sends an edge
of weight xk+`−1 + · · ·+ xn to t for 1 6 ` 6 n− k+ 1. The monotone branching program obtained
this way has size (k − 1)(n− k + 1) + 2.
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The existence of efficient computations imply that our lower bound techniques must be very
precise. Surprisingly, there is also a very simple Ω(k(n − k + 1)) monotone lower bound in [16],
but in a model where edge weights can only be a scalar or a scalar times a variable, not linear
forms, which would only give a trivial lower bound in our setting. Our second main result is a
similarly quadratic lower bound for our model, and for weakly monotone computations, at the cost
of a significant increase in the complexity of the proof: we use a generalization of a combinatorial
problem known as Galvin’s problem.2 Our lower bound can be equivalently stated as applying to
homogeneous syntactically multilinear ABPs.

Let us add one remark on the definition of ABPs. This computation model is inherently
homogeneous and we only consider nonzero homogeneous polynomials. We could also consider
nonhomogeneous ABPs: these are directed acyclic graphs with a source and a sink, not necessarily
layered, with arcs labelled with affine forms. In the noncommutative case, when computing a homo-
geneous polynomial, one can show that there is always a minimal-size ABP which is homogeneous
and corresponds to Definition 1. We provide a proof sketch in Appendix A. This is also true in the
commutative case for weakly monotone computations. Hence we shall consider only homogeneous
branching programs.

Throughout the paper we use R in the case of an ordered field, but these results hold over any
ordered field. When the field is not ordered we denote it by K and assume it is of characteristic 0.

2 A rank measure for weakly monotone computations

2.1 Weakly monotone computations

As defined before, the weight of a path is the product of the weights of its edges, i.e., a product of
linear forms. Any of the monomials obtained when expanding completely this product, by choosing

2A different generalization of this combinatorial problem was recently used to prove almost quadratic lower bounds
on the size of syntactically multilinear circuits [1].
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one term in each linear form, is said to be produced along the path.

Definition 4. An ABP is called weakly monotone if any monomial produced along a path from
the source to the sink has a nonzero coefficient in the polynomial computed by this ABP.

Note that this notion of monotonicity makes sense both in the commutative and noncommu-
tative settings (Sections 2 and 3 deal with noncommutative computations, while we will use the
commutative case in Section 4). We now define a new measure for weakly monotone computations.
We will denote the support of a matrix M by suppM : it is the subset of the coordinates of M
which correspond to nonzero entries.

Definition 5. The weakly nonnegative rank of a matrix M , denoted by rkw M , is the smallest
number r such that there exist M1, . . . ,Mr of rank 1 (with entries of any sign) such that suppMi ⊆
suppM for all i and

∑r
i=1Mi = M .

The usual nonnegative rank of a matrix already plays a role in several areas. For instance, the
fact that the minimum number of facets of an extension of a polyhedron is equal to the nonnegative
rank of its so-called slack matrix. In another direction, for a 0, 1-matrix M , log(rkM) is a lower
bound on the communication complexity of the associated problem. The log-rank conjecture stipu-
lates that there is also a logO(1)(rkM) upper bound. This conjecture is known to be equivalent to
the fact that for any 0, 1-matrix M , log(rk+M) = logO(1)(rkM). The influence of communication
complexity will be felt here too, as it can be seen from the use of the support of the matrix in
the definition of weakly nonnegative rank. In fact, we will borrow a few more basic concepts from
communication complexity.

Definition 6. For a matrix M with rows indexed by a set I and columns indexed by a set J , a
combinatorial rectangle is a subset of I × J of the form A×B, with A ⊆ I and B ⊆ J .

A cover of a matrix M is a set of combinatorial rectangles, included in the support of M and
whose union is equal to the support of M . We define covM as the smallest size of a cover of M .

Proposition 2. We have covM 6 rkw M and rkM 6 rkw M . For a nonnegative matrix M ,
rkw M 6 rk+M .

Let us remark that we can have rkM < rkw M : this is the case for the following matrix [6], for
which rkR = 3 and covR = 4:

R =


1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

 .

The following proposition is the weak monotone version of Proposition 1.

Proposition 3. For a noncommutative polynomial P , the smallest size of the i-th layer of a weakly
monotone ABP computing P is equal to rkw Mi(P ). Hence the weakly monotone ABP size of P is
greater or equal to

∑
i rkw Mi(P ).

Proof. Let ` ∈ {1, . . . , d− 1} and let M = M`(P ), r = rkw M .
Consider a weakly monotone ABP computing P . Let s be the size of layer `. Cutting the ABP

at layer ` we get P =
∑s

i=1 LiRi. Let Ai be the matrix of the polynomial LiRi. The matrices
A1, . . . , As satisfy all the conditions to show that rkw M 6 s.
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Conversely, write M`(P ) = A1 + . . .+Ar where Ai are rank 1 matrices with suppAi ⊆ suppM .
Each Ai can be interpreted as a product of two polynomials LiRi. It is easy to design a weakly
monotone ABP with `-layer of size r computing the polynomials L1, . . . , Lr on the `-th layer.

So we have proved that for any `, the minimal size of the `-th layer of a weakly monotone ABP
computing P is equal to rkw M`(P ). The last inequality follows from the fact that the minimal size
of a weakly monotone ABP computing P is greater or equal to the sum of the minimal size of the
different layers.

2.2 Separation of rank measures

We show now that we can have rkw M < rk+M . In the following J is the matrix with all entries
equal to 1 and ‖·‖ is the infinite norm.

Proposition 4. Let M be a nonnegative matrix. For ε > 0 small enough, N = M + εJ satisfies
rkw N 6 rkM + 1 and rk+N > covM .

Proof. We have rkN 6 rkM + 1 because J is of rank 1, and rkN = rkw N since the support of N
is full. Hence rkw N 6 rkM + 1.

