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Abstract Modeling extreme snow depths in space is important for water storage, tourism industry,
mountain ecosystems, collapse of buildings, and avalanche prevention. However, studies modeling the
spatial dependence structure of extremes generally assume temporal stationarity which is clearly
questionable in a climate change context. We model climatic trends within the spatial dependence
structure of extremes, with application to a data set of snow depth winter maxima. From 82 stations
spanning the 1970–2012 period in the French Alps, we infer a strong decrease in the range of spatial
extremal dependence. This finding is related to a strong decrease in both the snow precipitation ratio and
the winter cumulated snowfall, due to increasing temperatures. Hence, we demonstrate that the spatial
dependence of extreme snow depths is impacted by climate change in a similar way as has been observed
for extreme snowfalls. Furthermore, snow depths maxima are more spatially dependent than snowfalls. The
space-time approach that we introduce may be very useful for assessing past and future evolutions under
ongoing climate change in various hydrological quantities.

1. Introduction

Snow cover is an important source of water in mountainous regions, and extreme snow depths have thus a
strong impact on water storage (Ehrler et al., 1997). Extreme snow depths further may have consequences on
tourism industry (Koenig & Abegg, 1997) and on mountain ecosystems (Keller et al., 2005; Wipf et al., 2009).
Moreover, they also may cause collapse of buildings (Geis et al., 2011; Taylor, 1979) and extreme snow depth
values are relevant for avalanche prevention (Schweizer et al., 2009). Hence, modeling extreme snow depths
as precisely as possible is important for various environmental issues.

Snow depths show a strong spatial dependence in extremes, that is to say, close-enough locations are likely
to experience concomitant extremes (Blanchet & Davison, 2011), so that the spatial dependence structure
of extremes is a valuable piece of information that is advantageous to model. This can be done through
max-stable processes (de Haan, 1984), which are the spatial extension of univariate extreme value theory
(Coles, 2001). Dombry et al. (2012) showed how to make predictions at ungauged locations by simulating
max-stable processes conditionally on observations and applied this to precipitation and temperature data.
Gaume et al. (2013) considered max-stable processes to built conditional return level maps of extreme snow-
falls in the French Alps. Conditional simulations of max-stable processes were used by Oesting et al. (2017)
to downscale precipitation data in southeastern France. Blanchet and Creutin (2017) studied the spatial non-
stationarity of extreme rainfall coocurrence in the French Mediterranean region using max-stable processes.
By considering temporal moving windows in a max-stable process framework, Blanchet et al. (2018) high-
lighted large differences in the temporal evolution of the cooccurrence of extreme precipitation in Senegal
and in Central Sahel since 1950. Max-stable processes offer a suitable framework to deal with spatial extremes
by modeling their spatial dependence structure together with the distribution of their amplitude. They have
been widely applied within hydrology (Asadi et al., 2015; Reich & Shaby, 2012; Shang et al., 2011; Thibaud
et al., 2013; Westra & Sisson, 2011) and especially to extreme snow depths in Switzerland (Blanchet & Davison,
2011) and to extreme snowfalls and to avalanche slab depths in the French Alps (Gaume et al., 2012, 2013;
Nicolet et al., 2016, 2017).

As pointed out in Beniston et al. (2018), the prediction of the future evolution of snow variables is particularly
challenging due to the exacerbated response of the cryosphere to warming. The issue of temporal nonstation-
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Figure 1. Daily snowfall (Nicolet et al., 2017) and snow depth (this study) series Bessans, in the French Alps, from winter
1981 to winter 1990. Red crosses indicate winter maxima.

arity in the modeling of extreme snow depths is therefore crucial, so as to realistically anticipate the evolution

of the related risks under climate change and to assess more accurately risk metrics such as high quantiles

or conditional tail expectation (under the condition of adapting these risk metrics to the nonstationary case).

This is especially true for the modeling of the temporal nonstationarity within the dependence structure, for

which the methodological background currently available remains particularly weak. Indeed, only few studies

have to date applied max-stable processes with spatiotemporal dependence structures to case studies (Huser

& Davison, 2014; Raillard, 2011; Steinkohl, 2013) and all of them have considered the short-range temporal

dependence of extremes rather than temporal nonstationarity in the spatial dependence at decadal time

scale. Although Blanchet et al. (2018) investigated the temporal evolution of spatial dependence of extreme

precipitation in West Africa during the last decades, they did not explicitly model temporal trends within the

spatial dependence structure but fitted stationary max-stable processes on moving-time windows. Nicolet

et al. (2016) used a data-based approach (without explicitly fitting a complete max-stable model) to high-

light a negative temporal trend in the spatial dependence of extreme snowfalls in the French Alps. Although

detection of temporal trends in the dependence structure was thus possible, this did not allow modeling the

temporal evolution and is thus not usable to make predictions.

Nicolet et al., 2016’s (2016) results concern extreme snowfalls. This does not permit to draw conclusions

regarding snow depths, because these two variables, although connected, are actually very different. Indeed,

as shown in Figure 1, snowfall is an instantaneous variable while snow depth is cumulative and exhibits a much

smoother temporal evolution. Snow depths are more than a simple sum of snowfalls because they involve

many other factors (snow compaction, snowmelt, etc. ), which induce large differences in their extremes. For

instance, as shown in Figure 1, their most extreme values do not necessarily occur during the same winters.

Moreover, due to the cumulative effects involved in the formation of the snowpack, the spatial dependence

between extremes appears stronger for snow depths than for snowfalls (Gaume et al., 2013). Yet this has never

been demonstrated so far for snowfalls and snow depths data from the same region.

On this basis, the objective of this paper is to propose a first approach to account for long-term climate non-

stationarity in the spatial dependence structure of extreme snow depths using max-stable processes. This

approach is used to infer the temporal evolution of the spatial dependence in extreme snow depths under

climate change. To this aim, we process a data set of 82 snow depth winter maxima series in the French Alps.

Specifically, we fit different Brown-Resnick (Kabluchko et al., 2009) processes with temporal trends in the spa-

tial structure of dependence. For each model, the temporal trend is conveyed by different local and synoptic

covariates and a rigorous procedure is used to highlight the most relevant ones. This allows us to highlight

the impact of climate change on the spatial dependence structure of extreme snow depths. The comparison

with previous results on extreme snowfalls over the same area (French Alps) and during the same time scale

(last decades) allows us to conveniently compare extreme snow depths and extreme snowfalls and to identify

similarities and differences concerning their response to climate change.
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2. Data Set
2.1. Snow Depths
Our data set is composed of snow depth winter maxima with a winter period defined from 15 November to
15 May and extracted from three databases:

1. twice-daily manual measurements (dedicated snow manual observing network) from 1970 to 2013 (17
stations);

2. daily automatic measurements (Nivôse stations) from 1980 to 2013 (seven stations);
3. weekly manual measurements (dedicated snow manual observing network) from 1983 to 2013 (58 stations).

