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Abstract. A Mobile Cable-Driven Parallel Robot (MCDPR) is a special type of

Reconfigurable Cable-Driven Parallel Robot (RCDPR) composed of a classical

Cable-Driven Parallel Robot (CDPR) mounted on multiple mobile bases. The

additional mobility of the mobile bases allows such systems to autonomously

modify their geometric architecture, and thus make them suitable for multiple

manipulative tasks in constrained environments. Moreover, these additional mo-

bilities make MCDPRs kinematically redundant. Therefore, the subject of this

paper is to introduce a two stage path planning algorithm for MCDPRs. The first

stage searches for a feasible and collision free path of mobile bases. The second

stage deals with generating an optimal path of the moving-platform to displace

it from an initial to a desired pose. The proposed algorithm is validated through

simulation on a three degree-of-freedom (DoF) point mass moving-platform dis-

placed by four cables with each cable carried by an independent mobile base.

Keywords: Mobile Cable-Driven Parallel Robot, Reconfigurability, Kinematic

Redundancy, Path Planning, Wrench Analysis

1 Introduction

Cable-Driven Parallel Robots (CDPRs) are a particular class of parallel robots whose

actuated limbs are cables, connecting the moving-platform with a fixed base frame. The

platform is operated by changing the cable lengths between the moving-platform and

the base. CDPRs are interesting for various applications, such as construction [1], high

speed tasks [2], operations over large workspace [3] and as haptic devices [4].

In spite of numerous applications of CDPRs, several challenges are still unresolved.

For example, CDPRs require free circulation of the cables without any interference

with the environment [19]. Furthermore, CDPRs have fixed cable layout, i.e., fixed exit

points and cable configuration, which must be chosen carefully in order to maximize

its workspace. Therefore, it is reasonable to alter robot’s geometric structure based on
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its environment and the required task. CDPRs with the ability to change their geomet-

ric architecture are known as Reconfigurable Cable-Driven Parallel Robots (RCDPRs).

A recent study on RCDPRs [10–12] proposes different approaches for maximizing the

robot workspace and increasing platform stiffness. However, for most existing RCD-

PRs, reconfiguration is usually discrete and performed manually.

To achieve autonomous reconfigurability of RCDPRs, a novel concept of Mobile

Cable-Driven Parallel Robots (MCDPRs) has been introduced in [5] which uses a

unique combination of CDPR and mobile bases. The first MCDPR prototype, FASTKIT,

was designed and built in the framework of ECHORD++ project5 for logistic applica-

tions. Recently, another MCDPR prototype named MoPICK6 has been developed com-

posed of a three DoF point mass moving-platform pulled by four cables mounted on

four mobile bases, as shown in Fig.1(a). The targeted applications of MoPICK are mo-

bile tasks in a constrained environment, for example, a workshop or logistic operations

in a warehouse.

Generally MCDPRs are kinematically redundant due to the additional mobility of

the mobile bases [7, 8]. As a consequence, there exist multiple paths for the MCDPR

mobile bases to displace the moving-platform from one pose to another and to perform

a desired task. [7] addresses the problem of determining an optimal path also referred to

as a redundancy planning of FASTKIT with one degree of kinematic redundancy. On the

contrary, MoPICK has eight degrees of kinematic redundancy. In order to perform the

desired tasks in a potentially cluttered environments, safe and collision free trajectories

are required for the mobile bases and the moving-platform of MoPICK.

A* and Dijkstra are search algorithms which can find globally optimal paths in a

discretized workspace. Yet, such systematic algorithms scale poorly to higher dimen-

sions [20]. In contrast by exploiting randomization, a feasible path can be obtained

quickly, for instance, using sampling based motion planning algorithms [21]. However,

the resulting paths are often of poor quality and thus the methods require larger compu-

tation time to find reasonable solutions in complex environments. A common method

to reduce the complexity is by obstacle inflation [18] with the objective of reducing the

planning problem to a moving point in a 2D environment. Finally, an additional prob-

lem with these algorithms is the difficulty of incorporating the complex kinodynamic

constraints associated with CDPRs.

