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TREFOIL PLUMBING
SEBASTIAN BAADER AND PIERRE DEHORNOY

ABSTRACT. We give a criterion for an open book to contain an
n-times iterated Hopf plumbing summand. As an application, we
show that fibre surfaces of positive braid knots admit a trefoil
plumbing structure.

1. INTRODUCTION

An open book is a connected orientable surface ¥ with boundary,
together with a diffeomorphism ¢ : ¥ — ¥ fixing the boundary point-
wise. Positive Hopf plumbing is an operation that adds a 1-handle A to
Y) and composes ¢ with a right-handed Dehn twist along an embedded
circle that runs once through h. In case an open book (X, ¢) represents
the 3-sphere, the boundary of ¥ is a fibred link with monodromy ¢.
Positive Hopf plumbing was originally defined in this classical setting
by Stallings [10], where it corresponds to gluing a positive Hopf band on
top of a fibre surface. In this paper, we consider positive n-plumbing,
an n-times iterated version of positive Hopf plumbing, as sketched in
Figure 1, for n = 4[]

FIGURE 1.

The special case n = 2 is called positive trefoil plumbing, since it
amounts to plumbing the fibre surface of a positive trefoil knot on
top of a surface. We say that an open book admits a positive n-
plumbing summand, if it is obtained from a suitable open book by one
positive n-plumbing operation. Open books that arise from the trivial
open book (D? 1d) by iterated positive Hopf plumbing are known to

IThis is in fact a schematic picture indicating the positions of n successive 1-
handles. In order to get an embedded picture, one would have to add a positive
full twist to every 1-handle.
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be right-veering [7]. Our first result is a plumbing criterion for such
open books.

Theorem 1. An open book (X, ¢) with right-veering monodromy ¢ ad-
mits a positive n-plumbing summand, if and only if there exists a rel-
atively embedded arc I C %3, such that I,¢(I), d*(I),...,¢"(I) are ho-
mologically independent and pairwise disjoint, except at their common
boundary points, after a suitable relative isotopy.

This is a generalisation of the Hopf deplumbing criterion proved by
Etnyre and Li [3] (Theorem 3.3). In terms of the homological arc
complex defined in their paper, the last condition means that the arcs
I,o(I),d*(I),...,¢"(I) form an (n+1)-simplex. A virtually equivalent
criterion is given by Buck et al. [1I] (Corollary 1). The case n = 2 has
a remarkable consequence concerning positive braids.

Theorem 2. The fibre surface of positive braid knots is obtained from
the trivial open book by iterated positive trefoil plumbing.

At first sight, this seems to be a consequence of Corollary 3 in Giroux-
Goodman [5]. However, the discussion there only implies that positive
braid knots are connected to the trivial knot by a sequence of positive
trefoil plumbing and deplumbing operations. We conclude the intro-
duction with an application of Theorem 2, the precise meaning of which
we will explain in Section 5.

Corollary 1. The fibre surface of a positive braid knot of genus g can
be untwisted by g ribbon twists.

In the last section, we present a criterion by Hironaka [6] obstructing
the existence of n-plumbing summands. As an application, we detect
the largest n-plumbing summand for fibre surfaces of all 3-stranded
torus links.

2. POSITIVE n-PLUMBING

Let (3, ¢) be an open book with a positive n-plumbing summand.
The monodromy ¢ can be written as a composition

¢ = DnDn—l cee quga

where Dy, Do, ..., D, are right-handed Dehn twists along the core
curves of n Hopf bands, in the order of plumbing, and the support
of ¢ is disjoint from the n attached 1-handles. Let I C ¥ be an es-
sential relative arc in the outermost 1-handle. The iterated images

I,o(I),¢*(I),...¢"(I) C ¥ are easy to determine: they are indeed ho-
mologically independent and pairwise disjoint, as shown in Figure 2,
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for n = 4. This proves one implication of Theorem 1, without any
further assumption on ¢.

FIGURE 2.

For the reverse implication, we assume that ¢ is right-veering. Loosely
speaking, this means that every relatively embedded interval J C X is
mapped to the right by ¢. Technically speaking, choose ¢(.J) to have
minimal intersection number with .J. Then the tangent vectors of J
and ¢(J) are required to form a positive basis of 'Y, at their common
boundary points (compare Figures 2 and 3). Right-veering diffeomor-
phisms were introduced by Honda et al. [7] in the context of contact
geometry. One of their main results is that all closed tight contact
3-manifolds are supported by right-veering open books.

