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I. INTRODUCTION and the pseudo-oxide, and then define the overall pseudopo-
The active region of many modern electron devices consiégtial Vin(r) for the 1D eletron gas in the NW as
of semiconductors structured at truly nanometric dimamsio Vip(r) = Vie(r) + Vene(r) 010 (y, 2) , 1)

either as ultra-thin-body FETs (UTB-FETSs), or as 3D archi-

tectures such as Fin-FETs, multi-gate FETs (MUGFETSs), amwhere Vene(r) is defined asVen(r)=[Vox(r)—Vi(r)], and

nanowire (NW) FETs [1]. Quantum mechanical effects havap(y, z) is a box function that id in the oxide region and
thus become prominent not only in terms of subband splittifyin the semiconductor.

[2], but also in terms of source-drain tunnelling in CMOS

FETs [3], [4], [5], and band-to-band-tunnelling (BTBT) in z

Tunnel FETs (TFETs) [6], [7]. The relevance of quantum y‘ X

effects in nanoscale FETs is also withessed by the fact that

CMOS based quantum dots have been proposed as a platform
for quantum computing [8].

The empirical tight-binding (TB) method is the most mature
method for full-band quantum transport simulations based
on the non-equilibrium Green’s function (NEGF) formalism
[9], [10], however an approach based on an Empirical Pseu-
dopotentials (EP) Hamiltonian and a plane-waves basis has
recently raised substantial interest, with contributiceported Fig. 1: Sketch of the simulated gate-all-around nanowire FET, wheis
for carbon nanotubes [11], ultra-thin-body FETs [12], LlS]‘he transport direction and;(z) the plane of quantum confinement.
[14], [15], and graphene nanoribbon transistors [16], [17]

We have recently reported improved methods for full band
EP based NEGF simulations of UTB-FETs [18]. In this

paper we first extend the methodology to nanowires an .« InAs
then present complete, self-consistent simulations foowére gt - PseudoSiO, |
Tunnel FETs with a few nanometer diameter. .
I1. QUANTUM CONFINEMENT AND TRANSPORT < 4,
MODELLING L,
The formulation of the EP method for a bulk semiconducto ? i
has been discussed by many authors [19]. We here focus & Of
the device structure shown in Fig. 1, namely a gate-all+adou 2k
(GAA) InAs NW Tunnel-FET, and our goal is to express -
guantum confinement as a local operator in real space, becat A
our previous non local formulation set a lower limit to the _— !
size of the blocks of the Hamiltonian matrix [15]. To this '6|_ r X

purpose we mtrqduce a pseUdopOtentlal model Hamlltomﬁig. 2: Bandstructure of the pseudo-SiQred) compared to that of bulk
for a pseudo-oxide region, whose only purpose is to Setinas (blue). The corresponding material parameters for Effe model are
conduction and valence band discontinuity with respect teported in Tab. I.

the semiconductor that effectively confines electrons ia th

semiconductor region. We here assumed that the pseudo-oxide has the same
To this purpose we leV.(r) and V. (r) denote the pseu- lattice constantzy as the semiconductor (hence also same

dopotentials describing respectively the actual semiaotdt reciprocal lattice), and adjusted its EP parameters inraxle



Uss | Uss | Usi1 | Uas | Uasa | Uanr T
1)-Si0y -0.64 | 0.0 0.14 | 0.225| 0.14 | 0.08 Bulk InAs
InAs -0.220| 0.0 | 0.050| 0.080| 0.050| 0.030

— Continuous
TABLE I: EP parameters (Ry) for InAs and for the pseudo- = - N,=30
S|02 Nd:20

Energy (eV)

obtain the desired values for the conduction and valencd bai

discontinuity with respect to the semiconductor. Fig. 2omp

the energy dispersion of InAs (in blue) and of a pseudo;SiO 2k

material (in red), showing that the pseudo-Sikas a direct

bandgap of about 9 eV, and that the conduction and valen:

band discontinuity with InAs have the desired values of abot L r X

3.8 eV and 4.5 eV [2]. Fig. 3: Bandstructure of bulk InAs obtained with a continuous and a
An important feature of thd/;p(r) defined in Eq. (1) is discretized kinetic operator with different values &f;.

that it is by definition local in real space, and ks space

representation can be obtained recalling that the realespac o _ )

product Veu(r)81p(y, z) in Eq. (1) transforms into a con- N [15]), which is a crucial parameter for NEGF l?ased simula-

volution in reciprocal space. We here employ standard nofihs- More specifically, the rank of the Hamiltonian blodés

tion for wave-vector& =[(k,, k,.)+GJ, K'=[(k,, k,,)+G’], the nanowire is\ip = (2Ng/Na)Ni. Ny, whereN;, and

where k=(k, k,.) belongs to the reduced zone (same folVk. are the number of the Wavevectc_)rs in the reduced zone

semiconductor and pseudo-oxide), aft=(G,,G,.) is a @and are equal tdV., and2N.., respectively, withNe, (N..)

