Optimal reduced model algorithms for data-based state estimation - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2020

Optimal reduced model algorithms for data-based state estimation

Résumé

Reduced model spaces, such as reduced basis and polynomial chaos, are linear spaces $V_n$ of finite dimension $n$ which are designed for the efficient approximation of families parametrized PDEs in a Hilbert space $V$. The manifold $\mathcal{M}$ that gathers the solutions of the PDE for all admissible parameter values is globally approximated by the space $V_n$ with some controlled accuracy $\epsilon_n$, which is typically much smaller than when using standard approximation spaces of the same dimension such as finite elements. Reduced model spaces have also been proposed in [13] as a vehicle to design a simple linear recovery algorithm of the state $u\in\mathcal{M}$ corresponding to a particular solution when the values of parameters are unknown but a set of data is given by $m$ linear measurements of the state. The measurements are of the form $\ell_j(u)$, $j=1,\dots,m$, where the $\ell_j$ are linear functionals on $V$. The analysis of this approach in [2] shows that the recovery error is bounded by $\mu_n\epsilon_n$, where $\mu_n=\mu(V_n,W)$ is the inverse of an inf-sup constant that describe the angle between $V_n$ and the space $W$ spanned by the Riesz representers of $(\ell_1,\dots,\ell_m)$. A reduced model space which is efficient for approximation might thus be ineffective for recovery if $\mu_n$ is large or infinite. In this paper, we discuss the existence and construction of an optimal reduced model space for this recovery method, and we extend our search to affine spaces. Our basic observation is that this problem is equivalent to the search of an optimal affine algorithm for the recovery of $\mathcal{M}$ in the worst case error sense. This allows us to perform our search by a convex optimization procedure. Numerical tests illustrate that the reduced model spaces constructed from our approach perform better than the classical reduced basis spaces.

Dates et versions

hal-02404309 , version 1 (11-12-2019)

Identifiants

Citer

Albert Cohen, Wolfgang Dahmen, Ron Devore, Jalal Fadili, Olga Mula, et al.. Optimal reduced model algorithms for data-based state estimation. SIAM Journal on Numerical Analysis, 2020, ⟨10.1137/19M1255185⟩. ⟨hal-02404309⟩
140 Consultations
0 Téléchargements

Altmetric

Partager

More