Let I C X be a relatively embedded interval, such that I,¢(I),
®*(I),...,¢"(I) are homologically independent and have pairwise dis-
joint interiors. Setting

W= ¢ (I) UgH(D),

we obtain n homologically independent embedded circles vy, v, ..., v, C
Y. After a suitable isotopy, these circles form a chain, i.e. the only in-
tersection points arise from pairs of consecutive circles. Here the right-
veering property is absolutely essential. This is illustrated in Figure 3
for n = 3, where the bold and thin lines represent I, ¢ (1), p*(I), »*(I)
and 71, 72, 73, respectively (the vertical line being I).

FIGURE 3.
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Let Dy, Ds,..., D, be right-handed Dehn twists along the curves
V1,72, - - - s Yn- Then the composition

¢=D;'D;t... Dt

leaves the arcs I, ¢(I),¢*(I),...¢" *(I) invariant. In particular, ¢ is
defined on the surface ¥ cut open along I, ¢(I), ¢*(I), ... 4" *(I), which
is again connected, due to the homological assumption. We conclude
that (X, ¢) contains a positive n-plumbing summand.

3. THE FIBRE AND MONODROMY OF POSITIVE BRAIDS

A braid is positive, if it contains positive crossings only. Standard
generators o; are used to denote positive crossings. Braid words are
read from top to bottom, in accordance with the second author’s con-
vention [2]. We use brick diagrams as an alternative notation for posi-
tive braids, as well as their fibre surfaces, see Figure 4. The diagram on
the right shows the fibre surface of the braid o3oi090203010201, an em-
bedded orientable surface whose boundary is the closure of that braid
and which naturally retracts on the brick diagram. It is instructive to
verify that the isotopy type of the fibre surface is invariant under the
braid relations 0;0;410; = 0;410;0;41-

: - b

- o

FIGURE 4.

Throughout this paper, we will only consider reduced braids, i.e.
braids with at least two crossings between all strands. In other words,
every column of the brick diagram contains at least one rectangle. Ev-
ery rectangle defines a simple closed curve whose neighbourhood in the
fibre surface is a positive Hopf band. The left- and topmost rectangle
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defines a Hopf band which can be deplumbed, since it lies on top of
the surface (compare Figure 4). On the level of braids, this amounts
to removing one crossing on the top left. Therefore, fibre surfaces of
reduced positive braids admit a positive Hopf plumbing structure. This
well-known fact is due to Stallings [10].

As explained in detail by Dehornoy [2], the monodromy can be writ-
ten as a product of right-handed Dehn twists, one for each rectangle,
in the order of plumbing, i.e. from the bottom right to the top left,
filling up columns from the right to the left. We will make use of this
in the proof of Theorem 2.

4. THE PLUMBING STRUCTURE OF POSITIVE BRAIDS

The proof of Theorem 2 relies on the following well-known fact,
which can be found at various places in the literature, e.g. in Franks-
Williams [4].

Lemma 1.  Every positive braid whose closure is a non-trivial link
contains the square of a generator, o2, up to braid relations.

m’

Here braid relations are understood in a generalised sense, including
conjugation and Markov moves.

Proof of Lemma 1. Let 8 be a positive braid representing a non-trivial
link. By the braid relation, we may remove all instances of oy0907 in
(. If there is only one single crossing of type oy left, we remove it by a
Markov move. Otherwise (3 contains a section of the form ojwo; with
either no oy or at least two 05’s in w. In the first case we are done; in
the second case 8 contains a section of the form oswos with no oy in
w and either no o3 or at least two o3’s in w. This argument eventually
leads to a proof of the statement. O