This provides a data set of 82 stations in the French Alps (Figure 2a), from which the annual winter maxima
are extracted. Although there are many missing data before 1983 (Figure 2b), the 18 stations with more than
30 winter maxima (in red in Figure 2a) are relatively uniformly distributed over the study area. In addition,
the coverage of station elevation is very appropriate to address mountainous conditions, with many stations
above 2,000 m (Figure 2c).

2.2. Covariates
We consider time, reanalyses of winter cumulated snowfall, winter snow precipitation ratio and temperature
(daily minimum, maximum, and mean; Durand, Laternser, et al., 2009), NAO (North Atlantic Oscillation; Jones
et al., 1997; Osborn, 2006), and AMO (Atlantic Multidecadal Oscillation ; Enfield et al., 2001; Kaplan et al., 1998).
Variables stemming from reanalyses (cumulated snowfall, snow precipitation ratio, minimum temperature,
mean temperature, and maximum temperature) are considered at two elevation levels: 1,800 m and 2,400 m.
For each covariate, we retain a single value for each winter and for the entire French Alps. Details are given in
Appendix A.

Since we are interested in modeling climate effects in the spatial dependence structure of extreme snow
depths, we remove the annual variability in the covariates by considering time moving averages. In this article,
we consider 17-year moving averages (Figure 3). The value ck(n) of the covariate ck for winter n is then the
average of the raw values of this covariate from the winter n − 8 to the winter n + 8. For all the covariates, we
have at our disposal all the data before 1970 required to compute the first moving averages without missing
data. However, for the most recent time windows the average is computed on restricted windows, using data
up to 2012.

In the considered period, we observe decrease in snow precipitation ratio at 1,800 m and cumulated snowfall
and increase in maximum temperature, mean temperature, and AMO. The period of strongest decrease in
cumulated snowfall coincides with that of snow precipitation ratio at 1,800 m and 2,400 m, extending from
1982 to 1995. Temperature and AMO mainly increase during this period. The period of strongest increase is
larger for AMO (from 1978 to 2002) and starts earlier (around 1977) for maximum and mean temperature. NAO
increases before 1985 and decreases after 1994. At 2,400 m, the snow precipitation ratio is close to 1 during
the entire study period, which means that, at this elevation, most of the precipitation falls as snow from 15
November to 15 May regardless of the year.

The correlation table (Table 1) shows that many of our covariates are strongly correlated. Although consid-
ering moving averages makes these correlations higher than when using raw annual values, the strength
of these correlations is mainly due to the strong physical connections between these variables. There are
37 pairs of covariates showing a correlation lower than 0.8 in absolute value. Only these pairs are consid-
ered for the nonstationary models with several covariates in order to avoid inference problems related to
redundant information.

For computation efficiency, each covariate ck is zero centered as follows:

Ck(n) =
ck(n) − ck

std(ck)
(1)

with ck and std(ck) the mean and the standard deviation of (ck(1),… , ck(N)), respectively.

3. Method
3.1. Brown-Resnick Max-Stable Process
3.1.1. Definition of a Max-Stable Process
Let 𝜒 be the French Alps and Xn,i(x) the daily snow depths in location x ∈ 𝜒 during the day i of winter n
(1 ≤ i ≤ d0 with d0 the number of days in winter). For each winter n and for each location x, we define Zn(x) as

NICOLET ET AL. CLIMATE CHANGE IMPACT ON THE SPATIAL DEPENDENCE 7822
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Figure 2. Snow depth data set (section 2.1). (a) Study area in the southeast of France, where the 23 massifs of the
French Alps are located. Lines denote massif limits, and dots denote the positions of the stations. The stations having
more than 30 annual maxima are indicated in red. (b) Data availability for each station. Each line represents one station,
and each point means that the winter maxima is available for that station. (c) Histogram of station elevation.

winter maximum snow depth Zn(x) = max1≤i≤d0
Xn,i(x). For instance, Figure 4 represents Zn(x) (standardized

at each location in order to have the same distribution) for the two years 1983 and 2012 (i.e., the first and last
year with enough data to have a convenient spatial coverage of the French Alps).

We consider these Zn(x) as the realizations of a spatial process {Z(x)}x∈𝜒 . One can observe in Figure 4 that the
largest maxima are likely to occur together with other large maxima in the closest locations. Actually, the closer
the locations, the larger the probability to observe large maxima in these locations during the same winter.
In this paper, we focus on this spatial dependence of snow depth maxima. According to Leadbetter (1983),
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Figure 3. Covariates (section 2.2). The 17-year moving averages of the considered covariates: winter cumulated snowfall,
snow precipitation ratio, and temperature (daily maximum, mean, and minimum) in the French Alps, AMO, and NAO
indexes. The elevation at which the covariate (except AMO and NAO indexes) is considered is indicated by red (1,800 m)
or blue (2,400 m) lines.

which allows us to consider maxima of daily snow depths despite their temporal dependence, and to spatial
extreme value theory (Cooley et al., 2012; Davison et al., 2012), we know that the process {Z(x)}x∈𝜒 of winter
maximum snow depths in the French Alps can be advantageously modeled as a max-stable process (de Haan,
1984). At each location x ∈ 𝜒 , Z(x) follows a generalized extreme value (GEV) (𝜇(x), 𝜎(x), 𝜉(x)) distribution. In
this article, we do not investigate the issue of the distribution of Z(x) but focus on the spatial dependence of
{Z(x)}x∈𝜒 (i.e., the dependence between Z(x1) and Z(x2) with x1 and x2 two locations). That is why, for more
convenience, the distribution of Z(x) at each location x can be transformed without loss of generality into unit
Fréchet distribution (i.e., GEV(1,1,1)) through the transformation

Z(x) → −1
log[F{Z(x);𝜇(x), 𝜎(x), 𝜉(x)}]

(2)

with F{.;𝜇(x), 𝜎(x), 𝜉(x)} the cumulated distribution function of the GEV(𝜇(x), 𝜎(x), 𝜉(x)) distribution.

