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The Borsuk-Ulam property for homotopy classes of maps
between the torus and the Klein bottle

DACIBERG LIMA GONÇALVES ∗ JOHN GUASCHI †

VINICIUS CASTELUBER LAASS ‡

17th November 2019

Abstract

Let M be a topological space that admits a free involution τ , and let N be a topological
space. A homotopy class β ∈ [M,N ] is said to have the Borsuk-Ulam property with respect
to τ if for every representative map f : M → N of β, there exists a point x ∈ M such
that f(τ(x)) = f(x). In this paper, we determine the homotopy classes of maps from the
2-torus T2 to the Klein bottle K2 that possess the Borsuk-Ulam property with respect to a
free involution τ1 of T2 for which the orbit space is T2. Our results are given in terms of a
certain family of homomorphisms involving the fundamental groups of T2 and K2.

1 Introduction
In the early twentieth century, St. Ulam conjectured that if f : Sn → Rn is a continuous map,
there exists x ∈ Sn such that f(A(x)) = f(x), where A : Sn → Sn is the antipodal map. The
confirmation of this result by K. Borsuk in 1933 [1], known as the Borsuk-Ulam theorem, was the
beginning of what it now referred to as Borsuk-Ulam type theorems or the Borsuk-Ulam property.
More information about the history and some applications of the Borsuk-Ulam theorem may be
found in [9], for example.

One possible generalisation of the classical Borsuk-Ulam theorem is to substitute Sn and Rn

by other spaces, and to replace the antipodal map by a free involution. A natural question is
the following: does every continuous map collapse an orbit of the involution? More precisely,
given topological spaces M and N such that M admits a free involution τ , we say that the triple
(M, τ ;N) has the Borsuk-Ulam property if for every continuous map f : M → N , there exists
a point x ∈ M such that f(τ(x)) = f(x). For the cases where M is a compact surface without
boundary admitting a free involution τ and N is either R2 or a compact surface without boundary,
the triples (M, τ ;N) that have the Borsuk-Ulam property have been classified (see [3] and [4]).
One generalisation of this property is to consider a local Borsuk-Ulam problem in the sense of the
following definition: a homotopy class β ∈ [M,N ] has the Borsuk-Ulam property with respect to τ
if for every representative f : M → N of β, there exists a point x ∈ M such that f(τ(x)) = f(x).
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In [5], the Borsuk-Ulam problem for homotopy classes of maps between compact surfaces
without boundary was studied, and the sets [T2,T2] and [K2,K2] whose elements possess the
Borsuk-Ulam property were characterised. By [4, Theorem 12], for any involution τ : T2 → T2,
the triple (T2, τ ;K2) does not have the Borsuk-Ulam property. Using this information, in this paper
we classify the homotopy classes of maps from T2 to K2 that have the Borsuk-Ulam property for
the orientation-preserving free involution τ1 of T2. Our approach, which we now describe, is similar
to that used in [5]. First, as in [5, Theorems 12 and 19], we identify π1(T2, ∗) and π1(K2, ∗) with
the free Abelian group Z⊕Z and the (non-trivial) semi-direct product Z⋊Z respectively. These
identifications will be helpful in formulating the results and in making explicit computations.

To prove our results, we will make use of the following algebraic description given in [6,
Corollary 2.1] of the set [T2,K2] in terms of pointed homotopy classes and the corresponding
fundamental groups.

Proposition 1.1. The set [T2,K2] is in bijection with the subset of
Hom(Z⊕ Z,Z ⋊ Z) whose elements are described as follows:

Type 1:
{
(1, 0) 7→ (i, 2s1 + 1)

(0, 1) 7→ (0, 2s2)

Type 2:
{
(1, 0) 7→ (i, 2s1 + 1)

(0, 1) 7→ (i, 2s2 + 1)

Type 3:
{
(1, 0) 7→ (0, 2s1)

(0, 1) 7→ (i, 2s2 + 1)

Type 4:
{
(1, 0) 7→ (r1, 2s1)

(0, 1) 7→ (r2, 2s2),

where i ∈ {0, 1} and s1, s2 ∈ Z for Types 1,2 and 3, and r1, r2, s1, s2 ∈ Z and r1 ≥ 0 for Type 4.

Remark 1.2. The bijection of Proposition 1.1 may be obtained using standard arguments in
homotopy theory that are described in detail in [11, Chapter V, Corollary 4.4], and more briefly
in [5, Theorem 4]. In our specific case, the bijection is defined as follows: given a homotopy class
β ∈ [T2,K2], there exists a pointed map f : (T2, ∗) → (K2, ∗) that gives rise to a representative of
β if we omit the basepoints. The induced homomorphism f# : π1(T2, ∗) → π1(K2, ∗) is conjugate
to exactly one of the elements of Hom(Z⊕Z,Z⋊Z) described in Proposition 1.1, which we denote
by β#. Note that β# does not depend on the choice of f .

In order to solve the Borsuk-Ulam problem for homotopy classes, we now describe the relevant
involution of T2. Consider the following short exact sequence:

1 → π1(T2) = Z⊕ Z i1−→ π1(T2) = Z⊕ Z θ1−→ Z2 → 1 (1)

where:

i1 :

{
(1, 0) 7−→ (2, 0)

(0, 1) 7−→ (0, 1)
θ1 :

{
(1, 0) 7−→ 1

(0, 1) 7−→ 0.

By standard results in covering space theory, there exists a double covering c1 : T2 → T2 whose
induced homomorphism on the level of fundamental groups is i1. If τ1 : T2 → T2 is the non-
trivial deck transformation associated with c1, then τ1 is a free involution. Further, τ1 lifts to a
homeomorphism τ̂1 : R2 → R2, where τ̂1(x, y) = (x + 1

2
, y) for all (x, y) ∈ R2. In this paper, we

classify the elements of the set [T2,K2] that possess the Borsuk-Ulam property with respect to τ1.
This is achieved in the following theorem, which is the main result of this paper.

Theorem 1.3. Given a non-zero integer t, let e(t) be its 2-adic evaluation. With the notation
of Proposition 1.1, let β ∈ [T2,K2] and β# ∈ Hom(Z ⊕ Z,Z ⋊ Z). Then β has the Borsuk-Ulam
property with respect to τ1 if and only if one of the following conditions is satisfied:
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(a) β# is a homomorphism of Type 3.

(b) β# is a homomorphism of Type 4, where s1 is odd and r2 6= 0, and additionally e(r1) > e(r2)
if r1 6= 0.
Besides the introduction and an Appendix, this paper consists of three sections. In Section 2,

we show how to reduce the number of homotopy classes to be studied with respect to the Borsuk-
Ulam property. In Section 3, we study the normal closure of σ2 in P2(K2), which is a free group
of infinite rank. A convenient basis for this subgroup is obtained in the Appendix. In Section 4,
we prove Theorem 1.3.

The study of the free involution τ2 of T2 for which the associated orbit space is the Klein bottle
is the subject of work in progress.

2 Some preliminary results
The following results will enable us to reduce the number of cases to be analysed in the proof of
Theorems 1.3.
Lemma 2.1. Let M and N be topological spaces, let τ : M → M be a free involution, and let
H : N → N be a homeomorphism. Then the map H : [M,N ] → [M,N ] defined by H([f ]) = [H ◦f ]
for all maps f : M → N is a bijection. Further, if β ∈ [M,N ] is a homotopy class, then β has the
Borsuk-Ulam property with respect to τ if and only if H(β) has the Borsuk-Ulam property with
respect to τ .
Proof. Clearly the map H is a bijection whose inverse is given by H−1([g]) = [H−1 ◦ g]. To prove
the second part of the statement, let β ∈ [M,N ] be a homotopy class that has the Borsuk-Ulam
property with respect to τ , and let g ∈ H(β). Thus H−1 ◦ g ∈ β, and hence there exists x ∈ M
such that H−1 ◦ g(x) = H−1 ◦ g(τ(x)). Therefore g(x) = g(τ(x)), and we conclude that H(β) has
the Borsuk-Ulam property. The converse follows in a similar manner using H−1.
Proposition 2.2. Let τ : T2 → T2 be a free involution, and let β, β′ ∈ [T2;K2] such that β#, β

′
#

are both of Type 1, 2 or 3. Suppose that the second coordinates of β#(ω) and β′
#(ω) are equal

for all ω ∈ π1(T2, ∗) and the integer i that defines the homomorphism β# (resp. β′
#) is equal to 0

(resp. 1). Then β has the Borsuk-Ulam property with respect to τ if and only if β′ does.
Proof. Let h : Z ⋊ Z → Z ⋊ Z be the homomorphism defined on the generators of Z ⋊ Z by
h(1, 0) = (1, 0) and h(0, 1) = (1, 1). Then h is well defined, and it is an isomorphism whose
inverse h−1 : Z ⋊ Z → Z ⋊ Z is given by h−1(1, 0) = (1, 0) and h−1(0, 1) = (−1, 1). By [12,
Theorem 5.6.2], there exists a homeomorphism H : (K2, ∗) → (K2, ∗) such that H# = h and
H−1

# = h−1. Suppose that β# and β′
# are both of Type 1, and that they satisfy the hypothesis

of the statement, and let f : (T2, ∗) → (K2, ∗) be a representative map of β. Without loss of
generality, we may suppose that f# = β#. Assume that β has the Borsuk-Ulam property with
respect to τ . Then:

(H ◦ f)#(1, 0) = h(β#(1, 0)) = h(0, 2s1 + 1) = h(0, 1)2s1+1

= ((1, 1)(1, 1))s1(1, 1) = (0, 2)s1(1, 1) = (1, 2s1 + 1), and
(H ◦ f)#(0, 1) = h(β#(0, 1)) = h(0, 2s2) = h(0, 1)2s2 = ((1, 1)(1, 1))s2 = (0, 2)s2 = (0, 2s2).