It remains to show the lower bound on r = rk+N . Write N = N1+. . .+Nr with Ni nonnegative
matrix of rank 1. Write Ni = aib

T
i with ai and bi nonnegative satisfying ‖ai‖ = ‖bi‖: this implies

that ‖ai‖, ‖bi‖ 6
√
‖N‖ 6 2

√
‖M‖ for ε small enough. Let ãi and b̃i be obtained from ai and bi by

putting to 0 all entries smaller or equal to
√
ε. Let Ñi = ãib̃

T
i . The support of Ñi is a combinatorial

rectangle. Moreover, supp Ñi ⊆ suppM since any nonzero entry of Ñi is greater than ε.
Let us show that suppM ⊆

⋃
i supp Ñi. Let Ñ = Ñ1 + . . . + Ñr. For any entry (x, y), we

have |Ni(x, y) − Ñi(x, y)| 6 2
√
ε
√
‖M‖ so ‖N − Ñ‖ 6 2r

√
ε‖M‖. This shows that ‖M − Ñ‖ 6

‖M −N‖+ ‖N − Ñ‖ 6 ε+ 2r
√
ε‖M‖. Hence ‖M − Ñ‖ is smaller than the smallest nonzero entry

of M for ε small enough. This proves that suppM is covered by
⋃r
i=1 supp Ñi.

We want to apply the previous proposition to a matrix with a large gap between rank and
covering bound. Such examples are known: the n × n matrix defined by Mi,j = (ai − aj)

2 for
distinct reals a1, . . . , an has rank 3 but covM = Ω(log n) [3]; the slack matrix of a generic polygon
also exhibits such a gap [10] (note that this matrix is not explicit).

We will build on a third construction to obtain an exponential separation between weakly
monotone formulas and monotone ABPs in the noncommutative setting. Let Un be the matrix
whose rows and columns are indexed by {0, 1}n and which is defined by Un(u, v) = (〈u, v〉 − 1)2,
where the scalar product is over R.

Theorem 2 ([7], see also [9]). It holds that rkUn = O(n2) and covUn = 2Ω(n).

Using Proposition 4, this theorem gives a matrix with an exponential gap between weakly
nonnegative rank and nonnegative rank.

Proposition 5. For ε > 0 small enough, rkw(Un + εJ) = O(n2) and rk+(Un + εJ) = 2Ω(n).

2.3 Separating noncommutative monotone and weakly monotone classes

Let us define a noncommutative polynomial over the variables {x0, x1}. For u ∈ {0, 1}n, let
xu = xu1 . . . xun and define P =

∑
u,v∈{0,1}n(〈u, v〉 − 1)2xuxv. This polynomial was used in [14] to

obtain the following separation.
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Theorem 3 ([14]). The noncommutative polynomial P defined above has formula size O(n3) but
monotone circuit size 2Ω(n).

As a consequence, we get a separation illustrating the difference between monotone and weakly
monotone computations.

Definition 7. A formula is called weakly monotone if any monomial produced by the computation
(before any possible cancellations) has a nonzero coefficient in the computed polynomial. More
formally, a formula is weakly monotone if any monomial produced by a parse tree is present in the
computed polynomial.

Theorem 4. For ε > 0 small enough, the noncommutative polynomial P + ε(x0 +x1)2n has weakly
monotone formula size O(n3) but requires monotone ABP size 2Ω(n).

Proof. Let Q = P + ε(x0 + x1)2n for some ε > 0 small enough. The polynomial P has formula size
O(n3) by the upper bound from Theorem 3. The polynomial ε(x0 + x1)2n has formula size O(n).
Since the support of Q is full, the formula obtained for Q by summing these two formulas is weakly
monotone.

The middle Nisan matrix of Q is Mn(Q) = Un + εJ so rk+Mn(Q) = 2Ω(n) by Proposition 5. It
follows from Proposition 1 that Q has monotone ABP size 2Ω(n).

3 Monotone noncommutative complexity vs monotone rank mea-
sures

This section is devoted to the comparison between nonnegative rank measures and the size of
monotone noncommutative algebraic branching programs, in particular Nisan’s question on the
tightness of the lower bound for monotone noncommutative ABPs. Let us start by a particular
case where the inequality is tight.

We work over a field K of characteristic zero. We say a vector v is a weakly monotone linear
combination of u1, . . . , up if there exist scalars λi for 1 6 i 6 p such that no cancellations occur:

v =
∑
i∈[1,p]

λiui with supp(v) =
⋃

i∈[1,p]
λi 6=0

supp(ui).

3.1 In the case of ranks at most 2

In the case where each Nisan matrix is of rank at most 2, we prove that an algebraic branching
program of minimal size can be chosen to be monotone (or weakly monotone). Since rkM 6 2
implies rkM = rkw M = rk+M , it means that the measures

∑
i rk+Mi(P ) and

∑
i rkw Mi(P ) do

characterize the monotone and weakly monotone ABP size in this case.

Lemma 1. If a homogeneous noncommutative polynomial P of degree d with nonnegative co-
efficients satisfies rkMi(P ) = 2 for all 0 < i < d, then there exists a monotone ABP of width 2
computing P . Hence the minimal size of a monotone ABP computing P is equal to

∑d
i=0 rk+Mi(P ).

Proof. For any i ∈ {1, . . . , d}, the matrix Mi(P ) is a matrix of size k × `, of nonnegative rank 2
and so also of rank 2.
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Claim 1. There exist Ui and Vi two columns of Mi(P ) which nonnegatively generate all columns
of Mi(P ).

