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Abstract. This paper deals with the dynamic torsional stability prob-
lem of a family of partially-decoupled spherical parallel manipulators.
The linearized equations of motion of the mechanical system are estab-
lished to analyze the stability of the U-joint mechanism, resorting to
the Floquet theory. Parametric stability charts of misalignment angles
versus rotating speeds of the driving shaft are constructed to identify
the unstable regions and critical shaft speeds, together with the effect of
the parameters onto the manipulator stability. As a consequence, some
criteria for the design and the operational speed of the manipulator, in
terms of dynamic stability, are introduced.

Keywords: dynamic stability, spherical parallel manipulator, monodromy
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1 Introduction

Three-degree-of-freedom (3-dof) spherical parallel manipulators (SPMs), work-
ing as robotic joints [1], orientating device [9], and devices with remote center
of motion [13], have been studied in the literature for several decades. Typical
symmetrical SPMs, such as 3RRR3 or 3UPU–S ones [3, 10, 20, 21], usually have
limited rotational capabilities, particularly, the torsional movement around the
axis normal to the end-effector. In order to realize the unlimited rotation to ex-
tend the applications of the SPMs, an asymmetrical 2RRR–RUR–RPS SPM [24]
as shown in Fig. 1(a) was proposed with a number of advantages compared to its
symmetrical counterparts, such as enhanced positioning accuracy [21], infinite
end-effector rotational motion [1], structural compactness and low dynamic iner-
tia [23]. It is noted that the two actuated limbs in-parallel can be replaced with
the UPU or PUU linkages [25] as displayed in Figs. 1(b) and 1(c). The common

3 U, P, R and S stand for the universal, prismatic, revolute and spherical joints, re-
spectively. An underlined letter indicates an actuated joint.
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design of the three SPMs adopts a U joint to connect the driving shaft in the
center to the end-effector, ensuring an infinite torsional movement in any con-
figuration. Henceforth, it can work as an active spherical joint or a machine tool
head as shown in Fig. 2. On the other hand, the U joint suffers from one major
issue, namely, it transforms a constant input speed to a periodically fluctuating
one [17], which may induce vibrations and wear. Accordingly, this paper deals
with the parametric torsional stability issue, due to the presence of the identical
the U-joint in the three SPMs in order to lead to the full rotational motion of
their end-effectors.

(a) (b) (c)

Fig. 1. CAD models of the asymmetrical SPMs [25]: (a) 2RRR-RUR-, (b) 2UPU-RUR-,
and (c) 2PUU-RUR-RPS.

(a) (b)

Fig. 2. Applications of the asymmetrical SPMs [25]: (a) active spherical joint; (b) drill
point grinder.

To the best of the authors’ knowledge, Porter [15] was the first to investigate
this problem. Indeed, he expressed a single degree-of-freedom linearized model
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to plot the stability chart by using the Floquet theory [8, 12]. Porter and Gre-
gory [16] and Éidinov et al. [7] revisited the same problem to build a 1-dof non-
linear dynamic model and studied the stability problem by means of Poincaré–
Lyapunov method. Later, similar modeling approaches were adopted to derive
the linear or nonlinear models for the stability analysis of the U joint [2,5]. More-
over, the torsional stability of multi-shaft systems consisting of multiple shafts
interconnected via Hooke’s joints can also be studied using the previous various
approaches [11]. According to the literature, the previous studies focus on single
or multiple U-joint mechanisms. It should be noted that, a U joint working as a
transmitting mechanism in parallel mechanisms has not received sufficient atten-
tion, and is the subject of this paper. As the relationship between the input and
output shaft rotating speeds of the U joint is periodic [18], the Floquet theory
is an effective approach to analyze the stability of the mechanisms under study,
where the monodromy matrix, as the fundamental matrix of a system of ordi-
nary differential equations (ODEs) evaluated at the period of the coefficients of a
system, is used for the analysis of periodic solutions. The previous work [22] has
presented some preliminary results regarding to the manipulator stability. On
the other hand, the vibration behaviors, such as resonance type and emanating
points, are not identified. Moreover, the analysis in the previous work is carried
out in a limited motion range of the vibrating resources, where larger bands of
rotating speeds should be taken into consideration to analyze the influence of
parameters onto the dynamic stability problem of the robotic manipulators.

