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The Borsuk-Ulam property for homotopy classes of maps
between the torus and the Klein bottle

DACIBERG LIMA GONCALVES * JOHN GUASCHI f
VINICIUS CASTELUBER LAASS *

17th November 2019

Abstract

Let M be a topological space that admits a free involution 7, and let N be a topological
space. A homotopy class § € [M, N] is said to have the Borsuk-Ulam property with respect
to 7 if for every representative map f : M — N of 3, there exists a point z € M such
that f(r(x)) = f(x). In this paper, we determine the homotopy classes of maps from the
2-torus T2 to the Klein bottle K? that possess the Borsuk-Ulam property with respect to a
free involution 7 of T? for which the orbit space is T?. Our results are given in terms of a
certain family of homomorphisms involving the fundamental groups of T? and K?2.

1 Introduction

In the early twentieth century, St. Ulam conjectured that if f : S — R" is a continuous map,
there exists x € S™ such that f(A(x)) = f(z), where A : S* — S" is the antipodal map. The
confirmation of this result by K. Borsuk in 1933 [1], known as the Borsuk-Ulam theorem, was the
beginning of what it now referred to as Borsuk-Ulam type theorems or the Borsuk-Ulam property.
More information about the history and some applications of the Borsuk-Ulam theorem may be
found in [9], for example.

One possible generalisation of the classical Borsuk-Ulam theorem is to substitute S™ and R™
by other spaces, and to replace the antipodal map by a free involution. A natural question is
the following: does every continuous map collapse an orbit of the involution? More precisely,
given topological spaces M and N such that M admits a free involution 7, we say that the triple
(M, 7; N) has the Borsuk-Ulam property if for every continuous map f : M — N, there exists
a point x € M such that f(7(z)) = f(x). For the cases where M is a compact surface without
boundary admitting a free involution 7 and N is either R? or a compact surface without boundary,
the triples (M, 7; N) that have the Borsuk-Ulam property have been classified (see [3] and [4]).
One generalisation of this property is to consider a local Borsuk-Ulam problem in the sense of the
following definition: a homotopy class 5 € [M, N| has the Borsuk-Ulam property with respect to T
if for every representative f : M — N of (3, there exists a point « € M such that f(7(z)) = f(z).
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In [5], the Borsuk-Ulam problem for homotopy classes of maps between compact surfaces
without boundary was studied, and the sets [T?, T?] and [K? K2 whose elements possess the
Borsuk-Ulam property were characterised. By [4, Theorem 12], for any involution 7 : T? — T2,
the triple (T?, 7; K?) does not have the Borsuk-Ulam property. Using this information, in this paper
we classify the homotopy classes of maps from T? to K? that have the Borsuk-Ulam property for
the orientation-preserving free involution 7y of T2. Our approach, which we now describe, is similar
to that used in [5]. First, as in [5, Theorems 12 and 19], we identify 7 (T?, *) and m; (K2, %) with
the free Abelian group Z @ Z and the (non-trivial) semi-direct product Z x Z respectively. These
identifications will be helpful in formulating the results and in making explicit computations.

To prove our results, we will make use of the following algebraic description given in [6,
Corollary 2.1] of the set [T?,K?] in terms of pointed homotopy classes and the corresponding
fundamental groups.

Proposition  1.1. The set [T?/K?| is in  bijection with the subset of
Hom(Z & Z,Z x Z) whose elements are described as follows:

] (1,0) = (6,25 4+ 1) (1,0) — (0,2s1)
fope 1 {(0, 1) — (0, 2s,) fope 3 {(0, 1) > (i, 25, + 1)

) (1,0) = (4,25 + 1) (1,0) = (r1,2s1)
fope 2 {(0, 1) — (i,2s5 + 1) tope 4 {(0, 1) = (r2,2s2),

where i € {0,1} and s1, 82 € Z for Types 1,2 and 3, and 11,79, 81,82 € Z and 11 > 0 for Type /.

Remark 1.2. The bijection of Proposition 1.1 may be obtained using standard arguments in
homotopy theory that are described in detail in [11, Chapter V, Corollary 4.4], and more briefly
in [5, Theorem 4]. In our specific case, the bijection is defined as follows: given a homotopy class
B € [T? K2, there exists a pointed map f: (T2, ) — (K2, %) that gives rise to a representative of
3 if we omit the basepoints. The induced homomorphism fy: m(T?, %) — 71 (K?, %) is conjugate
to exactly one of the elements of Hom(Z®Z, 7 x Z) described in Proposition 1.1, which we denote
by B4. Note that 34 does not depend on the choice of f.

In order to solve the Borsuk-Ulam problem for homotopy classes, we now describe the relevant
involution of T?. Consider the following short exact sequence:

15m(T)=Z8Z S m(T) =267 -2 Z, - 1 (1)
where:
;10— (2,0) (1,0) — 1
10,1) — (0,1) T ](0,1) — 0.

By standard results in covering space theory, there exists a double covering ¢; : T?> — T? whose
induced homomorphism on the level of fundamental groups is i;. If 71 : T2 — T? is the non-
trivial deck transformation associated with ¢q, then 7 is a free involution. Further, 7 lifts to a
homeomorphism 7y : R* — R?, where 7y(z,y) = (z + 3,y) for all (z,y) € R In this paper, we
classify the elements of the set [T?, K?] that possess the Borsuk-Ulam property with respect to 7.
This is achieved in the following theorem, which is the main result of this paper.

Theorem 1.3. Given a non-zero integer t, let e(t) be its 2-adic evaluation. With the notation
of Proposition 1.1, let 8 € [T?,K?| and B4 € Hom(Z & Z,7 x Z). Then 3 has the Borsuk-Ulam
property with respect to m if and only if one of the following conditions is satisfied:
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(a) By is a homomorphism of Type 3.

(b) By is a homomorphism of Type 4, where sy is odd and ro # 0, and additionally e(r1) > e(r2)

Zf 1 7é 0.

Besides the introduction and an Appendix, this paper consists of three sections. In Section 2,
we show how to reduce the number of homotopy classes to be studied with respect to the Borsuk-
Ulam property. In Section 3, we study the normal closure of 02 in P,(IK?), which is a free group
of infinite rank. A convenient basis for this subgroup is obtained in the Appendix. In Section 4,
we prove Theorem 1.3.

The study of the free involution 7, of T? for which the associated orbit space is the Klein bottle
is the subject of work in progress.

2 Some preliminary results

The following results will enable us to reduce the number of cases to be analysed in the proof of
Theorems 1.3.

Lemma 2.1. Let M and N be topological spaces, let 7: M — M be a free involution, and let
H: N — N be a homeomorphism. Then the map H: [M,N] — [M, N] defined by H([f]) = [Ho f]
for all maps f: M — N is a bijection. Further, if f € [M, N] is a homotopy class, then (3 has the
Borsuk-Ulam property with respect to 7 if and only if H(B) has the Borsuk-Ulam property with
respect to T.

Proof. Clearly the map H is a bijection whose inverse is given by H~!([g]) = [H~* o g]. To prove
the second part of the statement, let 8 € [M, N| be a homotopy class that has the Borsuk-Ulam
property with respect to 7, and let g € H(B). Thus H ' o g € 3, and hence there exists x € M
such that H™' o g(x) = H™' o g(7(z)). Therefore g(z) = g(7(x)), and we conclude that H (/) has
the Borsuk-Ulam property. The converse follows in a similar manner using H . [

Proposition 2.2. Let 7: T? — T? be a free involution, and let 3, 5" € [T?; K?| such that By, By
are both of Type 1, 2 or 3. Suppose that the second coordinates of By(w) and Bl (w) are equal
for all w € m(T?, %) and the integer i that defines the homomorphism By (resp. B is equal to 0
(resp. 1). Then (3 has the Borsuk-Ulam property with respect to T if and only if 8’ does.

Proof. Let h : Z X Z — 7Z x Z be the homomorphism defined on the generators of Z x Z by
h(1,0) = (1,0) and h(0,1) = (1,1). Then h is well defined, and it is an isomorphism whose
inverse h™! : Z x Z — Z x 7 is given by h™'(1,0) = (1,0) and A~*(0,1) = (—1,1). By [12,
Theorem 5.6.2], there exists a homeomorphism H : (K? %) — (K2 %) such that Hy = h and
H#;l = h~!. Suppose that Sy and B%é are both of Type 1, and that they satisfy the hypothesis
of the statement, and let f: (T2 %) — (K2 %) be a representative map of 5. Without loss of
generality, we may suppose that fy = 4. Assume that § has the Borsuk-Ulam property with
respect to 7. Then:

(H o f)4(1,0) = h(B4(1,0)) = h(0,2s; + 1) = h(0,1)**!
=((1,1)(1,1))"(1,1) = (0,2)*(1,1) = (1,251 + 1),and
(H o [)#(0,1) = h(B4(0,1)) = h(0,2s) = h(0,1)** = ((1,1)(1,1))™ = (0,2)" = (0,2s).
Then H o f is a representative of 3/, and the conclusion follows from Lemma 2.1. The converse

follows in a similar way using H ! instead H. The arguments for the cases of homomorphisms of
Types 2 and 3 are analogous, and the details are left to the reader. [

Remark 2.3. Using Lemma 2.1, one may show that Proposition 2.2 holds in more generality.
However the above statement will be sufficient for our purposes.
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3 The normal closure of ¢ in P»(K?)