3.1.2. The Brown-Resnick Process
Kabluchko et al. (2009) generalized the max-stable process previously introduced in Brown and Resnick (1977).
By using this process to model the process {Z(x)}x∈𝜒 of winter maxima, the bivariate distribution of the winter
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Table 1
Covariates (Section 2.2); Correlation Table for the 17-Year Moving Averages of Covariates

NAO AMO T1800
min T1800

mean T1800
max T2400

min T2400
mean T2400

max SF1800 SF2400 SPR1800 SPR2400

Time 0.01 0.97 −0.32 0.84 0.94 0.46 0.80 0.89 −0.84 −0.82 −0.85 −0.69

NAO 1 −0.13 0.75 0.46 0.28 −0.01 0.21 0.25 −0.05 0.07 −0.26 −0.07

AMO — 1 −0.36 0.80 0.91 0.60 0.85 0.90 −0.90 −0.89 −0.87 −0.79

T1800
min — — 1 0.22 −0.01 0.25 0.14 0.05 0.04 0.14 −0.07 -0.05

T1800
mean — — — 1 0.97 0.62 0.92 0.97 −0.86 −0.78 −0.94 −0.78

T1800
max — — — — 1 0.59 0.92 0.98 −0.90 −0.84 −0.95 −0.79

T2400
min — — — — — 1 0.86 0.73 −0.80 −0.79 −0.73 −0.87

T2400
mean — — — — — — 1 0.98 −0.95 −0.91 −0.96 −0.93

T2400
max — — — — — — — 1 −0.94 −0.89 −0.97 −0.88

SF1800 — — — — — — — — 1 0.99 0.94 0.90

SF2400 — — — — — — — — — 1 0.88 0.87

SPR1800 — — — — — — — — — — 1 0.91

Note.Time, NAO, and AMO indexes, minimum temperature at 1,800 m (T1800
min ), mean temperature at 1,800 m (T1800

mean), maximum temperature at 1,800 m (T1800
max ),

minimum temperature at 2,400 m (T2400
min ), mean temperature at 2,400 m (T2400

mean), maximum temperature at 2,400 m (T2400
max ), cumulated snowfall at 1,800 m (SF1800),

cumulated snowfall at 2,400 m (SF2400), snow precipitation ratio at 1,800 m (SPR1800), snow precipitation ratio at 2400 m (SPR2400). Correlations which are larger
than 0.8 in absolute value are in bold.

maxima Z(x1) and Z(x2) at two locations x1 and x2 is given by


(

Z(x1) < z1, Z(x2) < z2

)
= exp

{
− 1

z1
Φ
(

a
2
+ 1

a
log

z2

z1

)
− 1

z2
Φ
(

a
2
+ 1

a
log

z1

z2

)}
(3)

with Φ the distribution function of the standard normal distribution and a =
√

2𝛾(h) with h the distance
between x1 and x2. In this paper, we use a power semivariogram 𝛾(h) = (h∕𝜆)𝜅 with 𝜆 and 𝜅 its scale and
shape parameters, respectively.

3.1.3. Extremal Coefficient and Brown-Resnick Extremal Function
To assess the extremal dependence between two unit Fréchet random variables Z1 and Z2, one can use the
extremal coefficient 𝜃 (Naveau et al., 2009; Schlather & Tawn, 2003) defined by


(

Z1 < z, Z2 < z
)
= exp

{−𝜃
z

}
= 

{
Z1 < z

}𝜃
, z> 0. (4)

Figure 4. Snow depth maxima for the winters 1983 and 2012. These maxima are standardized into unit Fréchet at each
location. The magnitude of the maxima is denoted by both the color code and the radius of the circles. The spatial
clustering of high/low values shows the spatial structure of the considered process.
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The extremal coefficient ranges between 1 (complete dependence) and 2 (independence). The property

lim
z→∞


(

Z2 > z|Z1 > z
)
= 2 − 𝜃 (5)

holds and means that the probability of observing extreme values of Z2 when Z1 takes extreme values is close
to 0 when 𝜃 is near 2 and close to 1 when 𝜃 is near 1.

If Z1 = Z(x1) and Z2 = Z(x2) with Z a max-stable process and x1 and x2 two positions, we have theoretical
expressions for 𝜃 (Ribatet, 2013) as functions 𝜃(h) of the distance h = |x2 − x1|. The expression 𝜃(h) represents
the strength of the dependence as a function of distance, and is therefore termed the extremal function.
Specifically, the Brown-Resnick extremal function is given by

𝜃(h) = 2Φ

(√
2(h∕𝜆)𝜅

2

)
(6)

with a power semivariogram.

3.1.4. Range of Extremal Dependence
As in Nicolet et al. (2016), we define the range of extremal dependence as the distance h0 such that 𝜃(h0) = 1.9.
The range denotes the distance above which snow depth maxima become weakly dependent in extremes,
that is, close to independence in practice. The stronger the extremal dependence at large distances, the larger
the range. Inverting (6) gives the following expression of the range:

h0(𝜆, 𝜅) = 𝜆

[
2
{
Φ−1

(1.9
2

)}2
]1∕𝜅

. (7)

3.1.5. Modeling Anisotropy in the Spatial Dependence Structure
Extremal dependence is generally spatially anisotropic due to the impact of different factors, such as the relief,
atmospheric fluxes, etc. Thus, the modeling of extremal dependence between two locations as function of
the Euclidean distance only may be too simplistic. In order to account for spatial anisotropy, we use a geo-
metric transformation. As in Blanchet and Davison (2011) and in Nicolet et al. (2016, 2017), the vector of the
coordinates x in 3 is replaced with x′ = Vx such that

V =
⎛⎜⎜⎝

cos𝜓 − sin𝜓 0
R−1

1 sin𝜓 R−1
1 cos𝜓 0

0 0 R2

⎞⎟⎟⎠ (8)

with 𝜓 the anisotropy angle, R1 > 1 the anisotropy ratio and R2 > 0 the weight parameter for elevation. The
angle 𝜓 is the direction of strongest dependence. The parameter R1 controls the ratio between the direction
of strongest dependence and the orthogonal direction in the 2-D plane. The parameter R2 is expected to be
widely greater than 1 as a consequence of the strong influence of elevation on snow quantities. The distance
computed after this transformation is referred to as the modified 3-D distance.

3.1.6. Modeling Trend in the Spatial Dependence Structure
Temporal trends related to changes in climate drivers within the spatial dependence structure are modeled by
linear combinations of covariates for the two parameters 𝜆 and 𝜅 of the dependence structure. That is to say{

𝜆(n) = 𝜆0 + ΣM1
m=1C𝜆,m(n)𝜆m

𝜅(n) = 𝜅0 + ΣM2
m=1C𝜅,m(n)𝜅m.

(9)

with C𝜆(n) = {C𝜆,k(n)}k∈{1,…,M1} and C𝜅(n) = {C𝜅,k(n)}k∈{1,…,M2} as the two sets of time-dependent standard-
ized variables (n indicates the winter). Allowing different covariates for𝜆 and𝜅 (i.e., C𝜆 different from C𝜅 ) allows
for more flexibility.