This paper deals with the dynamic torsional stability problem of a family
of asymmetrical spherical parallel manipulators with a U-joint transmitting the
rotational motion of the end-effector. A linear model associated to the input and
output shafts interconnected via a Hooke’s joint is considered. Numerical study
is carried out to assess the system stability and the effects of both the geometric
and dynamic parameters, resorting to the Floquet theory. Parametric stability
charts of misalignment angles versus rotating speeds of the driving shaft are
constructed to identify the unstable regions and critical shaft speeds.

2 SPM Architecture and the U-joint Mechanism

The kinematic architecture of the manipulator shown in Fig. 1(a) is depicted in
Fig. 3(a). The mobile platform is composed of an outer and inner rings connected
to each other with a revolute joint, the revolute joint being realized with a rolling
bearing. The orientation of the outer ring is controlled by two limbs in-parallel,
and it is constrained by a fully passive leg that is offset from the center of
the mobile platform to eliminate the rotational motion about the vertical axis.
Through a universal joint, the decoupled rotation of the inner ring is generated
by the center shaft, which also supports the mobile platform to improve the
positioning accuracy.

Splitting the outer ring and the two parallel limbs as well as the passive one,
the remaining parts of the manipulator can be equivalent to a U-joint mechanism,
of which the center shaft is treated as the driving shaft and the inner ring is
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treated as a driven disk. The misalignment angle is denoted by β. The input and
output angular velocities are denoted as Ωin and Ωout, respectively.

(a) (b)

Fig. 3. Architecture of the 2RRR-RUR-RPS SPM (a) and its U-joint transmitting
mechanism (b).

3 Equations of Motion of Torsional Vibrations

The equations of motion for the U-joint mechanism as shown in Fig. 3(b) are
deduced via a synthetical approach [4, 22]. In accordance, the driving shaft and
the driven disk are considered as two separate parts, as displayed in Fig. 4,
where the cross piece connecting the input/output elements is supposed to be
as massless. Moreover, the friction is neglected.

Fig. 4. The driving and driven parts of the U-joint mechanism.

Prior to dynamic modeling, the relationship between the speed of the driving
part Ωin and that of the driven part Ωout of the Hooke’s joint, as well as the
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relationship between the input and the output torques, can be written as [18]

Ωout = Ωin · η(t), MO =
MI

η(t)
; η(t) =

cosβ

1− sin2 β sin2(Ω0t+ γ1)
(1)

where Ω0 denotes the constant velocity of the driving shaft.
Skipping the detailed modeling procedure in previous work [22], the following

set of equations of motion of the U-joint mechanism, with respect to the driving
and driven parts, can be expressed as:

JI γ̈1 + c1γ̇1 − η(t)c2γ̇2 + k1γ1 − η(t)k2γ2 = 0 (2a)

JO [γ̈2 + η(t)γ̈1 + η̇(t)(Ω0 + γ̇1)] + c2γ̇2 + k2γ2 = 0 (2b)

with
ω̇o = η(t)γ̈1 + η̇(t)(Ω0 + γ̇1) (3)

where γ1 and γ2 are the rotational coordinates of JI and JO, respectively, and
MI is the reaction torque of the input part of the Hooke’s joint. Moreover, k1, c1
and k2, c2 depict the torsional stiffness and viscous damper of the driving shaft
and the driven disk, respectively.