Let S be a compact, connected surface without boundary. The ordered 2-point configuration
space of S is defined by F»(S) = {(x,y) € S x S | & # y}, Do(S) is the orbit space of Fy(S) by
the free involution 7g : F5(S) — F3(S) defined by 7s(z,y) = (y,x), and P2(S) = m (F2(5)) and
By(S) = m(Dsy(S)) are the pure and full 2-string braid groups of S respectively [2]. We have a

short exact sequence:

where 7 : By(S) — Zs is the homomorphism that to an element of By(S) associates its permuta-
tion. If p; : F5(S) — S is the projection onto the first coordinate, the map (py)x : P2(S) — m1(5)
may be interpreted geometrically as the surjective homomorphism that forgets the second string.
Let o € By(S)\ P2(S) be the Artin generator of By(S) that geometrically swaps the two basepoints.
Then 02 € Py(S), and the normal closure of 02 in Py(S), which we denote by (02), is also the
normal closure of o2 in By(S) by (2). In this section, we shall take S to be the Klein bottle, and
we will show that (02) is a free group of countably-infinite rank for which we shall exhibit a basis.
We will also express certain elements of (02) in this basis.

The following proposition summarises some results of [5, Section 4] regarding the structure of
P»(K?) and the action by conjugation by ¢ on this group.

Proposition 3.1. [5, Theorems 19 and 20] The group P,(K?) is isomorphic to the semi-direct
product F(u,v) Xg (Z x Z), where F(u,v) is the free group of rank 2 on the set {u,v} and the
action 0 : 7Z x Z — Aut(F(u,v)) is defined as follows:

U — Bmfénusaner&n
O(m,n) : { v BMyu M BmFon
B — B,
0 ifn is even

where 0,, = : ) en = (—1)" and B = uvuv=t. With respect to this description, the
1 ifn is odd,

following properties hold:
o the element o € By(K?) satisfies 0? = (B;0,0).

o ifly : Py(K?) — Py(K?) is the homomorphism defined by l,(b) = obo™" for all b € P»(K?),
then:

l,(u";0,0) = (Bu')"B™";7,0) l-(1;m,0) = (1;m,0)
lo(v%;0,0) = ((uv)~*(uB)™;0, 5) l,(1;0,n) = (B*;0,n)
l,(B;0,0) = (B;0,0)

for all m,n,r,s € Z, where the symbol 1 denotes the trivial element of F(u,v).
e the homomorphism (p1)4 : Pa(K?) = m1(K?) = Z x Z satisfies (p1)g(w;r,s) = (r,s).
From now on, we identify P»(K?) with F(u,v) Xg (Z x Z) without further comment.

Remark 3.2. It follows from Proposition 3.1 that for all m,n € Z, the automorphism 0(m,n) :
F(u,v) = F(u,v) depends only on m and the parity of n, in particular 8(m,n) = 6(m,J,).



Consider the following maps:

y F(u,v) — Py(K?) i o Py(K?) — F(u,v)
' w — (w;0,0) br (w;m,n) — w.

Note that ¢ is a homomorphism, but due to the action 6, pg is not. Consider the map p : F(u,v) —
F(u,v) defined by:

p=prpolyou, (3)
and the homomorphism ¢ : F'(u,v) — Z x Z defined on the basis {u, v} by:
g9(v) = (0, 1).

Using Proposition 3.1 and (3), we obtain the following commutative diagram:

F(u,v)
////7/////////ﬁ////’////////? TPF

F(u,v) Py(K2) —2> Py(K2) = F(u,v) x9 (Z x Z) (5)
3 l(pl)#
7 x 7 = m (K2),
from which it follows that:
lo(w;0,0) = (p(w); g(w)) (6)

for all w € F(u,v). Further if w, z € F(u,v) then:

p(wz) = (pr o ly)(wz;0,0) = pr(lo(w;0,0).15(2;0,0)) = pr((p(w); g(w)). (p(2); g(2)))
= pr(p(w)f(g(w))(p(2)); g(w)g(2)) = p(w)d(g(w))(p(2)).

Thus the map p : F(u,v) — F(u,v) is not a homomorphism, but if w € Ker (g) then:
plwz) = p(w)p(2). (7)
In Theorem A.3 of the Appendix, we prove that:
Ker (g) = (B == v*u'Bu v, k1€ Z |-). (8)

Let w € F(u,v) and (m,n) € Z x Z. Using Proposition 3.1, we see that B € Ker(g), and then
that:

O(m,n)(wBw ™) = 0(m,n)(w)B"0(m,n)(w) " € Ker (g). 9)



Composing (10) by pr, it follows from (5) and (9) that:

pwBw™) = p(w)d(g(w))(B)p(w) ™" € Ker (g). (11)

In particular, p(By,;) € Ker(g) for all k,l € Z, and using (7) and (8), the restriction of p to
Ker (g) yields an endomorphism of Ker (g), which we also denote by p. Further, 8(m,n)(By,;) €
Ker (g) for all k,l,m,n € Z using (9), and thus 6 determines a homomorphism from Z x Z
to Aut(Ker (g)), which we also denote by 6. Note that for all m,m € Z, the endomorphism
O(m,n) : Ker(g) — Ker(g) is indeed surjective. To see this, let k,I € Z, and let £ € F(u,v)
be such that 6(m,n)(§) = v*u’. Then O(m,n)(EBEY) = By, and £B¢! € Ker (g) because
B € Ker(g). Hence the image of §(m,n) : Ker(g) — Ker(g) contains the basis {By,}i ez of
Ker (g), and so this homomorphism is surjective.

The following result describes the subgroup (o2).
Proposition 3.3. The injective homomorphism ¢ : F(u,v) — Py(K?) defined by t(w) = (w;0,0)

for allw € F(u,v), restricts to an isomorphism between Ker(g) and (0_2), which we also denote by
v. In particular, (02) is a free group of infinite rank for which a basis is given by {(By,;0,0) }k1ez,
and 1,({02)) C Ker((p1)4). Up to this isomorphism, the homomorphisms 0 : ZxZ — Aut(Ker(g))
and p : Ker(g) — Ker(g) induce homomorphisms Z X 7. — Aut({c?)) and (c?) — (0?), which we

also denote by 0 and p respectively. Further, the following diagram is commutative:

JEE— p R

(0%) ——— (%)

L

Py(K2) —l2= Py (K2).

Proof. Let H = 1(Ker (g)) C Py(K?). We start by showing that (¢2) = H. To see this, first note

that 0% = (B;0,0) and «(By,) € (¢?) for all k,l € Z, hence H C {¢?) by (8). Conversely, for all
w € F(u,v), ¢ € ZxZ and k,l € Z, we have:

(w; ¢)(Bry; 0,0)(w; q) ' =(wb(q)(Bra); )(0(q~ ") (w™);¢7") = (wh(q)(Br)w™50,0).  (12)

Since 6(q)(By;) € Ker(g) and Ker (g) is normal in F(u,v), it follows that w6(q)(By)w™! €
Ker (g), and so (w; q)(B,;0,0)(w;q)~' € «(Ker (g)) = H by (12). Hence H is a normal subgroup
of Py(K?) by (8), and since 0> € H, we conclude that (¢2) ¢ H. Thus (02) = H as required.
Since ¢ is injective, the induced homomorphism ¢ : Ker (¢) — (02) is an isomorphism, and the
image of the basis { By, }x.ez by ¢ yields a basis of the free group (02). The commutativity of the
given diagram follows by considering the images of the elements of this basis {(Bx,; 0, 0) }x ez and
using (10). O

Remark 3.4. Although Ker (g) and (0?) are isomorphic by Proposition 3.3, our results will be
stated in terms of (02), since we will formulate most of our equations in this group.

The following result provides a normal form for elements of F'(u,v) in terms of g and (o?).

Proposition 3.5. Let w € F(u,v), and let g(w) = (r,s). Then there ezists a unique element
x € (0?) such that w = u"v°z.

Proof. Let w be as in the statement, and let x = v *u~"w. Then w = v v*z, and:
9(x) = g(v™"u""w) = g(v)*g(u)"g(w) = (0, =s)(=r,0)(r,s) = (0, —s)(0,s) = (0,0).