3.2. Inference and Model Selection
3.2.1. Inference
In this study, our focus is in the spatial dependence of snow depth maxima and not in the marginal distribu-
tion. In other words, the marginal distributions are previously estimated pointwise by maximum likelihood,
in which case studying the spatial distribution of maxima is equivalent to studying that of normalized max-
ima with the same margins. For spatial extremes, it turns out to be convenient to consider normalization to
unit Fréchet.
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Due to computational issues, the full log-likelihood of max-stable processes is usually intractable (Castruccio
et al., 2016). To estimate the parameters of a Brown-Resnick max-stable process, we can maximize the pairwise
composite log-likelihood (Padoan et al., 2010)

l(𝛽) =
N∑

n=1

K−1∑
i=1

K∑
j=i+1

log f (zn,i, zn,j;C𝜆(n),C𝜅(n), 𝛽) (10)

with K the number of stations, N the number of years, zn,i the maxima at location i for winter n, f the bivari-
ate density function associated to the Brown-Resnick distribution (3), and C𝜆(n) = {C𝜆,k(n)}k∈{1,…,M1} and
C𝜅(n) = {C𝜅,k(n)}k∈{1,…,M2} the considered time-dependent standardized covariates, if any, and 𝛽 the vector
of parameters of the bivariate distribution. In the case where the anisotropy parameters are not estimated,
the vector 𝛽 consists of the M1 + 1 parameters for 𝜆(n) and the M2 + 1 parameters for 𝜅(n). Thus, a total of
M1 + M2 + 2 parameters have to be estimated (thus, two in total when no covariates are considered, as in the
stationary and moving time window cases of sections 4.2 and 4.3). In the case where the three parameters𝜓 ,
R1, and R2 for anisotropy (which are supposed to be time independent) are estimated, M1 +M2 +5 parameters
have to be estimated.

3.2.2. Composite Likelihood Information Criterion
The classical inference criterion to discriminate max-stable models is the CLIC (Composite Likelihood Infor-
mation Criterion (Padoan et al., 2010))

CLIC = −2
{

l(𝛽) − tr(ĴĤ−1)
}

(11)

with 𝛽 as the vector which maximizes the composite likelihood l in (10), tr denoting the matrix trace, Ĥ and Ĵ
the Hessian and Jacobian information matrices defined by

Ĥ = −
N∑

n=1

K−1∑
i=1

K∑
j=i+1

𝜕2 log f (zn,i, zn,j; C𝜆(n),C𝜅(n), 𝛽)
𝜕𝛽𝜕𝛽 t

(12)

and

Ĵ =
N∑

n=1

{
K−1∑
i=1

K∑
j=i+1

𝜕 log f (zn,i, zn,j;C𝜆(n),C𝜅(n), 𝛽)
𝜕𝛽

}{
K−1∑
i=1

K∑
j=i+1

𝜕 log f (zn,i, zn,j; C𝜆(n),C𝜅(n), 𝛽)
𝜕𝛽

}′

. (13)

Similar to that for Akaike Information Criterion (Akaike, 1974; Burnham & Anderson, 2004), among a set of
competing models, the best one is the one with the lowest CLIC. As in Blanchet and Davison (2011) and in
Nicolet et al. (2017), we rescaled CLIC by dividing by K − 1.

3.2.3. Confidence Interval
A 95% confidence interval is estimated for the range of extremal dependence h0(𝜆, 𝜅) by the delta method
(Cox, 1998), propagating the standard error on 𝛽 = (�̂�, �̂�) in (7). Hence, the 95% confidence interval for h0(𝛽)
is given by [

h0(𝛽) ±
Φ−1(0.975)√

N

√
∇h0(𝛽)TΣ(𝛽)∇h0(𝛽)

]
(14)

with ∇h0(𝛽) the gradient of h0 with respect to 𝛽 and Σ(𝛽) the variance-covariance matrix of 𝛽 .

3.2.4. Alternative Model Fitting
A disadvantage in the maximization of the composite log-likelihood l defined in (10) is that the winter
maxima are taken into account for each winter separately while the covariates are considered through
their 17-year moving averages (Figure 3). Thus, annual variability remains in snow depth maxima while it is
smoothed in the covariates. To solve this issue, we propose to associate moving window-based and likelihood
maximization-based approaches.

Let wq (from w1 =1962–1978 to wQ =2004–2020, allowing to go beyond the recording period by considering
“NA” values) be the 17-year moving window used in the computation of C𝜆(q) and C𝜅(q). We note lq as the
composite log-likelihood using the standardized covariates C𝜆(q) and C𝜅(q) computed on wq:

lq(𝛽) =
∑

r∈wq

K−1∑
i=1

K∑
j=i+1

log f (zr,i, zr,j; C𝜆(q),C𝜅(q), 𝛽). (15)
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The quantity to maximize is the sum over q of lq(𝛽):

l̃(𝛽) =
N∑

q=1

lq(𝛽). (16)

The quantity l̃(𝛽) is referred to as the alternative composite likelihood. The set of parameters to estimate
remains identical to that described in section 3.2.1.

4. Workflow
4.1. Standardization to Unit Fréchet
First, winter maxima at each location are transformed into unit Fréchet variables. A GEV distribution is esti-
mated for each station by likelihood maximization, giving estimates (�̂�(x), �̂�(x), 𝜉(x)) of the GEV parameters at
each station location x. These pointwise estimates are used to transform at each position x the GEV distributed
snow depth maxima into a unit Fréchet distributed variable using the transformation (2).

4.2. Stationary Case
With the later aim of comparing the stationary and nonstationary models, we first fit the Brown-Resnick pro-
cess to snow depth maxima under the hypothesis of temporal stationarity. Then we compute the extremal
function stemming from the fitted process. In parallel, we estimate the pairwise extremal coefficients through
the estimator introduced in Naveau et al. (2009), which is based on the madogram (Cooley et al., 2006).
Whereas some classical estimators may have some difficulties to estimate the upper tail dependence of
extremes (Serinaldi et al., 2015), this estimator has shown suitable performances in Bel et al. (2008) and Naveau
et al. (2009). Then, we compute the class averages of these estimates in order to check the suitability of the
fitted stationary Brown-Resnick process.

To compare the 3-D modified distances from one model to another, we use the anisotropy parameters �̂� , R̂1,
and R̂2 estimated in the stationary case for sections 4.3, 4.4, and 4.5 (“hat” is the classical notation for a param-
eter estimate resulting in our case from the composite likelihood maximization). Holding these parameters
fixed rather than reestimating them in the nonstationary case using each covariate barely affects the results
and eases much the comparison of the results.

4.3. Moving Time Window
A preliminary investigation of the temporal evolution of the extremal dependence is done through a
data-based approach similar to the one used in Nicolet et al. (2016). This approach will allow us to motivate
the interest in modeling trends in the parameters of the spatial dependence structure. In addition, it will pro-
vide results that may be compared to the results obtained by the nonstationary Brown-Resnick processes with
the aim to show their consistency.

