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Abstract

Grain evolution in pure iron is determined in three dimensions using diffraction
contrast tomography at a synchrotron source. During annealing for 75 minutes
at 800◦C, the evolution of initially 1327 grains is quantified as a function of 15
time-steps. A comprehensive statistical analysis is provided based on the equiv-
alent radius, the number of faces and the mean width parameters of the grains.
We introduce analytical relations between these parameters, validate them, and
discuss their physical meaning. While the sample is fully recrystallized, the
growth is found not to be self-similar, as evidenced in changes in the distribu-
tions of normalized grain size and number of faces per grain. More importantly,
a strong decrease in the slope of the growth rate over the mean width of grain
faces is observed, indicating a slowdown of grain growth. The data is used to
determine the applicability of the isotropic MacPherson-Srolovitz theory to an
anisotropic material such as iron. Geometrical properties that are averaged over
the entire grain ensemble are well described by the model, but the properties
and evolution of the individual grains exhibit substantial scatter.

Keywords: Diffraction contrast tomography (DCT), Ferrite, Microstructure,
X-ray synchrotron radiation, Temporal evolution

1. Introduction

Grain growth is an integral part of the thermal processing of most poly-
crystalline materials. It is a complicated process, involving crystallographic,
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geometrical, and topological changes of the microstructure [1] under various
driving forces [2]. The fact that mobilities and grain boundary energies depend
on misorientations and boundary plane inclinations [2, 3] further complicates
the situation. In the past 70 years, a great variety of grain growth models have
been introduced, including analytical theories in 2D [4, 5] and in 3D [6, 7], and
simulations using Monte Carlo Potts models [8], vertex models [9, 10], level-set
based methods [11, 12], and phase-field methods [13–16]. Generally speaking,
these models make the assumption of isotropic energies and mobilities of the
interfaces, thus they only directly apply to idealized situations.
As an example, for one class of models, the growth rate of a grain with anisotropic
grain boundary mobility M and energy γ is determined from differential geom-
etry and Herring’s relation [17]

dV

dt
= −

∫

Γface

2MγH+M

(
∂2γ

∂n2
1

κ1 +
∂2γ

∂n2
2

κ2

)
dA, (1)

where Γface is the set of all faces of the grain, V is the grain volume, κ1 and κ2

are the principle curvatures, 2H = κ1 + κ2 is the local mean curvature, ni are
the components of the normal along the principle coordinate directions. The
exact integral for 2D grain growth was obtained by von Neumann and Mullins
[4, 5] in the 1950s. In 2007, MacPherson and Srolovitz [6] derived an exact
solution in 3D for an isotropic material (i.e., the reduced mobility m = Mγ is
identical for all grain boundaries and there is no inclination dependence of the
energy, that is the second term in Eq. 1 is 0):

dV

dt
= −2πm

(
Lgrain −

1

6
M
)
. (2)

Here Lgrain is the mean width of a grain [6], and M is the total triple-line
length of the grain. Despite the elegant mathematics, to our knowledge, this
relationship has not tested experimentally, and it is not clear to what extent
this theory applies to grain growth in crystalline materials, which typically show
anisotropy.

The lack of validation reflects a lack of experimental methods that can pro-
vide time resolved 3D measurements of grain growth, representing both a sta-
tistically relevant set of grains and the required time and spatial resolution.
The development of nondestructive 3D grain mapping techniques such as three-
dimensional x-ray diffraction (3DXRD) [18] and diffraction contrast tomography
(DCT) [19, 20], provides a possible remedy to the situation. The first 3DXRD
results on the growth of 480 Al-Mn grains by Schmidt et al. [21], involved six
time-steps and a resolution of about 5 − 8 µm. Li [22] later used 3DXRD to
measure the growth of about 2000 pure nickel grains with a slightly improved
resolution. Concerning DCT, Syha [23] measured two steps of grain growth
in strontium titanate sample with 849 grains and with a voxel size of 0.7 µm.
Recently, Sun et al. [24] studied three steps of grain growth of more than 300
grains using a laboratory-based DCT [25, 26] with a voxel size of 5 µm. How-
ever, in all cases, the experimental settings were not ideal for a detailed test of
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the above grain growth models. Phase contrast tomography (PCT) using deco-
ration of the grain boundaries as a contrast is an alternative method exhibiting
a superior spatial resolution [27]. However, the process is not representative of
classical grain growth and PCT does not provide crystallographic information.

In this work, we present a high-resolution time resolved 3D measurements
of grain growth of pure Fe, a material with anisotropic grain boundary energies
[28] and mobilities [29]. Using DCT, 3D grain maps were acquired with a
voxel size of 1.54 µm during annealing at 800◦C for a total of 15 time-steps.
The 1327 initial grains reduced to 776 in the last time-step. Based on this
dataset, a comprehensive and statistically-sound analysis of crystallographic,
geometrical and topological evolution during grain growth can be conducted.
In this paper (part I), we present a statistical analysis of grain-based quantities,
including the growth kinetics for the individual grains. To ease the discussion,
the MacPherson-Srolovitz (MS) model [6] is used to rationalize our results.
Local analysis of specific grain boundaries and topological analysis will be the
focus of upcoming papers.