So z € (0?). Clearly z is unique. ]



Let p,q € Z. Since (0?) is a normal subgroup of F'(u,v), the following homomorphism is well

defined:
Cpg: (0?%) — (0?)
r +—— vPulzu P,

(13)

Lemma 3.6. Let k,l,p,q € Z, and let (m,n) € Z x Z. With the notation of Proposition 5.1,
there exist v, \,n € (02) such that:

(a) 6(m,n)(Bri) = ¥BiL i a5,m7
1
(b) ,O(Bkl) = )\B_k 5(k+1)l)\ .

(¢) cpqg(Bri) = NBripiiegn
Proof. During the proof, we will make use freely of Proposition 3.1. First, we have:

6(m,n)(By,) = 0(m, n)(vFu! Bu=v™%) = 6(m,n) (v*u!) B 0(m, n) (vFu) 7t = 7B,§7€n1725km7_1
where v = 0(m,n)(vFul)usnr1t+2kmy=F ¢ F(y,v). To complete the proof of item (a), it remains
to show that v € Ker (g). Since:

v = (BmUU_ZmB_m—HSn)k(Bm_(S"UsnB_m+6n)lusn+1l+25kmv_k,

and B € Ker (g), it follows that:

9(7) = ((07 1)(_2m7 0))k (gnla O)(gn-i—ll + 257€m7 0)(07 _k:) = (Qma 1)k(5nl + 5n+1l + 26km7 _k>

= (25km, k)(2(5km, —/{3) = (25km + 25k€km, 0) = (O, 0),

using the fact that ¢, = —1 if k is odd, and 0, = 0 if k is even. Hence v € Ker(g). To prove
item (b), first note that:

0(g(v*u))(B) = 0((0, k)(1,0))(B) = 0(el, k)(B) = B (14)
By (11) and (14), we have:
p(Bra) = p(v*u' Bu=v™") = p(v"u)0(g(v"u'))(B)p(v"u') ™ = ABZ AT

where A = p(vPul)uso* € F(u,v). It remains to show that A € Ker (g). We have:
g(p(w*u')u'v") = g((pr o 5 0 8)(v"u")). (exl, k)
= g(pr(((wv) ™ (uB)™;0,k)((Bu™")'B™1,0))). (exl, k)

9(( v) ™ (B)*0(0, k)((Bu™")'B™)). (exl, k)

)70, 0). g (B (B~ B™) ™)' B™). (exl, k)
5 ks —k)(ék, )( Ekl, O)(Ekl, k) = (57]@ + kaé‘ka O) = (O, O),

since d;, = 0 if k is even, and g, = —1 if k is odd. Hence X\ € Ker (g). Finally we prove item (c).
We have:

—q,— k L, —l —k
Cpg(Bry) = vPu! By u” ™ = vPutvu' Bu” v " u" 0P = nByy,y, l+€kq77

where 1 = vPulvPut+1997F"P € F(u,v). It remains to show that n € Ker (g). This is indeed the
case because:

g(n) = (0,p)(q, k)(er19, =k — p) = (0,p)(q + erer1q, —p) = (0,p)(0, —p) = (0,0),

which completes the proof. ]



Let (02),, denote the Abelianisation of the group (02). By abuse of notation, for all &, € Z,

we denote the image of a generator By, in (02),, by By,;. By Proposition 3.3, (62),, is the free
Abelian group for which { By, := v*u'Bu~'v=" | k,1 € Z} is a basis, namely:

EAb = @ Z[By,] .

kIEZ

For all (m,n) € Z x Z and p,q € Z, the endomorphisms 6(m,n), p and (c,,) of (¢2) induce

endomorphisms (m, n)ap, pab and (cpq)ap of (02),, respectively, and by Lemma 3.6, for all
k,l € Z, they satisfy:

O(m,n)an(Br) = 0Bk eni—20,m (15)
Pab(Bri) = ek B ke, and (16)
(cp.g)an(Bri) = Brypiten- (17)

Let k,l € Z and r € {0,1}. If z and y are elements of a group, let [z,y] = zyz~ 'y~ denote
their commutator. In the rest of the paper, we will be particularly interested in the following
elements of F'(u,v):

As we shall now see, T}, ., I, Oy, and Jy; are elements of (02), and their projections into (02) ,, will
be denoted by fk,m Tk, 6k,l and ij respectively. The following result describes the decomposition
of these Abelianisations in terms of the basis { By }x;. If | € Z, let 0, denote its sign, i.e oy = 1 if
[>0,00=—-1ifl<0,and oy =01if [ = 0.

Proposition 3.7. Let k,l € Z and r € {0,1}.

(a) The elements Ty, I, Oy and Jy; belong to (o2).
(b) If k=0 then Ty, = Iy = 0, and if k =0 or | = 0 then Oy = J; = 0.
(c) For all k,1 # 0:

O’kk
Ty, = oy Z Bo oy (i4(on (1—2r)=1)/2)
i—1
O’kk
I, = —oy, Z Boyit(1-01)/2,0
i—1
O'kk O'll
I = —0ok0; Z Z Boy(2i-1).01(—(1+01)/2)
i—1 j—1
ok ol

Ok,z = 00y Z Z(Bak(Qifl),folj#(crlfl)/Q - Bok(2¢71)71,alj7(1+ol)/2)-

i=1 j=1



The proof of Proposition 3.7, which is divided into the following four lemmas, consists essen-
tially in manipulating each of the elements to obtain recurrence relations, and using induction
to obtain expressions for Ty ,, I, Ok, and Jj,; in W. Part (c) of Proposition 3.7 is obtained by
Abelianising these expressions.

ork

Lemma 3.8. If k € Z and r € {0,1} then Ty, = HBM i (ont1)/2"

Proof. Let r € {0,1}. Then clearly Ty, = 1 and T}, = u(B*u"*")*" = By1_, so the result holds
for £ = 1. Suppose that the formula is valid for some & > 1. Then:

Tk+1,r _ U,k+1(BgTU_8T)(k+1)€T — . uk(Bg"u_E")kE". (Be,-u—a,-)ar

k k+1
-1 €r,,—Er\Er __ -1 —
=uTp,u " u(Bu )" =u H Bog—it1—r |u . Bo1—r = H Bogt1—it1-rs
i=1

=1

and so the result holds for all £ > 0 by induction. Suppose that £ > 1. Then:

T_k,r = u_k<Bsru—€r)—k€T‘ — —k( k(Bsru—sr>ker> luk _ U_kT,;rluk
k
- (H BO»—"H—’”) HBO —ki—r
i=1
using the result for 7}, in the case k > 1, which proves the formula for all £ € Z. n

Lemma 3.9. Let k € Z. If k =0 then I, = 1, and if k # 0 then:
ork 9k
= (H Bi+k(1—ak)/2,0> :

i=1

Proof. If k =0, then clearly Iy = 1. If k =1, [, = v(vB) ' =vB vt = Bié, and result holds
in this case. Suppose that the formula for I, holds for some k > 1, and let us prove the formula
for k + 1. We have:

Ly = 0" (wB)F 1t = vvk(vB)’kv’lv(vB)’l =vlv '

k -1 k k+1 -1
= (H B@o) Uleié = (H BH—LO) Bl (1) = (H BZ 0) y
i=1 i=1

so by induction, the formula for I, holds for all £ > 0. If £ < 0 then —k > 0 and so:

I, =vF(vB) ™" = v*(vB) FFuTF = o (v’k(vB)k)fl v = oF R

—k —k
=" (H Bi,O) vF = HBk’+i,0'
i=1 i=1
It follows that the formula given in the statement holds for all £ # 0. U

0 ife=-—1
Lemma 3.10. Let k,l € Z, let ¢ € {—1,1}, and let w = {1 2;6 ) If k=0 orl =0, then
ife =1.

Jeg =1, and if k,1 > 0, then:

I I -1
Jk,al - H (H BZk 2i+1,ej— w) and ‘]—Ifﬂ = <H (HB 2i+1,ej— w)) ’

i=1 \j=1 i=1
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Proof. If k=0 or [ =0, then clearly J,; = 1. Now let k =1 and € € {1, —1}. Then for all [ > 0,
we have:

Jl,s(lJrl) _ U2(Uua(l+1))—2 _ U2u—au—alv—1u—au—alv—1
el, —1, —el el —, -1, —e, —cl —1

= v*(u v o ouou v e u
= Jlswusl+(efl)/2( (1=€)/20, = Lqy—cH(e= 1)/2) —el+(1—)/2,y~1

_ Jl,slUUEH_(E 1)/2B—s —el4+(1— s)/2 JlalB (18)

lel+(e—1)/2"

Hence J11 = By, é and J; 1 = By _1, which are in agreement with the expressions of the statement
of the lemma for £k = [ = 1. Suppose now that these expressions hold for £ = 1 and some [ > 1.
Nowel+ (e —1)/2=¢e(l+1)—(¢+1)/2=¢(l+ 1) — w, so by (18), we have:

+1

Jl,e(l+1 Jksl - (H Bl EJ— w) 1€l+(€ 1)/2 — HBigj—W’

7=1

and thus the expressions of the statement hold for all £,/ > 1 by induction. From this, for all
k,l >0 and € € {1,—1}, it follows that:

J et = Uﬁk(vusz)zk _ 2k (Uzk(vusl)qk)*l vk — 72ka 61l 2k
—1 —1
(H (H BZk 2i+1,ej— w>> UQk = (H (H B~ —2i+1,ej— w)) )
i=1 \j=1 i=1 =

which completes the proof of the lemma. O
0 ife=-1

Lemma 3.11. Let k,l € Z, let ¢ € {—1,1}, and let w = {1 2;8 . If k=0 orl =0, then

if e =1.

