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The acoustic spectrum of a gas-filled resonating cavity can be used to indirectly
probe its internal velocity field. This unconventional velocimetry method is par-
ticularly interesting for opaque fluid or rapidly rotating flows, which cannot be
imaged with standard methods. This requires to (i) identify a large enough
number of acoustic modes, (ii) accurately measure their frequencies, and (iii)
compare with theoretical synthetic spectra. Relying on a dedicated experiment,
an air-filled rotating spheroid of moderate ellipticity, our study addresses these
three challenges. To do so, we use a comprehensive theoretical framework, to-
gether with finite-element calculations, and consider symmetry arguments. We
show that the effects of the Coriolis force can be successfully retrieved through
our acoustic measurements, providing the first experimental measurements of
the rotational splitting (or Ledoux) coefficients for a large collection of modes.
Our results pave the way for the modal acoustic velocimetry to be a robust,
versatile, and non-intrusive method for mapping large-scale flows.
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INTRODUCTION

The acoustic response of a resonant cavity
is directly related to its geometry and phys-
ical properties. In the past, seismology has
used those free oscillations to probe the Earth’s
interior1,2. This method has successfully con-
tributed to determine properties such as density,
elasticity and anisotropy parameters taking into
account the rotation and the shape of the Earth3.
Similarly, eigenmodes measurements have also
been developed in helio4 and asteroseismology5,
giving insights on the stellar interiors6,7.

Inspired by asteroseismology, a recently pre-
sented laboratory velocimetry method relies on
acoustic resonances to invert flows within a
spherical shell8. By contrast with usual ve-
locimetry techniques, for example particle track-
ing methods such as Particle Image Velocime-
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try (PIV)9 or methods based on Doppler ef-
fect such as laser Doppler10 and ultrasound
Doppler velocimetry11,12, modal acoustic ve-
locimetry does not require a seeded fluid as it
measures the fluid acoustic response directly8.
This is of great interest for all experiments where
seeding the fluid is not practically feasible, in
particular for gases13. Another benefit is that
modal acoustic velocimetry is a non-intrusive
technique providing flow fields in the whole vol-
ume, even in opaque fluids.

Interested in zonal jets, their formation,
geometry, and amplitude in geo-astrophysical
flows14–16, we built a reduced model that obeys
similar force balances. Our apparatus is a rotat-
ing oblate spheroid called ZoRo (Zonal flows in
Rotating fluids). It has been shown that in some
cases17, the zonal flows are geostrophic, i.e. in-
variant along the axis of rotation of the fluid,
forming concentric cylindrical shells18,19. Such
flows are expected to have significant influence
on acoustic global modes7,8.
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Following previous experimental studies8,20,
we stress that three challenges must be met in
order to effectively map these flows: (i) iden-
tify a large enough number of modes; (ii) accu-
rately measure their frequencies; (iii) compare
with theoretical synthetic spectra that take into
account the effect of rotation. The present study
addresses these three goals, and focuses on mea-
suring and computing the effect of rotation on a
large collection of acoustic modes in a spheroid.

The paper is organised as follows. Section I
presents the ZoRo experimental apparatus. In
Section II, we present the theoretical framework
we use to predict the acoustic response of our
experiment. In Section III, we analyse and in-
terpret experimental acoustic spectra. To re-
fine this interpretation, in Section IV we use
a second-order geometrical perturbation theory,
and test it against spectral and finite-element
calculations. Then, in Section V we introduce
rotation within the experiment, and compare the
measured acoustic response to perturbation the-
ory. Finally, Section VI summaries the different
approaches and presents some perspectives.

I. THE ZORO EXPERIMENT

The experimental apparatus ZoRo is a 1 cm
thick shell made with aluminium based alloy
(Thyssenkrupp by Constellium cast, MecAlu+
7000 series) enclosing an axisymmetric oblate
spheroidal cavity of equatorial radius req =
20 cm and polar radius rpol = 19 cm filled with
air (see Figure 1). The ellipticity is defined as
e = (req − rpol)/req = 0.05.

Special care has been given during the fabri-
cation process, especially to the junction plane
between the two hemispheres and the coaxiality
(both between the hemispheres and the shafts)
which have been identified in the literature as
common defaults21. This allows us to ensure the
dimensions of the shell down to 0.1 mm. Cho-
sen excerpts of technical drawings are provided
in Supplementary material22.