2. Methods

2.1. Experimental details

The sample material is 99.9% pure polycrystalline iron. The raw material
was cold rolled to a reduction in thickness of 50% and subsequently annealed at
a temperature of 700◦C for 30 minutes to become fully recrystallized with an
average grain radius of ∼20 µm. Cylindrical samples were cut with the rolling
direction (RD) along the cylinder axis and subsequently electrochemically etched
to a diameter of approximately 500 µm to remove the damage caused by the
cutting.

The DCT experiment took place at beamline ID11 at the European Syn-
chrotron Radiation Facility (ESRF) using a monochromatic x-ray beam with
an energy of 40 keV . The sample was mounted on an ω rotation stage with
RD parallel to the vertical rotation axis. A uniform beam illuminated the cylin-
der with a height of 400 µm. Both the diffracted and the transmitted beam
were recorded using a near-field detector (comprising a transparent luminescent
screen, with the emerging light optically coupled to a CCD) with 2048×2048 pix-
els and an effective pixel size of 1.54 µm. The detector was placed at ∼4.65 mm
from the sample, implying that diffraction spots from individual grains from the
first 5 hkl families were recorded. A continuous scan was made in ω with a range
of 360◦, in intervals of 0.1◦ and with exposure times of 1 s. Detailed information
about the DCT set-up can be found in [30]. Nearly all diffraction spots were
found to be distinct, appearing in one or at most two rotation step(s), indicating
that the mosaic spread of all grains was below 0.2◦ and for most below 0.1◦.

During the experiment, the sample was alternately mapped in air at room
temperature and annealed on the beamline. For the annealing, a retractable
tube furnace was used, operated at a constant temperature of 800◦C and with a
flow of a forming gas (Ar+2%H2) to prevent sample oxidation. After annealing,
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the sample was cooled by a jet of the forming gas and allowed to stabilize for
5 minutes before starting a new DCT acquisition. In total, the sample was an-
nealed 14 times with annealing times of either ∼10 or 5 minutes (see Table 1).
Notably, the time duration of the first annealing step was less accurately de-
termined, so this time-step will be discarded when comparing with analytical
models of time evolution.

The data was analyzed using a DCT analysis package at ID11 using the
Networked Interactive Computing Environment (NICE) cluster [31]. The spatial
resolution of the DCT reconstruction is 1 − 2 voxels (i.e. 1.5 − 3 µm), as
demonstrated previously by Ludwig et al. [30] by comparison to PCT, and by
Lenthe et al. [32] by comparison with TriBeam.

2.2. Determining mean width parameters

As we will use the MS model to interpret our results, relevant parameters
in this model are calculated based on the DCT dataset. We define the mean
width of a grain, Lgrain, and the mean width of the set of all faces of this grain,
Lface, as

Lgrain :=
1

π

∫

∂Ωgrain

H dA, Lface :=
1

π

∫

Γface

H dA,

where the integral over Γface does not take into account the turning angle at the
triple-lines/edges while the integral over ∂Ωgrain does. We also define the mean
width of the set of triple-lines/edges of the grain

Ledge := Lgrain − Lface. (3)

For isotropic materials, Eq. 1 can be written as:

dV

dt
= −2πm (Lgrain − Ledge) = −2πmLface. (4)

Comparing Eq. 4 with Eq. 2, for isotropic materials Ledge equals M/6.
To determine the mean width parameters, the measured voxelized 3D grain

volumes were firstly reconstructed into surface meshes using the multiple ma-
terial marching cubes algorithm [33]. Then the mesh was smoothed using a
two-step Laplacian smoothing algorithm. In Laplacian surface mesh smooth-
ing, the location of the vertex point vi of the surface mesh, in the n+1 iteration
is described by:

vin+1
= vin +

λ

C

C∑

j=0

(vjn − vin) , (5)

where λ is a scalar that describes the rate of smoothing for each iteration, vj is
the location of a vertex point j that is connected to vertex point i, and C is the
number of vertex points connected to i. This then is repeated for N iterations
until the desired amount of smoothing is achieved. The value of λ was chosen to
keep the evolution of the mesh stable: λ = 0.05. In a two-step process, first the
mesh points that describe the triple-lines and quad-points were extracted and

4



smoothed for N = 200 iterations. These smoothed triple-line points were then
placed back into the surface mesh and held constant while the vertex points
that constitute the grain faces were smoothed for N = 200 iterations. The
reasoning for choosing the number of iterations and the effect of the number
of smoothing iterations on the measured properties is provided in Section S1.
From this smoothed surface mesh the mean width parameters Lface and Lgrain,
as well as the total triple-line length of the grain, M, were calculated, see [34]
for details. Ledge was then calculated from Eq. 3.

2.3. Correlation between parameters

We derive relationships between the mean width parameters and two com-
monly used parameters: the equivalent radius R (R = (3V/4π)1/3, where V is
the grain volume) and the number of faces F of a grain.