The fibre surface associated with the braid o2 is a positive Hopf band.
More generally, let 3 be a positive braid that contains a square o2, then
the corresponding fibre surface contains a Hopf band which can actually
be deplumbed, since it lies on top of the surface. This provides an
alternative proof that fibre surfaces of positive braids admit a positive
Hopf plumbing structure. The monodromy of positive braid links is
right-veering, since it can be written as a product of right-handed Dehn
twists [7]. Therefore, we may apply the criterion of Theorem 1 to
the open books associated with positive braids. Instead of looking at
iterates of an arc I C ¥ under the monodromy ¢, we will consider a
simple closed curve R of the form I U ¢(I) and verify that ¢(R) does

not intersect 1.
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Proof of Theorem 2. Let [ be a positive braid representing a non-trivial
knot. By Lemma 1, we may assume that 3 contains a square ¢2,. After
a suitable conjugation, we may further assume that g starts with

2 Nm—1 __Nm—2 ni
oLo o,y oyt
for some numbers ny,...,n,_1 > 0. Moreover, § contains at least one

more generator o,,, since it represents a knot.

Let I C ¥ be an essential relative arc in the uppermost band and
let R =1U¢(I) be the simple closed curve running once through the
Hopf band associated with 2. In order to determine the image ¢(R),
we decompose the monodromy as

b= ¢192. .. ¢,

where [ is the number of columns of the brick diagram, and each ¢y
is a product of right-handed Dehn twists in the k-th column, from the
bottom to the top. The last I — m factors ¢,,11,...,®; do not affect
the curve R. Indeed, a Dehn twist ‘along a rectangle’ affects another
rectangle, if and only if their curves intersect. This happens precisely
when the two rectangles are arranged as in the braids a{’, 010201073,
or g9010901. The effect of the monodromy on a single rectangle is
described in detail in [2]. The map ¢, shifts the curve R down, as

shown on the left of Figure 5.
) 2)
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=
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FIGURE 5.
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The map ¢,,_1 adds a certain union of rectangles to its left. All
subsequent factors ¢y (k < m) add one layer of rectangles to the curve
Gr11---O1(R), as long as their union forms a staircase. Figure 5 illus-
trates this process for the braid

0'30'30'20'10'52’0'30'40'50'50'30'40'%030'3.

The curves ¢405(R), ¢30405(R) and ¢ap3d4¢5(R) are shown from left
to right. In that example, the last factor ¢; does not have any effect
on the curve ¢a30405(R).

We observe that ¢(R) does not intersect the arc /. Now Theorem 1
allows us to apply trefoil deplumbing, which amounts to cutting X
along the arcs I and ¢([), i.e. cutting the upper two bands associated
with 02, On the level of braids, this simply means removing o2,. It
is instructive to verify that a neighbourhood of the theta graph R U
¢(R) C X is indeed isotopic to the fibre surface of a positive trefoil
knot (see again Figure 5). We conclude by induction. O

5. UNTWISTING POSITIVE BRAIDS

A ribbon twist is an operation on Seifert surfaces that inserts a full
twist into a ribbon, as shown in Figure 6. Two Seifert surfaces are
twist equivalent if they are related by a finite number of ribbon twists.
Generic Seifert surfaces are unlikely to be twist equivalent, since ribbon
twists preserve the homotopy type of the surface complement in R3.
Here we will show that fibre surfaces of positive braid knots can be
untwisted in a natural way. A Seifert surface of genus g is trivial if
it admits ¢ disjoint non-isotopic compression discs on either side In
particular, the complement of a trivial Seifert surface is homeomorphic
to a handlebody of genus 2g. A simple example for g = 1 is depicted
in Figure 6, on the right.

) )

FIGURE 6.

2This makes sense even though a Seifert surface does not disconnect R®.
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The sequence of diagrams in that figure shows that the fibre surface
of the positive trefoil knot can be untwisted in one move. The last iso-
topy is best seen by dragging one end of the Hopf band once around the
untwisted annulus. In fact, the same sequence of diagrams, combined
with the isotopy of Figure 7, demonstrates that positive trefoil plumb-
ing can be expressed as a connected sum with a compressible torus,
followed by a single ribbon twist. As a consequence, a Seifert surface
¥ C R? that is obtained by g-times iterated positive trefoil plumbing
can be untwisted by ¢ ribbon twists. Moreover, the number ¢ is min-
imal, since the unknotting number of the boundary knot 9¥ C R3 is
not smaller than g (see Rudolph [9]). This proves Corollary 1.

1%

O/
SR /Q/

FIGURE 7.

We conclude this section with a basic question: which fibre surfaces
of genus ¢ in R3 can be untwisted by ¢ ribbon twists?