In this paper, we present a sampling based iterative path planning algorithm for

MoPICK by optimizing the wrench capabilities of its moving-platform. The proposed

algorithm searches for a feasible and continuous path of its mobile bases between the

initial and desired pose of the moving-platform by making a locally optimal choice at

each step. Thus the system’s kinodynamic constraints can be enforced at each instant of

the trajectory. The proposed algorithm decomposes the problem in two parts. The first

part aims to find a feasible, continuous and collision free path for the mobile bases. A

path is generated using an iterative procedure by generating a sequence of straight line

paths. The paths are then smoothed using B-Splines. The second part of the algorithm

takes as input the smoothed B-Splines and locally optimizes the moving-platform’s

wrench capability.

5FASTKIT Videos: https://www.youtube.com/channel/UCJ8QRs818MBc8YSbn-bZVjA
6Demonstration of MoPICK: https://youtu.be/ zfqtNsrpHI

https://www.youtube.com/channel/UCJ8QRs818MBc8YSbn-bZVjA
https://youtu.be/_zfqtNsrpHI
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Fig. 1. (a) MoPICK prototype and its (b) Parameterization

The paper is organized as follows. Section 2 deals with the description and pa-

rameterization of MoPICK. Section 3 details the Static Equilibrium (SE) conditions

of MCDPR under study that is used to determine its wrench feasible poses. Section 4

deals with the formulation of the task which is to be performed by MoPICK. Section 5

proposes a path planning algorithm for MoPICK to displace its moving-platform from

the initial pose to a desired pose while respecting its SE conditions. Section 6 discusses

the results acquired from the path planning algorithm for the required task. Finally,

conclusions are drawn and future work is presented in Section 7.

2 Manipulator Description and Parameterization

The MoPICK prototype consists of four mobile bases (p = 4) that carry the exit points

of the CDPR itself composed of four cables (q = 4) and a three degree-of-freedom

(DoF) point mass moving-platform (n = 3) as shown in Fig. 1(a). The jth mobile base,

denoted as M j, j = 1, . . . ,4, is carrying a single cable named as C j. Let u j be the

directional vector of C j pointing from the the point-mass P to the cable exit point A j.

Let ttt j be the C j’s cable tension vector expressed as,

ttt j = t ju j, (1)

where t j denotes the tension in the cable C j.

Each mobile base has a cylindrical shape of radius rmb equal to 0.25 m. The support

structure for the cables is composed of a 1.2 m high aluminum frame mounted on a

cylindrical base. Let F0 be the base frame of origin O0 and axes x0, y0 and z0. Let

Fb j be the frame attached to M j of origin Ob j and axes xb j, yb j and zb j, respectively.
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Each mobile base is composed of four wheels, with two motorized wheels and two

supporting wheels at the front and rear. It uses a differential drive mechanism through

the motorized wheels to move, thus is subjected to non-holonomic constraints [17],

i.e., it can only generate a transnational motion along xb j and a rotational motion about

zb j. Straight line motion is achieved by turning the motorized wheels at the same rate

in the same direction, however, pure rotational motion is accomplished by turning the

motorized wheels at the same rate in the opposite direction. The exit point A j lies on

the axis zb j, thus, the rotational motion of M j does not alter u j. As a consequence, for

a given position of P, u j can be determined by localizing the reference point Ob j of M j

in x0y0 plane (see Fig. 1(b)).

3 Wrench Feasibility

In this section the Wrench Feasible Workspace (WFW) for MoPICK is studied. It is de-

fined as the set of platform poses for which the required set of wrenches can be balanced

with wrenches generated by the cables while keeping the MCDPR in Static Equilibrium

(SE) [6]. A MCDPR is in the state of equilibrium if and only if its mobile bases and

moving-platform are all in SE. Therefore, first the SE conditions of the moving-platform

and the mobile bases of MoPICK are formulated. From this, the wrench capabilities of

the moving-platform can be studied.

3.1 Static Equilibrium of the MCDPR

The SE of the moving-platform is expressed as [9]

Wt = f, (2)

where W is a (n×m) wrench matrix mapping the cable tension vector t ∈ Rm onto the

wrenches f ∈ R
n applied by the cables onto the moving-platform.