The spheroid’s revolution axis is mounted on
the shaft of an electric motor (ref. Kollmorgen
AKM73Q) through a vibration-reducing jaw-
type coupler (ref. ROTEX SH38 from KTR),
allowing rotation rates up to 50 Hz, or 3000 rev-
olution per minute (rpm). Static balancing and
dynamic balancing with the shell rotating up to
70 Hz in the experimental conditions, reveal less

FIG. 1. Photo (top) and sketch (bottom) of the
ZoRo experimental apparatus. Four speakers (blue)
are at ±45◦ latitude. The acoustic response of the
gas-filled resonator (yellow) is measured with elec-
trets (green), at ±32◦ (colour online). The instru-
mentation is installed on the rotating apparatus,
which can rotate around its symmetry axis up to
|Ω|/(2π) = fΩ = 30 Hz.

than 0.2 g of unbalanced mass (for a total rotat-
ing spheroid mass of 32.5 kg).

Acoustic pressure is measured by elec-
tret microphones (ref. Projects Unlimited
TOM-1545P-R) connected to a mixing table (ref.
TASCAM US-16x08). Acoustic waves are pro-
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duced by 36 mm-diameter audio speakers with
working range 400-6000 Hz (ref. Multicomp
MCKP3648SP1-4758) connected to a sound card
(ref. Asus TeK, Xonar DGX), through 20 W
amplifiers (LEPY LP-808). Acoustic resonances
are excited by chirps sweeping over the frequen-
cies of interest. At T = 20◦C and atmospheric
pressure, the cavity’s fundamental mode is at
578 Hz. Both source and data files are sampled
at 44.1 kHz and written in 16-bits in the un-
compressed audio specific Waveform Audio File
Format (WAVE), corresponding to standard CD
audio quality.

The instrumentation is in contact with the
gas in through holes in the aluminium shell.
Air-tightness is ensured by custom made plastic
joints on each hole and at the equatorial seam
of the shell. Additional holes (see ), provided
for future temperature and pressure sensors,
are plugged closed. The apparatus can accom-
modate up to four speakers and fourteen elec-
trets, half on each hemisphere, at respectively
±45◦ and ±32◦ latitude (Fig. 1). All speakers
are on the same meridional plane, electrets are
evenly spaced on their latitude; lower and up-
per hemispheres are strictly symmetric (for tech-
nical drawings, see Supplementary material22).
Electric signals are transmitted from the rotat-
ing to the laboratory immobile frames through
two slip rings (PSR-HSC-36 and PSRT-38H-24
from Panlink) with gold-gold contacts.

II. THEORETICAL FRAMEWORK

A. Governing equations and boundary conditions

We consider the small perturbations
[ρ, p,u, T ] upon a homogeneous basic (back-
ground) state of density ρ0, pressure p0, velocity
u0, and temperature T0. We thus linearize
the governing flow equations for a Newtonian
fluid (see Supplementary material23), assuming
u0 = 0 in the reference frame that is rotating
at the constant rate Ω = Ω 1z (with 1z the
unit vector along the polar axis). For uniform
viscous and thermal diffusivities, the equations
are24

∂ρ

∂t
= −∇ · (ρ0u), (1a)

ρ0
∂u

∂t
= −2ρ0 Ω× u−∇p+ µ∇2u

+
(
µB +

µ

3

)
∇(∇ · u), (1b)

ρ0Cp
∂T

∂t
= αT0

∂p

∂t
+ λ∇2T, (1c)

ρ = ρ0(βTp− αT ), (1d)

using the usual underlying assumptions (which
removes p0 from the dynamical equations, see
the Supplementary material23 for details). In
equations (1a)-(1d), t is the time, λ is the ther-
mal conductivity, α is the isobaric coefficient of
thermal expansion, Cp is the specific heat at con-
stant pressure, βT = γβs is the isothermal com-
pressibility, where γ is the specific-heat ratio and
βs is the isentropic compressibility, µ is the dy-
namic (shear) viscosity, and with the bulk vis-
cosity µB, which is related to the second coeffi-
cient of viscosity µB−2µ/3. Note that the sound
speed c is then given by c = (ρ0βs)

−1/2.
To solve the system of equations (1a)-(1d)

we supplement them with boundary conditions.
Assuming that the sound speed is much larger
in the container than in the cavity, we consider
a rigid spheroidal boundary and impose the no-
slip boundary condition u = 0. We also assume
that the container thermal conductivity is much
larger than λ and impose an isothermal bound-
ary condition.

Finally equations (1a)-(1d) can be solved in
the frequency domain by looking for time pe-
riodic solutions for [ρ, p,u, T ]. With an eigen-
solver, we can then obtain the fluid eigenmodes
such as the acoustic modes25. One can also
rather calculate the spectral fluid response if we
define excitation sources for [ρ, p,u, T ], e.g. by
modelling the experimental speakers using (im-
posed) time periodic flows at the speaker loca-
tions.