Then H ◦ f is a representative of β′, and the conclusion follows from Lemma 2.1. The converse
follows in a similar way using H−1 instead H. The arguments for the cases of homomorphisms of
Types 2 and 3 are analogous, and the details are left to the reader.
Remark 2.3. Using Lemma 2.1, one may show that Proposition 2.2 holds in more generality.
However the above statement will be sufficient for our purposes.
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3 The normal closure of σ2 in P2(K2)

Let S be a compact, connected surface without boundary. The ordered 2-point configuration
space of S is defined by F2(S) = {(x, y) ∈ S × S | x 6= y}, D2(S) is the orbit space of F2(S) by
the free involution τS : F2(S) → F2(S) defined by τS(x, y) = (y, x), and P2(S) = π1(F2(S)) and
B2(S) = π1(D2(S)) are the pure and full 2-string braid groups of S respectively [2]. We have a
short exact sequence:

1 → P2(S) → B2(S)
π→ Z2 → 1, (2)

where π : B2(S) → Z2 is the homomorphism that to an element of B2(S) associates its permuta-
tion. If p1 : F2(S) → S is the projection onto the first coordinate, the map (p1)# : P2(S) → π1(S)
may be interpreted geometrically as the surjective homomorphism that forgets the second string.
Let σ ∈ B2(S)\P2(S) be the Artin generator of B2(S) that geometrically swaps the two basepoints.
Then σ2 ∈ P2(S), and the normal closure of σ2 in P2(S), which we denote by 〈σ2〉, is also the
normal closure of σ2 in B2(S) by (2). In this section, we shall take S to be the Klein bottle, and
we will show that 〈σ2〉 is a free group of countably-infinite rank for which we shall exhibit a basis.
We will also express certain elements of 〈σ2〉 in this basis.

The following proposition summarises some results of [5, Section 4] regarding the structure of
P2(K2) and the action by conjugation by σ on this group.

Proposition 3.1. [5, Theorems 19 and 20] The group P2(K2) is isomorphic to the semi-direct
product F (u, v) ⋊θ (Z ⋊ Z), where F (u, v) is the free group of rank 2 on the set {u, v} and the
action θ : Z ⋊ Z → Aut(F (u, v)) is defined as follows:

θ(m,n) :


u 7→ Bm−δnuεnB−m+δn

v 7→ Bmvu−2mB−m+δn

B 7→ Bεn ,

where δn =

{
0 if n is even
1 if n is odd,

εn = (−1)n and B = uvuv−1. With respect to this description, the

following properties hold:

• the element σ ∈ B2(K2) satisfies σ2 = (B; 0, 0).

• if lσ : P2(K2) → P2(K2) is the homomorphism defined by lσ(b) = σbσ−1 for all b ∈ P2(K2),
then:

lσ(u
r; 0, 0) = ((Bu−1)rB−r; r, 0) lσ(1;m, 0) = (1;m, 0)

lσ(v
s; 0, 0) = ((uv)−s(uB)δs ; 0, s) lσ(1; 0, n) = (Bδn ; 0, n)

lσ(B; 0, 0) = (B; 0, 0)

for all m,n, r, s ∈ Z, where the symbol 1 denotes the trivial element of F (u, v).

• the homomorphism (p1)# : P2(K2) → π1(K2) = Z ⋊ Z satisfies (p1)#(w; r, s) = (r, s).

From now on, we identify P2(K2) with F (u, v)⋊θ (Z ⋊ Z) without further comment.

Remark 3.2. It follows from Proposition 3.1 that for all m,n ∈ Z, the automorphism θ(m,n) :
F (u, v) → F (u, v) depends only on m and the parity of n, in particular θ(m,n) = θ(m, δn).
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Consider the following maps:

ι :

{
F (u, v) −→ P2(K2)

w 7−→ (w; 0, 0)
and pF :

{
P2(K2) −→ F (u, v)

(w;m,n) 7−→ w.

Note that ι is a homomorphism, but due to the action θ, pF is not. Consider the map ρ : F (u, v) →
F (u, v) defined by:

ρ = pF ◦ lσ ◦ ι, (3)
and the homomorphism g : F (u, v) → Z ⋊ Z defined on the basis {u, v} by:{

g(u) = (1, 0)

g(v) = (0, 1).
(4)

Using Proposition 3.1 and (3), we obtain the following commutative diagram:

F (u, v)

F (u, v) ι //

g
,,YYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YY

ρ

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
P2(K2)

lσ // P2(K2) = F (u, v)⋊θ (Z ⋊ Z)
(p1)#
��

pF

OO

Z ⋊ Z = π1(K2),

(5)

from which it follows that:
lσ(w; 0, 0) = (ρ(w); g(w)) (6)

for all w ∈ F (u, v). Further if w, z ∈ F (u, v) then:

ρ(wz) = (pF ◦ lσ)(wz; 0, 0) = pF (lσ(w; 0, 0). lσ(z; 0, 0)) = pF
(
(ρ(w); g(w)). (ρ(z); g(z))

)
= pF

(
ρ(w)θ(g(w))(ρ(z)); g(w)g(z)

)
= ρ(w)θ(g(w))(ρ(z)).

Thus the map ρ : F (u, v) → F (u, v) is not a homomorphism, but if w ∈ Ker (g) then:

ρ(wz) = ρ(w)ρ(z). (7)

In Theorem A.3 of the Appendix, we prove that:

Ker (g) =
〈
Bk,l := vkulBu−lv−k, k, l ∈ Z |−

〉
. (8)

Let w ∈ F (u, v) and (m,n) ∈ Z ⋊ Z. Using Proposition 3.1, we see that B ∈ Ker (g), and then
that:

θ(m,n)(wBw−1) = θ(m,n)(w)Bεnθ(m,n)(w)−1 ∈ Ker (g) . (9)

Further,

lσ(wBw−1; 0, 0) = lσ(w; 0, 0)lσ(B; 0, 0)lσ(w; 0, 0)
−1 (5)

= (ρ(w); g(w))(B; 0, 0)(ρ(w); g(w))−1

= (ρ(w)θ(g(w))(B); g(w))(θ(g(w)−1)(ρ(w)−1); g(w)−1)

= (ρ(w)θ(g(w))(B)ρ(w)−1; 0, 0). (10)
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Composing (10) by pF , it follows from (5) and (9) that:

ρ(wBw−1) = ρ(w)θ(g(w))(B)ρ(w)−1 ∈ Ker (g) . (11)

In particular, ρ(Bk,l) ∈ Ker (g) for all k, l ∈ Z, and using (7) and (8), the restriction of ρ to
Ker (g) yields an endomorphism of Ker (g), which we also denote by ρ. Further, θ(m,n)(Bk,l) ∈
Ker (g) for all k, l,m, n ∈ Z using (9), and thus θ determines a homomorphism from Z ⋊ Z
to Aut(Ker (g)), which we also denote by θ. Note that for all m,m ∈ Z, the endomorphism
θ(m,n) : Ker (g) → Ker (g) is indeed surjective. To see this, let k, l ∈ Z, and let ξ ∈ F (u, v)
be such that θ(m,n)(ξ) = vkul. Then θ(m,n)(ξBεnξ−1) = Bk,l, and ξBεnξ−1 ∈ Ker (g) because
B ∈ Ker (g). Hence the image of θ(m,n) : Ker (g) → Ker (g) contains the basis {Bk,l}k,l∈Z of
Ker (g), and so this homomorphism is surjective.

The following result describes the subgroup 〈σ2〉.

Proposition 3.3. The injective homomorphism ι : F (u, v) → P2(K2) defined by ι(w) = (w; 0, 0)
for all w ∈ F (u, v), restricts to an isomorphism between Ker (g) and 〈σ2〉, which we also denote by
ι. In particular, 〈σ2〉 is a free group of infinite rank for which a basis is given by {(Bk,l; 0, 0)}k,l∈Z,
and lσ(〈σ2〉) ⊂ Ker ((p1)#). Up to this isomorphism, the homomorphisms θ : Z⋊Z → Aut(Ker (g))
and ρ : Ker (g) → Ker (g) induce homomorphisms Z⋊Z → Aut(〈σ2〉) and 〈σ2〉 → 〈σ2〉, which we
also denote by θ and ρ respectively. Further, the following diagram is commutative:

〈σ2〉 ρ //
� _

��

〈σ2〉� _

��
P2(K2)

lσ // P2(K2).

Proof. Let H = ι(Ker (g)) ⊂ P2(K2). We start by showing that 〈σ2〉 = H. To see this, first note
that σ2 = (B; 0, 0) and ι(Bk,l) ∈ 〈σ2〉 for all k, l ∈ Z, hence H ⊂ 〈σ2〉 by (8). Conversely, for all
w ∈ F (u, v), q ∈ Z ⋊ Z and k, l ∈ Z, we have:

(w; q)(Bk,l; 0, 0)(w; q)
−1 =(wθ(q)(Bk,l); q)(θ(q

−1)(w−1); q−1) = (wθ(q)(Bk,l)w
−1; 0, 0). (12)

Since θ(q)(Bk,l) ∈ Ker (g) and Ker (g) is normal in F (u, v), it follows that wθ(q)(Bk,l)w
−1 ∈

Ker (g), and so (w; q)(Bk,l; 0, 0)(w; q)
−1 ∈ ι(Ker (g)) = H by (12). Hence H is a normal subgroup

of P2(K2) by (8), and since σ2 ∈ H, we conclude that 〈σ2〉 ⊂ H. Thus 〈σ2〉 = H as required.
Since ι is injective, the induced homomorphism ι : Ker (g) → 〈σ2〉 is an isomorphism, and the
image of the basis {Bk,l}k,l∈Z by ι yields a basis of the free group 〈σ2〉. The commutativity of the
given diagram follows by considering the images of the elements of this basis {(Bk,l; 0, 0)}k,l∈Z and
using (10).

Remark 3.4. Although Ker (g) and 〈σ2〉 are isomorphic by Proposition 3.3, our results will be
stated in terms of 〈σ2〉, since we will formulate most of our equations in this group.

The following result provides a normal form for elements of F (u, v) in terms of g and 〈σ2〉.

Proposition 3.5. Let w ∈ F (u, v), and let g(w) = (r, s). Then there exists a unique element
x ∈ 〈σ2〉 such that w = urvsx.

Proof. Let w be as in the statement, and let x = v−su−rw. Then w = urvsx, and:

g(x) = g(v−su−rw) = g(v)−sg(u)−rg(w) = (0,−s)(−r, 0)(r, s) = (0,−s)(0, s) = (0, 0).

So x ∈ 〈σ2〉. Clearly x is unique.
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Let p, q ∈ Z. Since 〈σ2〉 is a normal subgroup of F (u, v), the following homomorphism is well
defined:

cp,q : 〈σ2〉 −→ 〈σ2〉
x 7−→ vpuqxu−qv−p.

(13)

Lemma 3.6. Let k, l, p, q ∈ Z, and let (m,n) ∈ Z ⋊ Z. With the notation of Proposition 3.1,
there exist γ, λ, η ∈ 〈σ2〉 such that:

(a) θ(m,n)(Bk,l) = γBεn
k,εnl−2δkm

γ−1.