W =
[

u1 u2 u3 u4

]

, f =





f x

f y

f z



 , t =









t1
t2
t3
t4









. (3)

The cable tensions are all bounded between a minimum tension t j and a maximum

tension t j

t j ≤ t j ≤ t j, j = {1, . . . ,4}, (4)

The SE of a wheeled mobile base is characterized by its tipping conditions, which

depend on the moments generated at the boundaries of the mobile base footprint. The

footprint of M j is formed by joining the wheel contact points, denoted by Co j, o =
1, . . . ,4 in anticlockwise direction. The directional vector of the footprint boundary be-

tween the two consecutive contact points (Co j ,Co+1 j) is denoted as eCo j
as shown in

Fig. 1(b). Let mCo j
be the moment generated about the footprint boundary between Co j
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and Co+1 j at the instant when M j loses contact with the ground at the contact points

other than Co j and Co+1 j, expressed as

mCo j
= eT

Co j
((g j − co j)×wg j) + eT

Co j
((co j −p)×u j)t j , (5)

where wg j represents the weight of M j. g j = [gx
j g

y
j gz

j]
T and co j = [cx

o j c
y
o j cz

o j]
T

denote the Cartesian coordinate vector of the center of gravity and the contact point

Co j, respectively. p denotes the Cartesian coordinate vector P. For M j to be in SE,

mCo j
, o = {1, . . . ,4} should be negative, namely,

mCo j
≤ 0, o = {1, . . . ,4} (6)

3.2 Available Wrench Set

For MCDPRs, the Available Wrench Set (AWS), is defined as the set of wrenches a

mechanism can generate while respecting the cable tension limits and the SE conditions

of the mobile bases [6], i.e.,

A =

{

f ∈ R
3 | f = Wttt, t j ≤ t j ≤ t j, mCo j ≤ 0, o = {1, . . . ,4}, j = {1, . . . ,4}

}

.

(7)

The AWS defined in Eq. (7) corresponds to a n-dimensional convex polytope. The facets

of the polytope depend on the MCDPR configuration, the constraints associated with

the cable tension limits and the SE conditions of the mobile bases. Recent work on

MCDPRs [6, 7] discusses different strategies to determine the AWS for MCDPRs. The

latter proposes mapping the SE equations defined by Eqs. (4) and (5) into the wrench

space of the moving-platform using Eq. (2). The SE conditions in the wrench space are

exploited to determine the facets of the AWS.
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An index called Capacity Margin [15, 16] determines if a given pose is wrench fea-

sible using the facets of the AWS and the vertices of the Required Wrench Set (RWS).

It is a measure of the robustness of the equilibrium of the robot, denoted as µ , namely,

µ = min (min sd,l), (8)

where sd,l is the signed distance from dth vertex of the RWS to the lth facet of the AWS.

µ is positive as long as all the vertices of RWS are inscribed by A , i.e. RWS can be

generated by the cables while respecting all the SE conditions of a MCDPR.

4 Task Formulation

The task is defined as displacing the moving-platform from an initial position P1 to a

desired position Pf while ensuring that the moving-platform passing through a set of

way-points. The task is to be performed in a constrained environment having numer-

ous tables and obstacles in it. The way-points on the tables require a task action, for

example grasping and/or releasing an object. Some intermediate way-points are placed

in order to guide the system to navigate between the two consecutive task locations.

These intermediate way-points are interpolated between the two task locations while

maximizing the distance from the nearest obstacle.

Let l be the total number of way-points. Each way-point is denoted as Pi, i = 1, . . . , l.

The Cartesian coordinate vector of the ith way point is denoted as pi. The obstacles

are defined as cylinders. As discussed earlier, the mobile bases are also modeled as

cylinders with radius rmb. A common technique [18] used to ensure no collision between

the obstacles and the mobile bases is to inflate the obstacles by at least rmb in x0y0 plane,

denoted as ‘safe region around obstacles’, as depicted in Fig. 2. As a consequence, the

mobile bases are treated as a point.

In order to perform the desired task, a feasible and collision free path of the mobile

bases is required. Accordingly, the path of the moving-platform is also required to dis-

place it from P1 to Pf by sequentially following the intermediate way-points. Therefore,

Section 5 addresses the aforementioned problem and presents a path planning algorithm

for MCDPR under study.