B. Principles of perturbation theory

We seek the fluid normal eigenmodes with a
harmonic time dependence exp(iωt), where ω is
the (possibly complex) pulsation. The system of
governing equations (1a)-(1d) can be cast into a
symbolic eigenvalue equation as

Hv = −ω2v, (2)

whereH is a complex vectorial operator linear in
v, which can be the velocity u or the Lagrangian
displacement for isentropic fluids5; this equation
being supplemented by appropriate boundary
conditions. Analytical solutions of the complete
problem are usually not available. A convenient
and classical approach is to define a reference
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model, solution of equation (2) withH = H0 and
simple boundary conditions, for which analytical
solutions are available. The missing terms of the
original operatorH and boundary conditions are
then treated as perturbations26,27.

After choosing our reference model, we suc-
cessively consider perturbations due to (i) Corio-
lis force, (ii) elliptical shape of the rigid shell, and
(iii) dissipation. First-order perturbations are
often sufficient, with the advantage that the fre-
quency perturbation can be computed without
calculating the corresponding eigenvector. How-
ever, accurate calculation of the modes may re-
quire higher-order perturbations25, for instance
for the Coriolis force1 or the elliptical shape28.

C. Modes of the reference model

We aim to study theoretically the homoge-
neous motionless basic state, and its eigenmodes,
defined in section II A. Without loss of gen-
erality, we tackle this problem by considering,
for our reference model, a diffusionless gas en-
closed in a non-rotating sphere of (arbitrary) ra-
dius a. The latter value remains unspecified for
the moment (see below). Equation (2) becomes
c2∇ (∇ · u) = −ω2u.

We introduce the velocity potential Ψ such
that u = ∇Ψ, which relates to the acoustic pres-
sure in the gas by p = −∂Ψ/∂t. Then, problem
(2) reduces to the Helmholtz equation

c2∇2p = −ω2p. (3)

In spherical coordinates (r, θ, ϕ), the solutions
of equation (3) that satisfies the boundary con-
dition ∂p/∂r = 0 are

p(r, θ, ϕ) = p0 jl(knlr)Ym
l (θ, ϕ), (4)

where knl is the radial wavenumber, Ym
l is the

spherical harmonic of degree l and order m and
yields the angular dependency, jl is the spher-
ical Bessel function of the first kind of degree
l and carries the radial dependency (we re-
mind that |m| ≤ l). The boundary condition
djl(knlr)/dr|r=a = 0 completes the quantifica-
tion of the modes, yielding a radial mode number
n, labelling the nth zero of djl(knlr)/dr.

One (n, l,m) triplet fully characterises a
given acoustic mode of our spherical enclosure.
We denote it nSm

l , following the convention of
seismologists27. The spherical symmetry of our
reference model implies that the frequencies fnl

of the modes are independent of the azimuthal
mode number m. One gets fnl = c knl/(2π). The
perturbations we consider lift this degeneracy
partially or totally. They also modify the cor-
responding eigenvectors. However, since we con-
sider rotation of the spheroid around its symme-
try axis, we can still label the perturbed modes
as nSm

l .

D. Perturbations

1. Coriolis splitting

The Coriolis term −2ρ0 Ω × u in equation
(1b) breaks the ±ϕ-symmetry. As a conse-
quence, the degenerate spectral peak of a nSl
multiplet splits into 2l + 1 peaks, correspond-
ing to all nSm

l singlets. According to first-order
perturbation theory, the frequency shift δΩ of a
nSm

l singlet with respect to the nSl degenerated
frequency is5

δΩ = −mfΩ Cnl, (5)

where 0 ≤ Cnl < 1 are called the Ledoux coef-
ficients, and noting fΩ = Ω/(2π). Their expres-
sion is7

Cnl =

∫ a

0
[2 ξr ξh + ξ2

h] r2dr∫ a

0
[ξ2

r + l(l + 1) ξ2
h] r2dr

, (6)

with ξr = djl(knlr)/dr and ξh = jl(knlr)/r. We
list the values of Ledoux coefficients for a chosen
collection of acoustic modes in Supplementary
material23.

One of the main goals of our study is to re-
trieve the frequency splittings due to the Coriolis
force in the ZoRo experiment, and compare them
to predictions5.