Proof. Up to removing the all-zeros columns, we can assume all columns of Mi(P ) are nonzero.
The ` column vectors W1, . . . ,W` of Mi(P ) lie in a 2-dimensional vector space P of Rk. Let us
consider the vectors W1

‖W1‖1 , . . . ,
W`
‖W`‖1 . They are still in P, but, as they are nonnegative, they are

also in the affine hyperplane H def
= {X ∈ Rk |

∑
Xi = 1}. The intersection of P and H is an affine

line, so we can find Ui and Vi among the (Wj)16j6` such that for all j,
Wj

‖Wj‖ is in the closed affine

segment
[
Ui
‖Ui‖ ,

Vi
‖Vi‖

]
. As Ui and Vi are nonnegative, they nonnegatively generate all columns of

Mi(P ).

For i ∈ {1, . . . , d − 1}, let Q
(i)
1 and Q

(i)
2 be the polynomials corresponding to the columns Ui

and Vi. Let X be the set of variables of P , then

P (X) =
∑

m deg d−i−1
monomial

P (i+1)
m (X) ·m =

∑
m deg d−i−1

monomial

∑
v∈X

P (i)
vm(X) · vm.

So, each column of Mi+1(P ) can be obtained by P
(i+1)
m (X) =

∑
v∈X P

(i)
vm(X) · v, and so by a

monotone combination
∑

v∈X(αvQ
(i)
1 + βvQ

(i)
2 ) · v = Q

(i)
1

(∑
v∈X αvv

)
+ Q

(i)
2

(∑
v∈X αvv

)
. This

designs a monotone ABP of width 2 computing Q
(1)
i and Q

(2)
i on layer i for all i.

In order to prove the analog of Lemma 1 in the weakly monotone case, we will use several times
the following very simple observation.

Proposition 6. Let Ei be the i-th coordinate hyperplane of Kn. and E =
⋂
i∈I Ei for I ⊆ [n]. Let

v ∈ E, and u1, . . . , up ∈ Kn. Assume v =
∑p

j=1 λjuj is a weakly monotone linear combination.
Then for all j such that λj 6= 0, we have uj ∈ E.

In particular, if v 6= 0 is a weakly monotone linear combination v =
∑

j λjuj, then there exists
j0 such that λj0 6= 0 and uj0 ∈ E \ {0}.

Proof. For the first point, if λj 6= 0, then, by definition, supp(uj) ⊆ supp(v), which implies that
uj ∈ E . The second point follows directly by noticing that if v 6= 0, then at least one of the λj has
to be nonzero.

Lemma 2. If P is a homogeneous noncommutative polynomial of degree d such that rkMi(P ) = 2
for all 0 < i < d, there exists a weakly monotone ABP of width 2 computing P . Hence the minimal
size of a weakly monotone ABP computing P is equal to

∑d
i=0 rkw Mi(P ).

Proof. For any i ∈ {1, . . . , d}, the matrix Mi(P ) is a matrix of size k × `, of nonnegative rank 2
and so also of rank 2.

Claim 2. There exist Ui and Vi two columns of Mi(P ) which nonnegatively generate all columns
of Mi(P ).

Proof. Up to removing the all-zeros columns, we can assume all columns of Mi(P ) are nonzero.
The ` column vectors W1, . . . ,W` of Mi(P ) lie in a 2-dimensional vector space P of Rk. Let us
consider the vectors W1

‖W1‖1 , . . . ,
W`
‖W`‖1 . They are still in P, but, as they are nonnegative, they are
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also in the affine hyperplane H def
= {X ∈ Rk |

∑
Xi = 1}. The intersection of P and H is an affine

line, so we can find Ui and Vi among the (Wj)16j6` such that for all j,
Wj

‖Wj‖ is in the closed affine

segment
[
Ui
‖Ui‖ ,

Vi
‖Vi‖

]
. As Ui and Vi are nonnegative, they nonnegatively generate all columns of

Mi(P ).

For i ∈ {1, . . . , d − 1}, let Q
(i)
1 and Q

(i)
2 be the polynomials corresponding to the columns Ui

and Vi. Let X be the set of variables of P , then

P (X) =
∑

m deg d−i−1
monomial

P (i+1)
m (X) ·m =

∑
m deg d−i−1

monomial

∑
v∈X

P (i)
vm(X) · vm.

So, each column of Mi+1(P ) can be obtained by P
(i+1)
m (X) =

∑
v∈X P

(i)
vm(X) · v, and so by a

monotone combination
∑

v∈X(αvQ
(i)
1 + βvQ

(i)
2 ) · v = Q

(i)
1

(∑
v∈X αvv

)
+ Q

(i)
2

(∑
v∈X αvv

)
. This

designs a monotone ABP of width 2 computing Q
(1)
i and Q

(2)
i on layer i for all i.

Then we can easily conclude:

Theorem 5. Let P be a noncommutative polynomial, homogeneous of degree d > 0, such that
rkMi(P ) 6 2 for all i. Then the minimal size of a weakly monotone ABP computing P is equal to∑d

i=0 rkw Mi(P ). Moreover, if P is nonnegative, the minimal size of a monotone ABP computing

P is equal to
∑d

i=0 rk+Mi(P ).

Proof. Assume P is nonnegative homogeneous of degree d > 0. We prove the second point by
induction on d. If d = 1 the polynomial P is linear with nonnegative coefficients, P 6= 0, and thus
rk+M0(P ) + rk+M1(P ) = 2, which is the size of a minimal monotone ABP. Assume now that
d > 1. If rkMi(P ) = 2 for all 0 < i < d, then the minimal size of a monotone ABP computing P is
equal to

∑d
i=0 rk+Mi(P ) by Lemma 1. Otherwise, there exists 0 < i < d such that rk+Mi(P ) = 1.

It means that P = QR with Q and R homogeneous of degree i and d − i. By induction the
minimal size of a monotone ABP computing Q is equal to

∑d
i=0 rk+Mi(Q) and similarly for R.

The conclusion follows easily for P .
The proof of the first point is analogous, using Lemma 2.