Ok =1. If k.1 >0, then for all 1 <i <k and 1 < j <I, there exist 0; e, Cijes Hijes Vije € (02)
such that:

l k €
(a) Oupy = LG Gy
ek,l Tij.e QWk 2i+1, ]771 JJ,E SU:JE ka 2i,5—154,5,e :

j=1 \i=1

. . e\ —1
(b) 05]%_1 = <H (HHZ]&BZuk 2i41,1— ]p“zje 27]€Bka 2i,—1+j— 1V7J15> > ’

j=1 \i=1

By taking € = 1 or —1 in parts (a) and (b) of Lemma 3.11 and Abelianising, one may check
that the formula for Oy, given in Proposition 3.7 is correct.

Proof of Lemma 5.11. If k =0 or [ = 0, then clearly O; = 1. So suppose that k,I > 0, and let
e € {—1,1}. We start by considering the case [ = 1. If k = ¢ = 1 then:

O11 = V2w %0t = vu tuvwe  fuw oo le T = vu T Bun BT = By leo 0
and so the expression for Oy given in (a) is correct by taking ;11 = (11,1 = 1. We now suppose

that the expression for Oy given in (a) holds for some k > 1, where 1,11 = (11 = 1 for all
1 <4 <k. Then:

2(k+1)

Opy11 =0 wv 21 = 202k 2Ry 2022 = 020k710_201,1

10



k
~1 —2 -1
H B2k—2i+1,—lek—2i,O v "B1,-1By

i=1
k+1
HB2 k+1)—2i+1, 71B2(k+1) 24,0 Bl le()O - H B2 k+1)—2i+1, le 2(k+1)—2i,0°
i=1 i=1

By induction, it follows that that the expression for Oy ; given in (a) is correct for all k& > 1, where
Niig = Gaa =1 for all 1 <7 < k. Using this, for all £ > 1, we obtain:

01 = v~ 2Fun?u ! = o2 (2= ~1) 12k = —QkOk 12k
N 1 1
= H Bok—2i+1,-1B3 o 0 H B_si41,-1B 5, 0
i=1

Hence the expression for O_j; given in (a) is correct for all k: > 1, where 1,11 = (j1,-1 = 1 for
all 1 < i < k. We now suppose that the expression for O, given in (a) is correct for some [ > 1
and all £ > 1 and ¢ € {1, -1}, where 1; ., G ;- € W foralll1 <i<kand1l<j<I[ Wejust
saw that this is the case if { = 1. We now study the case [+ 1. By Lemma 3.6(c), for all 1 < i <k,
there exist 714116, Gur1e € (02) such that u'Boyg_oip1,qu™ = ﬂi,l+1,sB2wk72i+1,flfl7];[11,5 and
U Byuoh—2i0u™" = Giug1,e Bown—214C;, 1 .- Thus:

Oalc 141 26k l+1 25ku—l—1 :,UQEkulU—2sku—lulv2akuv—2€k -1, -1

-1
:Oak U Oak71u

- -1
= | | | |771,] EBQoJk 2i+1, 7]771,] 5(27]5 ka 24,5 — lci,j,é

=1 =1
5

k

i=1
€

k
—1 —1 —1
H Mije Bowk—2i41,— 1 j.Givjie Bow—2i -1 j e
1 =1

k €
, B 4 -1 , B el
Mil+1,e 2wk72z+1,717177i’l+17ECz,l+1,s 2wk721,lg’,l+1,5

=1
I+1 k €
_ -1
- H H Nije BQWk 2i+1, —an,] SQJ € 2wk 2,5 — 1Ci,j,5
7j=1 \i=1

By induction, it follows that (a) holds for all k£, > 1 and ¢ € {1,—1}. We now use part (a) to
prove part (b). Let k,1 > 1 and ¢ € {1, —1}. By Lemma 3.6(c), for all 1 <i < kand 1< j <1,
there exist p; e, vije € (02?) such that u‘lnm@ngk_ziﬂ,_jnijgul = mﬁjﬁngwk_%H,l_Jp;J{E and
uilCi,j,aBka—%,j—1Cijj{gul =V, j, eBzwk—zi,—lJrj—W;jl,g-

2ek, —l, —2ek, 1 l( 25kulv—26k

Ocpmr =00 v "0 =u !

u )t = uTOL ) u

e\ —1

!
B G o !
Ni,jeD2wk—2i+1, *J771j6 ij,e 2wk—2i,j—1 i
j:l =1
k e —1
—1 1 1
H H:uiyjﬁB?wk—?i-l—lal—jMz’,g}ayiajEBZu;k 2 —1+j—1Vij,e :
j=1 \i=1
which proves part (b). O
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4 Proof of Theorem 1.3

Let o € [T?, x; K2, %] and 8 € [T?,K?|. With the notation of [5, Theorem 4], suppose that az = 3.
According to [5, Theorem 7], the pointed homotopy class « has the Borsuk-Ulam property with
respect to the free involution 7 if and only if the homotopy class § has the Borsuk-Ulam property
with respect to 7. So to obtain Theorem 1.3, it suffices to prove the statement for pointed
homotopy classes. Before doing so, we give an algebraic criterion, similar to that of [5, Lemma 22],
to decide whether a pointed homotopy class has the Borsuk-Ulam property with respect to 7.

Lemma 4.1. Let o € [T? *; K2 %] be a pointed homotopy class. Then « does not have the
Borsuk-Ulam property with respect to T, if and only if there exist a,b € Py(K?) such that:

(i) aly(b) = ba.
(i) (p1)#(alo(a)) = ax(1,0).
(iii) (p1)#(b) = ax(0,1).

Proof. The result may be obtained in a manner similar to that of [5, Lemma 22], using Proposi-
tion 3.1 instead of [5, Theorem 12]. O

Corollary 4.2. Let a, o’ € [T?, ;K2 %] be pointed homotopy classes, and suppose that:

" {(1,o>~><m,sl> nd o {<1,o>~><m,s;>
F00,1) 5 (19, 52) #0,1) = (o 8h)

for some 11,79, 81,5], 82,85 € Z. If s1 = s mod 4 and sy = s, mod 2 then a has the Borsuk-Ulam
property with respect to T if and only if o' does.

Proof. Since the statement is symmetric with respect to o and «’, it suffices to show that if o does
not have the Borsuk-Ulam property then neither does o/. If o does not have the Borsuk-Ulam
property, there exist a,b € P»(K?) satisfying (i)—(iii) of Lemma 4.1. By hypothesis, there exist
ki, ks € Z such that | = s1 + 4k; and s, = sy + 2ks. Let @’ = a(1;0,2k;) and ' = b(1;0, 2k;) in
P»(K?). Tt suffices to show that a’ and b’ satisfy (i)—(iii) of Lemma 4.1.Using Proposition 3.1, one
may check that the centre of By(K?) is the subgroup {((1;0,2)). Thus:

a(1;0,2k:)l,(b(1;0,2ks)) = aly(b)(1; 0, 2ky + 2k5) 0 ba(1;0,2k; + 2ky) = b'd/,
p)#(a(1;0,2k1)l5(a(1;0,2k1))) = (p1)g(als(a)(1;0, 4k ))
D (ry, 51)(0,4k1) = (r1, 5}) = &y (1,0), and

a'l,(b")
(P1)#(d'lo(a))

iif)

(p1>#(b/) = (pl)#(b(l; 0, 2]{:2)) (: (7‘2, 82)(07 Qkﬂ) = (TQ’ 3/2) = O'/;#(O’ 1>’

which proves the corollary. O

Remark 4.3. Let o € [T?, %; K2, ] be a pointed homotopy class, and let ay : m (T?) — m (K?)
be the homomorphism described in [5, Theorem 4], and that is of one of the four types given in
Proposition 1.1.

(a) Suppose that a is of Type 1, 2 or 3, and let i € {0, 1}, s; and s, be the integers that appear
in the description of a4 in Proposition 1.1. By Proposition 2.2 and Corollary 4.2, o has
the Borsuk-Ulam property with respect to 7; if and only if o/ does, where o € [T?, x; K2, x|
satisfies:

12



I ) = ) 1 ! s - > ]
(1) a(1,0) = (0,251 + 1 mod 4) and o, (0,1) = (0,7) if ay is of Type 1 (in which case
j =0), or is of Type 2 (in which case j = 1).