6. TORUS LINKS AND HIRONAKA’S CRITERION

The purpose of this section is to detect large n-plumbing summands
in fibre surfaces of torus links. Using a result of Hironaka on the be-
haviour of the Alexander polynomial under iterated trefoil plumbing [6],
we will determine the largest n-plumbing summand for fibre surfaces
of all 3-stranded torus knots. We define a torus link of type T'(p, q) as
the closure of the braid

(0’10’2 e Up_l)q.

The fibre surface of the torus knot 7'(4,3) is shown in Figure 8. As
explained in Section 3, the left- and topmost rectangle defines a Hopf
band which can be deplumbed. Let R be the core curve of that Hopf
band. As in the proof of Theorem 2, we decompose the monodromy
as ¢ = P12 ... ¢Pp_1, Where ¢ denotes the product of Dehn twists in
the k-th column, from the bottom to the top. We claim that for all
k < p— 2, the curve ¢*(R) runs once around the uppermost rectangle
in the (k 4+ 1)-th column. Indeed, let us suppose this is true for some
k < p—2, and let us write R; (1 <1 < p—1) for the curve defined by the
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uppermost rectangle in the i-th column (in particular, Ry, = ¢*(R)).
The first factor of the monodromy ¢ that affects the curve Ry, is ¢gio.
In fact, ¢ryo(Res1) is a curve running once around the union of Ry
and Rp,o. The next factor ¢p,q then removes Rj,; from that curve,
thus

Pry1Pk+2(Rit1) = Ripo.

The subsequent factors ¢1¢s ... ¢, do not affect the curve Ry, o. Fig-
ure 8 illustrates this process for the torus knot 7°(4, 3) and k = 1. For
a more detailed analysis of the monodromy of Lorenz links, including
torus links, we refer the reader to Section 2 of [2].

L ““@@ L

141D)

FIGURE &.

Keeping in mind that R = I U ¢(I), where I C ¥ is an essential
relative arc in the uppermost band, we deduce that the family of arcs
I,o(I),¢*(I),...,¢P*(I) is pairwise disjoint. As a consequence, the
fibre surface X(p, ¢) of the torus link T'(p, q) contains a (p—1)-plumbing
summand. In the special case ¢ = 2, we obtain the entire surface as a
(p — 1)-plumbing summand, as expected. In general, the fibre surface
obtained by deplumbing a (p — 1)-summand from ¥(p,q) is not the
fibre surface of a torus link (and not even the fibre surface of a positive
braid link, for that matter).

In case a fibre surface > admits an n-plumbing summand, we natu-
rally obtain an embedded subsurface of type ¥(2,n) in 3. With this
in mind, we will look for a large subsurface of type ¥(2,n) in (3, m).
Applying the braid relation three times, we obtain

6 2 3 3
(0109)° = 07020702070207.

In particular, the fibre surface ¥(3,6) contains ¥(2,9) as a subsurface
(compare Figure 9). Roughly speaking, (3, m) contains a surface of
type X(2,n) which accounts for three quarters of the genus. However,
this bound cannot be achieved by a plumbing summand.



10 SEBASTIAN BAADER AND PIERRE DEHORNOY

Proposition 1. Let k be a natural number.

(1) The fibre surface 3(3,3k + 1) of the torus knot T'(3,3k + 1)
admits an n-plumbing summand, if and only if n < 3k.

(2) The fibre surface 3(3,3k + 2) of the torus knot T'(3,3k + 2)
admits an n-plumbing summand, if and only if n < 3k + 2.

|
IR

FIGURE 9.

By the above discussion, we are basically left to prove that (3, q)
does not admit an n-plumbing summand for n > q resp. ¢+1. Thisis a
direct consequence of Hironaka’s criterion, which involves the Alexan-
der polynomial Ag(t) of links.

Theorem 3 ([6], Theorem 9). Let ¥, be obtained by plumbing a (2, n)-
summand on the fibre surface ¥ of a link K with r components, and
let K,, be the boundary link of 3,. Then there exists a polynomial
P(t) € Z[t] of degree d = deg(Ak(t)), such that
t"P(t) + (=1l P(1/t)
Ak, (1) = .
1. (1) t+1

Remark. Plumbing a 3(2, n)-summand corresponds to positive (n—1)-
plumbing in our convention, since ¥(2,n) is a plumbing of n — 1 Hopf
bands.