For isotropic materials, according to Hillert [35], the growth of a grain with
radius R follows

dR

dt
= αm

(
1

Rcr
− 1

R

)
, (6)

where Rcr is a critical radius and α is a geometry parameter. Substituting Eq. 6
into Eq. 2, we derive an analytical relationship between Lface and R:

Lface = 2α

(
R− 1

Rcr
R2

)
. (7)

Notably, Lface equals zero for R = 0 and R = Rcr. Next, as the mean width
of grain Lgrain is a linear measure of grain size, we assume a phenomenological
expression:

Lgrain = k1R, (8)

where k1 is a dimensionless coefficient. From Eqs. 3, 7 and 8, it then follows
that Ledge is a quadratic function of R.

For the correlation between R and F , we note that according to the MS
theory [6], Ledge/Lgrain is proportional to the square root of F . Using Eqs. 3, 7
and 8, we have √

F = k
R

〈R〉 +
√
F0, (9)

where k and F0 are dimensionless constants, and 〈R〉 is the average equivalent
spherical radius. We interpret F0 as the face number of a shrinking grain just
before it disappears, here named the disappearing face number. Substituting
Eq. 9 into Eq. 7, and using Rcr = 〈R2〉/〈R〉 [36], we have

Lface

〈R〉 = −c0(
√
F −

√
F0)(
√
F −

√
Fcr), (10)

where c0 = 2α/k2, F0, and Fcr = (k+
√
F0)2 are dimensionless constants. This

equation exhibits two zero points corresponding to the disappearing face number
F0 and the critical face number Fcr, respectively. A grain with face number Fcr
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will neither grow nor shrink. Similarly, we can derive an expression between
Lgrain and F

Lgrain

〈R〉 = −c1(
√
F −

√
F0), (11)

where c1 = k1/k is a dimensionless constant.

3. Results

(a) timestep 1 (b) timestep 1 (interior)

(d) timestep 8 (e) timestep 15(c) timestep 1

Figure 1: Experimental results. Above: 3D grain maps for time-step 1, displaying (a) all grains
and (b) only interior grains. Below: one section of the 3D grain map for time-step 1 (c), 8
(d), and 15 (e). The color represents the grain orientation along sample RD (see the insert
triangle), while black and white lines in (c)-(e) represent boundaries with misorientations
above and below 15◦, respectively.

The reconstructed 3D grain map of time-step 1 is shown in Fig. 1a. A
3D movie of the growth of one grain is given in the supplementary materials.
During annealing, a significant amount of grain growth occurs, as evidenced
in the evolution of one slice close to the center of the illuminated volume, cf.
Fig. 1c-e.
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3.1. Basic grain growth analysis

As a first step in the analysis chain, sample boundary effects were removed
by discarding all “surface grains.” Similar to previous work [34], this sorting of
grains can be done in an unbiased way by setting two criteria:

1. grains directly touching the sample surface and surface of the top and
bottom of the illuminated cylinder are removed,

2. grains whose center are within a given distance to the sample surface are
removed. This distance is determined to be 46 µm, valid for all time-steps
(see Section S2 in supplementary materials).

The interior grains at time-step 1 are shown in Fig. 1b. These represent less
than 1/3 of the total number of grains (see Table 1). The analysis of this paper
is based only on the interior grains.

Table 1: Overview of grain statistics. The average equivalent spherical radius 〈R〉 and the
average number of faces 〈F 〉 represent the average over interior grains.

Time-step Time/min Number
of grains

Number
of interior
grains

〈R〉/µm 〈F 〉

1 0 1327 387 19.30 13.49
2 10 1174 330 20.96 13.65
3 15 1069 286 22.32 13.71
4 20 1019 269 22.93 13.65
5 25 956 253 23.70 13.81
6 30 950 244 23.78 13.73
7 35 933 237 23.90 13.70
8 40 903 223 24.55 13.72
9 45 841 212 25.34 13.95
10 50 837 208 25.42 13.93
11 55 847 204 25.65 13.84
12 60 834 201 25.81 13.85
13 65 833 200 25.73 13.75
14 70 783 193 26.23 13.89
15 75 776 189 26.45 13.94

Table 1 provides statistics on basic grain parameters as a function of time:
the number of total/interior grains, 〈R〉 and 〈F 〉. Here R is calculated by
counting the number of voxels belonging to a particular grain, while F is based
on nearest neighbors.

The average number of faces is seen to be almost constant during the grain
growth. Taking into account all 15 steps, the average number of faces is
〈F 〉 = 13.77 ± 0.13. This value is very close to previous results from computer
simulations: 13.7 [13] and 13.769 [10], and from experiment: 13.7 [34].

During the 14 annealing steps, the number of interior grains reduces by
about one half. At the same time, the average radius of the grains grows about
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Figure 2: The average grain size 〈R〉 as a function of the square root of time
√
t. The dashed

line shows the linear regression of the data. The first data point (t = 0) is not used in the
fitting.

40%. This amount of growth is, however, insufficient to determine precisely the
growth exponent. In Fig. 2 the average radius 〈R〉 is plotted as a function of the
square root of time. Within the experimental uncertainty, the evolution of 〈R〉
is consistent with the parabolic growth. Detailed analysis of the growth will be
given in Section 3.3.

3.2. Evolution in texture, geometry and topology

At the beginning of the experiment the sample has a weak texture, which is
inherited from recrystallization. The texture of the sample is slightly strength-
ened during the annealing (see Fig. S4 in supplementary materials). The distri-
bution of misorientation angles at time-steps 1, 8 and 15 are shown in Fig. 3.
The initial distribution is relatively close to that of a sample with a random
texture, except for a relatively higher fraction of low angle boundaries (< 15◦).
This is likely to be related to the texture of the sample. During the annealing,
the fraction of low angle boundaries decreases by about 2.4%.