3.2 Separation of monotone rank measure and ABP size

We now prove a separation between the sum-of-ranks measure and the minimal noncommutative
ABP size, both in the monotone and in the weakly monotone cases.

If X = X1 ] . . . ]Xd is a partition of the set of variables, a noncommutative polynomial f is
called ordered over the family X1, . . . , Xd if it is homogeneous of degree d and if each monomial m
from f is of the form v1v2 · · · vd, where vi ∈ Xi for each i.

Lemma 3. There exists a noncommutative ordered degree 3 polynomial H with nonnegative coeffi-
cients in R over the set of variables (X,Y, Z) with |X| = 4, |Y | = 2, |Z| = 4, such that rk+Mi(H) =
rkw Mi(H) = rkMi(H) = 3 for i ∈ {1, 2}, so that

∑3
i=0 rk+Mi(H) =

∑3
i=0 rkw Mi(H) = 8, but the

minimal size of a monotone ABP and of a weakly monotone ABP is 9.
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Proof. Define the vectors

A =


1
0
0
1

 , B =


0
1
1
0

 , C =


1
0
1
0

 , D =


0
1
0
1


(they correspond to the columns of the matrix R of Section 2). Then, rk(A,B,C,D) = 3 and
rkw(A,B,C,D) = 4, since cov(A,B,C,D) = 4. Define the matrices M ∈ R4×8

>0 and N ∈ R8×4
>0 :

M
def
=
(
A B A+C

2
B+C

2 C C C+D
2

C+D
2

)
and

N
def
=

(
A B A+C

2
B+C

2

C C C+D
2

C+D
2

)
.

As C+D
2 = A+B

2 , the columns of M are monotone linear combinations of A, B and C. Moreover,
the columns of N are monotone linear combinations of(

A
C

)
,

(
B
C

)
and

(
C
D

)
.

Hence, rk+M = rk+N = 3. This shows that rkw M = rkw N = 3.
Let X = {x1, x2, x3, x4}, Y = {y1, y2} and Z = {z1, z2, z3, z4}. We consider the ordered

polynomial H ∈ R>0[X,Y, Z]:

H
def
= x1y1z1 + x4y1z1 + x2y1z2 + x3y1z2 + x1y1z3 +

1

2
x3y1z3 +

1

2
x4y1z3 +

1

2
x1y1z4

+
1

2
x2y1z4 + x3y1z4 + x1y2z1 + x3y2z1 + x1y2z2 + x3y2z2 +

1

2
x1y2z3 +

1

2
x2y2z3

+
1

2
x3y2z3 +

1

2
x4y2z3 +

1

2
x1y2z4 +

1

2
x2y2z4 +

1

2
x3y2z4 +

1

2
x4y2z4.

One can verify than the middle Nisan matrices of H are M1(H) = M and M2(H) = N .
Assume that there exists a weakly monotone noncommutative homogeneous ABP of size 8 =∑

rkw Mi(H) computing H. It means that the ABP has exactly rkw Mi nodes at layer i for
0 6 i 6 3. In particular, such an ABP has three nodes at layer 1, each one computing a polynomial

P
(1)
1 (X), P

(1)
2 (X) and P

(1)
3 (X) and has also three nodes at layer 2 which compute the polynomials

P
(2)
1 (X,Y ), P

(2)
2 (X,Y ) and P

(2)
3 (X,Y ). The goal is to show that these triplets of polynomials

are precisely defined and there is no way to link them together in a weakly monotone ABP. By
definition of the Nisan matrix, we can see columns of M as polynomials in R[X] and columns of N
as polynomials in R[X,Y ].

Claim 3. The polynomials P
(1)
1 , P

(1)
2 and P

(1)
3 weakly monotonically generate the columns of M

and the polynomials P
(2)
1 , P

(2)
2 and P

(2)
3 weakly monotonically generate the columns of N .

Proof. Let us show the result at layer 1, the case of layer 2 is symmetrical. Consider a column
C of the first Nisan matrix: say it corresponds to the coefficient of yjzk in H. If we instantiate
the variables yj and zk to 1 and the other variables from Y ∪ Z to 0 in the ABP, we get C
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as a linear combination of columns representing P
(1)
1 (X), P

(1)
2 (X) and P

(1)
3 (X). More precisely,

C =
∑3

s=1 λsP
(1)
s where λs 6= 0 if and only if we can read the monomial yjzk between the node

corresponding to P
(1)
s (X) and the output of the ABP.

It remains to show that this linear combination C =
∑3

s=1 λsP
(1)
s is weakly monotone. Assume

this is not, it means for some i the coefficient of xi is 0 in C but there exists s such that λs 6= 0

and the coefficient of xi in P
(1)
s is different to 0. It means that the coefficient of xiyjzk is 0 in H

but there is a path in the ABP with nonzero coefficient for this monomial (otherwise the scalar in

front of P
(1)
s (X) would be 0). It contradicts the fact that the ABP is weakly monotone.

Claim 4. If three vectors U , V and W weakly monotonically generate the family (A,B,C) then
(up-to permuting the names of U , V and W ), U ∈ RA,V ∈ RB and W ∈ RC.

Proof. As rk(A,B,C) = 3, we can consider the vector-space F generated by {A,B,C}, namely
F = {T ∈ R4 | t1 + t2 − t3 − t4 = 0}. So the vectors U , V and W must form a basis of F and so,
have to lie in F . For 1 6 i 6 4, let Ei be the i-th coordinate hyperplane of R4.

Notice that RA = F∩E2∩E3. By Proposition 6, since A is a weakly monotone linear combination
of U, V,W , (at least) one of the vectors {U, V,W} must belong to E2∩E3. Since this vector lies also
in F , it is in RA.

In the same way, since RB = F ∩ E1 ∩ E4 and RC = F ∩ E2 ∩ E4, one vector of B must belong
to RB and one must belong to RC.