By introducing the following dimensionless parameters:

Ω =
Ω0√
k1/JI

, ζ =
c1√
k1JI

, µ =
c2
c1
, ν =

JO
JI

(4)

Equations (2a) and (2b) are written as [4, 22]

γ̈1 +
ζ

Ω
γ̇1 −

µζ

Ω
η(τ)γ̇2 +

1

Ω2
γ1 −

1

Ω2 · η(τ)
γ2 = 0 (5)

γ̈2 +

[
η′(τ)− ζ

Ω
η(τ)

]
γ̇1 +

[
µζ

Ω

(
1

ν
+ η2(τ)

)]
γ̇2 +

[
η′′(τ)− 1

Ω2
η(τ)

]
γ1

+

[
1

Ω2

(
1

νη(τ)2
+ 1

)]
γ2 + η′(τ) = 0 (6)

where τ = Ω0t, and η(τ) is a π–periodic equation:

η(τ) = η(π + τ) =
cosβ

1− sin2 β sin2 τ
(7)

Equations (5) and (6) can be cast into a matrix form, as follows[
γ̈1
γ̈2

]
+

[
ζ
Ω −µζΩ η(τ)

η′(τ)− ζ
Ω η(τ) µζ

Ω

(
1
ν + η2(τ)

)] [γ̇1
γ̇2

]

+

[ 1
Ω2 − 1

Ω2
1

η(τ)

η′′(τ)− 1
Ω2 η(τ) 1

Ω2

(
1
ν ·

1
η(τ)2 + 1

)][γ1
γ2

]
=

[
0

−η′(τ)

]
(8)

where primes denote differentiation with respect to τ , thus, Eq. (8) consists of a
set of linear differential equations with π-periodic coefficients, for the torsional
vibrations of the U-joint mechanism as shown in Fig. 3(b).
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4 Dynamic Stability Analysis

The right-hand term of Eq. (8) involves time-derived motions, which can lead
to forced vibrations [14]. The scope of this study is about the self-excitation
vibrations, namely, parametrically excited stability problem. Thus, the homoge-
neous parts of Eq. (8) should be considered sequentially to analyze the dynamic
stability of the manipulator. Equation (8) can be expressed as in the following
compact form:

γ̈ + Uγ̇ + Vγ = 0 (9)

with

γ̈ =
[
γ̈1 γ̈2

]T
, γ̇ =

[
γ̇1 γ̇2

]T
, γ =

[
γ1 γ2

]T
(10a)

U =

[
ζ
Ω −µζΩ η(τ)

η′(τ)− ζ
Ω η(τ) µζ

Ω

(
1
ν + η2(τ)

)] (10b)

V =

[ 1
Ω2 − 1

Ω2
1

η(τ)

η′′(τ)− 1
Ω2 η(τ) 1

Ω2

(
1
ν ·

1
η(τ)2 + 1

)] (10c)

which can be represented by a state-space formulation, namely,

ẋ(t) = A(t)x(t); x(t) =

[
γ
γ̇

]
, A(t) =

[
02 I2
−V −U

]
(11)

whence A(t) is a 4 × 4 π-periodic state transition matrix, I being the identity
matrix. According to Floquet theory, the solution to equation system (11) can
be expressed as:

Φ(τ) = P(τ)eτR (12)

where P(τ) is a π-periodic matrix and R is a constant matrix, which is related to
another constant matrix H, referred to as monodromy matrix, with R = lnH/π.
If the fundamental matrix is normalized so that P(0) = I4, then H = P(π).

The eigenvalues λi = κi + jσi, i = 1, 2, 3, 4, j2 = −1, of matrix H, referred
to as Floquet multipliers, govern the stability of the system. The system is
asymptotically stable if and only if the real parts κi of all the eigenvalues λi are
non-positive [6]. Here, the matrix H is obtained numerically with the improved
Runge Kutta Method [19] with a step size equal to 10−6. The detailed calculation
of the state transition matrix is given in Appendix A. As a result, the eigenvalues
of matrix H can be calculated to assess stability of the system. The monodromy
matrix method is a simple and reliable method to determine the stability of
parametrically excited periodic systems.