(i) o’ (1,0) = (0,251 mod 4) and ’,(0,1) = (0, 1) if ay is of Type 3.
So for each of Types 1, 2 and 3, there are two cases to consider, s; =0, and s; = 1.

(b) Suppose that ay is of Type 4, and let 1,79, and so be the integers that appear in the
description of a4 in Proposition 1.1, where 7, > 0. By Proposition 2.2 and Corollary 4.2, «
has the Borsuk-Ulam property with respect to 7; if and only if o’ does, where o/ € [T?, ; K2, %]
satisfies o’y (1,0) = (1, 2s; mod 4) and a/,(0,1) = (r2,0). So for each pair of integers (11, 72),
where r; > 0, there are two cases to consider, s; =0, and s; = 1.

To prove Theorem 1.3, it suffices to study the cases described by Remark 4.3. This will
be carried out in Propositions 4.4-4.7 below. Part of Proposition 4.4 (resp. Proposition 4.5)
treats the cases of Remark 4.3(a)(i) (resp. Remark 4.3(a)(ii)), and part of Proposition 4.4 and
Propositions 4.6 and 4.7 deal with the cases of Remark 4.3(b). In each case, we will make use of
Proposition 3.1 and its notation, as well as the commutative diagram (5).

Proposition 4.4. Let:

X ={(0,2s4+1,0,7)|4,s € {0,1}} U{(r1,0,79,0) | 1,72 € Z, 7y > 0} U{(0,2,0,0)}.

(1,0) = (p,7)
(0,1) = (&,7),
(p,7v,&,7) € X. Then a does not have the Borsuk-Ulam property with respect to 1.

Let a € [T? %; K% %] be a pointed homotopy class such that ay : { where

1,0) — (0,2
Proposition 4.5. Let o € [T?, *; K2, ] be a pointed homotopy class such that ay : {EO’ 1; EO’ 1?
Y H Y Y

where s € {0,1}. Then « has the Borsuk-Ulam property with respect to 1.

1,0 2
Proposition 4.6. If ay : {EO 1§ = (71,

where r1,r9 € Z, 11 > 0, and one of the following
) = T27O )

conditions holds:
(a) ro =0.
(b) ro #0 and e(ry) < e(ra).

Then o« does not have the Borsuk-Ulam property with respect to Ti.

Proposition 4.7. Let o € [T?, *; K2, ] be a pointed homotopy class such that oy :
where 11,19 € Z, 11 > 0, 19 # 0, and one of the following conditions holds:

(a) r1 =0.

(b) r1 >0, and e(ry) > e(r2).

Then « has the Borsuk-Ulam property with respect to .

The following lemma will be used in the proofs of some of these propositions.
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Lemma 4.8. Leta,b € Py(K?). Then there exist x,y € (02) and a;,b;, m;,n; € Z, wherei € {1,2},

such that:

a = (uv2r;my,ny) and b = (uP'v?y;ma, ny). (19)

Suppose further that a and b satisfy the relation of Lemma J.1(i). Then:
by =0 and (14 (=1)°1 Ymy = (1 + (=1)%2 Y )my + (=1)%1by, (20)
so by is even, and:

uPly B2 0m2 018 ( BOna gy m2M2)%2 ROna T2 (1 6, ) (1) =

'U,al ,Ua2$Bm1*5n1 (Bsnl ufsnl )bl B*5n1b1+5n1 *m19<m1 + gnl bl7 (5n1 ) (p(y))B5n25n1 X (21)

Proof. Let a,b € P,(K?). Proposition 3.5 implies that there exist z,y € (¢2) and a;, b;, m;, n; € Z,
where i € {1, 2}, for which (19) holds. First, we have:
ba = (uPvP2y; my, no) (U™ v™2x; My, Ny

= (u by b2y9(m2, Oy ) (U 022); mg + (—1)5"2m1, ng + ny). (22)
Now:

=((Bu YY" B by, 0)((ww) 2 (uB
=((Bu™H)"B7"; by, 0)((ww) 2 (uB
=((Bu™")" B~"0(b, 0)((uv) =" (uB)’2); by, ba) (p(y) B°"2; ma, ms)

=((Bu™")" B~"6(b1, 0)((uv) " (uB)*2)8(b1, &,) (p(y) B™2);

by + (—1)%2my, by + ny). (23)

,0)(L;m, 0)(B*230,ns)

B "2: Mo, ng)

%2:0,b2)(ply
%230, b2)(p(y

o (D) ) );0
)™ )

uv)”

Thus:

(p1)(aly (b)) = (my,n1)(by + (—1)5b2m2, by + ng)
= (m1 + (—1)6"1 b1 + (—1)5”1+5b2m2, ny + bQ + TLQ). (24)
Suppose that a and b satisfy the relation of Lemma 4.1(i). It follows from (22) and (24) that
by = 0, and then that my + (—=1)°2m; = my + (=1)°1b; + (—=1)°1my, which yields (20). This
implies that b; is even. We now expand and simplify the remaining parts of (22) and (23):

pr(ba) = ublyG(mg, Oy ) (U 02 2)
= Py B2 O M8 ns ( BOnz gy m2M2) 32 BOna M2 (1 5, ) (), (25)

and
Pl (b)) = (Bu™")" B™"10(by,0)(p(y) B™2) = (Bu~")" B="6(by, 0)(p(y)) B*=.
Hence:

pr(aly(b)) =u v20(mi, 6, ) (Bu™")" B~"0(by, 0)(p(y)) B*2)
=y y®2 M1 Ony (Bfn1u 5n1)blB—5n1b1+5n1 mlg(ml+€n1b1’5n1)(p(y))B6n25nl‘ (26)

Equation (21) then follows from the hypothesis, and equations (25) and (26). O
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Proof of Proposition 4.4. Let a € [T?, %;K?, %] be a pointed homotopy class such that ax(1,0) =
(p,7) and ax(0,1) = (&, 7), where (p,7,£,7) € ¥. Note that either p =& =0o0ry=7=0. In
what follows, we will use the identities d5, = 0, and €5, = ¢, for all ¢ € Z. Let a,b € P,(K?) be
such that a = (u%v® BH(0=% )/2 (p—16,)/2,(y—9,)/2) and b = (B~%%; £, 7). With respect to the
notation of (19), x = B»0=9)/2 and y = B=%¢. To prove the result, we show that conditions (i)
(iii) of Lemma 4.1 are satlsﬁed. Clearly, (p1)4(b) = (£, 7) = ax(0,1). Further, by taking b = a
n (24), we have:

tata(a)) = (1 (o) L o, ). (27)
If p = £ = 0 then the first coordinate of the right-hand side of (27) is equal to zero, while if v = 7 =
0, this coordinate is equal to p. In both cases, we conclude that (p1)g(al,(a)) = (p,7) = ax(1,0).
Hence conditions (ii) and (iii) of Lemma 4.1 are satisfied. It remains to check condition (i). Note
that in the proof of Lemma 4.8, the only condition that we have applied to obtain equations (25)
and (26) is that by = 0. But this coefficient is zero in our case, and so these equations are also
satisfied here. So using (22), (25) and Proposition 3.1, we see that:

ba = (B—Me(g, 5,) (w0 B O=00/2) ¢ 4 o (p - % ., —2 57))

_ <B—5P§Bg—5m5pa, (B o) Bo—€ Berdr=02)/2, ¢ 4 ¢ (p—6,) )
9 T 2

In a similar manner, by (24) and (26), we see that:

Glg(b) _ (uép,U(HB(SW(’YlH)/QJr(&—5p§)€(w—6'y)/2; (p_259> +e (v—57) /25 T +

[\]
\_/

If p =& =0 (resp. v = 7 = 0) then (p1)y(ba) = (0,7 + (v = 0,)/2) = (p1)#(als(b)) (resp.

(p1)(ba) = (£+ (p—6,)/2,0) = (p1)x(aly(b))). So it remains to show that pp(ba) = pr(al,(b)).

(a) If p=¢€=0,pp(ba) = B*‘sf(B‘STU)‘SWB‘ST195757(”7*5”/2 and pr(al, (b)) = v0r B (=03 /240re (5252

(i) Suppose that 6, = 0. Since (p,7,&,7) € X, it follows that é, = 0, and thus pp(ba) =
pr(aly (b)) = 1.

(ii) Suppose that 0, = 1. Then py(ba) = vBo+5-0~1/2 and pp(al, (b)) = vBO~D/2H0re01)2,
If 6, = 0 then pp(ba) = vBO™Y/2 = pr(al,(b)). So suppose that d, = 1. Since
(p,7,€,7) € X, it follows that (v —1)/2 € {0, 1}, and one can check easily that 1 — (7 —
1)/2 = (v —1)/2 + g(y-1)2. It follows that pp(ba) = pp(al,(b)).