Since RA,RB,RC are 3 distinct one-dimensional linear subspaces, each one of these spaces has
to contain one of the vectors U, V,W .

Claim 5. If three vectors Q, R and S weakly monotonically generate the columns of N then, up to
permuting the names of Q, R and S, Q ∈ R

(
A
C

)
, R ∈ R

(
B
C

)
, S ∈ R

(
C
D

)
.

Proof. Let us define B = {Q,R, S}. We can easily see that the columns of N lie in the vector space
given by the intersection of the three hyperplanes

F1 = {T ∈ R8 | t1 + t2 = t3 + t4},
F2 = {T ∈ R8 | t5 + t6 = t7 + t8},

F3 =

T ∈ R8 |
4∑
i=1

ti =
8∑
j=5

tj

 .

As rk(Q,R, S) = rkN , the vectors Q, R and S are in F1 ∩ F2 ∩ F3.
For 1 6 i 6 8, we denote by Ei the i-th coordinate hyperplane of R8. Looking at the two first

columns of N we can notice that

R

(
A
C

)
= F1 ∩ F2 ∩ F3 ∩ E2 ∩ E3 ∩ E6 ∩ E8

and

R

(
B
C

)
= F1 ∩ F2 ∩ F3 ∩ E1 ∩ E4 ∩ E6 ∩ E8

10



are two distinct one-dimensional spaces of R8. By Proposition 6, there is at least one vector of B
(let us suppose this is Q) such that Q = q

(
A
C

)
and at least one other vector of B (assume this is

R) such that R = r
(
B
C

)
.

Finally we need to identify the last vector S. For that, we decompose S =
(
S1
S2

)
where S1 is the

projection of S on its first four coordinates and S2 the projection on the last four. Now, we know that
B weakly monotonically generates the last two columns of N . So there exist a1, a2, a3, b1, b2, b3 ∈ R
such that:

a1q

(
A
C

)
+ a2r

(
B
C

)
+ a3

(
S1

S2

)
=

(
A+C

2
C+D

2

)
and

b1q

(
A
C

)
+ b2r

(
B
C

)
+ b3

(
S1

S2

)
=

(
B+C

2
C+D

2

)
.

By Proposition 6, as

(
A+C

2
C+D

2

)
∈ E2 and

(
B+C

2
C+D

2

)
∈ E4, we know that a2 = b1 = 0. Moreover, as A

and (A + C) are not colinear, it means that S1 belongs to the plane vect(A,A + C) (by the way,
this space is inside E2). Similarly, S1 ∈ vect(B,B + C). As B /∈ E2, these two planes are distinct,
so the intersection is of dimension at most 1. Moreover, vect(C) is in the intersection, and so,
S1 ∈ vect(C). There exists s 6= 0 such that S1 = sC. As a1qA + a3sC = A+C

2 , it implies that

a1q = a3s = 1
2 . Then, we have C

2 + S2
2s = C+D

2 , i.e., S2 = sD.

Consequently, by Claim 3 and Claim 5, one node at layer 2 computes the polynomial whose
matrix is s

(
C
D

)
(with s 6= 0). By instantiating y1 to 0 and y2 to 1/s, this node computes exactly

the polynomial corresponding to D as a weakly monotone linear combination of the nodes at layer
1. By Claim 4, the nodes at layer 1 are polynomials associated to A, B and C (up to scalar
multiplication). This would imply that rkw(A,B,C,D) = 3, which is false. Hence, there does not
exist a weakly monotone ABP of size 8.

To complete the proof, we show there is a monotone ABP of size 9 computing H. There are
two natural monotone ABPs of size 9, let us describe one of them. One can compute the four
polynomials associated to A, B, C and D at the first layer. It gives the following monotone ABP
of size 9:

H =
1

2

(
x1 + x4 x2 + x3 x1 + x3 x2 + x4

)
y1 0 0
0 y1 0
y2 y2 y1

0 0 y2


2z1 + z3

2z2 + z4

z3 + z4

 .

Theorem 6. There exists a noncommutative homogeneous degree 3 polynomial P over 4 variables
such that rk+Mi(P ) = rkw Mi(P ) = rkMi(P ) = 3 for i ∈ {1, 2}, so that

∑3
i=0 rk+Mi(P ) =∑3

i=0 rkw Mi(P ) = 8, but the minimal size of a weakly monotone or monotone ABP computing P
is 9.

Proof. Consider the noncommutative polynomial P = H(x1, x2, x3, x4, x1, x2, x1, x2, x3, x4). As
H is ordered, and as the previous substitution follows this order, it is injective over the set of
monomials which appear in H, that is to say, if m1 and m2 are two monomials from H which give
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the same monomial in P , then m1 = m2. It directly implies that the substitution establishes a
bijection between the set of monomials which appear in H and the ones which appear in P . We
will say that this substitution is faithful.

Any ABP A which computes the polynomial H can be transformed into an ABP B which
computes P with layers of same size by a direct substitution of the variables. Moreover, if A
is monotone, then B is immediately monotone. Then, if A is weakly monotone, the faithfulness
property implies that B is also weakly monotone.

In the other direction, if in a weakly monotone noncommutative ABP A computing P we replace
the variables x1 and x2 in the second layer by y1 and y2 and the variables x1, x2, x3 and x4 in
the third layer by z1, z2, z3 and z4, then we get a new ABP B which computes the polynomial
H(x1, x2, x3, x4, y1, y2, z1, z2, z3, z4). The fact that this transformation preserves the monotonicity
is still immediate. The faithfulness property implies it also preserves the weak monotonicity. So,
the theorem follows from Lemma 3.