Note that the splitting of acoustic modes in
a gas-filled rotating cylinder has been used to
design gyrometers20, and that seismologists1 de-
veloped the second-order perturbation theory for
the Coriolis term, in order to match the ob-
served splitting of the lowest normal modes of
the Earth.

2. Geometrical splitting

Coriolis splitting is very small for acoustic
overtones with large n. In order to measure the
splitting of an individual nS±m

l doublet, it is de-
sirable to separate it from the other doublets of
its nSl multiplet. This was the reason for de-
signing the ZoRo experiment as an axisymmetric
oblate spheroid.
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First-order perturbation theory for elliptical
flattening show that the induced frequency split-
ting δgeom is quadratic in m. Introducing γnl the
ellipticity splitting coefficient, the frequency per-
turbation writes3,29

δgeom = fnl

(
−1

3
l(l + 1) +m2

)
γnl e, (7)

where fnl is the frequency of the nSl mode in the
spherical reference model (with the same volume
as the spheroid), and e the ellipticity. We give
the expression of γnl, and its value for a collection
of modes, in Supplementary material23.

We obtain the same first-order results using
formulas from either Dahlen29 or Mehl28 pro-
vided the radius of the reference sphere is the
same. We will see later that we need to consider
second-order geometrical perturbations, which
have been derived by Mehl28 using Morse and
Feshbach’s formalism26.

3. Dissipation

In order to construct realistic spectra that
can be compared with observations, it is essen-
tial to take into account dissipative effects, which
control the width and the amplitude of the reso-
nance peaks30,31. Dissipation of acoustic modes
in air is dominated by viscous friction and heat
diffusion at solid boundaries, with minor contri-
butions from bulk viscosity30.

Considering the spherical reference model,
perturbation methods32,33 provide estimates for
the diffusion effect gnl = gbound + gbulk , where
gbound and gbulk are respectively the boundary
and bulk contributions. The mode complex fre-
quencies can then be written as fnl − gbound +
ignl, where gbound and gbulk take positive (real)
values30. Note that the imaginary part (i.e. the
damping of the mode) is due to gnl but only
gbound affects the real part, reducing the (real)
eigenfrequency. Assuming that the container is
a much better heat conductor than the gas, dis-
sipation depends only upon physical properties
of the gas: kinematic viscosity ν = µ/ρ and
bulk viscosity νbulk = µB/ρ0, thermal diffusivity
κ = λ/(ρ0Cp), and the adiabatic index γ. The
gbound contribution is then given in Moldover30,
equation (42), by

gbound =
fnl
2a

(γ − 1) dT + l(l + 1) dU/z
2
nl

1− l(l + 1)/z2
nl

, (8)

which, in our case, is much larger than the bulk
contribution, corrected by34

gbulk =
z2
nl

4πa2

[
(γ − 1)κ+

4

3
ν + νbulk

]
, (9)

where znl = knla is the dimensionless ra-
dial wave number, and dT =

√
κ/(πfnl) and

dU =
√
ν/(πfnl) are the thicknesses of the ther-

mal and viscous boundary layers respectively.
We use air thermodynamic properties35, see
also https://encyclopedia.airliquide.com/
fr/air, to calculate these contributions and list
our values of gnl coefficients for a collection of
acoustic modes in the Supplementary material23.

4. Other perturbations

Other effects might influence the spheroid’s
acoustic spectrum. We list and explore a few of
them that are mentioned in the literature as po-
tentially relevant. They include uneven shell sur-
face finishing, presence of holes in the shell or a
seam between the two hemispheres. All of those
are expected to be negligible for our apparatus30.

The finite elasticity of the container may
modify significantly the acoustic resonances
when acoustic and elastic eigenfrequencies are
close30. Influences of the shell elasticity of
our apparatus have been estimated with ana-
lytical calculations36,37 and cross-checked with
finite-element simulations, as detailed in Supple-
mentary material23. Both methods predict fre-
quency shift of 0.1 − 1 Hz far from the elastic
resonances, and much larger when elastic and
acoustic resonances are close. However, due to
the high complexity of our apparatus (complex
shell geometry, presence of screws, mount on an
outer frame), accurate predictions of the appara-
tus elastic eigenfrequencies remain out of reach.
Note that, because of its finite elasticity, the con-
tainer oscillates, leading to sound scattering in
the surrounding air. Based on our elastic calcu-
lations, we have verified that this sound scatter-
ing can also be neglected23.