5 Path planning Algorithm

This section presents a Path Planning algorithm for MoPICK. In order to find a path be-

tween ith and (i+1)th way-points, the following steps are taken. First, let’s assume that

a feasible solution has been obtained for the mobile bases with moving-platform located

at Pi. The wrench capability of the system is calculated when the moving-platform is

located at Pi+1 while the mobile bases are still located at the solution of previous way-

point (Pi). The mobile bases are then iteratively displaced from Pi to Pi+1 such that each

displacement maximizes the wrench capability while avoiding collisions. This results

in a feasible path for the mobile bases. Given this feasible path for the mobile bases,

the path of the moving-platform is optimized to further increase the wrench capability

during the transition.
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5.1 Generation of feasible path for mobile bases

The first phase of the algorithm iteratively searches for a collision free continuous path

for the mobile bases between any two way-points of the moving-platform. As an illus-

trative example, we will show how the algorithm evolves and calculates a continuous

path for M j, j = 1, . . . ,4, between ith and (i+ 1)th way-points shown in Fig. 3(a). Let

k represents an iteration. Let Mi j be a matrix whose kth column contains the Cartesian

coordinate vector of M j in x0y0 plane at the kth iteration of the algorithm.

From the initial configuration of the mobile bases at k = 1, the iterative process

starts at k = 2 by displacing the moving-platform at Pi+1. This results in the drastic

decrease of the moving-platform wrench capabilities (µ). At each kth iteration, the al-

gorithm searches for the best step of M j on a circular grid with a step size d j. On the

corresponding search grid, M j can either retain its current position or due to the non-

holonomic constraints, can move in the forward, backward, or diagonal directions, all

denoted by ‘+’ in Figs. 3(a), 3(b) and 3(c). Let M j have s j possibilities of collision free

steps. There exists s1 × s2 × s3 × s4 combinations for four mobile bases. The algorithm

chooses the combination that results in the maximum increase in µ . The matrix Mi j is

updated with the Cartesian coordinates of the new step taken by M j and a line segment

is created between its locations at kth and (k− 1)th iteration. If there are no feasible

steps for M j due the blockage around any obstacle, the step size (d j) is reduced and

the search is repeated until a feasible step is obtained as illustrated in Fig. 3(b). The

procedure stops at k = ki when µ does not increase any further (see Fig. 3(d)). For the

illustrative example, the evaluation of µ as a function of iteration number is shown in

Fig. 3(e).

The next phase is to smooth the sequence of straight line segments generated be-

tween the Cartesian coordinates of M j during the iterative process using B-Splines [13].

The following function in MATLAB bspline f oot point [14] is used which requires the

two parameters knot sequence and control points to be tuned. It takes ki Cartesian coor-

dinates of M j in Mi j as input, and generates ten times the smooth sequence of Cartesian

coordinates, denoted as Pi j, as depicted in Fig. 3(f).

The above procedure is repeated to find a collision free continuous path for the mo-

bile bases between all the way-points of the moving-platform. It is noteworthy to men-

tion that location of M j at kith iteration is used as an initial configuration to compute

P(i+1) j i.e. path of M j between (i+1)th and (i+ 2)th way-points. The Pseudo-code for

generating the path of mobile bases is presented in Algorithm. 1.

5.2 Generation of the moving-platform optimal path

The second phase of the path planning algorithm generates an optimal path of the

moving-platform, denoted as Pi,MP between ith and (i + 1)th way-points. Similar to

the first phase, the second phase of the algorithm is also an iterative process which

computes an optimal moving-platform pose for each location of the mobile bases in

Pi j, j = 1, . . . ,4. Let r represents an iteration. Total number of iterations are fixed for

the second phase i.e. equal to the number of Cartesian coordinates of M j in Pi j.

Given the initial (pi) moving-platform pose at r = 1, the iterative process begins

at r = 2. It builds Pi,MP by searching for the best pose of the moving-platform on a
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Algorithm 1: Generation of MB feasible paths

Input : A matrix with initial Cartesian coordinates of mobile bases Mi j(1)
Maximum number of iterations kmax

Cartesian coordinates of the moving-platform at (i+1)th way-point pi+1

Output : Feasible Path of mobile bases Pi j

Notations : j represents the MB number j = 1, . . . ,4

Cartesian Coordinates of M j at the kth iteration Mi j(k)
A vector with Wrench Capability (µ) of the moving-platform at the kth

iteration µ(k)
Invoked functions : Determine smooth path of M j BSpline(Mi j)

1 k = 1;

2 µ(1) = Determine µ with M j at Mi j(1) and moving-platform at pi+1

// Section 3.2

3 repeat

4 k = k+1;