Corollary 1 (Gap increasing with the degree and the number of variables). Let P be the polynomial
defined in Theorem 6. Let m,n > 1. Let X1, . . . , Xn be n sets of distinct variables, with each set
of size 4. Let Q(X1, . . . , Xn) =

∑n
j=1 P

m(Xj). This is a polynomial of degree 3m in 4n variables

such that
∑3m

i=0 rk+Mi(Q) =
∑3m

i=0 rkw Mi(Q) = 7mn − n + 2 but the minimal size of a monotone
or weakly monotone ABP for it is equal to 8mn− n+ 2.

Proof. Let us first consider the case n = 1. From Theorem 6, one can easily checked that
rkMi(P

m(X1)) = 1 for i multiple of 3 and rkMi(P
m(X1)) = rk+Mi(P

m(X1)) = 3 otherwise,
and that a minimal (weakly) monotone ABP computing Pm(X1) has 8m+ 1 nodes.

Consider a weakly monotone ABP for Q. Assume there is an internal node α and two distinct
indices k and k′ such that α depends on at least one variable of Xk and one variable of Xk′ .
Consequently, one path of the ABP produces a monomial which contains both a variable in Xk and
a variable not in Xk. Since Q =

∑n
j=1 P

m(Xj), a given monomial in Q can only contain variables
coming from a single Xk. The above statement thus contradicts the fact that the ABP is weakly
monotone. Hence, we can partition the internal nodes of the ABP into n parts, each one related
to one variable set Xj . As mentioned earlier, a minimal weakly monotone ABP for Pm(Xj) has
8m− 1 internal nodes. The minimal size of a weakly monotone ABP is therefore 8mn−n+ 2. The
same is true of a monotone ABP computing Q.

Let us compute the sum of ranks for Q. If 0 < i < 3m, the i-th Nisan matrix of Q is block-
diagonal with n blocks, where the j-th block corresponds to the i-th Nisan matrix of Pm(Xj). As
the nonnegative rank of a block-diagonal matrix is equal to the the sum of the nonnegative ranks
of its blocks, rkMi(Q) = rk+Mi(Q) = n for i ∈ {3, 6, . . . , 3m−3} and rkMi(Q) = rk+Mi(Q) = 3n
for i ≡ 1, 2 mod 3. Summing over the different layers we get that the sum-of-ranks measure for
Q, both for usual rank and nonnegative rank, and thus for weakly nonnegative rank, is equal to
7mn− n+ 2.

An upper bound on the size of a monotone ABP computing a homogeneous degree d polynomial
P is obtained by summing, for each ` ∈ {0, . . . , d} the minimal number of rows extracted from
M`(P ) whose cone contains all other columns of M`(P ). The example above shows that this is not
a characterization of monotone size: for the polynomial H built in Lemma 3, it is needed to extract
4 rows in both M1(H) and M2(H). The same remark applies in the weakly monotone setting
(about the minimum number of extracted rows which weakly monotonically generate all the rows).
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4 Lower bounds for monotone commutative ABPs

4.1 Lower bound tools for monotone and weakly monotone ABPs

Consider a homogeneous degree d commutative polynomial P . For ` ∈ {0, . . . , d}, we define the
set M`(P ) of matrices, whose rows are indexed by commutative degree-` monomials and whose
columns indexed by degree-(d− `) commutative monomials. A matrix M belongs to M`(P ) if:

(a) For any degree d commutative monomial m such that m does not appear in P and any
(m1,m2) satisfying m = m1m2, m1 of degree ` and m2 of degree d− `, we have Mm1,m2 = 0;

(b) For any other degree d commutative monomial m,
∑

m1m2=mMm1,m2 is equal to the coefficient
of m in P .

For a matrix M whose rows and columns are indexed by noncommutative monomials, we define
M com the matrix obtained by summing rows and columns indexed by the same commutative mono-
mial.

Proposition 7. A homogeneous degree-d noncommutative polynomial Q computes commutatively P
without cancelling monomials if and only if M`(Q)com ∈M`(P ) for all ` ∈ {0, . . . , d}.

Proof. The polynomial Q computes commutatively P if and only if, for each `, the matrix M :=
M`(Q)com satisfies the following: for any degree d commutative monomial m,

∑
m1m2=mMm1,m2 is

equal to the coefficient of m in P .
The polynomial Q does not cancel monomials if and only if, for all monomial m not appearing

in P and for all decomposition m = m1m2, there is no noncommutative monomial m′ = m′1m
′
2 in

Q such that m′i computes commutatively mi for i ∈ {1, 2}.
Together, these two statements prove the proposition.

For a homogeneous degree d polynomial P and ` ∈ {0, . . . , d} consider the support matrix S`(P )
indexed by degree-` commutative monomials on the rows, degree-(d−`) commutative monomials on
the column, such that S`(P )m1,m2 = 1 if the coefficient of m1m2 in P is nonzero and S`(P )m1,m2 = 0
otherwise.

Definition 8. For M,S two matrices of the same size we define rkw(M,S) to be the smallest r such
that there exist rank 1 matrices M1, . . . ,Mr such that supp(Mi) ⊆ supp(S) and M =

∑r
i=1Mi.

Notice that rkw M , defined in Section 2, is nothing but rkw(M,M).

Theorem 7. The size of a monotone ABP computing a homogeneous commutative polynomial P
of degree d is at least

∑d
`=0 min{rk+M | M ∈ M`(P ), M > 0}. If the ABP is weakly monotone

the bound becomes
∑d

`=0 min{rkw(M,S`(P )) | M ∈M`(P )}.

Proof. Let ` ∈ {1, . . . , d − 1}. Consider an ABP computing P with minimal number of nodes at
level `: say it is w. Cutting this ABP at layer ` gives a decomposition P =

∑w
i=1QiRi. For

i ∈ {1, . . . , w} let Mi be the matrix of QiRi. All matrices Mi are of rank 1 and we have
∑w

i=1Mi ∈
M`(P ). If the ABP is monotone, the matrices Mi are nonnegative and we get min{rk+M | M ∈
M`(P ), M > 0} 6 w. If the ABP is weakly monotone, we have supp(Mi) ⊆ supp(S`(P )). Hence
min{rkw(M,S`(P )) | M ∈M`(P )} 6 w.
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For two same-sized matrices M,S, let cov(M,S) be the smallest number of combinatorial rect-
angles included in the support of S and whose union covers the support of M .