E. Synthetic spectra

For air enclosed in a rigid container, effects
influencing the complex frequencies can be lin-
early superposed30. Adding the different per-
turbations to fnl, we obtain the predicted fre-
quency fnlm of each nSm

l mode. Assuming a
Lorentzian resonance30,31, we compute its contri-
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bution Anlm(f) to the complete frequency spec-
trum by

Anlm(f) =

∣∣∣∣ Anlm

(f − fnlm)− i gnl

∣∣∣∣ , (10)

with

Anlm = A |ζjl(knla) cos [m(ϕel − ϕsp)]| , (11)

where ζ = Pm
l (cos θsp)Pm

l (cos θel), A is a con-
stant, Pm

l is the associated Legendre polyno-
mial of degree l and order m, θsp, ϕsp and θel,
ϕel the co-latitude and longitude of the speaker
(source), resp. electret (receptor), see Supple-
mentary material22 for exact positions of the in-
strumentation.

III. EXPERIMENTAL SPECTRA AND MODE IDENTIFI-

CATION

Using the instrumentation described in Sec-
tion I, we measure the acoustic response of the
ZoRo apparatus at rest. Acoustic spectra ob-
tained as such display unambiguous resonances
(Fig. 2) which we aim to interpret.

A. Spectrum interpretation

ZoRo’s ellipticity is moderate, so at lowest
order we expect resonance frequencies to be near

those of the sphere of same volume. Eigenfre-
quencies are proportional to the sound speed c,
which varies with temperature38,39. In order to
compare the measured and predicted frequen-
cies, we choose a non-splitting reference peak
(2S0

0 ) and deduce the apparent sound speed,
which we then use for the theoretical predic-
tions. In the run shown in figure 2, the reference
frequency is f20 = 2177 Hz and corresponds to
c = 346.5 m.s−1 with a taken to be a = 3

√
rpolr2

eq

in the following (see Supplementary material23).
In figure 2 we show the experimental spec-

trum obtained with a continuous linear chirp of
duration 90 s with frequencies ranging from 400
to 5000 Hz (which corresponds to the working
range of the loudspeakers). We first observe that
all peaks are close to the resonances of the ref-
erence model. Around the fnl, there are groups
of peaks, corresponding to degeneracy lifting of
the resonances. The lowest frequency modes are
clearly separated. We note that those groups
contain l+ 1 peaks confirming that the degener-
acy is only partially lifted, as predicted by the
geometrical perturbation theory II D 2.

FIG. 2. Experimental acoustic spectrum at rest averaged over all electrets of one hemisphere. The spectrum
is continued from the top to the bottom frame. Groups of peaks can be labelled with nSl according to
theoretical prediction of a sphere of same volume (dashed lines).

B. Using symmetries to improve mode identification

The symmetric disposition of the instrumen-
tation allows separation of acoustic modes based

on their spatial pressure distribution. Since

6 Gas-filled rotating spheroid acoustic spectra



the pressure field at the resonator’s surface is
mapped on the spherical harmonics Ym

l , as
shown in equation (4), it displays the same sym-
metries. Acoustic modes with even l − m are
symmetric with respect to the equator; those
with odd l − m are anti-symmetric26. Acous-
tic sources impose both wave phase and posi-
tions of the anti-nodes, so playing several speak-
ers at the same time strengthens modes with the
same symmetries as the source pattern, whereas
modes with incompatible symmetries are extin-
guished, or, in practice, weakened. To amplify
this effect, the acoustic response of the resonator
is systematically measured with at least a pair
of equatorially symmetric electrets and we make
use of the symmetry properties in the data anal-
ysis. Measured signals are summed, or sub-
tracted, to match the source pattern and further
attenuate the unwanted modes. In figure 3, two
speakers symmetric with respect to the equa-
tor simultaneously play first in-phase then in
antiphase (also called phase opposition). The
acoustic response is measured with four pairs
of equatorially symmetric electrets. Measured
time series of the in-phase speakers are summed
for each pair. We compute the frequency spec-
tra which are then averaged, shown in figure 3
(purple). We do the equivalent for phase op-
position sources signal with subtraction of each
pair, shown in figure 3 (blue). The summed spec-
tra of the in-phase source (purple) enhance the
even |m| (0 and 2 here), subtracted spectra of
phase opposition source (blue) enhance the odd
|m| = 1.

By successively extinguishing even and odd
l − m modes, we are able to identify, meaning
uniquely attribute a (n, l,m) triplet, each peak
of the experimental spectrum up to 3500 Hz (for
complete experimental spectrum identification,
see Supplementary material23).