We assess the temporal evolution of the extremal dependence by fitting the stationary Brown-Resnick process
on a 17-year moving window from 1970–1986 to 2000–2016 (the large number of maxima at the end of the
study period allows us to go beyond 2012, the decrease in goodness of fit of max-stable processes between
17 and 13 years of observations had been rather limited regarding another data set with comparable number
of stations (Nicolet et al., 2017)). We keep the same anisotropy transformation for each estimation window: we
apply for all moving windows the parameters �̂� , R̂1, and R̂2 estimated in the stationary case using all the data,
and we reestimate the parameters �̂�(q) and �̂�(q) for each estimation window wq. Then, for each estimation
window, we obtain the Brown-Resnick extremal function (6) and the range of extremal dependence (7).

4.4. Nonstationary Case
In section 4.3, we investigated the existence of temporal nonstationarity in the spatial dependence structure
of snowfall maxima. The objective of the current section is to model this temporal nonstationarity by using
time-dependent covariates for the two parameters 𝜆 and 𝜅. The Brown-Resnick process is fitted by maximiz-
ing the composite likelihood (10) using covariates C𝜆(n) = {C𝜆,k(n)}k∈{1,…,M1} and C𝜅(n) = {C𝜅,k(n)}k∈{1,…,M2}
so as to estimate the functions 𝜆(n) = 𝜆0 + ΣM1

m=1C𝜆,m(n)𝜆m and 𝜅(n) = 𝜅0 + ΣM2
m=1C𝜅,m(n)𝜅m. Again, we held

the anisotropy parameters �̂� , R̂1, and R̂2 fixed to the values estimated in the stationary case of section 4.2.
Models with one and two covariates are fitted, using the covariates of Table 1 but excluding the pairs with
a correlation larger than 0.8 in absolute value. We consider two cases: the first one with one covariate for 𝜆
and/or 𝜅, and the second one with two covariates. Concerning the models with one covariate, we considered
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Figure 5. Stationary case (section 5.1). Estimated extremal function under
the hypothesis of temporal stationarity (red curve). Grey dots represent the
madogram-based pairwise estimations (Naveau et al., 2009) of the extremal
coefficient for every pair of stations, and black dots represent the distance
class averages (seven distance classes of equal length are defined from 0 km
to the maximum pairwise distance 215 km). The range of extremal
dependence (equation (7) is ĥ0 = 108 km.

three possibilities:

1. a trend in 𝜆with 𝜅 stationary (i.e., 𝜆(n) = 𝜆0 + 𝜆1C𝜆(n) and 𝜅(n) = 𝜅0);
2. a trend in𝜅 with𝜆 stationary (i.e.,𝜅(n) = 𝜅0+𝜅1C𝜅(n) and𝜆(n) = 𝜆0); and
3. a trend in both 𝜆 and 𝜅 with the same covariate.

In the case of the models with two covariates, we tried all the
possibilities for each considered pair of covariates: (M1,M2) =
(2, 0), (0, 2), (1, 1), (1, 2), (2, 1) and (2, 2). The selection of the best model
is done through CLIC.

4.5. Alternative Composite Likelihood
Finally, the model selected by CLIC in section 4.4 is fitted by maximizing the
alternative composite log-likelihood l̃ defined in (16), in order to compare
the two approaches and to assess the influence of the annual variability of
maxima on the results.

5. Results
5.1. Stationary Case
The estimated anisotropy parameters are �̂� = 51.52∘ (standard deviation:
6.90∘), R̂1 = 1.79 (0.35), and R̂2 = 36.66 (7.38), and the estimated scale and
shape parameters are �̂� = 10.0 (1.03) and �̂� = 0.71 (0.055), respectively.
The extremal function stemming from this estimated process is close to
the class averages of the pairwise estimates (Figure 5) showing the qual-
ity of the estimated Brown-Resnick process. These estimated parameters
�̂� , R̂, and R̂2 for anisotropy are used for all the models considered in the
following. In order to fairly compare stationary and nonstationary models,

the stationary model is reestimated by keeping the anisotropy parameters fixed and the considered CLIC is
the one computed on this latter model. With this model, the range of extremal dependence is ĥ0 = 108 km
(standard deviation: 25 km).
5.2. Time Moving Window
Figure 6a shows the temporal evolution of the extremal function considering 17-year estimation windows and
holding the anisotropy parameters fixed to the values obtained in section 5.1. We observe a positive temporal
trend for the extremal function at large distance and therefore a negative temporal trend for the extremal
dependence. This is confirmed by Figure 6b, which highlights a strong negative temporal trend in the range
of extremal dependence. While the first estimates have to be interpreted carefully due to the low number of
observations, we can observe from 1985 to 1992 a division by 2 of the range of extremal dependence (from
200 km to 100 km, which corresponds to the range estimated in the stationary case), and a stabilization from
1992 to the end of the study period. Although the first confidence intervals are extremely wide, the estimates
at the beginning of the decrease (for instance, more than 200 km in 1985) lie outside the last confidence
intervals which extend from about 50 to 150 km in 1992, so the trend in extremal dependence is significant.

The corresponding estimates of 𝜆 and 𝜅 show strongly positive trends (Figures 6c and 6d), which confirms the
interest in allowing temporal trends in these parameters.
5.3. Nonstationary Brown-Resnick Model
As mentioned before, we keep the anisotropy parameters 𝜓 , R1, and R2 fixed by using the estimates of the
stationary case because this eases the comparison of the results and barely affects the results. For instance,
Figure 7 shows a comparison between the parameters 𝜆0, 𝜆1, 𝜅0, and 𝜅1 obtained when anisotropy is held
fixed or when anisotropy is estimated together with these parameters. The observed differences concerning
the estimates of 𝜆0 are due to the fact that this parameter is strongly related to the anisotropy parameters and
particularly to R1. The estimation of this parameter is thus more sensitive when it is estimated together with
anisotropy. The estimates of the three other parameters are very similar with points very close to the diagonal.

According to CLIC, apart from three covariates, the models with one covariate are better when a trend is mod-
eled in the two parameters𝜆 and 𝜅 (Figure 8). The covariates NAO and minimum temperature at 1,800 m show
a better CLIC when a trend is modeled in the parameter 𝜆 only, while the best model using snow precipitation
ratio at 1,800 m models just a trend in 𝜅.
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Figure 6. Time moving window (section 5.2). (a) Temporal evolution of the fitted extremal functions, from oldest time
windows (blue curves) to the most recent ones (red curves). (b) Temporal evolution of the range of extremal
dependence. The range is expressed as a function of the 3-D modified distance. It is plotted (black dots) as a function of
the center of the considered estimation window. The associated 95% confidence interval is evaluated by the delta
method (equation (14). (c, d) Temporal evolution of the estimates of (a) 𝜆 and (b) 𝜅. The X axis represents the center of
the 17-year time window. The blue curves show for each parameter a second degree polynomial trend fitted by
least squares.