(b) ρ(Bk,l) = λBεk
−k,ε(k+1)l

λ−1.

(c) cp,q(Bk,l) = ηBk+p,l+εkqη
−1.

Proof. During the proof, we will make use freely of Proposition 3.1. First, we have:

θ(m,n)(Bk,l) = θ(m,n)(vkulBu−lv−k) = θ(m,n)(vkul)Bεnθ(m,n)(vkul)−1 = γBεn
k,εnl−2δkm

γ−1,

where γ = θ(m,n)(vkul)uεn+1l+2δkmv−k ∈ F (u, v). To complete the proof of item (a), it remains
to show that γ ∈ Ker (g). Since:

γ = (Bmvu−2mB−m+δn)k(Bm−δnuεnB−m+δn)luεn+1l+2δkmv−k,

and B ∈ Ker (g), it follows that:

g(γ) = ((0, 1)(−2m, 0))k (εnl, 0)(εn+1l + 2δkm, 0)(0,−k) = (2m, 1)k(εnl + εn+1l + 2δkm,−k)

= (2δkm, k)(2δkm,−k) = (2δkm+ 2δkεkm, 0) = (0, 0),

using the fact that εk = −1 if k is odd, and δk = 0 if k is even. Hence γ ∈ Ker (g). To prove
item (b), first note that:

θ(g(vkul))(B) = θ((0, k)(l, 0))(B) = θ(εkl, k)(B) = Bεk . (14)

By (11) and (14), we have:

ρ(Bk,l) = ρ(vkulBu−lv−k) = ρ(vkul)θ(g(vkul))(B)ρ(vkul)−1 = λBεk
−k,ε(k+1)l

λ−1,

where λ = ρ(vkul)uεklvk ∈ F (u, v). It remains to show that λ ∈ Ker (g). We have:

g(λ) = g(ρ(vkul)uεklvk) = g((pF ◦ lσ ◦ i)(vkul)). (εkl, k)

= g(pF (((uv)
−k(uB)δk ; 0, k)((Bu−1)lB−l; l, 0))). (εkl, k)

= g((uv)−k(uB)δkθ(0, k)((Bu−1)lB−l)). (εkl, k)

= (1, 1)−k(δk, 0). g((B
εk(B−δkuεkBδk)−1)lB−εkl). (εkl, k)

= (δ−k,−k)(δk, 0)(−εkl, 0)(εkl, k) = (δ−k + ε−kδk, 0) = (0, 0),

since δk = 0 if k is even, and εk = −1 if k is odd. Hence λ ∈ Ker (g). Finally we prove item (c).
We have:

cp,q(Bk,l) = vpuqBk,lu
−qv−p = vpuqvkulBu−lv−ku−qv−p = ηBk+p,l+εkqη

−1,

where η = vpuqvkuεk+1qv−k−p ∈ F (u, v). It remains to show that η ∈ Ker (g). This is indeed the
case because:

g(η) = (0, p)(q, k)(εk+1q,−k − p) = (0, p)(q + εkεk+1q,−p) = (0, p)(0,−p) = (0, 0),

which completes the proof.
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Let 〈σ2〉Ab denote the Abelianisation of the group 〈σ2〉. By abuse of notation, for all k, l ∈ Z,
we denote the image of a generator Bk,l in 〈σ2〉Ab by Bk,l. By Proposition 3.3, 〈σ2〉Ab is the free
Abelian group for which {Bk,l := vkulBu−lv−k | k, l ∈ Z} is a basis, namely:

〈σ2〉Ab =
⊕
k,l∈Z

Z [Bk,l] .

For all (m,n) ∈ Z ⋊ Z and p, q ∈ Z, the endomorphisms θ(m,n), ρ and (cp,q) of 〈σ2〉 induce
endomorphisms θ(m,n)Ab, ρAb and (cp,q)Ab of 〈σ2〉Ab respectively, and by Lemma 3.6, for all
k, l ∈ Z, they satisfy:

θ(m,n)Ab(Bk,l) = εnBk,εnl−2δkm (15)
ρAb(Bk.l) = εkB−k,ε(k+1)l, and (16)

(cp,q)Ab(Bk,l) = Bk+p,l+εkq. (17)

Let k, l ∈ Z and r ∈ {0, 1}. If x and y are elements of a group, let [x, y] = xyx−1y−1 denote
their commutator. In the rest of the paper, we will be particularly interested in the following
elements of F (u, v):

(I) Tk,r = uk(Bεru−εr)kεr .

(II) Ik = vk(vB)−k.

(III) Ok,l =
[
v2k, ul

]
.

(IV) Jk,l = v2k(vul)−2k.

As we shall now see, Tk,r, Ik, Ok,l and Jk,l are elements of 〈σ2〉, and their projections into 〈σ2〉Ab will
be denoted by T̃k,r, Ĩk, Õk,l and J̃k,l respectively. The following result describes the decomposition
of these Abelianisations in terms of the basis {Bk,l}k,l. If l ∈ Z, let σl denote its sign, i.e σl = 1 if
l > 0, σl = −1 if l < 0, and σl = 0 if l = 0.

Proposition 3.7. Let k, l ∈ Z and r ∈ {0, 1}.

(a) The elements Tk,r, Ik, Ok,l and Jk,l belong to 〈σ2〉.

(b) If k = 0 then T̃0,r = Ĩ0 = 0, and if k = 0 or l = 0 then Õk,l = J̃k,l = 0.

(c) For all k, l 6= 0:

T̃k,r = σk

σkk∑
i=1

B0,σk(i+(σk(1−2r)−1)/2)

Ĩk = −σk

σkk∑
i=1

Bσki+(1−σk)/2,0

J̃k,l = −σkσl

σkk∑
i=1

σll∑
j=1

Bσk(2i−1),σl(j−(1+σl)/2)

Õk,l = σkσl

σkk∑
i=1

σll∑
j=1

(
Bσk(2i−1),−σlj+(σl−1)/2 −Bσk(2i−1)−1,σlj−(1+σl)/2

)
.
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The proof of Proposition 3.7, which is divided into the following four lemmas, consists essen-
tially in manipulating each of the elements to obtain recurrence relations, and using induction
to obtain expressions for Tk,r, Ik, Ok,l and Jk,l in 〈σ2〉. Part (c) of Proposition 3.7 is obtained by
Abelianising these expressions.

Lemma 3.8. If k ∈ Z and r ∈ {0, 1} then Tk,r =

σkk∏
i=1

Bσk

0,k−σki−r+(σk+1)/2.

Proof. Let r ∈ {0, 1}. Then clearly T0,r = 1 and T1,r = u(Bεru−εr)εr = B0,1−r, so the result holds
for k = 1. Suppose that the formula is valid for some k ≥ 1. Then:

Tk+1,r = uk+1(Bεru−εr)(k+1)εr = u. uk(Bεru−εr)kεr . (Bεru−εr)εr

= uTk,ru
−1. u(Bεru−εr)εr = u

(
k∏

i=1

B0,k−i+1−r

)
u−1. B0,1−r =

k+1∏
i=1

B0,k+1−i+1−r,

and so the result holds for all k ≥ 0 by induction. Suppose that k ≥ 1. Then:

T−k,r = u−k(Bεru−εr)−kεr = u−k(uk(Bεru−εr)kεr)−1uk = u−kT−1
k,r u

k

=

(
k∏

i=1

B0,−i+1−r

)−1

=
k∏

i=1

B−1
0,−k+i−r

using the result for Tk,r in the case k ≥ 1, which proves the formula for all k ∈ Z.

Lemma 3.9. Let k ∈ Z. If k = 0 then Ik = 1, and if k 6= 0 then:

Ik =

(
σkk∏
i=1

Bi+k(1−σk)/2,0

)−σk

.

Proof. If k = 0, then clearly I0 = 1. If k = 1, I1 = v(vB)−1 = vB−1v−1 = B−1
1,0 , and result holds

in this case. Suppose that the formula for Ik holds for some k ≥ 1, and let us prove the formula
for k + 1. We have:

Ik+1 = vk+1(vB)−k−1 = vvk(vB)−kv−1v(vB)−1 = vIkv
−1I1

= v

(
k∏

i=1

Bi,0

)−1

v−1B−1
1,0 =

(
k∏

i=1

Bi+1,0

)−1

B−1
1,0 =

(
k+1∏
i=1

Bi,0

)−1

,

so by induction, the formula for Ik holds for all k ≥ 0. If k < 0 then −k > 0 and so:

Ik =vk(vB)−k = vk(vB)−kvkv−k = vk
(
v−k(vB)k

)−1
v−k = vkI−1

−kv
−k

=vk

(
−k∏
i=1

Bi,0

)
v−k =

−k∏
i=1

Bk+i,0.

It follows that the formula given in the statement holds for all k 6= 0.

Lemma 3.10. Let k, l ∈ Z, let ε ∈ {−1, 1}, and let ω =

{
0 if ε = −1

1 if ε = 1.
If k = 0 or l = 0, then

Jk,l = 1, and if k, l > 0, then:

Jk,εl =
k∏

i=1

(
l∏

j=1

B−ε
2k−2i+1,εj−ω

)
and J−k,εl =

(
k∏

i=1

(
l∏

j=1

B−ε
−2i+1,εj−ω

))−1

.
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Proof. If k = 0 or l = 0, then clearly Jk,l = 1. Now let k = 1 and ε ∈ {1,−1}. Then for all l ≥ 0,
we have:

J1,ε(l+1) = v2(vuε(l+1))−2 = v2u−εu−εlv−1u−εu−εlv−1

= v2(u−εlv−1u−εlv−1)vuεlvu−εv−1u−εu−εlv−1

= J1,εlvu
εl+(ε−1)/2(u(1−ε)/2vu−εv−1u−ε+(ε−1)/2)u−εl+(1−ε)/2v−1

= J1,εlvu
εl+(ε−1)/2B−εu−εl+(1−ε)/2v−1 = J1,εlB

−ε
1,εl+(ε−1)/2. (18)

Hence J1,1 = B−1
1,0 and J1,−1 = B1,−1, which are in agreement with the expressions of the statement

of the lemma for k = l = 1. Suppose now that these expressions hold for k = 1 and some l ≥ 1.
Now εl + (ε− 1)/2 = ε(l + 1)− (ε+ 1)/2 = ε(l + 1)− ω, so by (18), we have:

J1,ε(l+1) = Jk,εl =

(
l∏

j=1

B−ε
1,εj−ω

)
B−ε

1,εl+(ε−1)/2 =
l+1∏
j=1

B−ε
1,εj−ω,

and thus the expressions of the statement hold for all k, l ≥ 1 by induction. From this, for all
k, l > 0 and ε ∈ {1,−1}, it follows that:

J−k,εl = v−2k(vuεl)2k = v−2k
(
v2k(vuεl)−2k

)−1
v2k = v−2kJ−1

k,εlv
2k

= v−2k

(
k∏

i=1

(
l∏

j=1

B−ε
2k−2i+1,εj−ω

))−1

v2k =

(
k∏

i=1

(
l∏

j=1

B−ε
−2i+1,εj−ω

))−1

,

which completes the proof of the lemma.