Mode identification allows us to observe sev-
eral features that seem to be qualitatively con-
sistent throughout the spectrum. For a given
nSl multiplet, the flattening partly lifts the
mode degeneracy and separates the |m| peaks,
with higher |m| at lower frequency, which agree
with the simple first-order perturbation analy-
sis. This is consistent with the rule of thumb
stating that higher |m| modes are more sensi-
tive to the equatorial region, hence feel a larger
radius, yielding a lower frequency.
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FIG. 3. Experimental acoustic spectra centered on
the 2S2 multiplet. Two speakers symmetric with
respect to the equator simultaneously play, first
in-phase (purple) then in phase opposition (blue).
Unexpectedly, 2S0

2 has lower frequency than 2S1
2 .

(colour online)

IV. BEYOND FIRST-ORDER EFFECTS

Upon more rigorous observations, exceptions
to the features mentioned before are visible. We
can see on the 1S2 multiplet, around 2050 Hz,
that the m = 0 and |m| = 1 peaks have same
frequency, and on 2S2 around 2950 Hz, that the
m = 0 peak has lower frequency than |m| = 1
(Fig. 3). To explain those deviations, it seems
necessary to go beyond first-order effects.

A. Dominant second-order effects: due to the ellipticity

To estimate the dominant second-order ef-
fects in the experiment, one can perform or-
der of magnitude calculations. As e = 0.05 �
ν/(creq) ≈ 10−7 the dominant second-order cor-
rection is expected to be in e2, originating only
from the container geometry second-order per-
turbation. To check if this effect can explain our
observations, we compute diffusionless acoustic
resonances of the exact spheroid, as a function
of the ellipticity e, and we compare them with
the experimental observations. To do so, we im-
plement two different methods. First, we use the
new global polynomial (Galerkin) approximation
of the acoustic modes in rigid ellipsoids25. Sec-
ond, we solve the acoustic equation (3) using the
built-in acoustic interface of the finite-element
commercial software COMSOL Multiphysics. In
figure 4, we plot the frequency evolution as a
function of ellipticity for different m of the 2S2

multiplet. Both computations match very well
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and are in good agreement with the experiment
as well (crosses at e = 0.05). They also show
that the first-order perturbation theory, given by
the tangents at e = 0, is not sufficient for ZoRo’s
ellipticity (e = 0.05). This is clearly illustrated
by the crossing between the m = 0 and |m| = 1
branches around 0.025 (Fig. 4).
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2
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1

FIG. 4. Frequency evolution of 2Sm2 modes
with e (req being kept constant) given by finite-
element calculations (circles) and global polynomial
computations25 (dashed lines). Both agree with ex-
perimental data (crosses) at the apparatus ellipticity
e = 0.05 (black line).

B. Second-order ellipticity perturbation

A second-order perturbation theory for a ho-
mogeneous fluid enclosed in a quasi-spherical
container has been developed21,28,40, calculat-
ing the eigenfrequencies of a slightly aspheri-
cal acoustic cavity resonator enclosed within a
spherical cavity26. Our implementation in a
Matlab package of Mehl’s method28 is described
in Supplementary material23 with more details.
We compared our results both with his original
results and with finite-element calculations.

To do so, we use the built-in modules of
COMSOL Multiphysics, which solves the acous-
tic equation for a given (arbitrary) shape. To
single out the second-order correction and check
the validity of the perturbation theory, we use
Lagrange elements of degree 5 to compute accu-
rately the eigenfrequencies for a series of oblate
spheroids with increasing ellipticity 0 < e <
10−3. Then for each nSm

l mode, the evolution of
its frequency with ellipticity is fit by a second-

order polynomial as fnlm(ε) = fnl+γ
(1)
nlmε+γ

(2)
nlmε

2

with ε = e req/rpol, in order to easily compare
with Mehl’s results28. We have checked that the
results are unchanged when higher orders are
taken into account in this fit.
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FIG. 5. Ellipticity second order γ
(2)
nlm corrections for

diffusionless acoustic eigenmodes in our experiment.
We reproduced Mehl’s original results28 for modes
l = 0 (connected by dotted line) and l = 1 (con-
nected by dashed lines) and compare them with our
implementation of Mehl’s theory28 (symbols) and
with finite element calculations in oblate spheroids
(dots connected by solid lines for a given m). All
results from the three different methods are consis-
tent.

Figure 5 displays the evolution of γ
(2)
nlm with

fnl as computed with our various methods. The
solid (red) line joining the m = 0 data displays
a saw-tooth pattern, with the l = 1 and l = 0
points yielding increasingly large positive values,
while the l = 2 points get more and more nega-
tive as fnl increases. In his article28, Mehl only
reports on the l = 0 (dotted red line) and l = 1
(dashed lines) cases. The mode crossing we ob-
serve occurs for large enough negative value of

γ
(2)
nlm and was therefore not present in his results.