5 Determine the new step of M j // Section 5.1

6 Mi j(k) = Cartesian coordinates for the new location of M j

7 µ(k) = Determine µ with M j at Mi j(k) and MP at pi+1

8 until (µ(k) = µ(k−1) or k > kmax);

9 Pi j = BSpline(Mi j)
10 return (Pi j)

circular grid with a step size dMP. In contrast to mobile bases, the moving-platform can

either retain its previous pose or take a step in all the neighboring eight directions i.e.,

forward, back, left, right and diagonals. The algorithm chooses a step with a maximum

µ among all the possible steps. For the illustrative example, Pi,MP is shown in Fig. 3(f).

The above process is repeated to find an optimal moving-platform path between all the

way-points. The Pseudo-code used to generate the moving-platform path is presented

in Algorithm. 2.

6 Results and Discussion

As discussed in Section 4, the required task is to displace the MoPICK moving-platform

from point P1 to Pl by sequentially following the intermediate way-points as depicted

in Fig. 2. In order to perform the desired task, the output of the proposed path plan-

ning algorithm is illustrated in Fig. 4. The simulation showing the complete process of

searching for a feasible path of mobile bases and the generation of the optimal path of

the moving-platform between all the way-points can be seen at7. The video also shows

the resultant motion of the complete system along with the pick-and-place operations

performed at the task locations. The first step of the algorithm took 109.9 minutes to

generate the path of the mobile bases. The second step of the algorithm took 15.92

minutes to determine the path of the moving platform.

7https://youtu.be/0wrdLBvM9-s

https://youtu.be/0wrdLBvM9-s
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Algorithm 2: Generation of the moving-platform optimal path

Input : Path of mobile bases Pi j

Cartesian coordinates of the moving-platform at the ith way-point pi

Output : Optimal path of moving-platform Pi,MP

Notations : j denotes number of mobile bases j = 1, . . . ,4

Cartesian Coordinates of M j at rth iteration Pi j(r)
Optimal moving-platform pose at rth iteration Pi,MP(r)

Invoked functions : Determine the number of Cartesian coordinates of M j in Pi j

size(Pi j)

1 Pi,MP(1) = pi;

2 for r = 2 : size (Pi1) do

3 Pi,MP(r) = Compute optimal moving-platform pose with M j at Pi j(r) // see

Section 5.2

4 end

The cable tension lower bound is null. The cable tension upper bound depends on

the actuation system used to actuate the cables of the MCDPR, i.e., motors, winches etc.

In MoPICK prototype, Dynamixel MX-64AT actuators and winches whose drum diam-

eter is equal to 0.2 m, are used, to pull the cables. Based on the hardware specification

and safety issues, the cable tension upper bound is set to 15 N.

The tunning parameters for the proposed MCDPR algorithm are the step sizes of

the search grids, d j, j = 1 . . . ,4 and dMP. It is important to tune these parameters in

order to obtain a feasible path of the MCDPR mobile bases and the moving-platform.

For example, during the first phase of the algorithm, the step size d j must stay smaller

than the diameter of the smallest obstacle in the environment in order to detect its col-

lision with the mobile bases. On the contrary, making d j smaller also increases the

computation time to calculate the feasible paths of the mobile bases. During the sec-

ond phase of the algorithm, a very small step size dMP can result in not achieving the

desired moving-platform position while a big dMP can generate large discontinuities in

the moving-platform path.

7 Conclusion and Future Work

The aim of this study is to propose a path planning algorithm for kinematically redun-

dant Mobile Cable-Driven Parallel Robots (MCDPRs). The proposed algorithm plans

the MCDPR path in two subsequent stages. In the first stage, the algorithm searches for

a feasible and collision free path of mobile bases. The second stage generates an optimal

path of the moving-platform to reach at the desired pose. Although the obtained path

between the initial and final poses may not be the shortest one, it leads to a feasible path,

when it exists. The proposed algorithm is validated by simulations on MoPICK, which

is a MCDPR with a three degree-of-freedom point mass end-effector displaced by four

cables mounted on four mobile bases. Future work will deal with the experimental val-

idation and the extension of the proposed methodology for the trajectory planning of

MCDPRs while taking into account the cable and mobile base velocity limits.
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