Lemma 3.11. Let k, l ∈ Z, let ε ∈ {−1, 1}, and let ω =

{
0 if ε = −1

1 if ε = 1.
If k = 0 or l = 0, then

Ok,l = 1. If k, l > 0, then for all 1 ≤ i ≤ k and 1 ≤ j ≤ l, there exist ηi,j,ε, ζi,j,ε, µi,j,ε, νi,j,ε ∈ 〈σ2〉
such that:

(a) Oεk,l =
l∏

j=1

(
k∏

i=1

ηi,j,εB2ωk−2i+1,−jη
−1
i,j,εζi,j,εB

−1
2ωk−2i,j−1ζ

−1
i,j,ε

)ε

.

(b) Oεk,−l =

(
l∏

j=1

(
k∏

i=1

µi,j,εB2ωk−2i+1,l−jµ
−1
i,j,ενi,j,εB

−1
2ωk−2i,−l+j−1ν

−1
i,j,ε

)ε)−1

.

By taking ε = 1 or −1 in parts (a) and (b) of Lemma 3.11 and Abelianising, one may check
that the formula for Õk,l given in Proposition 3.7 is correct.

Proof of Lemma 3.11. If k = 0 or l = 0, then clearly Ok,l = 1. So suppose that k, l > 0, and let
ε ∈ {−1, 1}. We start by considering the case l = 1. If k = ε = 1 then:

O1,1 = v2uv−2u−1 = vu−1uvuv−1uv−1vu−1v−1u−1 = vu−1Buv−1B−1 = B1,−1B
−1
0,0 ,

and so the expression for O1,1 given in (a) is correct by taking η1,1,1 = ζ1,1,1 = 1. We now suppose
that the expression for Ok,1 given in (a) holds for some k ≥ 1, where ηi,1,1 = ζi,1,1 = 1 for all
1 ≤ i ≤ k. Then:

Ok+1,1 = v2(k+1)uv−2(k+1)u−1 = v2v2kuv−2ku−1v−2v2uv−2u−1 = v2Ok,1v
−2O1,1
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= v2

(
k∏

i=1

B2k−2i+1,−1B
−1
2k−2i,0

)
v−2B1,−1B

−1
0,0

=

(
k∏

i=1

B2(k+1)−2i+1,−1B
−1
2(k+1)−2i,0

)
B1,−1B

−1
0,0 =

k+1∏
i=1

B2(k+1)−2i+1,−1B
−1
2(k+1)−2i,0.

By induction, it follows that that the expression for Ok,1 given in (a) is correct for all k ≥ 1, where
ηi,1,1 = ζi,1,1 = 1 for all 1 ≤ i ≤ k. Using this, for all k ≥ 1, we obtain:

O−k,1 = v−2kuv2ku−1 = v−2k(v2kuv−2ku−1)−1v2k = v−2kO−1
k,1v

2k

= v−2k

(
k∏

i=1

B2k−2i+1,−1B
−1
2k−2i,0

)−1

v2k =

(
k∏

i=1

B−2i+1,−1B
−1
−2i,0

)−1

.

Hence the expression for O−k,1 given in (a) is correct for all k ≥ 1, where ηi,1,−1 = ζi,1,−1 = 1 for
all 1 ≤ i ≤ k. We now suppose that the expression for Oεk,l given in (a) is correct for some l ≥ 1

and all k ≥ 1 and ε ∈ {1,−1}, where ηi,j,ε, ζi,j,ε ∈ 〈σ2〉 for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. We just
saw that this is the case if l = 1. We now study the case l+1. By Lemma 3.6(c), for all 1 ≤ i ≤ k,
there exist ηi,l+1,ε, ζi,l+1,ε ∈ 〈σ2〉 such that ulB2ωk−2i+1,−1u

−l = ηi,l+1,εB2ωk−2i+1,−l−1η
−1
i,l+1,ε and

ulB2ωk−2i,0u
−l = ζi,l+1,εB2ωk−2i,lζ

−1
i,l+1,ε. Thus:

Oεk,l+1 =v2εkul+1v−2εku−l−1 = v2εkulv−2εku−lulv2εkuv−2εku−1u−l

=Oεk,lu
lOεk,1u

−l

=
l∏

j=1

(
k∏

i=1

ηi,j,εB2ωk−2i+1,−jη
−1
i,j,εζi,j,εB

−1
2ωk−2i,j−1ζ

−1
i,j,ε

)ε

ul

(
k∏

i=1

B2ωk−2i+1,−1B
−1
2ωk−2i,0

)ε

u−l

=
l∏

j=1

(
k∏

i=1

ηi,j,εB2ωk−2i+1,−jη
−1
i,j,εζi,j,εB

−1
2ωk−2i,j−1ζ

−1
i,j,ε

)ε

.(
k∏

i=1

ηi,l+1,εB2ωk−2i+1,−l−1η
−1
i,l+1,εζi,l+1,εB2ωk−2i,lζ

−1
i,l+1,ε

)ε

=
l+1∏
j=1

(
k∏

i=1

ηi,j,εB2ωk−2i+1,−jη
−1
i,j,εζi,j,εB

−1
2ωk−2i,j−1ζ

−1
i,j,ε

)ε

.

By induction, it follows that (a) holds for all k, l ≥ 1 and ε ∈ {1,−1}. We now use part (a) to
prove part (b). Let k, l ≥ 1 and ε ∈ {1,−1}. By Lemma 3.6(c), for all 1 ≤ i ≤ k and 1 ≤ j ≤ l,
there exist µi,j,ε, νi,j,ε ∈ 〈σ2〉 such that u−lηi,j,εB2wk−2i+1,−jη

−1
i,j,εu

l = µi,j,εB2ωk−2i+1,l−jµ
−1
i,j,ε and

u−lζi,j,εB2wk−2i,j−1ζ
−1
i,j,εu

l = νi,j,εB2ωk−2i,−l+j−1ν
−1
i,j,ε.

Oεk,−l = v2εku−lv−2εkul = u−l(v2εkulv−2εku−l)−1ul = u−lO−1
2εk,lu

l

= u−l

(
l∏

j=1

(
k∏

i=1

ηi,j,εB2ωk−2i+1,−jη
−1
i,j,εζi,j,εB

−1
2ωk−2i,j−1ζ

−1
i,j,ε

)ε)−1

ul

=

(
l∏

j=1

(
k∏

i=1

µi,j,εB2ωk−2i+1,l−jµ
−1
i,j,ενi,j,εB

−1
2ωk−2i,−l+j−1ν

−1
i,j,ε

)ε)−1

,

which proves part (b).
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4 Proof of Theorem 1.3
Let α ∈ [T2, ∗;K2, ∗] and β ∈ [T2,K2]. With the notation of [5, Theorem 4], suppose that αF = β.
According to [5, Theorem 7], the pointed homotopy class α has the Borsuk-Ulam property with
respect to the free involution τ1 if and only if the homotopy class β has the Borsuk-Ulam property
with respect to τ1. So to obtain Theorem 1.3, it suffices to prove the statement for pointed
homotopy classes. Before doing so, we give an algebraic criterion, similar to that of [5, Lemma 22],
to decide whether a pointed homotopy class has the Borsuk-Ulam property with respect to τ1.

Lemma 4.1. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class. Then α does not have the
Borsuk-Ulam property with respect to τ1 if and only if there exist a, b ∈ P2(K2) such that:

(i) alσ(b) = ba.

(ii) (p1)#(alσ(a)) = α#(1, 0).

(iii) (p1)#(b) = α#(0, 1).

Proof. The result may be obtained in a manner similar to that of [5, Lemma 22], using Proposi-
tion 3.1 instead of [5, Theorem 12].

Corollary 4.2. Let α, α′ ∈ [T2, ∗;K2, ∗] be pointed homotopy classes, and suppose that:

α# :

{
(1, 0) 7→ (r1, s1)

(0, 1) 7→ (r2, s2)
and α′

# :

{
(1, 0) 7→ (r1, s

′
1)

(0, 1) 7→ (r2, s
′
2)

for some r1, r2, s1, s
′
1, s2, s

′
2 ∈ Z. If s1 ≡ s′1 mod 4 and s2 ≡ s′2 mod 2 then α has the Borsuk-Ulam

property with respect to τ1 if and only if α′ does.

Proof. Since the statement is symmetric with respect to α and α′, it suffices to show that if α does
not have the Borsuk-Ulam property then neither does α′. If α does not have the Borsuk-Ulam
property, there exist a, b ∈ P2(K2) satisfying (i)–(iii) of Lemma 4.1. By hypothesis, there exist
k1, k2 ∈ Z such that s′1 = s1 + 4k1 and s′2 = s2 + 2k2. Let a′ = a(1; 0, 2k1) and b′ = b(1; 0, 2k2) in
P2(K2). It suffices to show that a′ and b′ satisfy (i)–(iii) of Lemma 4.1.Using Proposition 3.1, one
may check that the centre of B2(K2) is the subgroup 〈(1; 0, 2)〉. Thus:

a′lσ(b
′) = a(1; 0, 2k1)lσ(b(1; 0, 2k2)) = alσ(b)(1; 0, 2k1 + 2k2)

(i)
= ba(1; 0, 2k1 + 2k2) = b′a′,

(p1)#(a
′lσ(a

′)) = (p1)#(a(1; 0, 2k1)lσ(a(1; 0, 2k1))) = (p1)#(alσ(a)(1; 0, 4k1))

(ii)
= (r1, s1)(0, 4k1) = (r1, s

′
1) = α′

#(1, 0), and

(p1)#(b
′) = (p1)#(b(1; 0, 2k2))

(iii)
= (r2, s2)(0, 2k2) = (r2, s

′
2) = α′

#(0, 1),

which proves the corollary.