Our implementation of perturbation theory is in
very good agreement with both Mehl’s original
results28 and the finite-element numerical calcu-
lations, showing that perturbation theory up to
second-order is sufficient for mode identification
in ZoRo within our frequency range.
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C. Comparison with experimental spectra

Focusing on the 2S2 multiplet, the second-
order correction for m = 0 is negative while
the other m are positive (close to zero) (Fig. 5),
yielding in fine a lower frequency for 2S0

2 than
2S1

2 .
In figure 6 we plot the acoustic spectra

from experimental data, perturbation theory
and finite-element calculations. The first row
shows the synthetic spectrum obtained from the
perturbation theory (with the second-order cor-
rection in geometry) for the sound speed c =
343.194 m.s−1, which is the typical value for dry
air at 20◦C. The second row shows the experi-
mental data. For the whole experimental spec-
trum, we apply a multiplicative correcting factor
on the frequency axis to align the frequency of
the mode 2S0

0 (indicated by an arrow) with the
one of the theory. The third row displays finite-
element computation of the spectrum. For the
sake of comparison with experiments and theory,
we consider shear and bulk viscosities and no-slip
and constant temperature boundary conditions,
which prevents the use of the built-in acoustic
equation of COMSOL. Instead, we have mod-
ified the built-in aero-acoustic interface, which
is limited to m = 0. This non-trivial extension
to arbitrary m is fully detailed in Supplemen-
tary material23. In practice, we use Lagrange
elements of order 3 for the pressure and order 4
for the velocity and temperature. We then ob-
tain the acoustic response for each m, and the

complete spectrum is obtained by summing con-
tributions of all m (Fig. 6, bottom). Note that
a typical calculation of a unique fluid response
takes ∼ 12 s on a current desktop computer, and
the accurate calculation of the high-resolution
full spectrum on 500 − 3000 Hz requires thus a
full week.

Complete comparison of the predicted
second-order frequencies with experimental
spectrum shows that all major features are re-
produced (peak frequencies differ by less than
1 Hz). Each experimental peak can be identified.
Both frequencies (real part), relative amplitude
of peaks and their shape (imaginary part) are
very similar, except in some narrow frequency
range (e.g. around 1600 Hz) where some ex-
perimental peaks seem to be missing. The dis-
sipation in the experiment is expected to be
higher than from the values used in the the-
ory, where we neglected air humidity and other
diffusion mechanisms. This might cause some
peaks to be hidden in the experimental spec-
trum by the neighbouring peaks (see Supplemen-
tary material23 for whole frequency range com-
parison). Other minor discrepancies can be at-
tributed to slight geometry perturbations due to
the presence of the instrumentation (e.g. loud-
speakers). The numerical and theoretical spec-
tra are very similar, showing that we can rely on
the perturbative approach for an accurate and
robust description of the experimental spectrum.

V. SPLITTINGS DUE TO SOLID-BODY ROTATION

In this section, we consider solid-body rotat-
ing flows in ZoRo. To obtain these flows, we
impose a constant rotation rate to the container
and we wait for 2 minutes, a long time compared
to the spin-up time (∼ 10 s for air rotating at
10 Hz), such that the fluid is uniformly rotating
with the container41. Then, the fluid is at rest
in the frame rotating with the container.

A. Effects of the rotation on the 0S2 multiplet

Using the protocol developed in Section III
to acquire and identify acoustic modes at rest,
we measure the acoustic response in presence of
rotation. The top panel of figure 7 shows typical
splittings due to solid-body rotations for the 0S2

multiplet. Focusing first on the original peak
(i.e. with no rotation) around 910 Hz, we observe
that it splits into two peaks about half-height on
both sides of the original peak. We note that the
splitting increases with the rotation rate.

In order to compare with the rotation split-
ting predicted by the theory, certain mode iden-
tification is needed, especially in regions where
several peaks are close together, around 930 Hz
for example. In the bottom panel of figure 7
we separate the 0S2 multiplet by symmetry at
fΩ = 25 Hz. We use the symmetry method de-
tailed in Section III B to separate odd and even
m modes. We can also identify the m = 0 mode
around 940 Hz by the fact that it is the only
mode not influenced by rotation at first-order,
as shown by equation (5). The vertical lines
show the frequencies given by the perturbative

Gas-filled rotating spheroid acoustic spectra 9



FIG. 6. Acoustic spectra for ZoRo configuration at rest obtained with perturbation theory (top), experi-
mental data (middle) and finite-element calculations (bottom). Mode frequencies and labels from the theory
are given across the three spectra for comparison (vertical lines, different line types are used for n, different
colours for m). Experimental spectrum is averaged over all electrets of one hemisphere. For each spectrum,
amplitude is normalised by its mean on the given frequency window.

approach taking into account the first-order ro-
tation effects (Section II). This allows to iden-
tify the mode 0S−2

2 at 930 Hz and the mode

0S+1
2 at 926 Hz: the two peaks cross each other.