5 Numerical Study and Discussions

This section is devoted to numerical stability analysis, where the stability charts
are constructed on the Ω0–β parametric planes to study the effect of parameters
onto the system stability. The parameters in the analysis are given in each figure
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caption, and the ratio of the output and input dampers is set to µ = 1 due to
the same manufacturing material.

Before presentation of the stability charts, the expected features associated
to the vibration behaviors will be discussed. According to Eq. (8), the U-joint
mechanism is built as a 2-dof vibrating systems, henceforth, the systems has
two resonance (natural) frequencies, meaning that the system will vibrate if it
is excited by some periodical phenomena. Setting ζ = 0, β = 0, Ω = 1, these
frequencies are calculated as

ω1(2) =

√√√√k1
JI

(
1− −1±

√
4ν2 + 1

2ν

)
(13)

If no damping is present, the parametric resonance occurs when the frequency
ωj , j = 1, 2, is equal to the product of an integer and the rotating speed Ω0

of the driving shaft, thus, the parametric resonances are expected to emanate
from [14]

Ωj, k =
ωj
k

; j = 1, 2, k = 1, 2, 3, ... (14)

and the parametric combination resonances based on the sum or difference of
the two frequencies [14] are expected to emanate from

Ω+
k =

ω1 + ω2

2k
, Ω−k =

ω2 − ω1

2k
; k = 1, 2, 3, ... (15)

Sequentially, the critical rotating speeds of the driving shaft can be identified
from Eqs. (14) and (15).

Figure 5 depicts the stability chart Ω0–β to detect the instabilities of the U-
joint mechanism with the prescribed parameters, where the circle-marked zones
and solid markers represent the unstable parametric regions and the emanation
points, respectively. It is seen that parametric resonances are located in the
unstable regions. It should be noted that as long as the the rotating speed
Ω0 of the driving shaft is lower than 7π rad/s, this system is stable for any
misalignment angle β between 0 and 30◦. On the contrary, the mechanism will
be stable for any driving shaft speed smaller than 50π rad/s as long as the
misalignment angle β is lower than 5◦.

The effects of the parameters on the manipulator stability are depicted in
Figs. 6 to 9, where the marked areas stand for the unstable regions. Moreover,
the analysis is carried out with the identical parameters but except one, for a
comparative study.

Figure 6 depicts the effect of the torsional stiffness of the driving shaft on the
stability, by comparing three different values of k1. The manipulator is no longer
stable if Ω0 > 36π rad/s when k1 = 5 Nm/rad. With lower stiffness, the critical
rotating speed of the driving shaft is in a smaller threshold, according to the
comparison between the cases of k1 = 10 Nm/rad and k1 = 5 Nm/rad. With the
increasing stiffness, the stable region becomes wider. It is noteworthy that the
higher the torsional stiffness of the input shaft, the more stable the manipulator.
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Fig. 5. Stability chart: unstable regions (circle point) with parameters k1 = 10 Nm/rad,
ν = 10, JI = 0.001 kg · m2, c1 = 0.001 Nm/(rad/s).

Figure 7 shows the effect of the damping ratio on the system stability, from
which it is seen that the unstable regions are almost coincident with the dampers
that are in the range of the damping ratio of common materials, with a few
exceptions when c1 = 0.0005 Nm/(rad/s). This means that the influence of the
damping ratio to the system stability is insignificant and negligible.

Similarly, Fig. 8 depicts the effect of the mass moment of inertia of the driving
shaft to the parametric stability. When the inertia reduces to JI = 0.0005 kg ·m2,
the range of the critical misalignment angle and the shaft rotating speed become
larger, together with the increasing threshold. Conversely, the increased inertia
speeds up instabilities of the system.

Figure 9 displays the unstable regions of the manipulator with different ratios
of the mass moment of inertia of the driven disk and the driving shaft, which
shows that the influence of this parameter is not so significant. It is noteworthy
that the smallest ratio can ensure the largest critical rotating speed of the driving
shaft versus the misalignment angle.