Proposition 8. cov(M,S) 6 rkw(M,S).

Proof. Let r = rkw(M,S) and write M =
∑r

i=1Mi with Mi of rank 1, supp(Mi) ⊆ supp(S). We
have supp(M) ⊆

⋃r
i=1 supp(Mi): this shows that cov(M,S) 6 r.

Corollary 2. Any weakly monotone ABP computing P has size greater or equal to

d∑
`=0

min{cov(M,S`(P )) | M ∈M`(P )}.

4.2 Application to the elementary symmetric polynomials

For n positive integer we write [n] = {1, . . . , n}. For 0 6 k 6 n, let en,k be the elementary
symmetric polynomial of degree k over the variables x1, . . . , xn: en,k =

∑
I∈([n]

k )
∏
i∈I xi. Notice

that Sj(en,k) is exactly the disjointness matrix Dn,j,k−j with rows indexed by elements of
(

[n]
j

)
and

columns indexed by elements of
( [n]
k−j
)
, and whose entry in row A and column B is 1 if A ∩ B = ∅

and 0 otherwise.
To get lower bounds for en,k using Corollary 2 we need to show that, for enough values of j and

for any M ∈Mj(en,k), cov(M,Dn,j,k−j) is large.

Proposition 9. For n, j, k fixed, assume cov(M,Dn,j,k−j) 6 m for some M ∈ Mj(en,k). Then
there exists A1, . . . , Am ⊆ [n] with the following property:

For all B ∈
(

[n]

k

)
, there is i ∈ {1, . . . ,m} such that |Ai ∩B| = j. (1)

Proof. Let M ∈ Mj(en,k). Assume U1 × V1, . . . , Um × Vm is a set of combinatorial rectangles

from
(

[n]
j

)
×
( [n]
k−j
)

included in the support of Dn,j,k−j and covering suppM . Notice that such a

combinatorial rectangle U × V is included in the support of Dn,j,k−j if and only if
(⋃

u∈U u
)
∩(⋃

v∈V v
)

= ∅. For i ∈ {1, . . . ,m}, let Ai =
⋃
u∈Ui

u. From the previous remark the set of

combinatorial rectangles R1, . . . , Rm defined by Ri =
(
Ai
j

)
×
([n]\Ai

k−j
)

is included in the support of
Dn,j,k−j and covers suppM .

Let us show that the family {A1, . . . , Am} satisfies Equation (1). Let B ∈
([n]
k

)
. The monomial∏

i∈B xi appears in en,k so one non-zero entry of M is of the form (I, J) with I ∈
(

[n]
j

)
, J ∈

( [n]
k−j
)

and I ∪ J = B. Therefore (I, J) ∈ Ri for some i ∈ {1, . . . ,m}, i.e. |Ai ∩B| = |I| = j.

We will now relate our lower bound endeavor to a combinatorial question known as Galvin’s
problem: for n a multiple of 4, prove a lower bound on the size m of a family {A1, . . . , Am} ⊆

( [n]
n/2

)
such that for any B ∈

( [n]
n/2

)
, there exists i such that |Ai ∩ B| = n/4. Proving a lower bound

on a family {A1, . . . , Am} satisfying Equation (1) for the parameters k = n/2 and j = n/4 is a
generalization of Galvin’s problem because the sets Ai can be of arbitrary size, instead of n/2 in
the original problem.
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We first give a lower bound for the middle elementary symmetric polynomial. The argument
is similar to the solution of Galvin’s original problem presented in [12, Theorem 11.1], which we
reproduce here for completeness. It is based on the following result, restricted here to the case of
codes over an alphabet with 2 elements (we denote by ∆ the symmetric difference between two
sets):

Theorem 8 ([12], Theorem 1.10). Suppose 0 < δ < 1
2 is given. Then there exists ε > 0 such that

for any d even satisfying δn < d < (1 − δ)n, any family of distinct subsets C1, . . . , Cm ⊆ [n] such
that, for all i 6= j, |Ci∆Cj | 6= d, has size m 6 (2− ε)n.

Lemma 4. There exists α > 0 such that for n ∈ 4N \ {0}, k = n/2 and j odd, any family
{A1, . . . , Am} satisfying Equation (1) has size m > αn.

Proof. Assume there exists A1, . . . , Am ⊆ [n] such that F = {A1, . . . , Am} satisfies Equation (1).
Let V be the subspace of Fn2 spanned by the characteristic vectors of the elements of F . By

assumption, for all B ∈
( [n]
n/2

)
, there exists F ∈ F such that |B ∩ F | = j; this means that

〈χ(B), χ(F )〉 = 1 6= 0 because j is odd. Hence V ⊥ contains no vector of weight n/2. Because
V ⊥ is a vector space, it implies that for any C,D ⊆ [n] such that χ(C), χ(D) ∈ V ⊥, |C∆D| 6= n/2.

By Theorem 8, |V ⊥| 6 (2− ε)n for some constant ε > 0. This means that dimV ⊥ 6 (1− α)n
for some α > 0. It follows that m = |F| > dimV > αn.

Lemma 5. For n ∈ 4N, every weakly monotone ABP computing en,n/2 has size Ω(n2).

Proof. There exists α > 0 such that for n ∈ 4N, k = n/2 and j odd, any family {A1, . . . , Am}
satisfying Equation (1) has size m > αn by Lemma 4. It follows from Proposition 9 that for all
M ∈Mj(en,n/2), cov(M,Dn,j,n/2−j) > αn. The lower bound is obtained by Corollary 2.