(b) If v = 7 = 0 then pp(ba) = BU=%)y% B~¢ and pr(aly(b)) = u’B~%¢ and one sees that
pr(ba) =1 = pr(aly(b)) if 6, = 0, and pr(ba) = uB~¢ = pp(al, (b)) if §, = 1. O
0

In order to prove Proposition 4.5, we will make use of the following lemma.
(1,0) — (0,2s)
(0,1) = (0,1)

a does not have the Borsuk-Ulam property with respect to 1 then there exist x,y € (0?) ,, and

Lemma 4.9. Let a € [T? % K2, %] be such that oy : { for some s € {0,1}. If

my,n € Z that satisfy the following equation in (02) ,,:

H1 (IL') + M?(y) :Tin—Qs - T—thénl - Onl—s,—le - (ml + 5711 + Enl)BO,O - (ml - 5n1)BO,—2m1
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- B2n1—2$,—25n1+1m1 + B2n1—25,07 (30)

where pu, po = (02) 4, — (02) 4, are the homomorphisms defined on the basis elements of (02) ,, by:

p1(Bri) =Bri—2¢4mi + Br,—1 and

112(Br) =€k€s,, Bty eniir2sim = Brtan —2s1-26,8,, 11ma-

Proof. By hypothesis, there exist a,b € P,(K?) satisfying (i)—(iii) of Lemma 4.1. Proposition 3.5
implies that a and b may be written in the form (19). Lemma 4.1(iii) implies that (p;)x(b) = (0, 1),
so (mg,ng) = (0,1). Using Lemma 4.1(ii) and taking b = a in (23), we obtain:

(0,2s) = (p1)g(als(a)) = (m1,m1) (a1 + (=1)my,n1 + az)
= (my+ (=)™ ay + (=1)""2my, 2n; + as).

It follows that ay = 2s — 2n; is even and a; = —24,, 1m;. Lemmas 4.1(i) and 4.8 then imply that
by = 0 and by = —2¢,,m;. We now analyse (21), which holds because Lemma 4.1(i) does. The
left-hand side of (21) is equal to pr(ba), and may be rewritten as:

pr(ba) =uPy B~ u™ (Bv)* ™ BA(0,1)(x) = u"yBu"" B(vB)*~2"0(0,1)(z)

b1—aq 25—2n1‘ 2n1—2s_ a1 —aq 23—2n1‘v2n1—25ua13—1u—a1 25—2n1.

= v ) u-yu v
Ugnl_QsBU25—2n1 ] ,U2n1—25 (UB)25—27119(07 1)(1’)

25_2n1 C2n1_25’a1 (y)BQ_’I’Lll—ZS,al B2n1—25,0[2n1—239(07 1) (:I:)7 (31)

and the right-hand side of (21) is equal to pr(al,(b)), and may be rewritten as:

v

=4y

P (aly (b)) =0 Mg B0 (Bora e BT (<, 5, (p(y)) B

— 2mi+aq

_ _ _ mi1—4
U U2S 2n1[ 2n1 257 2m1] B ny

C0o,—2m; (z) 0,—2mq

u—2m1 (B€n1 w M )—25n1 mi B(TS'*“;M 0(_m1’ 5n1 ) (p(y))Bg’%l

% u

mi —5n1 mi +5n1
n1—s,—2m1 C0,—2m, (:E)B()’_le T—2m1,6n1 Bo,o :

9(_m175n1)(p(y>)3837 (32>

Since pr(ba) = pr(al, (b)), and using the fact that by —a; = 2m;+ay, it follows by Abelianising (31)
and (32) that:

2 25—2
= m1+a1v s nlO

(co,—2my ) an(T) — 9(97 Dab(z) + 0(=m1, 0n, ) ab © pan(y) — (Cany —25.01)ab(Y) =

12n1—25 - T—2m1,5n1 - Onl—s,—2m1 - (ml + 5711 + 5711 )BO,O - (ml - 5711 )BO,—le - B2n1—287a1 + Bin—Qs,O

in (02) ,,,, where the projection of = (resp. y) in (62) ,,, is also denoted by x (resp. y). By (15)-(17),
for all k,l € Z, we have:

(co,—2my ) ab(Bry) — 0(0, 1) an(Bky) = Bri—2epmy + Br—i = p(Biy)
and

O(—m1, 0n, ) ab © Pab(Bri) — (Cony 25,01 ) Ab(Brit) = 0(=ma, 6n, ) ab(ExB-ker 11) — Brt2ni—2s,4epas

- €k85n1 B*k,Egnl Ep+1l4+20xm1 T Bk+2n172$,l+€ka1
= p2(Bry)-

The result follows by noting that a; = —26,, +1m;. O
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We are now able to complete the proof of Proposition 4.5.

Proof of Proposition 4.5. We argue by contradiction. Suppose that o does not have the Borsuk-
Ulam property with respect to 71. Then there exist z,y € (0?),, that satisfy equation (30) given
in the statement of Lemma 4.9. Let & : WA]D — Zy be the homomorphism defined on the basis
{Bk.i}riecz of WAb by &£(By;) = 1 for all k,1 € Z. From the definition of the maps u; and ps,
it follows that the left-hand side is sent to 0. By Proposition 3.7, & (Em_gs) =¢ (f omi e, ) =

13 (5,11_87_2,”1) =0, and it follows that the right-hand side is sent to &,,, which is different from 0.
This yields a contradiction. We conclude that o has the Borsuk-Ulam property with respect to
T1- ]

Proof of Proposition 4.6. Let o € [T?, *;K?, %] be a pointed homotopy class such that a#( O)

(r1,2) and ax(0,1) = (ry,0), where 71,72 € Z are such that r; > 0, and either ro = 0,

ry # 0 and e(r;) < e(ry). Let o(r)) = r1/2°0) and let m = 7"2/26(”). Then o(ry) > O
is odd, and m € Z by hypothesis. Let o/ € [T? %;K? x| be the homotopy class for which
ay(1,0) = (r1,20(r1)) and o/, (0,1) = (r2,2m). By Corollary 4.2, to prove the result, it suf-
fices to exhibit a,b € P(K?*) that satisfy Conditions (i)—(iii) of Lemma 4.1 for o/. Let ¢ =
(12 ™02,0,0) € Py(K2), and let a = (co)°™o=t and b = (co)?™. Then a,b € Py(K2), and by
Proposition 3.1, we see that (p;)4(l,(c)) = (26 () 2). Now al,(b) = (co)’™oa(co)?o™! =
(co)>™(co)°™ o~ = ba, so condition (i) of Lemma 4.1 is satisfied. Next, a = ((co)?)01)=1/2¢ =
(cly(c)o?)r=D/2¢  hence I, ( ) = (Is(c)a?c)tr=D/2]_(¢), and since (pl) (c) = (p1)g(0?) =
(0,0), it follows that (p1)g(als(a)) = ((pr)#(lo(c)))") = (2°0),2)°0) = (240 (ry), 20(r1)) =
(r1,20(r1)) = a4(1,0). So condition (ii) of Lemma 4.1 holds. Finally, b = (coco)™ = (cl,(c)o*)™,
o (p1)x(d) = (P1)xlls(c))™ = (260D 2)™ = (26U 2m) = (ry,2m) = a,(0,1), and condi-
tion (iii) of Lemma 4.1 is satisfied, which proves the proposition. O

The rest of this section is devoted to proving Proposition 4.7.

Lemma 4.10. Let a € [T? x; K2, %] be a homotopy class such that ay : m (T?) — 71(K?) satisfies
ag(1,0) = (r1,2) and ax(0,1) = (r2,0), where 11,19 € Z. With the notation of Proposition 3.7,
if a does not have the Borsuk-Ulam property, then there exist x,y € (02) 4, and (m1,n1) € Z x Z
such that:

M('r) + V<y) :Jn1*17*27'2 - On1*1,25n17“2 - Tv25n1T2,6n1+ (33>

T2B2(n171),26n1+1m176n1n — (mq — 5n1)BO,26n1r2 — (0, (1 = 2rg) —mq +13)Boo

in (02) 4, where p,v = (0%) 4, — (0%) 4, are the homomorphisms defined on the elements of the
basis { By, }kiez of (02) 4, by:

1(Br1) =Bk i12:,6,,r2 — Bri—26,m (34)

V(Bk,l) =€kEn, B—k;,snlak+1l—26k(m1+26n1r2) - Bk—l—?(nl—1),l+€k(2§n1+1m1—6n1rl)~ (35)

Proof. Let a € [T?, ;K2 %] be a homotopy class that does not have the Borsuk-Ulam property,
and that is represented by the homomorphism ay : 71 (T?) — m(K?) given by ax(1,0) = (ry,2)
and ay(0,1) = (ra,0), where rqy,79 € Z. Then there exist a,b € P»(K?) satisfying conditions (i)—
(iii) of Lemma 4.1. We write these elements in the form of equation (19). Condition (iii) implies
that (mg,ng) = (r9,0), and taking b = a in (24), condition (ii) implies that (r1,2) = (mi(1 +
(—1)mte2) 4 (—1)"ay, 2ny + ag). It follows that ay = 2(1 — ny) and that ay = €,,71 — 20,111
By (20), we have by = 0 and (1 + (—=1)°+)my = (14 (=1)°2")my + (=1)%1b, from which we