3.2.1. Distributions

The distribution of R and F , with averages listed in Table 1, are shown in
Fig. 4a and 4b, respectively, for time-steps 1, 8 and 15 approximately the same
change in 〈R〉 between each of the noted time-steps. The normalized grain size
distribution (Fig. 4a) exhibits a peak shift from R/〈R〉 = 0.6 to 0.8 during
the annealing, and the fraction of the small grains reduces markedly with time,
indicating that the growth is not fully self-similar. Likewise, the distribution of
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Figure 3: The misorientation distribution for three time-steps in bins of 4.5◦. Overlaid is the
theoretical distribution of a random texture (MacKenzie) [37].

the number of faces per grain (Fig. 4b) exhibits a peak shift, and, again, the tail
of the distribution on the lower side decreases during the grain growth. This is
consistent with Fig. 4a since small grains tend to have a small number of faces.

The distributions of two of the mean width parameters are shown in Fig. 4c
and 4d. Lgrain (Fig. 4c) is a linear measure of grain size, exhibiting a similar
shape and evolution as the normalized grain size distribution in Fig. 4a. The
distribution of Lface is shown in Fig. 4d. At all times, there is a peak near zero,
and an asymmetric distribution with the tail of negative Lface (growing grains
according to Eq. 4) much broader than that of positive Lface (shrinking grains
according to Eq. 4). This is reasonable as growing grains are generally large
with complex geometries, thus causing a large scatter in the values.

3.2.2. Correlation between geometrical and topological quantities

For each time-step, the mean width parameters are plotted against the grain
size R to examine their correlation. As an example, the plot for time-step 8 is
shown in Fig. 5. Small grains tend to have a positive Lface, and vice versa.
Despite some scatter, the relations proposed in Section 2.3 (Eq. 7 and Eq. 8)
fit the mean width data well. The quality of fit is very similar for all 15 time-
steps, and the fitted values of α and k1 are nearly identical (see Table S1 in
supplementary materials). Taking into account all 15 time-steps, on average
α = 1.18 ± 0.12 (all errors represent standard deviations of the data in this
paper). This value is similar to results from phase-field simulations (α = 1.1
[38] and α ≈ 1.25 [39]), but slightly higher than the heuristic assumption in
the Hillert theory (α = 1) for 3D growth [35]. Theoretically, the critical radius
Rcr is predicted to be RH

cr = 1.125〈R〉 by Hillert [35], and RR
cr = 〈R2〉/〈R〉
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Figure 4: Distributions of four geometrical and topological parameters for three time-steps 1,
8 and 15: (a) normalized grain size R/〈R〉, (b) number of faces per grain F , (c) normalized
Lgrain, and (d) Lface. The bins are 0.375 (a), 5 (b), 0.25 (c) and 20 (d), respectively.

by Rios [36]. Comparing to these theories, the fitted Rcr has a similar value:
Rcr = (1.12 ± 0.05)RH

cr = (1.04 ± 0.02)RR
cr. Also evident from Fig. 5 is that a

linear fit to the Lgrain data and a quadratic fit to the Ledge data both show good
agreement, cf. Fig. 5.

This analysis suggests a way to estimate the abstract and difficult-to-measure
mean width parameters from the conventional parameter, grain size R, which
is more readily available from a 3D dataset. However, the applicability of the
values of the fitting parameters, e.g. α and Rcr/〈R〉, for other materials systems
has to be tested.

Then, we consider the correlation between R and F as given in Eq. 9. The
data of three different time-steps are shown in Fig. 6. The dashed lines represent
linear regressions of the data. Though the data display significant scatter, as
a result of neglecting the underlying geometry, a linear relationship between R
and
√
F is in all cases seen. The fitted values of the disappearing face number
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The dashed lines show the results of quadratic fits to the Lface and Ledge data, and a linear
fit to Lgrain.
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Figure 6: The equivalent radius R vs. the number of grain faces F for time-steps 1, 8 and
15. To ease visualization, the data of time-step 8 and time-step 15 are shifted downward by
3 and 6 units, respectively.