In order to appreciate this criterion, let us first analyse what it says
about 2-stranded torus knots. The Alexander polynomial of torus knots
is calculated in most textbooks about knot theory, e.g. in Rolfsen [§]:

(tP1 —1)(t —1)

A = )
Te0 = (@ —1)(t1 - 1)
The special case p = 2 boils down to i%ll Comparing this with Hi-

ronaka’s criterion, we obtain P(t) = 1 and n = ¢, in accordance with
the fact that (2, ) is itself a plumbing summand, and the remaining
surface is a disc.
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Proof of Proposition 1.
i)g=3k+1. An elementary calculation shows

k-1
AT(373]€+1 Z t3Z _ Z t1+3j + tﬁk)—l—3j) )
7=0

Multiplying this with (¢ 4+ 1) yields
14 66+ | Z (—t2+37 4 £330 4 gBhFIE3] _ g3ke243)

Comparing this again with Hironaka’s criterion, we obtain
k—1
P(t) _ Z (t3] _ t1+3j) ‘l’ t3k"
§=0
thus deg(P) = 3k and n = 3k + 1. For example,
(t+DArant) =+ 1)1 —t+£ ="+ =5 + ¢ — " +¢1%)
=12 483 =5 0t S 10— g1

P(t) = 1—t+t3—t*+% and n = 7. We conclude that 3(2, 3k+1) is the
largest possible plumbing summand of the fibre surface (3, 3k + 1).
In our convention, (3, 3k + 1) admits at most a positive 3k-plumbing
summand. Moreover, this bound is attained, by the discussion preced-
ing Proposition 1.

ii) ¢ = 3k + 2. A similar calculation yields

2k k
AT(3,3k-|-2 = — Z t1+3i + Z t3j 4 t6k+2—3j) 7
1=0 §=0

k—1

Z t3y t1+3] + t3k

7=0
deg(P) = 3k and n = 3k + 3. This leaves room for a g-plumbing
summand, rather than ¢—1. In order to detect this summand, we work
with the 3-stranded diagram of 7'(3,3k+2). As usual, let R = ITU¢(I)
be the curve running once around the top left rectangle. A careful
inspection of Figure 10 reveals that the third power of the monodromy
¢ = @109 shifts the curve R down by three rectangles. Repeating this
process k times, we arrive at the bottom left rectangle. The latter is
mapped to the bottom right rectangle under ¢. As a consequence, we
obtain a family of pairwise disjoint arcs I, ¢(I), p*(1), ..., ¢***2(I), in
turn a 3k 4+ 2-plumbing summand. O
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FIGURE 10.

The second item of Proposition 1 admits a generalisation to higher
index torus knots.

Proposition 2. Let k and p be natural numbers, p odd. Then the fibre
surface X(p, pk+2) contains a 3(2, %p(p— 1)k +p)-plumbing summand.

Remark. The genus of the fibre surface X(p, ¢) of a torus knot T'(p, q)
is %(p —1)(¢ — 1). Applying this to the knots of Proposition 2, we see
that the largest plumbing summand of 3(p, pk + 2) fills up more than
half of the genus (the precise ratio is % + 5 ) and is again given by

2(pk+1

Hironaka’s criterion).

l[l[l[l[l[l[l[
[ LT TTT]
[T TTTT11
l[l[l[l[l[l[l[
TIOTIT ILIIT LIIIIO

FIGURE 11.
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Proof of Proposition 2. As in the above proofs, it is all about tracing
the image of the top left rectangle R = I U ¢(I) under iterates of the
monodromy ¢. The p-th power of the monodromy shifts R down by
p rectangles. This process can be repeated %(p — 1)k times, without
ever intersecting the initial curve I. Another p — 2 iterations map the
last curve ¢2?@=Dk(R) to a rectangle in the right column. The whole
process is shown in Figure 11, for the torus knot 7'(5, 7). Summing up,
the first %p(p — 1)k + p — 1 iterates of the arc I are pairwise disjoint.
This gives rise to a plumbing summand of type (2, p(p — 1)k + p),
as required. O

In general, Hironaka’s bound allows much larger n-plumbing sum-
mands than we were able to detect.
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