The best model with one covariate according to the CLIC uses snow precipitation ratio at 1,800 m as covari-
ate for 𝜅 and no trend in 𝜆. The second, third, and fourth ones are those using cumulated snowfall at 1,800 m,
snow precipitation ratio at 1,800 m, and cumulated snowfall at 2,400 m as covariate for both parameters 𝜆 and
𝜅, respectively. The other covariates outperforming the stationary model are mean temperature and maxi-
mum temperature at both elevations considered. Other models with one covariate are not better than the
stationary model.

In order to see if the covariates are positively or negatively correlated to the extremal dependence of extreme
snow depths, we determine the best model according to the CLIC for each covariate. We use the parame-
ters of these best models to assess the sign of the contribution of each covariate on 𝜃(100), the extremal
function measured at the modified 3-D distance 100 km. This distance is close to the range of extremal depen-
dence estimated in the stationary case. The contribution of a covariate to 𝜃(100) is referred to as positive
(respectively, negative) when 𝜃(100) increases (respectively, decreases) with respect to an increase in the
covariate. Since larger 𝜃 means less dependence at extreme level, a positive contribution to 𝜃(100) means a
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Figure 7. Nonstationary Brown-Resnick model (section 5.3). For each parameter 𝜆0 (top left), 𝜆1 (top right), 𝜅0 (bottom
left), and 𝜅1 (bottom right): comparison between the estimates obtained with fixed anisotropy (x axis) and those
obtained when they are estimated together with anisotropy parameters (y axis). Each point represents one model with a
unique covariate modeling a trend in both 𝜆 and 𝜅.
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Figure 8. Nonstationary Brown-Resnick model (section 5.3): rescaled CLIC for the models using one covariate. The
covariates are time (“Year”), NAO, AMO, minimum temperature, mean temperature, maximum temperature, cumulated
snowfall, and snow precipitation ratio. The dashed and dotted lines represent the CLIC for the stationary model
(estimated by fixing the anisotropy parameters) and for the best model with two covariates (snow precipitation ratio at
1,800 m and minimum temperature at 2,400 m as covariates for 𝜅 with 𝜆 constant), respectively.
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Table 2
Nonstationary Brown-Resnick Model (Section 5.3): Models With One Covariate

Covariates �̂�0 �̂�1 �̂�0 �̂�1 Contribution

Tmean (1800) 7.5 3.4 0.56 0.22 positive

Tmax (1800) 7.7 3.7 0.57 0.23 positive

Cumulated snowfall (1800) 7.7 −3.8 0.59 −0.22 negative

Snow precip. ratio (1800) 10.1 — 0.62 −0.014 negative

Tmean (2400) 8.5 2.3 0.60 0.17 positive

Tmax (2400) 8.2 2.8 0.59 0.20 positive

Cumulated snowfall (2400) 7.4 −4.3 0.58 −0.24 negative

Note. Estimated parameters and sign of the contribution to the extremal coefficient 𝜃(100). Only the
models outperforming the stationary model are considered. �̂�0, �̂�1, �̂�0, and �̂�1 denote the estimated
parameters for each model. No estimate for �̂�1 means that the best model with the considered
covariate is the one with the trend in 𝜅 only. The column “Contribution” indicates if the extremal
coefficient at the distance 100 km (i.e., 𝜃(100)), arbitrarily chosen, increases (positive) or decreases
(negative) with respect to an increase in the covariate. Note that a positive contribution to 𝜃(100)
means a decrease in the extremal dependence at the distance 100 km.

negative contribution of the covariate to the extremal dependence at 100 km. This definition is consistent in
practice because the function 𝜃(100)of the covariate is always monotonic in the observed range of this covari-
ate (i.e., between the minimum and the maximum measured values). Moreover, the results are also consistent
whether trends are considered in lambda only, kappa only, or both variables (not shown). The covariates show-
ing a positive contribution to 𝜃(100) are mean daily temperature and maximum daily temperature (Table 2).
This means that these covariates have a negative contribution to the extremal dependence of snow depths.
On the contrary, cumulated snowfall and snow precipitation ratio have a positive contribution to the extremal
dependence of snow depths. The other covariates (time, NAO, AMO, minimum daily temperature) do not
outperform the stationary model and have no significant contribution.

None of the models using two covariates shows a better CLIC than the best model with one covariate
(Figure 8). The model using snow precipitation ratio at 1,800 m as unique covariate for the smoothness param-
eter 𝜆 is thus the best one according to CLIC. With this model, consistently with the results obtained using
time moving window (section 5.2), the extremal coefficient 𝜃(h) increases with time at large distances, which
implies a negative trend in the extremal dependence (Figure 9a). As using time moving window, the estimated
range of extremal dependence shows a strong decrease during the 1980s and then a relative consistency after
1993 (Figure 9b). The estimates of the range of extremal dependence is much larger during the first part of
the study period (sometimes larger than 800 km). However, again, these estimates must be considered with
caution due to the lack of observations before 1983. The evolution of the extremal function with respect to
the snow precipitation ratio at 1,800 m (Figure 9c) confirms that the extremal dependence tends to increase
when the snow precipitation ratio increases (i.e., 𝜃(100) decreases).
5.4. Alternative Composite Likelihood
The temporal evolution of the extremal function and the range of extremal dependence stemming from the
model using snow precipitation ratio at 1,800 m as unique covariate for 𝜆 but fitted by maximizing the alter-
native composite likelihood l̃ defined in (16) is similar as in the case of the classical composite likelihood
(Figures 10a and 10b). However, this temporal evolution is much smoother when using the alternative com-
posite likelihood l̃. The range of extremal dependence spans a much narrower interval with values not larger
than 205 km (3-D modified distance), which is consistent with the empirical case (section 5.2) if we discard
the first three estimation windows for which few observations are available. The extremal function as func-
tion of snow precipitation ratio at 1,800 m shows as before an increase in extremal dependence (i.e., decrease
in 𝜃(100)) when snow precipitation ratio increases but with much less variability (Figure 10c).

6. Discussion
6.1. Anisotropy in the Spatial Dependence and Comparison With Extreme Snowfalls
The results obtained for snow depths under the stationary hypothesis in section 5.1 can be compared to those
provided by Nicolet et al. (2017) who fitted a stationary Brown-Resnick process to snowfall maxima in the
French Alps by maximum composite likelihood in the context of model. To the best of our knowledge, this is
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Figure 9. Nonstationary Brown-Resnick model (section 5.3). Model selected by CLIC with snow precipitation ratio at
1,800 m as covariate for the smoothness parameter 𝜅. (a) Temporal evolution of the extremal function stemming from
the model. (b) Temporal evolution of range of extremal dependence. The solid line represents the median range of
extremal dependence computed on a 17-year moving window. The associated 95% confidence interval is evaluated by
the delta method. (c) Evolution of the extremal function as function of snow precipitation ratio at 1,800 m
(from 0.73 to 0.79).

the first time that the spatial dependence in extremes of these two snow-related variables can be compared
over the same region.