From the simple observation en,k(x1, . . . , xm, 0, . . . , 0) = em,k(x1, . . . , xm), Lemma 5 yields
quadratic lower bounds on the size of weakly monotone ABPs computing en,k for δn 6 k 6 n/2 for
a fixed δ > 0. However we need to be more careful to get a quadratic lower bound for e.g. en,2n/3.
Indeed the simple reduction

en,k(x1, . . . , xn) =
n∏
i=1

xi · en,n−k
(

1

x1
, . . . ,

1

xn

)
uses divisions, which are not allowed in our model and would cost too much to remove.

In an ABP, the formal degree fdegt(α) of a node α with respect to a variable t is defined as the
maximum degree in t of the polynomial computed along a path from the source to α, which is also
the maximal degree in t of a monomial produced along a path from the source to α. By definition,
the formal degree of the source is 0. Let us denote by α̂ the polynomial computed at the node α.
Remark that fdegt(α) > degt(α̂). The formal degree in t of an ABP is the formal degree in t of its
output.

Let us show now that we can always extract the part of maximal formal degree without changing
the size of an ABP. We denote by [tk]f the coefficient of the homogeneous component of f of degree
k in t.

Lemma 6. Let A be an ABP of size s and of formal degree k in the variable t computing a
polynomial f . Then there exists A′ an ABP of size at most s such that A′ computes [tk]f .

Moreover, if A is weakly monotone, then it is also the case for A′.
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Proof. We show by induction that we can construct A′ such that for every node α in A, there is α′

in A′ which computes the coefficient of the homogeneous part of α̂ of degree fdeg(α). That is, α′

computes [tfdeg(α)]α̂.
The result is immediate for an ABP with only one node since it computes 0. Let us consider

a node α = `1β1 + . . . + `mβm where β1, . . . , βm are predecessors of the node α in A and where
`1, . . . , `m are linear forms. Let us denote by I and J the subsets of indices:

I = {i ∈ [m] | fdeg(βi) + 1 = fdeg(α) and [t]`i 6= 0}

and
J = {i ∈ [m] | fdeg(βi) = fdeg(α) and [t]`i = 0}.

Then,

[tfdeg(α)]α̂ =
∑
i∈I

[tfdeg(α)]`iβ̂i +
∑
i∈J

[tfdeg(α)]`iβ̂i

=
∑
i∈I

([t]`i) [tfdeg(β)]β̂i +
∑
i∈J

`i[t
fdeg(β)]β̂i.

So we just have to define

α′
def
=
∑
i∈I

([t]`i)β
′
i +
∑
i∈J

`iβ
′
i.

The second point is a consequence of the fact that if some monomial m cancels in A′, the monomial
tkm cancels in A.

Lemma 7. If there is a weakly monotone ABP of size s computing the polynomial en,p, then for all
q 6 p, there is a weakly monotone ABP of size at most s which computes the polynomial en−q,p−q.

Proof. Let us replace the variables xn−q+1, . . . , xn in the weakly monotone ABP A computing en,k
by the variable t. As the monomial x1x2 · · ·xp−qxn−q+1 · · ·xn appears in en,p and gives a monomial
of degree q with respect to t, the formal degree in t of our new ABP is exactly q. As we work over a
field of characteristic 0, all monomials of the form t`

∏
i∈I` xi (for some 0 6 ` 6 q) with I` ⊆ [n− q]

of size p− ` appear in en,p(x1, . . . , xn−q, t, . . . , t). It implies that the ABP we get after substitution
is still weakly monotone.

By Lemma 6, there is a weakly monotone ABP of size at most s which computes

[tq]en,p(x1, . . . , xn−q, t, . . . , t) = en−q,p−q.

Theorem 9. Every weakly monotone ABP, or equivalently every homogeneous syntactically mul-
tilinear ABP, computing en,k has size Ω(min{k2, (n− k)2}).

Proof. Let us first prove the lower bound when n and k are even.
If k 6 n/2, then as mentioned previously, any weakly monotone ABP of size s implies a weakly

monotone ABP of size at most s for e2k,k by putting some variables to 0. So in this case s = Ω(k2)
by Lemma 5.
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Otherwise, we have k > n/2. It means that k > 2k − n > 0. Then a weakly monotone ABP of
size s for en,k gives a weakly monotone ABP of size at most s for e2n−2k,n−k by Lemma 7, choosing
the parameters p = k and q = 2k − n. The lower bound s = Ω((n− k)2) follows from Lemma 5.

The lower bound is obtained for n odd by noticing that e2bn/2c,k can be reduced to en,k by
putting one variable to 0. Moreover, en,k reduces to en−1,k−1 by Lemma 7. So the lower bound
holds for n and k of any parity.

This lower bound also holds in the homogeneous syntactically multilinear model: indeed, any
such ABP computing en,k is weakly monotone because en,k has all degree k monomials in its
support.
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A From nonhomogeneous to homogeneous ABPs

The nonhomogeneous model described in the introduction can be shown to be equivalent (without
changing the size) to one where the vertices are not layered, but still with linear forms on the edges
except one possible additional scalar edge from the source to the sink.

In the noncommutative case, this second model can be seen as a special case of linear repre-
sentations of word series as in [11], see also [4]. The basic result there is that the minimal size of
a linear representation is the rank of the so-called Hankel matrix. We can take from the proof of
this theorem the construction of a minimal-size linear representation from the Hankel matrix. In
the case of a noncommutative homogeneous polynomial, this linear representation will be exactly
an ABP in the sense of Definition 1.

In the weakly monotone case, when computing a homogeneous polynomial, each node has to
compute a homogeneous polynomial. So this second model can be layered to conform to Definition 1.
Note that there cannot be a scalar edge from source to sink in this case.
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