17



see that by = —20,,, 72 using the fact that ny = 0. Substituting this information into (25) and (26),
and using that fact that ¢,,0,, = —d,,, we obtain:

pF(bCL) :u725n1r2y8r2u5n1m —28pq +1Mm1 (qu2r2)2(1fn1)Bfr26(r2’ 0) (l’)

:u5n1r1726n1r2725n1+1m1 U2(17n1) ) UZ(nlfl)u26n1+1m1f€n1r1 yBrg )

e 120 p1ma 2(1-n1) | 2(na—1) (vu_2”)2(1_”1)3(;629(7“27 0)()

) EnT1—20n,72—20p, +1m1,,2(1—n1)
=u " " v C2(n1—1),20p, y1m1—En, 71 (y)

BT2 J’I’L1—1,—27"2B0_,620(r270)(x>’

2(n171),25n1+1m17,€n1r1
pF(aan))) —qfr1 "1 =200 +1ma g 2(1=n1) 1. pMa—6ny (Benl ot )Qanl SnyT2

B5n1(1_2r2)_mle(m1 + 25711 T2, 5n1)(p(y>)

:uan1r1—26nl+1m1—25n1r2 U2(1_n1) . ,UQ(nl—1)u25n17"2U2(1—n1)u—25n1T2 .

u25n1 rgxu725n1 2 u25n1 r2 pm1 —6ny u725n1 T2 u25n1 T2

(Bsnl u—€n1 )25n1 671,17’2 Bg?’bl (1727.2)7”11 . 0<m1 + 2577,1 r27 5n1>(p(y))

:u€"1T1_26”1+1m1_26”1T202(1_n1)0 m1—5n1

n1—1,20,72€0,26,, 72 () B 25, 73

Onq (1—2r9)—m1
T25n17"2,5n1B0,01( DG (g + 260,72, 00, (p(y)).

Applying condition (i) of Lemma 4.1, we see that:

) —Tr2 _
CQ(nlfl),26n1+1mlf€n1r1 (y)BQ(nl,1)725"1+1m1,5n17«1 Jn1—1,—2rgB(),0 9(7“2, 0) (ZL‘) -

—0n Onq (1—2r2)—
On1*1,25n1 T2 60726711 T2 (x)BgE(snl T'; T26n1 1“275”1 BO,Ol ( r2) " e(ml + 26”1 T2, 5711 ) <p<y) ) )

in (02), and by Abelianising this equation, we obtain the following equality in (02) ,,:

(60,25n1T2>Ab(x) - 9(T27 O)Ab(x) + e(ml + 26n1r27 5n1)Ab o pab(y) - (C2(n1—1),26n1+1m1—5n1r1)Ab(Z/) =

Jny—1,-2rs = Ony =126, 70 — 125, 12.60, T T2Ba(ny11).26, 41m1—en,m
— (m1 — 5n1)BO,25n1r2 — (5711(1 — 27‘2) —mq + TQ)B()’[). (36)

Now by (15)—(17), for all k,l € Z, we may check that:

1(Bri) =(C0,26,,r2) Ab(Br) — 0(r2, 0) ab(By,) and (37)
V(By) =0(m1 + 205,72, 0ny ) Ab © Pab(Bri) — (C2(n1-1),26,, 1m1—en,r1 ) Ab(Br1)- (38)
Equation (33) then follows from (36), (37) and (38). O

In what follows, we suppose that the hypotheses of Proposition 4.7 hold, namely r; > 0, ro # 0,
and either 7 = 0, or ; > 0 and e(ry) > e(ry). With the notation of Lemma 4.10, we define the
homomorphism &,, ,, : (62) x;, = Zs on the basis { By }rez as follows:

0 ifk#n; —1,orif k=mn; —1and 2¢02)+1 4]

ny,nr B = T
Snsira (Bl {1 if k=ny —1and 2¢02+1 | [,

Lemma 4.11. With the notation of Lemma 4.10, the compositions &y, », © pt 1 (02) 4, — Zo and
Enirs OV 1 (02) 4y — Ly are identically zero.
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Proof. Tt suffices to prove that &, , © t(Bii) = &nyry © V(Byy) = 0 for all k, 1 € Z. We start with
the case of &,, ,, op. By (34), clearly &,, ,, o pt(Bg,) = 0 if k # ny — 1. So suppose that k = ny — 1.
Using the fact that €, 10, = d,,, we have:

gmﬂ"z o N(Bm—l,l) = 5”1,7’2 (Bn1—1,1+2€n1715n17’2 - Bn1—1,1—25n1717"2)

= €n177“2 (Bnl—l,l+25n17"2) - 571177"2 (Bm—l,l—%nlflm)' (4())

Now (I 4 20,,72) — (I = 28,,_172) = 2r3(6p, + 6ny—1) = 213, hence 2621 | [ 25, ry if and only
if 26021 | | — 26, 179, and it follows from (39) and (40) that &, ., © (B, _1;) = 0 as required.
We now analyse the case of &,, ,, ov. Since —k =n; — 1 if and only if K +2(ny — 1) =n; — 1, it
follows from (35) that &,, ., o v(Bg;) = 0 if k # —(ny — 1). So suppose that k = —(n; — 1). Since

€k€n1 = Enl—lgnl = —17 5n1€k+1 = 63” = 1, 5711—15711 = O and €n1_15n1+1 — —5n1+1, we Obtain:
Snaira © V<Bi(n171)’l> =~ S (Bnlfl’k%m71(m1+25n1T2)) = &naro (Bnl*1,l+€n1*1(26n1+1m1*5n17'1))
= — 5711,7"2 (Bn1—1,l—25n171m1) - é.nl,rg(Bnl—l,l—26nl+1m1+rl). (41)
Now (l — 2(5m,1m1) — (l — 25n1+1m1 + 7"1) = —7r. Since 23(r2)+1 ’ 1, it follows that 2@(r2)+1 ’
| — 26,,_1my if and only if 262+ | | — 26, ym; + 7. Equations (39) and (41) then imply that
Enyyry © V<B—(n1_1)vl) = 0 as required. 0

We now complete the proof of Theorem 1.3. The following remark will be used in the proof of
Proposition 4.7.

Remark 4.12. Let r € Z \ {0}, and let S be a set consisting of 2 |r| consecutive integers. Then
S contains o(r) = |r|/2°") elements divisible by 2¢(+1,

of Proposition J.7. Let o € [T?, %; K2, ] be a pointed homotopy class such that ay(1,0) = (rq,2)
and oy (0,1) = (re,0), where 75 # 0 and either r; =0, or r; > 0 and e(r1) > e(r2). Suppose on the
contrary that a does not have the Borsuk-Ulam property with respect to 7;. Then by Lemma 4.10,
there exist x,y € (02),, such that equation (33) holds. By Lemma 4.11, &,, ., (u(z) 4+ v(y)) = 0.
So to prove the result, it suffices to show that the image of the right-hand side of (33) by &, ,, is
equal to 1. We analyse each of the terms in turn.

(a) We start by showing that:
fnl Tz( ni—1, 2T2) - 5711-1-11 (42>

If n; = 1 then j;Ll,L,QTQ = 0 by Proposition 3.7(b), so fnl,,,Q(Jm,l,,m) = 0. So suppose that
n1 # 1. By Proposition 3.7(c) and (39), we have:

Oni—1(n1—1) ory2r2

£n1 7’2( ni1—1, 2r2) = Z Z 5711 7’2( Ony—1(2i—1),—0275 (j (1—02,«2)/2)>-

If ny is odd, there is no integer ¢ satisfying o, —1(2i—1) = ny—1, and thus &,, ,, (jnl,L,M) =1
in this case. If ny is even, then o,, 1(2i — 1) = ny — 1 if and only if i = (6, _1(n; — 1) +
1)/2, and in this case, i belongs to the allowed set {1,...,0,, 1(n; — 1)} of indices. Now
consider the terms of the form By, 1 o, (j—(1-02,,)/2); where j€A{l,...,0,2r2}. Then the
set {—02,(j — (1 —09,)/2) | j = 1,...,0.,2rs} consists of 2 |r Consecutive integers, and
thus contains o(rs) elements divisible by 2¢(r2)+1 by Remark 4.12. It follows from (39) that
€y (Jni—1.—20,) = 1, and this proves (42).
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(b)

Consider the term 6n1_1,25n1T2. If nq is even or is equal to 1 then fOan_Lg(;nlrQ = 0 by Propos-

ition 3.7(b), and &, 1, (On,—1,25,,r,) = 0. So assume that n, is odd and different from 1. By
Proposition 3.7(c) and (39), we have:

§n1 T2 (Om —1,26n, 72 ) :gm T2 (Om —1,2rp )
Onq—1 (n1—1) Org 272

= Z <£n1,r2 (Bo'nl71(21‘_1)1_027”2]‘—"_(0—27“2_1)/2> +

i=1 j=1
Ena o (Banl71(27;—1)—1@%21'—(02@+1)/2))- (43)

Observe that there is no integer i satisfying o,,-1(2i — 1) = ny — 1, and it follows that
5”177“2 (BJ7L171(21',1),,0-2?“2]'4402702,1)/2) =(0foralli e {1, c. ,Unl_l(n1—1>} andj < {1, c. ,0r227“2}.
For the second term of (43), note that o, 1(2i — 1) — 1 = n; — 1 if and only if i =
(0n,—1(n1—1)40,,_1+1)/2, and in this case, i belongs to the allowed set {1,...,0,, 1(n1—1)}
of indices. Now consider the terms of the form B, 1 4,,,j (0, ~1)/2, Where j € {1,...,0,,2r2}.
Then the set {09, — (09, +1)/2 | j = 1,...,0,,2r2} consists of 2|ry| consecutive integers,
and thus contains o(ry) elements divisible by 2°2)*! by Remark 4.12. It follows from (39)
that &,, 1, (On,—1.2,) = 1. Hence:

5”1,7"2 (5n1—1,25n1 7"2) = 5H1T (44>

Consider the term j—/‘g(snlm’gnl. If n,y is even then ’_Z~ﬂ25n1,~275n1 = 0 by Proposition 3.7(b), and thus
Enyira <T25n17'275n1> = 0. So assume that n; is odd. By Proposition 3.7(c), we have:

Ory 2ro

T25n1r2,5n1 = T2r2,1 = Opy Z Bo,or2 (i—(ory+1)/2)- (45)
i=1

If ny # 1 then &, 1, (Thyy1) = 0 by (39). So suppose that ny = 1. Then the set {0y, (i — (oy, +
1)/2) | i =1,...,0.,2rs} of indices consists of 2 |ry| consecutive integers, and thus contains
o(ry) elements divisible by 2¢)*1 by Remark 4.12. It follows from (39) that &,, ., (T3y,1) = 1.
Hence:

_ . (46)
0 otherwise.

5”177”2 <T25n1 72,00, ) = {

Let X = 72B2(ny1).26,c0m1—enyri — (M1 = Ony ) Bo2s, ry — (0ny (1 — 272) — my + 79)Boo. If
ny # 1 then it follows from (39) that &, ,,(x) = 0. So suppose that n; = 1. Then y =
r9Bo - — (M1 —1)Boar, — (1 —my —1r9) By . By hypothesis, e(r1) > e(r2), and we see from (39)
that &, ,(x) =T2+my — 1 +1—my —ry =0. Thus:

fnl,rz (T2B2(n1—1),26n1+1m1—€n17‘1 - (ml - 5n1>BO,25n1r2_

(60, (1= 2r5) = my +75)Boo ) = 0. (47)

We now take the image of (33) by &,, ,,. Using (47) and Lemma 4.10, it follows that:

0= 6”1,7"2 (/L(l') + V<y)) = 5”1,7“2(‘]711*1,*27“2 - On1*1,25n17‘2 - Tv26n17'275n1 ) (48>

From (42), (44) and (45), we obtain the following conclusions:
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(1) if ny is even then gnl,rg(j;u—l,—%“g) =1 and 577,1,7”2 (5n1—1,26n1r2) = 5111,7“2 (T26n11”27(5nl) =0.
(ii) if n; =1 then £n177'2 (j:26n17‘275n1) =T and 5”1,7"2(6”/1*1,267117“2) = gmﬂ?(j;nfl,*?m) =0.

(iii) if ny is odd and ny # 1 then 5711,7‘2(&};“_17_27‘2) = §n17r2(fg5nlr275nl) =0 and §n1,r2(6n1_1725n1r2) =
1.

In all three cases, we conclude that §n1’r2(jm_17_2r2 = Ony—126,,rm — Tg(jnlm?gnl) = 1, which contra-
dicts equation (48). It follows that o has the Borsuk-Ulam property with respect to 7. O

A Appendix

Let g : F(u,v) — ZxZ be the homomorphism defined on the generators of F'(u,v) by g(u) = (1,0)
and g(v) = (0,1).

Proposition A.1. For each k,l € Z, | # 0, let [y; = v™ulvulv™*"1 € F(u,v). Then Ker(g) =
(Tiy, kI EZ,L#0 |-).

Proof. We use the Reidemeister-Schreier rewriting process that is described in detail in [8, Chapter
2, Theorem 2.8] and briefly in [10, Appendix I, Theorem 6.3]. We use the notation of [10]. Let
S = {v*u'}yjez. We have g(vFu') = (0,k)(1,0) = ((=1)*1, k). So, g|s : S — Z x Z is a bijection,
and therefore S is a complete set of right coset representatives of Ker (¢) in F'(u,v). Moreover, S
is a Schreier system of Ker (¢g). Let us compute the generators of Ker (¢g). We have

— 1 — 1 _
vPutuokuluy T = oPul okt = R T (0Fu )T = 1) and

—71 _ _
vRulvvkuly T = vl (") T = T,

where for all w € F(u,v), w is the unique element of S for which ¢g(w) = g(w). Note that I'y; =1
if and only if [ = 0. Using the Reidemeister-Schreier rewriting process, we see that the group
Ker (g) is freely generated by {I'k;}riez, 120 O

The basis of Ker (g) given in Proposition A.1 is not well adapted to our calculations. We define
a new basis that is more suitable.

Lemma A.2. For each k,l € Z, let By, = v*u'Bu~'v™*, where B = uwvuv™. Then we have the
following relations in Ker(g):

(a) Ty =1IT\_) Brai if 1 > 1, and Ty =[], Bil oy, ifl<—1.
(b) By, = Fk,l+1F;;ll, where F,;é =1.

Proof. We first prove part (a). We start by proving the result in the case k = 0. If [ = 1, we have
!

Iy = wouv~t = Byp. So suppose that I'y; = HBO’H for some [ > 1, and let us show that the
i=1

result holds for [ + 1. We have:

! l 41
Logy1 = UFO,luilro,l =u (H BO,Zi) UilBo,o = (H BO,liJrl) By = H Bo,(141)—i-

i=1 i=1 =1
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By induction, the given formula is valid for £k = 0 and all [ > 1. If [ < —1, the result holds for
Iy, and thus:

— -1 -1 -1
-1 - l | | -l | | | | -1
F()’l =Uu Foﬁlu =Uu BO,—l—i u = BO,—i = B07171+i.
i=1 i=1 i=1

Hence the formula holds for k = 0 and all [ € Z\ {0}. Now let k € Z. Then I'y; = v*T'g;v~* and
By = v"By,v7", and we obtain the formula for all k € Z and [ € Z \ {0} using the results of the
case k = 0. Part (b) then follows. O

Theorem A.3. The set {By; = v*u! Bu='v™*} ¢z is a basis of Ker(g).

Proof. By Lemma A.2, the elements of the set { By, }ricz generate Ker (g). To show that this set
is a basis, it suffices to prove that there are only trivial relations between these elements. Suppose
on the contrary that there exists a word w € Ker (g) for which:

1 n [ €i
w= By, B, By, =1 wheree; € {-1,1} and B;! B, " #1.

Kit1,mit1

Let S = {ki,ko, ..., k,}. For each k € S, we define the set R consisting of those indices I; for
which the element By appears in the word w. Let [, and [ be the minimal and maximal
elements of Rj respectively. We define the sets By and I'y, as follows:

L] Bk = {Bk707 ey Bkz,lma e 7Bk,lM} and Fk = {Pk,l- Ce 7Fk,lMa Fk,lM-I-l} lf 0 S lm

L] Bk = {Bk,lm; ceey Bk7,1,Bk70, Bk,ly e Bk,lM} and Fk = {Fk,lmy e ,Fk,,l,lﬂk,h cee Fk’lA/IJFI} lf
I <0 <lp + 1.

L] Bk = {Bk‘,lmy .. -;Bk,lM} and Fk = {Fklm? C.e 7Fk,lM} lf lM + 1 = 0
(] Bk = {Bk,lma ceey Bk7lM>Bk,lM+1} and Fk = {sz,lma e aFk,lMaFk,l]\/[+1} lf ZM + 1 < 0

Note that By and I', have the same number of elements by Lemma A.2. Further, if &,k € S,
where k # k', then B, N By = () = I', N Ty, It follows that Cp = U B, and Cr = U I'; have

kes kes
the same number of elements, and generate the same subgroup C' of Ker (g), using Lemma A.2

once more. Since Ct is a finite basis of €', Cp is a basis of ', and so w € C, which yields a
contradiction because C' is a free group. ]
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