For both variables, the estimated anisotropy angle (�̂� = 51.52∘ for snow depths and �̂� = 37.28∘ for snowfalls)
corresponds to the orientation of the main massifs and valleys in the French Alps. This pattern has also been
observed for extreme snow depths in Switzerland (Blanchet & Davison, 2011) and for extreme precipitation
in the Appalachians (Padoan et al., 2010) and in the French Mediterranean region (Blanchet & Creutin, 2017),
which confirms its robustness. Also, recently, Blanchet et al. (2018) highlighted the impact of the evolution
of the atmospheric system on the direction and the strength of the anisotropy of extreme precipitation in
West Africa. This anisotropy may be interpreted as the effect of orography on atmospheric fluxes generating
extreme precipitations. One can note though that anisotropy is less marked for extreme snow depths than
for extreme snowfalls (with R̂1 = 1.79 against 3.22 for extreme snowfalls), and the effect of elevation is also
slightly weaker (R̂2 = 36.66 against 39.95), which may arise from the fact that the interaction with atmospheric
flows is weaker in the case of snow on the ground than in the case of snowfalls.
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Figure 10. Alternative composite likelihood (section 5.4). Model with snow precipitation ratio at 1,800 m as covariate for
the smoothness parameter 𝜅 maximizing the alternative composite likelihood l̃. (a) Temporal evolution of the extremal
function stemming from the model. (b) Temporal evolution of the range of extremal dependence. (c) Evolution of the
extremal function as function of snow precipitation ratio at 1,800 m (from 0.73 to 0.79).

Comparing snow depth and snowfall extremal coefficients shows that snow depth maxima are more spatially
dependent than snowfall maxima for a large majority of pairs of stations (Figure 11). As interpreted in Gaume
et al. (2013), this is probably due to cumulative effects involved in the formation of snow cover which strongly
smooths the evolution of extreme snow depths with space.
6.2. Temporal Changes
The decreasing trend in the extremal dependence of snow depths in the French Alps is similar to that found
in Nicolet et al. (2016) for snowfalls in the same area. These two variables both show a strong decrease in the
range of extremal dependence concentrated during the 1980s, and then a relative consistency after 1990. This
is the first time that such an effect is inferred on extreme snow depths. The consistency with extreme snowfalls
over the same area pleads for its robustness and its geophysical meaning. As already discussed (Figure 1), it
was not necessarily expected due to the strong differences in the two variables. This decrease is concomitant
with the period of strongest decrease in cumulated snowfall and snow precipitation ratio, and with the period
of strongest increase in temperature and AMO (Figure 3).

One may wonder about a possible influence of the stationarity hypothesis in the marginal distributions on
the nonstationarity observed in the spatial dependence structure, with a potential transfer of a temporal
trend in the margins to the dependence structure. Indeed, among the 82 stations of the data set, we found 21
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Figure 11. Comparison between snow depth extremal coefficients (this
study) and snowfall extremal coefficients (Nicolet et al., 2017) for all the
pairs of stations.

stations with a significant negative temporal trend in the location GEV
parameter 𝜇 and three with a positive trend according to a likelihood ratio
test. We further fitted the Brown-Resnick process with snow precipitation
ratio at 1,800 m as covariate of 𝜅 to the unit Fréchet data set computed by
taking into account the temporal trends for these 24 stations, which pro-
vided very similar results (Appendix B). Hence, the decreasing trend in the
spatial dependence of snow depth maxima is not artificially created by the
stationary hypothesis in the margins.

One may also question the issue of data availability and the impact of the
changes in the station network on the results. The procedure was repro-
duced on a reduced data set of 13 stations, chosen in order to have a
quite constant spatial coverage during the study period. Despite the larger
uncertainty due to small size of the sample, we found very similar results
(Appendix C).

An additional issue concerning the methodology is the length of the mov-
ing window which was set as 17 years for this study. Several values were
tried to smooth the covariates, and we kept the one which optimized the
CLIC. Other lengths like 15 or 19 years produced very similar results. For
the sake of simplicity, the same length of 17 years was used for the mov-
ing time window (section 4.3) and for the alternative composite likelihood
(section 4.5).

6.3. Climate Control
The most relevant covariates to model trends in the spatial dependence structure of extreme snow depths
are those related to precipitation and temperature: mean temperature, maximum temperature, cumulated
snowfall, and snow precipitation ratio at 1,800 m. However, the use of minimum temperature or snow pre-
cipitation ratio at 2,400 m leads to models less suitable than the stationary model. The inefficiency of snow
precipitation ratio at 2,400 m can be explained by the fact that at this elevation level, the snow precipitation
ratio is always close to 1 during the entire study period (Figure 3) making its explicative power very small.

The covariates mean temperature and maximum temperature have a negative contribution to the extremal
dependence of snow depths in the French Alps, while cumulated snowfall and snow precipitation ratio have
a positive contribution. This is consistent with the results of Nicolet et al. (2016) concerning extreme snowfalls
in the French Alps.

Hence, the decreasing temporal trend in the spatial dependence of extreme snow depths seems to be due at
first to a decrease of the snow precipitation ratio caused by the increase of temperature over the study period,
and particularly in the context of the 1980s climate regime shift (Reid et al., 2016). Specifically, temperature
increase makes snowfalls more isolated in space. Indeed, when temperature is moderately cold, only the high-
est stations experience snow while rain falls at low elevations (Nicolet et al., 2016). This leads to spatially less
smooth snow depth variations and less coherent patterns for snow depth maxima.

As in the case of snowfall maxima, we cannot exclude a magnitude effect with stronger dependence in
extreme snow depths during snowier winters. Indeed, even if snow precipitation ratio at 2,400 m is one of
the less efficient covariates (due to a very low effect of snow/rain partitioning at this elevation), cumulated
snowfall at 2,400 m is one of the most relevant covariates. Consequently, the decrease in cumulated snowfall
observable during the winter season since the 1980s (Figure 3) seems an additional cause for the decrease in
the spatial dependence of extreme snow depths.

Contributions of AMO and NAO to extremal dependence of snow depth maxima, although having a positive
sense (not indicated in Table 2) consistent with the correlations computed in Nicolet et al. (2016) for snow-
fall maxima, are nonsignificant. This nonsignificance can be explained by the fact that many phenomena are
involved between synoptic patterns and snow on the ground.
6.4. Pros and Cons of the Proposed Modeling Approach
Theoretical and applied studies dealing with temporal aspects within the spatial dependence structure of
max-stable processes (Davis et al., 2013a, 2013b; Embrechts et al., 2016; Huser & Davison, 2014; Raillard et al.,
2014) model the short-range temporal dependence of extremes and do not consider a possible long-range
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temporal evolution of the dependence structure. This paper lays a first stone regarding the modeling of
temporal trends at climate time scale in the spatial dependence of extremes, which is an important point
for managing the issues related to spatial extremes and anticipating their evolution under climate change.
Although the approach introduced in this paper is quite simple, with linear trends in the parameters of the
spatial dependence structure, the results are consistent with Nicolet et al. (2016) who applied a data-based
approach to snowfall maxima. We showed that the annual variability in snow depth maxima can be smoothed
by using the alternative composite likelihood l̃. Reducing the annual variability in snow depth maxima has the
effect to smooth the temporal evolution of their spatial dependence, making it easier to interpret. In addition,
the robustness of our results is granted by the step-by-step approach we propose: from empirical estima-
tions on moving time windows to a full model taking into account long range patterns in data and covariates
coupled with a rigorous model selection procedure.