Remark 4.3. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class, and let α# : π1(T2) → π1(K2)
be the homomorphism described in [5, Theorem 4], and that is of one of the four types given in
Proposition 1.1.

(a) Suppose that α# is of Type 1, 2 or 3, and let i ∈ {0, 1}, s1 and s2 be the integers that appear
in the description of α# in Proposition 1.1. By Proposition 2.2 and Corollary 4.2, α has
the Borsuk-Ulam property with respect to τ1 if and only if α′ does, where α′ ∈ [T2, ∗;K2, ∗]
satisfies:
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(i) α′
#(1, 0) = (0, 2s1 + 1 mod 4) and α′

#(0, 1) = (0, j) if α# is of Type 1 (in which case
j = 0), or is of Type 2 (in which case j = 1).

(ii) α′
#(1, 0) = (0, 2s1 mod 4) and α′

#(0, 1) = (0, 1) if α# is of Type 3.

So for each of Types 1, 2 and 3, there are two cases to consider, s1 = 0, and s1 = 1.

(b) Suppose that α# is of Type 4, and let r1, r2, s1 and s2 be the integers that appear in the
description of α# in Proposition 1.1, where r1 ≥ 0. By Proposition 2.2 and Corollary 4.2, α
has the Borsuk-Ulam property with respect to τ1 if and only if α′ does, where α′ ∈ [T2, ∗;K2, ∗]
satisfies α′

#(1, 0) = (r1, 2s1 mod 4) and α′
#(0, 1) = (r2, 0). So for each pair of integers (r1, r2),

where r1 ≥ 0, there are two cases to consider, s1 = 0, and s1 = 1.

To prove Theorem 1.3, it suffices to study the cases described by Remark 4.3. This will
be carried out in Propositions 4.4–4.7 below. Part of Proposition 4.4 (resp. Proposition 4.5)
treats the cases of Remark 4.3(a)(i) (resp. Remark 4.3(a)(ii)), and part of Proposition 4.4 and
Propositions 4.6 and 4.7 deal with the cases of Remark 4.3(b). In each case, we will make use of
Proposition 3.1 and its notation, as well as the commutative diagram (5).

Proposition 4.4. Let:

Σ = {(0, 2s+ 1, 0, j) | j, s ∈ {0, 1}} ∪ {(r1, 0, r2, 0) | r1, r2 ∈ Z, r1 ≥ 0} ∪ {(0, 2, 0, 0)}.

Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α# :

{
(1, 0) 7→ (ρ, γ)

(0, 1) 7→ (ξ, τ),
where

(ρ, γ, ξ, τ) ∈ Σ. Then α does not have the Borsuk-Ulam property with respect to τ1.

Proposition 4.5. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α# :

{
(1, 0) 7→ (0, 2s)

(0, 1) 7→ (0, 1),

where s ∈ {0, 1}. Then α has the Borsuk-Ulam property with respect to τ1.

Proposition 4.6. If α# :

{
(1, 0) 7→ (r1, 2)

(0, 1) 7→ (r2, 0),
where r1, r2 ∈ Z, r1 > 0, and one of the following

conditions holds:

(a) r2 = 0.

(b) r2 6= 0 and e(r1) ≤ e(r2).

Then α does not have the Borsuk-Ulam property with respect to τ1.

Proposition 4.7. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α# :

{
(1, 0) 7→ (r1, 2)

(0, 1) 7→ (r2, 0),

where r1, r2 ∈ Z, r1 ≥ 0, r2 6= 0, and one of the following conditions holds:

(a) r1 = 0.

(b) r1 > 0, and e(r1) > e(r2).

Then α has the Borsuk-Ulam property with respect to τ1.

The following lemma will be used in the proofs of some of these propositions.
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Lemma 4.8. Let a, b ∈ P2(K2). Then there exist x, y ∈ 〈σ2〉 and ai, bi,mi, ni ∈ Z, where i ∈ {1, 2},
such that:

a = (ua1va2x;m1, n1) and b = (ub1vb2y;m2, n2). (19)
Suppose further that a and b satisfy the relation of Lemma 4.1(i). Then:

b2 = 0 and (1 + (−1)δn1+1)m2 = (1 + (−1)δn2+1)m1 + (−1)δn1 b1, (20)

so b1 is even, and:

ub1yBm2−δn2ua1εn2 (Bδn2vu−2m2)a2Bδn2−m2θ(m2, δn2)(x) =

ua1va2xBm1−δn1 (Bεn1u−εn1 )b1B−εn1b1+δn1−m1θ(m1 + εn1b1, δn1)(ρ(y))B
δn2εn1 . (21)

Proof. Let a, b ∈ P2(K2). Proposition 3.5 implies that there exist x, y ∈ 〈σ2〉 and ai, bi,mi, ni ∈ Z,
where i ∈ {1, 2}, for which (19) holds. First, we have:

ba = (ub1vb2y;m2, n2)(u
a1va2x;m1, n1)

= (ub1vb2yθ(m2, δn2)(u
a1va2x);m2 + (−1)δn2m1, n2 + n1). (22)

Now:

lσ(b) =((Bu−1)b1B−b1 ; b1, 0)((uv)
−b2(uB)δb2 ; 0, b2)(ρ(y); 0, 0)(1;m2, 0)(B

δn2 ; 0, n2)

=((Bu−1)b1B−b1 ; b1, 0)((uv)
−b2(uB)δb2 ; 0, b2)(ρ(y)B

δn2 ;m2, n2)

=((Bu−1)b1B−b1θ(b1, 0)((uv)
−b2(uB)δb2 ); b1, b2)(ρ(y)B

δn2 ;m2, n2)

=((Bu−1)b1B−b1θ(b1, 0)((uv)
−b2(uB)δb2 )θ(b1, δb2)(ρ(y)B

δn2 );

b1 + (−1)δb2m2, b2 + n2). (23)

Thus:

(p1)#(alσ(b)) = (m1, n1)(b1 + (−1)δb2m2, b2 + n2)

= (m1 + (−1)δn1 b1 + (−1)δn1+δb2m2, n1 + b2 + n2). (24)

Suppose that a and b satisfy the relation of Lemma 4.1(i). It follows from (22) and (24) that
b2 = 0, and then that m2 + (−1)δn2m1 = m1 + (−1)δn1 b1 + (−1)δn1m2, which yields (20). This
implies that b1 is even. We now expand and simplify the remaining parts of (22) and (23):

pF (ba) = ub1yθ(m2, δn2)(u
a1va2x)

= ub1yBm2−δn2ua1εn2 (Bδn2vu−2m2)a2Bδn2−m2θ(m2, δn2)(x), (25)

and

pF (lσ(b)) = (Bu−1)b1B−b1θ(b1, 0)(ρ(y)B
δn2 ) = (Bu−1)b1B−b1θ(b1, 0)(ρ(y))B

δn2 .

Hence:

pF (alσ(b)) =ua1va2xθ(m1, δn1)((Bu−1)b1B−b1θ(b1, 0)(ρ(y))B
δn2 )

=ua1va2xBm1−δn1 (Bεn1u−εn1 )b1B−εn1b1+δn1−m1θ(m1 + εn1b1, δn1)(ρ(y))B
δn2εn1 . (26)

Equation (21) then follows from the hypothesis, and equations (25) and (26).
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Proof of Proposition 4.4. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α#(1, 0) =
(ρ, γ) and α#(0, 1) = (ξ, τ), where (ρ, γ, ξ, τ) ∈ Σ. Note that either ρ = ξ = 0 or γ = τ = 0. In
what follows, we will use the identities δδq = δq and εδq = εq for all q ∈ Z. Let a, b ∈ P2(K2) be
such that a = (uδρvδγBδγ(γ−δγ)/2; (ρ− δρ)/2, (γ − δγ)/2) and b = (B−δρξ; ξ, τ). With respect to the
notation of (19), x = Bδγ(γ−δγ)/2 and y = B−δρξ. To prove the result, we show that conditions (i)–
(iii) of Lemma 4.1 are satisfied. Clearly, (p1)#(b) = (ξ, τ) = α#(0, 1). Further, by taking b = a
in (24), we have:

(p1)#(alσ(a)) =

((
1 + (−1)δ(γ−δγ )/2+δγ

)(ρ− δρ)

2
+ ε(γ−δγ)/2δρ, γ

)
. (27)

If ρ = ξ = 0 then the first coordinate of the right-hand side of (27) is equal to zero, while if γ = τ =
0, this coordinate is equal to ρ. In both cases, we conclude that (p1)#(alσ(a)) = (ρ, γ) = α#(1, 0).
Hence conditions (ii) and (iii) of Lemma 4.1 are satisfied. It remains to check condition (i). Note
that in the proof of Lemma 4.8, the only condition that we have applied to obtain equations (25)
and (26) is that b2 = 0. But this coefficient is zero in our case, and so these equations are also
satisfied here. So using (22), (25) and Proposition 3.1, we see that:

ba =

(
B−δρξθ(ξ, δτ )(u

δρvδγBδγ(γ−δγ)/2); ξ + ετ
(ρ− δρ)

2
, τ +

(γ − δγ)

2

)
=

(
B−δρξBξ−δτuδρετ (Bδτvu−2ξ)δγBδτ−ξBετ δγ(γ−δγ)/2; ξ + ετ

(ρ− δρ)

2
, τ +

(γ − δγ)

2

)
. (28)

In a similar manner, by (24) and (26), we see that:

alσ(b) =

(
uδρvδγBδγ(γ−δγ)/2+(δτ−δρξ)ε(γ−δγ )/2 ;

(ρ− δρ)

2
+ ε(γ−δγ)/2ξ, τ +

(γ − δγ)

2

)
. (29)

If ρ = ξ = 0 (resp. γ = τ = 0) then (p1)#(ba) = (0, τ + (γ − δγ)/2) = (p1)#(alσ(b)) (resp.
(p1)#(ba) = (ξ + (ρ− δρ)/2, 0) = (p1)#(alσ(b))). So it remains to show that pF (ba) = pF (alσ(b)).

(a) If ρ = ξ = 0, pF (ba) = B−δτ (Bδτv)δγBδτBετ δγ(γ−δγ)/2 and pF (alσ(b)) = vδγBδγ(γ−δγ)/2+δτ ε(γ−δγ )/2 .

(i) Suppose that δγ = 0. Since (ρ, γ, ξ, τ) ∈ Σ, it follows that δτ = 0, and thus pF (ba) =
pF (alσ(b)) = 1.