are on average F0 = 3.33±0.10, which is consistent with the argument of Smith
[1]: a shrinking grain has three faces before disappearing: F0 = 3. The slope is
nearly identical for the various time-steps: on average k = 1.77±0.03. The fitted
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values for the 15 time-steps are listed in Table S1 in supplementary materials.
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Figure 7: (a) The average values 〈Ledge〉F , −〈Lface〉F and −〈Lgrain〉F as a function of F , using
data from all 15 time-steps. Here 〈·〉F is the topological class average (to be distinguished with
the average over grain ensemble 〈·〉). The measured values are scaled using 〈V 〉1/3 = 40.03 µm
(an average value representing all interior grains and all 15 time-steps). The results of a
simulation based on the MacPherson-Srolovitz theory (MS) are superposed [40]. No fitting is
involved in these results. (b) −Lface and −Lgrain as a function of the number of grain faces
F for time-step 8 (dots). Also shown are fits to analytical models (dashed lines).
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Next, the correlation between mean width parameters and the number of
faces is compared with simulations based on the MS theory and with the ana-
lytical expression proposed in Section 2.2.
First we consider the topological class average behavior, i.e. averaged for dif-
ferent classes of number of faces. Shown in Fig. 7a is a comparison with a MS
simulation [10, 40] comprising about 200, 000 grains. There is good correspon-
dence with the simulations. Note that there are no fitting parameters in this
comparison. The correspondence indicates that the topological class average
mean width parameters are insensitive to the anisotropy in the grain boundary
properties. Insufficient amount of data (see Fig. 7b) may cause the minor dis-
agreement at small and large F . Moreover, errors in the mean width calculation
for small grains may also contribute to the disagreement at small F as these
small grains have the fewest number of voxels describing their shape, and thus
the largest uncertainty in their measured morphology [41].
Then, we consider the behavior of the individual grains. As shown in Fig. 7b,
fits of Eqs. 10 and 11 to the experimental data show reasonably good agree-
ment. We attribute the scatter to anisotropy and to ignoring the underlying
geometry. The fitted results of Eq. 10 are c0 = 0.56 ± 0.05, F0 = 2.73 ± 0.37
and Fcr = 16.91± 0.64, and the fitted results of Eq. 11 are c1 = 2.58± 0.11 and
F0 = 2.73 ± 0.09 (see Table S1 in supplementary materials for the fitted value
of each time-step). The F0 values are slightly smaller than the fitted values
obtained in Fig. 6. The critical face number Fcr is slightly larger than literature
values Fcr = 15.5 [34] and Fcr = 15 [40]. Notice that the fitted critical face
number Fcr is consistent with that calculated using Eq. 9 and the critical radius
Rcr fitted in Fig. 5.
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Figure 8: The total triple-line lengthM vs. Ledge (green dots) for all 15 time-steps. Overlaid
is a best fit to a linear relationship.

Finally, we consider the correlation between Ledge and the total triple-line
lengthM. In our work, the mean width of edges Ledge is calculated from Eq. 3,
so the triple-junction angle is not fixed to be the isotropic value of 2π/3. In
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the isotropic MS theory, Ledge is related to M: M = 6Ledge. In Fig. 8, the
correlation betweenM and Ledge is shown. The data are consistent with a linear
relationship and a fit gives a slope of 6.16± 0.08. This is close to the prediction
of 6 from the MS theory. As M and Ledge are quantities attributed to an
entire grain, they may not be very sensitive to anisotropies in the individual
grain boundary energies. For example, it is possible to change the grain shape
significantly (as a result of grain boundary energy anisotropy) without the triple-
line length M changing at all. Alternatively or simultaneously the anisotropy
itself may be weak.

3.3. Growth rate of individual grains
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Figure 9: Examples of experimental growth curves for individual grains without (dots) and
with smoothing by a third order polynomial (lines).

The growth of the individual grains were tracked through time.The evolution
of the grain volume for seven randomly selected grains that survived throughout
the experiment (time-step 2 to 15) are shown in Fig. 9. As illustrated, to obtain
a robust measure of the growth rate dV/dt, the data are smoothed using a third-
order polynomial. As one might expect, most of the large grains are growing
while small grains typically are shrinking during annealing. However, there are
examples of large grains that shrink (grain 1) and smaller grains that grow (grain
6), thus there is no universal value of grain volume that separates growing and
shrinking grains and it is clear that whether a grain grows or shrinks depends on
the local environment of the grain in contrast to the Hillert mean field theory.

The growth rates as a function of Lface is plotted for a statistically significant
number of individual grains in Fig. 10a. For each time-step, despite some scat-
ters, on average dV/dt shows a linear correlation with −2πLface. Interestingly,

14



0 500 1,000 1,500 2,000

−100

0

100

200

300

400

−2πLface /µm

d
V d
t
/µ
m

3
/s

time-step 2
time-step 8
time-step 15
time-step 2: y = 0.1191x+ 1.6251
time-step 8: y = 0.0501x+ 1.0690
time-step 15: y = 0.0144x+ 0.5167

(a)

2 4 6 8 10 12 14

0.02

0.04

0.06

0.08

0.1

0.12

timestep

S
lo
p
e
m

M
S
/
µ
m

2
/s

(b)

Figure 10: (a) The growth rate dV/dt is plotted versus −Lface for all grains at three time-steps.
To ease visualization, the data of time-step 8 and time-step 15 have been shifted downward
by 50 and 100 units, respectively. The dashed lines represent linear regressions of the data.
(b) the fitted slope in (a) as a function of time.

the fitted slope (mMS = dV/dt/(−2πLface)), decreases as a function of anneal-
ing time (see Fig. 10b). Within the total annealing period, the slope decreases
by a factor of 8.
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4. Discussion

Over a century, a significant amount of work has been devoted to develop
models that can predict the growth behavior of individual grains based on their
geometry or topology, including the two outstanding models by Hillert [35], and
MacPherson-Srolovitz (MS) [6] discussed above. The MS model is more elabo-
rate as it takes into account the grain’s morphology and neighbor relationships
(reflected in parameter Lface), while in the Hillert’s model, all grains are as-
sumed to be spheres growing in a mean field. So far none of these models have
been empirically validated. The present dataset offers a unique possibility to
address this issue. We can make this comparison for grain averages or by exam-
ining the results for all individual grains. Alternatively we can use the scatter in
Figs. 5, 6, 7b, 8 and 10a to quantify to what extent the models are applicable on
the individual grain level for anisotropic materials like iron. Below we comment
and further analyze the results on first the macro scale (averaged over a grain
ensembles), then the local scale (individual grains).