reciprocal lattice vector [19]. In such notatidfp (K — K’) being the number of unit cells along(z) in the simulation
is given by domain. Hence) p increases proportionally to the number

of unit cells in the confinement directions.
Vee(G = G)oicpe + D Vent (G — G, Gy — Gy, — G A further reduction of the computational complexity can
Gy. be achieved by employing a mode-space transformation [20],
x01p(Ky. — K, + Gy, )0k, k., - (2) [21], and then by keeping only the lowest energy transverse
odes, which are the most relevant for bandstructure and
}ﬁnsport calculations in semiconductors. The mode-space
Hamiltonian is obtained by means of a unitary transfornmatio
H;, (K,K') =T (k+ G)dc.c 0y +Vin(K-K') (3) for each section of the system along namely for a single
e discretization point for the methodology of this work. Atyan
wherefk;, varies in the 1D reduced zone affigk + G) is the  discretization pointz;, the transformation matrix is equal to

well known kinetic_energy t_erm_. o Uub — él) L ](\l]> } whereg,(f) is the eigenvector of the
A real space discretization is indispensable for tranSp%ritgenva e proble?ﬁd
a

modelling with the NEGF approach, and in this work we use
simple second order, centered difference discretizatfoine {HH +H 4 HZTHI} ¢ = ghe® (5)
kinetic energy operator given by [15] ’

The energy dispersion of the 1D electron gas is obtained
the eigenvalues of the Hamiltonian matrix

whereH; ;; are the block matrices of the Hamiltonian in the
T(k+G)=2tg Y {l—cos[(ks+G:)d]} (4 hybrid basis consisting of real space in the transport tigec
s=x,y,7 z and plane waves in thgy,z) directions [15].
whereto=h2/2mod?. In all spatial directions={z,y,2} we We found that the mode space approximation works well
employ the same discretization step-aq/Ng. As shown and it allows one to reduce significantly the size of Hamil-
in Fig. 3, in order to attain an accetable agreement of t@nian blocks for the 1D electron gas. This is not surprising
bandstructures obtained with a continuous and with a dRecause the off-diagonal blockH, ;.1, of the Hamiltonian
cretized kinetic operator, we used a larjg = 30, which Mmatrix are diagonal matrices in the hybrid basis with a camist
also implies a larger number of Hamiltonian blocks. Howgveierm o on the diagonal. In particular, thel; ;. blocks
this drawback is compensated by the reduction of the size@&® independent of the transverse Bloch wave-vekto(or
the single block, which is the most relevant scaling parameik,,k.)), so that the transverse modj ()| obtained by
describing the computational burden. Eq. (5) are also eigenfunctions of the diagonal bloBks.
We verified that, thanks to the mode space approach, the
The use of a second order discretization and of the locgke of the Hamiltonian blocks can be reducedMfp =
formulation of quantum confinement are the two key point¥,,,q/Nx, Ny, for a 1D gas, where, for the materials and de-
that allowed us to reduce the size of the blocks of the blogkces analyzed in this paper, @h,.q Of about 12 is sufficient
tridiagonal Hamiltonian matrix (compared to the formwati to have an agreement within a few percent between the mode



space results and the results obtained without introduitiag 1.5 grrssgoss Sts T T T T

mode-space approximation. °§3°:<>°
In our model the charge and current density are compute ¥ o7 InAs NW: H=W=3.04 nm
<o

in terms of the retardedG ¢, and lesser-thanG 7, |, Green’s 14888
functions in the hybrid basis consisting of real space ir
the transport directior and transverse modes in the lateral
directions. At a given energl, Green’s functions are defined
as

o Unstrained
o Biaxial stress: T._=T__=1 GPa
yy 2z

Energy (eV)

(G ()] = [EL — [Hye] — [(E)] © o Biaxial stress: T =T, =2 GPa

and
[G5e(BE)] = [Gue(B)[Z(E)][Gae (B)] (7 ol R A Y

where the retardedX]=[X;]+[Xg]+[Zpn], and lesser-than 1 02 :

self-energy X <]=[X|+[X}]+[X;,] describe the connection k, (21a,)

to contacts (i.e. left,L, and right lead,R), or a possible

interaction with phonons [22]. The self-energies for iséia Fig. 4: Bandstructure in the 1D Brillouin zone of an InAs nanowirehwi
. ’ . . different tensile biaxial stress values in thg~) plane normal to transport

electron-phonon in mode-space were discussed in [23],rbuty|e -

this paper we do not address incoherent transport.