(ii) Suppose that δγ = 1. Then pF (ba) = vBδτ+ετ (γ−1)/2 and pF (alσ(b)) = vB(γ−1)/2+δτ ε(γ−1)/2 .
If δτ = 0 then pF (ba) = vB(γ−1)/2 = pF (alσ(b)). So suppose that δτ = 1. Since
(ρ, γ, ξ, τ) ∈ Σ, it follows that (γ− 1)/2 ∈ {0, 1}, and one can check easily that 1− (γ−
1)/2 = (γ − 1)/2 + ε(γ−1)/2. It follows that pF (ba) = pF (alσ(b)).

(b) If γ = τ = 0 then pF (ba) = B(1−δρ)ξuδρB−ξ and pF (alσ(b)) = uδρB−δρξ, and one sees that
pF (ba) = 1 = pF (alσ(b)) if δρ = 0, and pF (ba) = uB−ξ = pF (alσ(b)) if δρ = 1.

In order to prove Proposition 4.5, we will make use of the following lemma.

Lemma 4.9. Let α ∈ [T2, ∗;K2, ∗] be such that α# :

{
(1, 0) 7→ (0, 2s)

(0, 1) 7→ (0, 1)
for some s ∈ {0, 1}. If

α does not have the Borsuk-Ulam property with respect to τ1 then there exist x, y ∈ 〈σ2〉Ab and
m1, n1 ∈ Z that satisfy the following equation in 〈σ2〉Ab:

µ1(x) + µ2(y) =Ĩ2n1−2s − T̃−2m1,δn1
− Õn1−s,−2m1 − (m1 + δn1 + εn1)B0,0 − (m1 − δn1)B0,−2m1
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−B2n1−2s,−2δn1+1m1 +B2n1−2s,0, (30)

where µ1, µ2 : 〈σ2〉Ab → 〈σ2〉Ab are the homomorphisms defined on the basis elements of 〈σ2〉Ab by:

µ1(Bk,l) =Bk,l−2εkm1 +Bk,−l and
µ2(Bk,l) =εkεδn1

B−k,εδn1
εk+1l+2δkm1 −Bk+2n1−2s,l−2εkδn1+1m1 .

Proof. By hypothesis, there exist a, b ∈ P2(K2) satisfying (i)–(iii) of Lemma 4.1. Proposition 3.5
implies that a and b may be written in the form (19). Lemma 4.1(iii) implies that (p1)#(b) = (0, 1),
so (m2, n2) = (0, 1). Using Lemma 4.1(ii) and taking b = a in (23), we obtain:

(0, 2s) = (p1)#(alσ(a)) = (m1, n1)(a1 + (−1)a2m1, n1 + a2)

= (m1 + (−1)n1a1 + (−1)n1+a2m1, 2n1 + a2).

It follows that a2 = 2s− 2n1 is even and a1 = −2δn1+1m1. Lemmas 4.1(i) and 4.8 then imply that
b2 = 0 and b1 = −2εn1m1. We now analyse (21), which holds because Lemma 4.1(i) does. The
left-hand side of (21) is equal to pF (ba), and may be rewritten as:

pF (ba) =ub1yB−1u−a1(Bv)2s−2n1Bθ(0, 1)(x) = ub1yB−1u−a1B(vB)2s−2n1θ(0, 1)(x)

=ub1−a1v2s−2n1 . v2n1−2sua1yu−a1v2s−2n1 . v2n1−2sua1B−1u−a1v2s−2n1 .

v2n1−2sBv2s−2n1 . v2n1−2s(vB)2s−2n1θ(0, 1)(x)

=ub1−a1v2s−2n1c2n1−2s,a1(y)B
−1
2n1−2s,a1

B2n1−2s,0I2n1−2sθ(0, 1)(x), (31)

and the right-hand side of (21) is equal to pF (alσ(b)), and may be rewritten as:

pF (alσ(b)) =ua1v2s−2n1xBm1−δn1 (Bεn1u−εn1 )b1Bm1+δn1θ(−m1, δn1)(ρ(y))B
εn1

=u2m1+a1v2s−2n1 [v2n1−2s, u−2m1 ]c0,−2m1(x)B
m1−δn1
0,−2m1

.

u−2m1(Bεn1u−εn1 )−2εn1m1B
m1+δn1
0,0 θ(−m1, δn1)(ρ(y))B

εn1
0,0

=u2m1+a1v2s−2n1On1−s,−2m1c0,−2m1(x)B
m1−δn1
0,−2m1

T−2m1,δn1
B

m1+δn1
0,0 .

θ(−m1, δn1)(ρ(y))B
εn1
0,0 , (32)

Since pF (ba) = pF (alσ(b)), and using the fact that b1−a1 = 2m1+a1, it follows by Abelianising (31)
and (32) that:

(c0,−2m1)Ab(x)− θ(0, 1)Ab(x) + θ(−m1, δn1)Ab ◦ ρAb(y)− (c2n1−2s,a1)Ab(y) =

Ĩ2n1−2s− T̃−2m1,δn1
− Õn1−s,−2m1 − (m1+δn1 +εn1)B0,0− (m1−δn1)B0,−2m1 −B2n1−2s,a1 +B2n1−2s,0

in 〈σ2〉Ab, where the projection of x (resp. y) in 〈σ2〉Ab is also denoted by x (resp. y). By (15)–(17),
for all k, l ∈ Z, we have:

(c0,−2m1)Ab(Bk,l)− θ(0, 1)Ab(Bk,l) = Bk,l−2εkm1 +Bk,−l = µ1(Bk,l)

and

θ(−m1, δn1)Ab ◦ ρAb(Bk,l)− (c2n1−2s,a1)Ab(Bk,l) = θ(−m1, δn1)Ab(εkB−k,εk+1l)−Bk+2n1−2s,l+εka1

= εkεδn1
B−k,εδn1

εk+1l+2δkm1 −Bk+2n1−2s,l+εka1

= µ2(Bk,l).

The result follows by noting that a1 = −2δn1+1m1.
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We are now able to complete the proof of Proposition 4.5.

Proof of Proposition 4.5. We argue by contradiction. Suppose that α does not have the Borsuk-
Ulam property with respect to τ1. Then there exist x, y ∈ 〈σ2〉Ab that satisfy equation (30) given
in the statement of Lemma 4.9. Let ξ : 〈σ2〉Ab → Z2 be the homomorphism defined on the basis
{Bk,l}k,l∈Z of 〈σ2〉Ab by ξ(Bk,l) = 1 for all k, l ∈ Z. From the definition of the maps µ1 and µ2,
it follows that the left-hand side is sent to 0. By Proposition 3.7, ξ(Ĩ2n1−2s) = ξ(T̃−2m1,δn1

) =

ξ(Õn1−s,−2m1) = 0, and it follows that the right-hand side is sent to εn1 , which is different from 0.
This yields a contradiction. We conclude that α has the Borsuk-Ulam property with respect to
τ1.

Proof of Proposition 4.6. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α#(1, 0) =
(r1, 2) and α#(0, 1) = (r2, 0), where r1, r2 ∈ Z are such that r1 > 0, and either r2 = 0, or
r2 6= 0 and e(r1) ≤ e(r2). Let o(r1) = r1/2

e(r1), and let m = r2/2
e(r1). Then o(r1) > 0

is odd, and m ∈ Z by hypothesis. Let α′ ∈ [T2, ∗;K2, ∗] be the homotopy class for which
α′
#(1, 0) = (r1, 2o(r1)) and α′

#(0, 1) = (r2, 2m). By Corollary 4.2, to prove the result, it suf-
fices to exhibit a, b ∈ P2(K2) that satisfy conditions (i)–(iii) of Lemma 4.1 for α′. Let c =

(u2e(r1)v2; 0, 0) ∈ P2(K2), and let a = (cσ)o(r1)σ−1 and b = (cσ)2m. Then a, b ∈ P2(K2), and by
Proposition 3.1, we see that (p1)#(lσ(c)) = (2e(r1), 2). Now alσ(b) = (cσ)o(r1)σ−1σ(cσ)2mσ−1 =
(cσ)2m(cσ)o(r1)σ−1 = ba, so condition (i) of Lemma 4.1 is satisfied. Next, a = ((cσ)2)(o(r1)−1)/2c =
(clσ(c)σ

2)(o(r1)−1)/2c, hence lσ(a) = (lσ(c)σ
2c)(o(r1)−1)/2lσ(c), and since (p1)#(c) = (p1)#(σ

2) =
(0, 0), it follows that (p1)#(alσ(a)) = ((p1)#(lσ(c)))

o(r1) = (2e(r1), 2)o(r1) = (2e(r1)o(r1), 2o(r1)) =
(r1, 2o(r1)) = α#(1, 0). So condition (ii) of Lemma 4.1 holds. Finally, b = (cσcσ)m = (clσ(c)σ

2)m,
so (p1)#(b) = (p1)#(lσ(c))

m = (2e(r1), 2)m = (2e(r1)m, 2m) = (r2, 2m) = α′
#(0, 1), and condi-

tion (iii) of Lemma 4.1 is satisfied, which proves the proposition.

The rest of this section is devoted to proving Proposition 4.7.