4.1. Macro scale grain growth

Our results in Section 3.2.2 and 3.3 demonstrate that on this scale MS theory
is a good approximation for pure iron. Notably, the fitted value of the critical
grain size Rcr from the MS model (see Fig. 5) is close to the prediction from
Hillert’s theory for our material. The changes in the distributions in Figs. 3 and
4 indicate that the grain growth of pure iron was not in a stationary self-similar
regime during the experiment where the average grain size increases by 40 %. In
particular, as shown in Fig. 4a, the shape of the grain size distribution changed.
The grain size distribution is close to the log-normal distribution (see Fig. S5a
in supplementary materials). During the growth, the grain size distribution
becomes narrower and a peak shift is observed, c.f. Fig. S5b. The change in
grain size distribution may be caused by a transition of microstructure [42] or
materials anisotropy [43]. Computer simulations can be used to understand the
causality of the change of distributions.

Another remarkable result on the macro scale is the fast decrease in the
fitted slope mMS, as shown in Fig. 10b, indicating a slowdown of grain growth.
This slope decrease strongly suggests that the overall boundary characteristics
have changed. From Eq. 1, the slope mMS of individual grain is:

mMS =
dV/dt

−2πLface
=

∫

Γface

Mγ(κ1 + κ2) dA

∫

Γface

(κ1 + κ2) dA

+

∫

Γface

M

(
∂2γ

∂n2
1

κ1 +
∂2γ

∂n2
2

κ2

)
dA

∫

Γface

(κ1 + κ2) dA

.

(12)
Notice that for the isotropic case, the reduced grain boundary mobility, mMS =
Mγ, must be a constant for all grains and independent of time. For anisotropic
materials, both terms in Eq. 12 can change during grain growth and affect
the slope mMS. In the following, we discuss potential causes for the observed
decrease of slope mMS.
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1. A decrease in the population frequency of certain grain boundaries with
very high mobilities M , up to 103 − 104 higher than low mobility ones
[2, 44]. We also emphasize that the fraction of high angle boundaries
increases (see Fig. 3), which is surprising given the fact that high angle
boundaries are generally believed to have higher mobilities and energies
than low angle boundaries [45]. A detailed characterization of the changes
in boundary characteristics will be conducted in an upcoming paper.

2. Molecular dynamics simulations have shown that during grain growth, the
boundary roughness at the atomic scale can reduce, therefore causing a
decrease in boundary mobility M [46]. At the same time, local atomic
scale elastic strains have recently been suggested to be a reason for a
slowdown of grain growth [47]. However, to verify these mechanisms,
3D grain growth studies with atomic resolution is required, which is not
possible in the near future.

3. The material contains a small amount of Mn and Ni. It is known that
the solute tends to segregate at the grain boundaries during annealing
[45, 48]. As the boundaries migrate, the solute accumulates, which in
turn reduces the boundary mobilities [49]. To quantify this effect, some
chemical analysis on individual grains boundaries using, e.g. atom probe
[50], are required.

4. A decrease in the population of grain boundaries with large grain boundary
energies γ. However is unlikely to cause the strong decrease in the slope
mMS, as the energies of different high angle boundaries at most vary by a
factor of 2-3 [28]. Likewise, it is very unlikely that the fraction of special
boundaries with significantly low energy (e.g. twin boundaries) increases
during growth in iron [28].

5. The starting microstructure comprises some large grains with large con-
cave retrusions at the boundaries, see the boundary marked by the blue
arrow in Fig. 1c. These features are presumably inherited from recrystal-
lization process; although significant grain growth has already occurred
prior to the current experiments (the average grain radius after recrystal-
lization is about 12 µm). These features typically lead to fast boundary
migration, and the fraction of such features decreases during grain growth.
As can be seen in Eq. 12, the change in curvature may lead to a change
in mMS. As mentioned above, a detailed characterization of the changes
in boundary characteristics will be conducted in an upcoming paper.

Although the specific reason for the decrease in the fitted slope mMS is not
clarified, we speculate that this decrease is a general phenomenon, which is
applicable to many engineering materials that contain a certain amount of im-
purities and with anisotropic material properties. Moreover, as the possible
causes for the lack of self-similarity and the decresing slope is similar, there can
be a connection between two.