Moreover, because the periodicity of the unit celldg,

s
5

but two adjacent unit cells are connected only by the ki- 10} 250
netic operator through the first and last discretizatiompoi 10° Ja0
we developed a new approach to compute the contact self- 4 ]
energies that, for the case at study, is more effective than t g 102 _'30?:
standard Sancho-Rubio algorithm [24]. More preciselycad z 10 B—1 Unstrained 1 =
of computing the surface Green'’s function corresponding to 53) 10° A—AT,=T,=05GPa ] 203‘:0
the entire unit cell of lengtl, as prescribed by the Sancho- 210 G—oT, T, -1k ¢ 1 =L
Rubio algorithm, we focus on the surface Green's function 45 T Ty Tl 5GP ]

. . . o . . o—oT, =T _=2GPa v 10
corresponding to a single discretization point alangAgain, 10k v s ]
this allows us to deal with Hamiltonian blocks of reduced 7t ] & 1
size and to significantly improve the computational efficien 10 . 01 02 03 °
Details on this iterative procedure are given in Ref. [25]. Gate voltage (V)

The correct electrostatics of the INnAs NW Tunnel-FET wasig. 5: Transfer characteristics of an InAs nanowire Tunnel FETegit
simulated by self-consistently coupling the solutions &®F unstrained or for a tensile biaxial stress in thgzf plane normal to the
equations (6-7) with that of the 3D Poisson equation transport direction. The gate length ig;=15.2 nm and the cross section of

the semiconductor region is a square with a 3.04 nm side.
V- [e(r)Vo(r)] = —e[p(r) — n(r) + Np(r) — Na(r)] (8)
L L L L I I I

where¢(r) is the electrostatic potentiad(r) is the material- 0.4~ [ Unstained
dependent permittivity, andv4(r), Np(r) are the acceptor P era
and donor concentration, respectively. Before enteringhen e

L

1
|
; i i i _ AT T BT | L L L
The treatment of strain and arbitrary crystal orientations 0.40 10 20 30 40 195 107 10° 102
x (nm) Current Spectrum (a.u.)

Il1. NUMERICAL RESULTS AND DISCUSSION

— T, =T,=15GPa _|

r.h.s. of Eq. (8), electron and hole concentrations wer¢ firs ~ 0.2 1 TzzTuzzepa

computed on a fine discretization grid with stép= ay/Ng, Q i 1

then, thanks to the fact that the electrostatic potentisifhialy > of_ﬁ\ 1k Stress |

slow spatial variations on the scale of the lattice constaey ) - "\.’\_

were interpolated on a coarser mesh with a discretizatiem st ([ [ "_\ cress AL i

de = ao/2. -0.2- kl -
1

in our EP based model has been discussed in [18]. Fig. 4
illustrates the bandstructure for an InAs nanowire eitheer r
laxed or subject to a tensile biaxial stress and having arsquiig. 6: Spatial profiles of the lowest conducation and highest walen
cross-section with a 3.04 nm side. As expected the biaxpyPbands along the source to drain direction and currewtrspir the InAs

. L . nanowire in Fig. 5 and for different stress levels.
strain reduces significantly the energy gap [26], which is

approximately 0.95 eV in the unstrained system.



Fig. 5 reports the corresponding,d versus s char-

acteristics at V,s=0.3 V and obtained by means of self-

consistent NEGF simulations. The metal gate workfunction

[12] Xiang-Wei

Jiang, Shu-Shen Li, Jian-Bai Xia, and Linivga
Wang, “Quantum mechanical simulation of electronic tramspin
nanostructured devices by efficient self-consistent pseotential
calculation,” Journal of Applied Physi¢svol. 109, p. 054503, 2011.

was adjusted so as to have approximately the same off current [Online]. Available: http://dx.doi.org/doi/10.10638208067

Iorr=Ips[Vas=0]=10 pA/um in all cases. As it can be seeri13]

the biaxial tensile stress improves the on stitg at fixed

Iorr, without any sizeable change of the sub-threshold swing.
These features are consistent with previous results atain!4l
with a k-p Hamiltonian [26], which reinforces the confidence

in the results of this paper that, for the first time, were olatd

with a full band EP Hamiltonian.
Fig. 6 illustrates the subband profiles along the device

channel and the current spectra for the InAs nanowire inFig.

at Vas~Vps=0.3 V. As it can be seen the biaxial stres&®l
greatly increases the transmission across the channelnregi

and consequently the on current of the Tunnel FET.

This paper has shown that the EP-NEGF methodology is a
viable approach to simulate narrow NW FETSs, and may thus
deliver a good balance between physical accuracy and numes;
ical burden for electron devices analysis. We argue that our

IV. CONCLUSION

transport formalism can be directly applied to plane-wales

initio Hamiltonians, hence it may be an alternative apphdac |19
the methods based on maximally localized Wannier functions
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