Lemma 4.10. Let α ∈ [T2, ∗;K2, ∗] be a homotopy class such that α# : π1(T2) → π1(K2) satisfies
α#(1, 0) = (r1, 2) and α#(0, 1) = (r2, 0), where r1, r2 ∈ Z. With the notation of Proposition 3.7,
if α does not have the Borsuk-Ulam property, then there exist x, y ∈ 〈σ2〉Ab and (m1, n1) ∈ Z ⋊ Z
such that:

µ(x) + ν(y) =J̃n1−1,−2r2 − Õn1−1,2δn1r2
− T̃2δn1r2,δn1

+ (33)
r2B2(n1−1),2δn1+1m1−εn1r1

− (m1 − δn1)B0,2δn1r2
− (δn1(1− 2r2)−m1 + r2)B0,0

in 〈σ2〉Ab, where µ, ν : 〈σ2〉Ab → 〈σ2〉Ab are the homomorphisms defined on the elements of the
basis {Bk,l}k,l∈Z of 〈σ2〉Ab by:

µ(Bk,l) =Bk,l+2εkδn1r2
−Bk,l−2δkr2 (34)

ν(Bk,l) =εkεn1B−k,εn1εk+1l−2δk(m1+2δn1r2)
−Bk+2(n1−1),l+εk(2δn1+1m1−εn1r1)

. (35)

Proof. Let α ∈ [T2, ∗;K2, ∗] be a homotopy class that does not have the Borsuk-Ulam property,
and that is represented by the homomorphism α# : π1(T2) → π1(K2) given by α#(1, 0) = (r1, 2)
and α#(0, 1) = (r2, 0), where r1, r2 ∈ Z. Then there exist a, b ∈ P2(K2) satisfying conditions (i)–
(iii) of Lemma 4.1. We write these elements in the form of equation (19). Condition (iii) implies
that (m2, n2) = (r2, 0), and taking b = a in (24), condition (ii) implies that (r1, 2) = (m1(1 +
(−1)n1+a2) + (−1)n1a1, 2n1 + a2). It follows that a2 = 2(1− n1) and that a1 = εn1r1 − 2δn1+1m1.
By (20), we have b2 = 0 and (1 + (−1)δn1+1)m2 = (1 + (−1)δn2+1)m1 + (−1)δn1 b1, from which we
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see that b1 = −2δn1r2 using the fact that n2 = 0. Substituting this information into (25) and (26),
and using that fact that εn1δn1 = −δn1 , we obtain:

pF (ba) =u−2δn1r2yBr2uεn1r1−2δn1+1m1(vu−2r2)2(1−n1)B−r2θ(r2, 0)(x)

=uεn1r1−2δn1r2−2δn1+1m1v2(1−n1). v2(n1−1)u2δn1+1m1−εn1r1yBr2 .

uεn1r1−2δn1+1m1v2(1−n1). v2(n1−1)(vu−2r2)2(1−n1)B−r2
0,0 θ(r2, 0)(x)

=uεn1r1−2δn1r2−2δn1+1m1v2(1−n1)c2(n1−1),2δn1+1m1−εn1r1
(y).

Br2
2(n1−1),2δn1+1m1−εn1r1

Jn1−1,−2r2B
−r2
0,0 θ(r2, 0)(x),

pF (alσ(b)) =uεn1r1−2δn1+1m1v2(1−n1)xBm1−δn1 (Bεn1u−εn1 )2εn1δn1r2 .

Bδn1 (1−2r2)−m1θ(m1 + 2δn1r2, δn1)(ρ(y))

=uεn1r1−2δn1+1m1−2δn1r2v2(1−n1). v2(n1−1)u2δn1r2v2(1−n1)u−2δn1r2 .

u2δn1r2xu−2δn1r2 . u2δn1r2Bm1−δn1u−2δn1r2 . u2δn1r2 .

(Bεn1u−εn1 )2εn1δn1r2B
δn1 (1−2r2)−m1

0,0 . θ(m1 + 2δn1r2, δn1)(ρ(y))

=uεn1r1−2δn1+1m1−2δn1r2v2(1−n1)On1−1,2δn1r2
c0,2δn1r2

(x)B
m1−δn1
0,2δn1r2

.

T2δn1r2,δn1
B

δn1 (1−2r2)−m1

0,0 θ(m1 + 2δn1r2, δn1)(ρ(y)).

Applying condition (i) of Lemma 4.1, we see that:

c2(n1−1),2δn1+1m1−εn1r1
(y)Br2

2(n1−1),2δn1+1m1−εn1r1
Jn1−1,−2r2B

−r2
0,0 θ(r2, 0)(x) =

On1−1,2δn1r2
c0,2δn1r2

(x)B
m1−δn1
0,2δn1r2

T2δn1r2,δn1
B

δn1 (1−2r2)−m1

0,0 θ(m1 + 2δn1r2, δn1)(ρ(y)),

in 〈σ2〉, and by Abelianising this equation, we obtain the following equality in 〈σ2〉Ab:

(c0,2δn1r2
)Ab(x)− θ(r2, 0)Ab(x) + θ(m1 + 2δn1r2, δn1)Ab ◦ ρab(y)− (c2(n1−1),2δn1+1m1−εn1r1

)Ab(y) =

J̃n1−1,−2r2 − Õn1−1,2δn1r2
− T̃2δn1r2,δn1

+ r2B2(n1−1),2δn1+1m1−εn1r1

− (m1 − δn1)B0,2δn1r2
− (δn1(1− 2r2)−m1 + r2)B0,0. (36)

Now by (15)–(17), for all k, l ∈ Z, we may check that:

µ(Bk,l) =(c0,2δn1r2
)Ab(Bk,l)− θ(r2, 0)Ab(Bk,l) and (37)

ν(Bk,l) =θ(m1 + 2δn1r2, δn1)Ab ◦ ρab(Bk,l)− (c2(n1−1),2δn1+1m1−εn1r1
)Ab(Bk,l). (38)

Equation (33) then follows from (36), (37) and (38).

In what follows, we suppose that the hypotheses of Proposition 4.7 hold, namely r1 ≥ 0, r2 6= 0,
and either r1 = 0, or r1 > 0 and e(r1) > e(r2). With the notation of Lemma 4.10, we define the
homomorphism ξn1,r2 : 〈σ2〉Ab → Z2 on the basis {Bk,l}k,l∈Z as follows:

ξn1,r2(Bk,l) =

{
0 if k 6= n1 − 1, or if k = n1 − 1 and 2e(r2)+1 ∤ l
1 if k = n1 − 1 and 2e(r2)+1 | l.

(39)

Lemma 4.11. With the notation of Lemma 4.10, the compositions ξn1,r2 ◦ µ : 〈σ2〉Ab → Z2 and
ξn1,r2 ◦ ν : 〈σ2〉Ab → Z2 are identically zero.

18



Proof. It suffices to prove that ξn1,r2 ◦ µ(Bk,l) = ξn1,r2 ◦ ν(Bk,l) = 0 for all k, l ∈ Z. We start with
the case of ξn1,r2 ◦µ. By (34), clearly ξn1,r2 ◦µ(Bk,l) = 0 if k 6= n1− 1. So suppose that k = n1− 1.
Using the fact that εn1−1δn1 = δn1 , we have:

ξn1,r2 ◦ µ(Bn1−1,l) = ξn1,r2(Bn1−1,l+2εn1−1δn1r2
−Bn1−1,l−2δn1−1r2)

= ξn1,r2(Bn1−1,l+2δn1r2
)− ξn1,r2(Bn1−1,l−2δn1−1r2). (40)

Now (l + 2δn1r2) − (l − 2δn1−1r2) = 2r2(δn1 + δn1−1) = 2r2, hence 2e(r2)+1 | l + 2δn1r2 if and only
if 2e(r2)+1 | l − 2δn1−1r2, and it follows from (39) and (40) that ξn1,r2 ◦ µ(Bn1−1,l) = 0 as required.
We now analyse the case of ξn1,r2 ◦ ν. Since −k = n1 − 1 if and only if k + 2(n1 − 1) = n1 − 1, it
follows from (35) that ξn1,r2 ◦ ν(Bk,l) = 0 if k 6= −(n1 − 1). So suppose that k = −(n1 − 1). Since
εkεn1 = εn1−1εn1 = −1, εn1εk+1 = ε2n1

= 1, δn1−1δn1 = 0 and εn1−1δn1+1 = −δn1+1, we obtain:

ξn1,r2 ◦ ν(B−(n1−1),l) =− ξn1,r2(Bn1−1,l−2δn1−1(m1+2δn1r2)
)− ξn1,r2(Bn1−1,l+εn1−1(2δn1+1m1−εn1r1)

)

=− ξn1,r2(Bn1−1,l−2δn1−1m1)− ξn1,r2(Bn1−1,l−2δn1+1m1+r1). (41)

Now (l − 2δn1−1m1) − (l − 2δn1+1m1 + r1) = −r1. Since 2e(r2)+1 | r1, it follows that 2e(r2)+1 |
l − 2δn1−1m1 if and only if 2e(r2)+1 | l − 2δn1+1m1 + r1. Equations (39) and (41) then imply that
ξn1,r2 ◦ ν(B−(n1−1),l) = 0 as required.

We now complete the proof of Theorem 1.3. The following remark will be used in the proof of
Proposition 4.7.

Remark 4.12. Let r ∈ Z \ {0}, and let S be a set consisting of 2 |r| consecutive integers. Then
S contains o(r) = |r|/2e(r) elements divisible by 2e(r)+1.

of Proposition 4.7. Let α ∈ [T2, ∗;K2, ∗] be a pointed homotopy class such that α#(1, 0) = (r1, 2)
and α#(0, 1) = (r2, 0), where r2 6= 0 and either r1 = 0, or r1 > 0 and e(r1) > e(r2). Suppose on the
contrary that α does not have the Borsuk-Ulam property with respect to τ1. Then by Lemma 4.10,
there exist x, y ∈ 〈σ2〉Ab such that equation (33) holds. By Lemma 4.11, ξn1,r2(µ(x) + ν(y)) = 0.
So to prove the result, it suffices to show that the image of the right-hand side of (33) by ξn1,r2 is
equal to 1. We analyse each of the terms in turn.

(a) We start by showing that:
ξn1,r2(J̃n1−1,−2r2) = δn1+11. (42)

If n1 = 1 then J̃n1−1,−2r2 = 0 by Proposition 3.7(b), so ξn1,r2(J̃n1−1,−2r2) = 0. So suppose that
n1 6= 1. By Proposition 3.7(c) and (39), we have:

ξn1,r2(J̃n1−1,−2r2) =

σn1−1(n1−1)∑
i=1

σr22r2∑
j=1

ξn1,r2

(
Bσn1−1(2i−1),−σ2r2 (j−(1−σ2r2 )/2)

)
.