4.2. Local scale grain growth
Considering now the validity of the MS model for the individual grains, we

test the MS prediction that grains with a positive Lface shrinks and those with
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a negative Lface grows. Based on the data represented in Fig. 10a, we find
that the majority (> 70%) of the grains fulfill this criterion for all annealing
steps. Next, we test the quantitative prediction of the growth rate dV/dt based
on Lface. If the grain properties are isotropic, all the data of Fig. 10a should
be on a straight line with a slope equal to the reduced mobility. The scatter
in the values of the growth rates indicates that Eq. 4 does not predict the
experimentally measured grain growth rates. The slopes mMS from individual
grains show a broad distribution (see Fig. S6) with the majority of the data
concentrated around the fitted mMS. This broad distribution may be partly
caused by small measurement error in Lface when Lface is around zero. However,
only 13% of the grains have mMS within a range ±25% of the fitted mMS. This
implies that even on the grain scale where boundary properties are averaged
over the number of faces F , the behavior is quite anisotropic.

Comparing different annealing times, the applicability of the model is even
worse, as evidenced by the significant decrease in the slope of the linear fit as
grain growth proceeds. As the slowdown from a decreasing curvature driving
force is already considered in the model, this decrease in the slope arises from
other mechanisms, of which candidates were presented in Section 4.1. These
mechanisms are rather generic and will apply to many other polycrystalline
materials. Therefore, at a certain stage of grain growth, it is a challenging task
to predict how much a given grain will grow or shrink, based solely on Lface

and the MS model, even with 50% uncertainty. This difficulty is mainly related
to the fact that different boundaries around the same grains move differently,
even taken the curvature into account. For example, some boundaries did not
move much during the whole annealing period, while other boundaries move
more than 30 µm. To better predict the growth rates of individual grains,
the mobilities and energies for the individual boundaries have to be taken into
account, as given in Eq. 1. This is the topic of a subsequent paper.

5. Conclusion

In this work, we demonstrate that DCT can provide 3D time-series of suffi-
cient quality for advancing our current understandings of grain growth and for
comprehensive tests of grain growth models. Several conclusions can be drawn
based on the quantitative analysis:

• The grain growth of the iron material studied is not self-similar during
the monitored interval in time and temperature. The distributions of nor-
malized grain size, number of faces per grain, and mean width parameters
exhibit shape changes during the annealing. The starting weak texture
has slightly strengthened after the final annealing step, while the fraction
of the low angle boundaries (< 15◦) decreases by about 2.4%.

• Within the framework of isotropic materials, analytical expressions corre-
lating the mean width parameters, the grain size and the number of faces
are derived and validated based on the 3D dataset at individual time-
steps. The results show that when averaging over the grain ensemble -
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and within short time intervals - these analytical expressions describe the
experimental data well.

• The growth rates for the individual grains are determined. Evidence is
provided for an overall slowdown of the growth, associated with a decrease
of the slope mMS by a factor of 8. Several possible reasons for this decrease
are discussed.

• Based on the correlation between Lface and growth rate, the MacPherson-
Srolovitz model correctly predicts whether a grain grows or shrinks for
> 70% (range between 70% and 85% for 15 time-steps) of the grains.
However, it fails to predict the exact growth rate. This is not surprising
as the MS model is based on an isotropic assumption while iron is known
to be anisotropic. To accurately predict the growth behavior of individual
grains, Eq. 1 needs to be calculated either analytically or numerically. This
requires the determination of the anisotropic grain boundary mobilities
and energies.
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[8] D. Zöllner, P. Streitenberger, Three-dimensional normal grain growth:
Monte Carlo Potts model simulation and analytical mean field theory, Scr.
Mater. 54 (2006) 1697–1702.

[9] M. Syha, D. Weygand, A generalized vertex dynamics model for grain
growth in three dimensions, Modell. Simul. Mater. Sci. Eng. 18 (2010)
015010.

[10] E. A. Lazar, J. K. Mason, R. D. MacPherson, D. J. Srolovitz, A more
accurate three-dimensional grain growth algorithm, Acta Mater. 59 (2011)
6837 – 6847.

[11] H.-K. Zhao, T. Chan, B. Merriman, S. Osher, A variational level set ap-
proach to multiphase motion, J. Comput. Phys. 127 (1996) 179–195.

[12] C. Mießen, M. Liesenjohann, L. Barrales-Mora, L. Shvindlerman,
G. Gottstein, An advanced level set approach to grain growth - account-
ing for grain boundary anisotropy and finite triple junction mobility, Acta
Mater. 99 (2015) 39 – 48.

[13] C. E. Krill III, L.-Q. Chen, Computer simulation of 3-d grain growth using
a phase-field model, Acta Mater. 50 (2002) 3059–3075.

[14] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain
boundary properties in a generalized phase field model for grain growth
in anisotropic systems, Phys. Rev. B 78 (2008) 024113.

[15] H.-K. Kim, S. G. Kim, W. Dong, I. Steinbach, B.-J. Lee, Phase-field
modeling for 3d grain growth based on a grain boundary energy database,
Modell. Simul. Mater. Sci. Eng. 22 (2014) 034004.
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Supplementary materials