The major improvement of the model-based approach introduced in this paper compared to the approaches
developed in Nicolet et al. (2016) and in Blanchet et al. (2018) is the explicit incorporation of suitable covariates
into the modeling. The use of moving windows, as done in Nicolet et al. (2016), Blanchet et al. (2018), and in
section 4.2 is a flexible way for detecting temporal trends in spatial dependence because it does not require
any hypothesis on the nature of the trend (e.g., linear or polynomial of order 2; or more). However, it is not
usable for anticipating the future evolution of the spatial dependence. On the contrary, the use of covariates
has the advantage that it may allow anticipating the evolution of the extremal dependence of snow extremes.
Indeed, the various future climate change scenarios now increasingly available (e.g., Verfaillie et al., 2017,
2018) for the French Alps) could be easily used with the best fitted model.

A limitation of the considered model is the difficulty to efficiently combine more than one covariate. Indeed,
we did not consider joint models involving two of the most relevant covariates (cumulated snowfall, mean
temperature, maximum temperature, and snow precipitation ratio at 1,800 m) because these covariates are
strongly correlated. The best joint models show a compensation effect between the two covariates, showing
the complication to use them. None of the models with two covariates not too much correlated is able to
outperform the best model with one covariate, showing that all the considered combinations of covariates
are not relevant enough.

Finally, considering nonlinear trends in the spatial dependence structure may improve the prediction
performance.

7. Conclusion and Outlooks

In this paper we introduce a way to account for the temporal nonstationarity in extremes, which we apply to
study the evolution of the spatial dependence in extreme snow depths in the French Alps since 1970. Several
climate covariates are considered to model trends in the spatial structure of dependence and the best model is
selected by CLIC. We find a strong negative temporal trend in the spatial dependence of extreme snow depths
with a strong decrease in the range of extremal dependence during the 1980s. The most relevant covariates
to explain these temporal patterns are cumulated snowfall, snow precipitation ratio (considered at 1,800 m
above sea level where snow-rain partitioning changed), and temperature (maximum and average). Hence,
the decrease in extremal dependence seems mainly due to the effect of the increase in temperature on the
snow precipitation ratio at low elevation and to a decrease in the winter cumulated snowfall. These results
are consistent with those obtained for extreme snowfalls in the same region in previous studies, showing that
the spatial dependence of these two snow variables are similarly impacted by climate change.

The space-time approach introduced in this article, which permits to model the spatial dependence of
extremes as function of appropriate time-dependent covariates, may be very useful for quantifying spatial
extremes and managing the related risk and its evolution under ongoing climate change. It may provide
insights on climate drivers and open the door to predict spatial extremes under climate change scenarios. This
approach is here applied to extreme snow depths, but it may be fruitful for many other geophysical variables.

Appendix A: Covariates

In addition to time, we use several covariates which summarize the winter climate of the French Alps over the
study period. The French Alps are divided into 23 massifs (see Figure 2a), which are generally assumed to be
homogeneous in terms of meteorological conditions for a given elevation. In each massif, the meteorological
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Figure B1. Same as Figures 9a and 9b), but taking into account the temporal trends in the parameter 𝜇 for the 24
stations for which this trend is significant.

Figure C1. (a) Location of the 13 selected stations. (b) Data availability for the 13 selected stations.

Figure C2. Same as Figures 9a and 9b with a reduced data set of 13 stations.
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conditions (temperature and precipitation) are available all over the study period as a function of elevation
through reanalyses (Durand, Laternser, et al., 2009) provided by the SAFRAN (Système d’Analyse Fournissant
des Renseignements Atmosphérique à la Neige) model (Durand et al., 1993; Durand et al., 1999). From
these reanalyses, the cumulated snowfall, snow precipitation ratio (cumulated snow precipitation divided by
total—snow and rain—precipitation), and the daily maximum, mean, and minimum temperature are calcu-
lated for two elevation levels (1,800 m and 2,400 m) for each winter and for each massif. Then, the mean of
the 23 massif values is computed for each winter in order to have, for each variable and each winter, a sin-
gle value for the entire French Alps, notwithstanding the large variability of mean annual conditions (Durand,
Laternser, et al., 2009). We do not consider reanalyses of winter mean snow water equivalent or winter mean
snow depth (Durand, Giraud, et al., 2009; Vionnet et al., 2012) as covariates because they are too close from
the variable of interest.

We also consider NAO (Jones et al., 1997; Osborn, 2006) and AMO (Enfield et al., 2001; Kaplan et al., 1998)
indices through winter anomalies evaluated from November to April over the study period. NAO and AMO
variables summarize the predominant oscillating patterns in the winter climate of the French Alps, in terms
of pressure/precipitation and temperature, respectively. Rather than the more commonly used detrended
version of AMO (Enfield et al., 2001), we use here the nondetrended version which includes the recent climate
warming signal in addition to oscillating patterns (Kaplan et al., 1998). In the western Alps, a negative NAO
anomaly is associated with colder temperatures and more intense snowfall (López-Moreno et al., 2011).

Appendix B: Impact of the Nonstationarity of the Marginal Distributions

Applying likelihood ratio tests for the GEV parameter 𝜇 reveal that 24 stations exhibit a significant temporal
trend, including 21 negative trends and 3 positive trends. We fitted the Brown-Resnick process to the unit
Fréchet data set obtained by taking into account the trends in the 𝜇 parameter of these 24 stations. Figure B1
shows that the first estimates of the range of extremal dependence are extremely large, due to the flatness
of the extremal function. However, one can still observe a negative temporal trend in the 1980s. Thus, the
negative temporal trend observed when fitting a Brown-Resnick process with nonstationnary spatial depen-
dence structure (section 5.3) cannot be attributed to a possible transfer of a temporal trend in the marginal
distribution to the spatial dependence structure.

Appendix C: Impact of the Network Evolution

In order to check the influence of the evolution of the station network on the results, we fitted the
Brown-Resnick process to a reduced data set of 13 stations with a fair spatial coverage (Figure C1a), chosen
in order to have a quite constant spatial coverage during the study period (Figure C1b). Despite the larger
uncertainty due to smaller sample size, one can still observe the temporal trend (Figure C2).
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