If n1 is odd, there is no integer i satisfying σn1−1(2i−1) = n1−1, and thus ξn1,r2(J̃n1−1,−2r2) = 1
in this case. If n1 is even, then σn1−1(2i − 1) = n1 − 1 if and only if i = (σn1−1(n1 − 1) +
1)/2, and in this case, i belongs to the allowed set {1, . . . , σn1−1(n1 − 1)} of indices. Now
consider the terms of the form Bn1−1,−σ2r2 (j−(1−σ2r2 )/2)

, where j ∈ {1, . . . , σr22r2}. Then the
set {−σ2r2(j − (1 − σ2r2)/2) | j = 1, . . . , σr22r2} consists of 2 |r2| consecutive integers, and
thus contains o(r2) elements divisible by 2e(r2)+1 by Remark 4.12. It follows from (39) that
ξn1,r2(J̃n1−1,−2r2) = 1, and this proves (42).
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(b) Consider the term Õn1−1,2δn1r2
. If n1 is even or is equal to 1 then Õn1−1,2δn1r2

= 0 by Propos-
ition 3.7(b), and ξn1,r2(Õn1−1,2δn1r2

) = 0. So assume that n1 is odd and different from 1. By
Proposition 3.7(c) and (39), we have:

ξn1,r2(Õn1−1,2δn1r2
) =ξn1,r2(Õn1−1,2r2)

=

σn1−1(n1−1)∑
i=1

σr22r2∑
j=1

(
ξn1,r2

(
Bσn1−1(2i−1),−σ2r2j+(σ2r2−1)/2

)
+

ξn1,r2

(
Bσn1−1(2i−1)−1,σ2r2j−(σ2r2+1)/2

))
. (43)

Observe that there is no integer i satisfying σn1−1(2i − 1) = n1 − 1, and it follows that
ξn1,r2

(
Bσn1−1(2i−1),−σ2r2j+(σ2r2−1)/2

)
= 0 for all i ∈ {1, . . . , σn1−1(n1−1)} and j ∈ {1, . . . , σr22r2}.

For the second term of (43), note that σn1−1(2i − 1) − 1 = n1 − 1 if and only if i =
(σn1−1(n1−1)+σn1−1+1)/2, and in this case, i belongs to the allowed set {1, . . . , σn1−1(n1−1)}
of indices. Now consider the terms of the form Bn1−1,σ2r2j−(σ2r2−1)/2, where j ∈ {1, . . . , σr22r2}.
Then the set {σ2r2j − (σ2r2 + 1)/2 | j = 1, . . . , σr22r2} consists of 2 |r2| consecutive integers,
and thus contains o(r2) elements divisible by 2e(r2)+1 by Remark 4.12. It follows from (39)
that ξn1,r2(Õn1−1,2r2) = 1. Hence:

ξn1,r2(Õn1−1,2δn1r2
) = δn11. (44)

(c) Consider the term T̃2δn1r2,δn1
. If n1 is even then T̃2δn1r2,δn1

= 0 by Proposition 3.7(b), and thus
ξn1,r2(T̃2δn1r2,δn1

) = 0. So assume that n1 is odd. By Proposition 3.7(c), we have:

T̃2δn1r2,δn1
= T̃2r2,1 = σr2

σr22r2∑
i=1

B0,σr2 (i−(σr2+1)/2). (45)

If n1 6= 1 then ξn1,r2(T̃2r2,1) = 0 by (39). So suppose that n1 = 1. Then the set {σr2(i− (σr2 +
1)/2) | i = 1, . . . , σr22r2} of indices consists of 2 |r2| consecutive integers, and thus contains
o(r2) elements divisible by 2e(r2)+1 by Remark 4.12. It follows from (39) that ξn1,r2(T̃2r2,1) = 1.
Hence:

ξn1,r2(T̃2δn1r2,δn1
) =

{
1 if n1 = 1

0 otherwise.
(46)

(d) Let χ = r2B2(n1−1),2δn1+1m1−εn1r1
− (m1 − δn1)B0,2δn1r2

− (δn1(1 − 2r2) − m1 + r2)B0,0. If
n1 6= 1 then it follows from (39) that ξn1,r2(χ) = 0. So suppose that n1 = 1. Then χ =
r2B0,r1 − (m1−1)B0,2r2 − (1−m1−r2)B0,0. By hypothesis, e(r1) > e(r2), and we see from (39)
that ξn1,r2(χ) = r2 +m1 − 1 + 1−m1 − r2 = 0. Thus:

ξn1,r2

(
r2B2(n1−1),2δn1+1m1−εn1r1

− (m1 − δn1)B0,2δn1r2
−

(δn1(1− 2r2)−m1 + r2)B0,0

)
= 0. (47)

We now take the image of (33) by ξn1,r2 . Using (47) and Lemma 4.10, it follows that:

0 = ξn1,r2(µ(x) + ν(y)) = ξn1,r2(J̃n1−1,−2r2 − Õn1−1,2δn1r2
− T̃2δn1r2,δn1

). (48)

From (42), (44) and (45), we obtain the following conclusions:
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(i) if n1 is even then ξn1,r2(J̃n1−1,−2r2) = 1 and ξn1,r2(Õn1−1,2δn1r2
) = ξn1,r2(T̃2δn1r2,δn1

) = 0.

(ii) if n1 = 1 then ξn1,r2(T̃2δn1r2,δn1
) = 1 and ξn1,r2(Õn1−1,2δn1r2

) = ξn1,r2(J̃n1−1,−2r2) = 0.

(iii) if n1 is odd and n1 6= 1 then ξn1,r2(J̃n1−1,−2r2) = ξn1,r2(T̃2δn1r2,δn1
) = 0 and ξn1,r2(Õn1−1,2δn1r2

) =

1.

In all three cases, we conclude that ξn1,r2(J̃n1−1,−2r2 − Õn1−1,2δn1r2
− T̃2δn1r2,δn1

) = 1, which contra-
dicts equation (48). It follows that α has the Borsuk-Ulam property with respect to τ1.

A Appendix
Let g : F (u, v) → Z⋊Z be the homomorphism defined on the generators of F (u, v) by g(u) = (1, 0)
and g(v) = (0, 1).

Proposition A.1. For each k, l ∈ Z, l 6= 0, let Γk,l = vkulvulv−k−1 ∈ F (u, v). Then Ker (g) =
〈Γk,l, k, l ∈ Z, l 6= 0 |−〉.

Proof. We use the Reidemeister-Schreier rewriting process that is described in detail in [8, Chapter
2, Theorem 2.8] and briefly in [10, Appendix I, Theorem 6.3]. We use the notation of [10]. Let
S = {vkul}k,l∈Z. We have g(vkul) = (0, k)(l, 0) = ((−1)kl, k). So, g|S : S → Z ⋊ Z is a bijection,
and therefore S is a complete set of right coset representatives of Ker (g) in F (u, v). Moreover, S
is a Schreier system of Ker (g). Let us compute the generators of Ker (g). We have

vkuluvkulu
−1

= vkul+1vkul+1
−1

= vkul+1(vkul+1)−1 = 1, and

vkulvvkulv
−1

= vkulv(vk+1u−l)−1 = Γk,l,

where for all w ∈ F (u, v), w is the unique element of S for which g(w) = g(w). Note that Γk,l = 1
if and only if l = 0. Using the Reidemeister-Schreier rewriting process, we see that the group
Ker (g) is freely generated by {Γk,l}k,l∈Z, l ̸=0.

The basis of Ker (g) given in Proposition A.1 is not well adapted to our calculations. We define
a new basis that is more suitable.

Lemma A.2. For each k, l ∈ Z, let Bk,l = vkulBu−lv−k, where B = uvuv−1. Then we have the
following relations in Ker (g):

(a) Γk,l =
∏l

i=1Bk,l−i if l ≥ 1, and Γk,l =
∏−l

i=1 B
−1
k,l−1+i if l ≤ −1.

(b) Bk,l = Γk,l+1Γ
−1
k,l , where Γ−1

k,0 = 1.

Proof. We first prove part (a). We start by proving the result in the case k = 0. If l = 1, we have

Γ0,1 = uvuv−1 = B0,0. So suppose that Γ0,l =
l∏

i=1

B0,l−i for some l ≥ 1, and let us show that the

result holds for l + 1. We have:

Γ0,l+1 = uΓ0,lu
−1Γ0,1 = u

(
l∏

i=1

B0,l−i

)
u−1B0,0 =

(
l∏

i=1

B0,l−i+1

)
B0,0 =

l+1∏
i=1

B0,(l+1)−i.
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By induction, the given formula is valid for k = 0 and all l ≥ 1. If l ≤ −1, the result holds for
Γ0,−l, and thus:

Γ0,l = ulΓ−1
0,−lu

−l = ul

(
−l∏
i=1

B0,−l−i

)−1

u−l =

(
−l∏
i=1

B0,−i

)−1

=
−l∏
i=1

B−1
0,l−1+i.

Hence the formula holds for k = 0 and all l ∈ Z \ {0}. Now let k ∈ Z. Then Γk,l = vkΓ0,lv
−k and

Bk,l = vkB0,lv
−k, and we obtain the formula for all k ∈ Z and l ∈ Z \ {0} using the results of the

case k = 0. Part (b) then follows.

Theorem A.3. The set {Bk,l = vkulBu−lv−k}k,l∈Z is a basis of Ker (g).

Proof. By Lemma A.2, the elements of the set {Bk,l}k,l∈Z generate Ker (g). To show that this set
is a basis, it suffices to prove that there are only trivial relations between these elements. Suppose
on the contrary that there exists a word w ∈ Ker (g) for which:

w = Bε1
k1,l1

Bε2
k2,l2

· · ·Bεn
kn,ln

= 1, where εi ∈ {−1, 1} and Bεi
ki,ri

B
εi+1

ki+1,ri+1
6= 1.

Let S = {k1, k2, . . . , kn}. For each k ∈ S, we define the set Rk consisting of those indices lj for
which the element Bk,lj appears in the word w. Let lm and lM be the minimal and maximal
elements of Rk respectively. We define the sets Bk and Γk as follows:

• Bk = {Bk,0, . . . , Bk,lm , . . . , Bk,lM} and Γk = {Γk,1. . . . ,Γk,lM ,Γk,lM+1} if 0 ≤ lm.

• Bk = {Bk,lm , . . . , Bk,−1, Bk,0, Bk,1, . . . , Bk,lM} and Γk = {Γk,lm , . . . ,Γk,−1,Γk,1, . . . ,Γk,lM+1} if
lm < 0 < lM + 1.

• Bk = {Bk,lm , . . . , Bk,lM} and Γk = {Γk,lm , . . . ,Γk,lM} if lM + 1 = 0.

• Bk = {Bk,lm , . . . , Bk,lM , Bk,lM+1} and Γk = {Γk,lm , . . . ,Γk,lM ,Γk,lM+1} if lM + 1 < 0.

Note that Bk and Γk have the same number of elements by Lemma A.2. Further, if k, k′ ∈ S,
where k 6= k′, then Bk ∩ Bk′ = ∅ = Γk ∩ Γk′ . It follows that CB =

⋃
k∈S

Bs and CΓ =
⋃
k∈S

Γk have

the same number of elements, and generate the same subgroup C of Ker (g), using Lemma A.2
once more. Since CΓ is a finite basis of C, CB is a basis of C, and so w ∈ C, which yields a
contradiction because C is a free group.
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