S1. Smoothing in the surface mesh reconstruction

Analyzing the geometry of the interface of data described by discrete voxels
can be problematic. Using the original voxel edges will grossly overestimate
the surface areas and local curvatures, thus surface smoothing methods are
employed. However, there is no clear threshold for when there has been too
much or too little smoothing applied. It is assumed that the grain interfaces, at
these length scales, are described by smooth continuous surfaces, thus the high
curvature, stair-step like artifacts of the voxel edges should be removed. But
using Laplacian smoothing, it is clear that with infinite numbers of iterations,
the grain faces will eventually remove all long-range curvature as well. In this
section, the effect on various geometrical measurements as a function of the
amount of Laplacian smoothing is considered. As outlined in Section 2.2, a two-
step smoothing process is implemented, first independently smoothing the triple-
lines in the mesh, then constraining the smoothed triple-lines and smoothing
the grain faces. In both steps, a value of λ = 0.05 is used, and the number of
smoothing iterations, N is varied. Here, only the surface mesh of the first time-
step is considered, as it has the fewest number of voxels per grain on average,
and thus should be the most sensitive to the surface-smoothing process. We
also introduce the smoothing metric fvox which is defined as the fraction of
surface mesh vertex points that have moved more than the distance of a voxel
dimension from the original position. In an ideal surface mesh construction,
the smooth interface points should remain within the voxel that they originated
within. However, it is expected that with experimental data, not all voxels,
and thus not all surface mesh points will be properly labeled, and thus it is
reasonable that some fraction of the surface mesh points travel further than a
voxel distance from its original position.

The values of fvox, average value of the spherical equivalent radius 〈R〉,
average surface area per grain 〈SA〉, average triple-line length per grain LTL, the
average mean width of the grain faces 〈Lface〉 and mean width of the triple-lines
〈LTL〉 were evaluated for N = 0, 50, 100, 150, 200, 250, 300, 500, 1000, and the
results are plotted in Fig. S1. Fig S1a shows that fvox, continuously increases,
although at a slower rate with increasing iterations. The rate of change of the
average radius shown in Fig S1b shows an overall decrease in the average radius
with iteration, but note that the total change in the mean grain size is 0.01%
for N = 1000, a negligible change.

The average surface area of the grains as a function of smoothing iteration,
Fig. S1c shows the more characteristic behavior, initially with no smoothing the
value of the surface area is very high and even moderate amount of smoothing
leads to a dramatic reduction in the value. But as smoothing continues, the
reduction in the surface area slows. The inset graph shows that the variation
in 〈SA〉from N = 100 to N = 300 is only 0.9%. The values of 〈LTL〉 and 〈LTL〉
shown in Fig. S1d and e, show a similar trend although the values continue to
see a decrease in value with more iterations, but still at a slower rate than the
initial changes from no smoothing. This is most likely because in the two-step

1



smoothing nothing constrains the triple-lines during the smoothing, thus in the
limit of very high iterations the triple-lines would remove all curvatures and
assume straight lines between the quad-points. Nonetheless, the total variation
in the measurement of 〈LTL〉 and 〈LTL〉 between N = 100 to 300 is 3% and 6%
respectively. The higher variation for 〈LTL〉 is not surprising, given that the
variation in length, and line curvature are both represented here.

Fig. S1f shows the change in the average mean width of the grain faces, which
shows the initial reduction in value which is directly related to the reduction
in surface area. The value passes through a minima near N = 150 − 200,
then it slowly starts increasing again. It is not immediately clear what causes
this increase, since the surface area is relatively constant over the domain of
N > 150. Since most of the measured mesh is conformal, a reduction in the
negative curvature in one grain would be matched by the reduction in curvature
of the positive curvature in the neighboring grain. Thus this increase in the
curvature must be related to interfaces that would be contacting the outside
touching grains which are not included in the average. Thus we have chosen
that N = 200 provides the best compromise of reducing the number of artifacts
from the original voxel faces, while not reducing the long-range curvature of the
grain boundaries.

S2. Convergence study of unbiased selection

As most grain growth theories assume that grains grow in an infinite medium,
grains close to the free surface should not be used in the analysis to compare
with these theories. Grains whose center are within a given distance to the free
surface are removed. The distance is found by a convergence study of time-steps
1 and 15 to ensure average grain size 〈R〉 and average face number 〈F 〉 of the
interior grains reach a stable value, see Fig. S2. The convergence is seen to be
achieved around 30 voxels, equivalent to about 46 µm. This value is applied to
all time-steps to remove surface grains.

S3. Reproducibility of the DCT scan

In order to estimate spatial resolution and test reproducibility, the last time-
step was repeated with slightly different experimental parameters: the sample
was translated upward by 5 µm and the detector to sample distance was in-
creased by 10 µm. The result is shown in Fig. S3. The average shift in position
is 0.305 voxels, corresponding to 0.47µm.
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Figure S1: Effect of the extent of smoothing on the measurement of geometry parameters.
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Figure S4: Texture of all and the interior grains in the gauge volume. (a)-(c) for the whole
sample volume at time-steps 1, 8 and 15; (d)-(f) for interior grains at time-steps 1, 8 and
15. The texture of the whole gauge volume strengthens slightly during annealing, while the
texture of the interior grains strengthens first and then weakens afterward. Notice that the
statistics for interior grains are relatively poor, especially in the late stage of the growth.
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Figure S5: Log-normal fit of the grain size distribution. (a) is the log-normal fit of time-step
3. (b) is the change of fitted log-normal distributions with time. Notice here the probability
distribution function differs from the number fraction used in Fig. 4a by a constant scale.
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Figure S6: The distribution of the apparent reduced mobilities calculated from individual
grains for time-step 8. Bin size is 0.025 µm2/s.
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