An observation from Figs. 6 to 9 shows that all the parameters except the
damping ratio heavily influence the stability of the manipulator, namely, higher
actuation stiffness, lower inertia of the driving shaft and larger inertia ratio of
the driven and driving parts being helpful for the dynamic stability. Moreover,
an efficient approach to overcome the instability problem of the manipulator
with higher rotating speed of driving shaft is to improve the actuation stiffness,
for a lightweight design and high stiffness of the end-effector constrained by the
driving shaft. All the stability charts show the critical rotating speeds of the
driving shaft versus the misalignment angles influenced by both geometric and
dynamic parameters. Accordingly, those charts can be used to find the optimum
design parameters of the mechanism while guaranteeing its dynamic stability for
a range of driving shaft speed.

Compared to the dynamic model in Ref. [4], the term of stiffness ratio of
the output and input elements in Eq. (8) is related by the U-joint relation-
ship, instead of a designated parameter, which can simplify the dynamic model
and better characterize the manipulator stability. Moreover, the stability charts
of previous numerical results [4, 14] are represented by dimensionless param-
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Fig. 6. Stability Chart: effects of the driving shaft stiffness k1 with parameters ν = 10,
JI = 0.001 kg · m2, c1 = 0.001 Nm/(rad/s).

eters/ratios, thus, the relationship of the misalignment angles versus rotating
speeds of the driving shaft in this work can be characterized intuitively.

6 Conclusions

This paper presented the dynamic torsional stability analysis of a family of 3-
dof partially-decoupled spherical parallel manipulators due to the transmitting
universal joint. The linearized equations of motion of the system were built to
study the torsional stability problem of the manipulator due to the nonlinear
input–output transmission of the U-joint, where the relationship of the stiffness
between the input and output elements is involved to characterize the manipu-
lator stability, compared to the existing model.

The approach used to analyze the torsional stability problem was numerically
illustrated, wherein the unstable regions are presented graphically as well as the
parametric resonances. Parametric stability charts of misalignment angles ver-
sus rotating speeds of the driving shaft are constructed to identify the unstable
regions and critical shaft speeds. Results show that higher actuation stiffness,
lower inertia of the driving shaft and larger inertia ratio of the driven and driv-
ing parts can ensure the manipulator stable. Moreover, an efficient approach to
overcome the instability problem of the manipulator with higher rotating speed
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Fig. 9. Stability Chart: effects of the inertia ratio ν with parameters k1 = 10 Nm/rad,
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of driving shaft is to improve the actuation stiffness, for a lightweight design and
high stiffness of the end-effector constrained by the driving shaft. The obtained
charts can be used to find the optimum design parameters of the mechanism
while guaranteeing its dynamic stability for a range of driving shaft speed.
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20. Uŕızar, M., Petuya, V., Altuzarra, O., Diez, M., Hernández, A.: Non-singular tran-
sitions based design methodology for parallel manipulators. Mech. Mach. Theory
91, 168–186 (2015)

21. Wu, G., Bai, S., Kepler, J.: Mobile platform center shift in spherical parallel ma-
nipulators with flexible limbs. Mech. Mach. Theory 75, 12–26 (2014)

22. Wu, G., Caro, S.: Torsional stability of a U-joint based parallel wrist mechanism
featuring infinite torsion. In: 22nd CISM IFToMM Symposium on Robot Design,
Dynamics and Control, pp. 147–154. Rennes, France (2018)

23. Wu, G., Caro, S., Bai, S., Kepler, J.: Dynamic modeling and design optimization of
a 3-DOF spherical parallel manipulator. Robot. Auto. Syst. 62, 1377–1386 (2014)

24. Wu, G., Caro, S., Wang, J.: Design and transmission analysis of an asymmetrical
spherical parallel manipulator. Mech. Mach. Theory 94, 119–131 (2015)

25. Wu, G., Zou, P.: Comparison of 3-dof asymmetrical spherical parallel manipulators
with respect to motion/force transmission and stiffness. Mech. Mach. Theory 105,
369–387 (2016)