This lifts the ambiguity that could have arisen
from a naive reading of the bottom purple curve
(fΩ = 25 Hz) in the top panel. At fΩ = 20 Hz
(blue curve), these 2 peaks merge in a higher
peak at 928 Hz (see the top panel).

B. First experimental determination of the Ledoux coeffi-

cients

For a given nSm
l mode, perturbation theory

predicts a linear increase of the rotational split-
ting with the rotation rate. To verify this pre-
diction and its validity domain, we extract split-
tings for a collection of non-axisymmetric eigen-
modes over our range of working rotation rates
(from rest to 30 Hz). We fit the observed ±m
pairs of spectral peaks with synthetic spectra,
carrying a grid search on the four following pa-
rameters: the frequency splitting between the
two peaks, their mean frequency, their width,
and their amplitude. For each combination of
parameters, we evaluate the misfit as the root-
mean square (rms) difference between the ob-
served and synthetic spectra (in log scale) in the

frequency window of the mode. We obtain the
best frequency splitting from the combination
yielding the smallest misfit. The error is esti-
mated from the minimum and maximum split-
tings for which some parameter combinations
produce a misfit of typically 1.05 times the min-
imum misfit. We provide examples of the fits in
Supplementary material23.

In figure 8, we show a selection of experimen-
tal splittings as a function of rotation rate (the
experimental splittings being measured by the
difference between the±m peak frequencies). At
first glance, we observe that they agree well with
the theoretical linear predictions |2δΩ| given by
equation (5) and shown by the lines. The blue
crosses show our finite calculations predictions
which are, in many cases, closer to the exper-
imental data than the theory (see e.g. 0S2

2 or
0S1

2 ). In our range of rotation rates, the numeri-
cal splitting also follow a linear trend. Note how-
ever, that the observed slopes can be slightly dif-
ferent from the one predicted using Ledoux coef-
ficients in the sphere (see typically 0S1

2 ). This is
due to the effect of ellipticity25, and this slightly
different slope defines spheroidal Ledoux coeffi-
cients, which now depends on ε but also on m
by contrast with the spherical one (which is in-
dependent of m, see equation 6).
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FIG. 7. Experimental spectra centered on 0S2.
Top: for solid body rotation at increasing rotation
rates from rest (top, red) to fΩ = 25 Hz (bot-
tom, violet) with 5 Hz increment. Spectra are fil-
tered (low-pass) and vertically shifted for visualisa-
tion purposes. Bottom: for solid body rotation at
fΩ = 25 Hz separated by symmetry, m = ±1 (blue)
and m = 0, ±2 (purple) (colour online). The dashed
lines shows the perturbation theory predictions.

In our range of rotation rates, rotational
splittings in the sphere are predicted to be pro-
portional to fΩ, but also to m through the spher-
ical Ledoux coefficients. By successively focusing
on various non-axisymmetric multiplets, we re-
trieve the rotational splittings for a larger col-
lection than before. We have extracted rota-
tional splittings for 24 modes at fΩ = 20 Hz with
the method detailed above and computed the
associated spheroidal Ledoux coefficients (fre-
quency splitting divided by 2mfΩ). Figure 9
shows these Ledoux coefficients for different ±m
pairs of peaks as a function of l. For each mode,
the experimental Ledoux coefficients (symbols)
agree roughly with the linear theory (lines) and
the deviations may be explained by the elliptic-
ity of the container (see l = 2, n = 0 in figures
8 and 9). Conversely, the determination of the
rotation rate can be obtained by measuring any
splitting if the spheroidal Ledoux coefficient is
known.
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FIG. 8. Rotational splittings of chosen modes for in-
creasing rotation rates. Experimental (circles) and
finite element (blue crosses) splittings are measured
by the difference between the ±m peak frequen-
cies. Theoretical linear splittings (lines) are given
by |2δΩ|, see equation (5). For theoretical split-
tings, equatorially symmetric modes are shown in
red solid lines and anti-symmetric modes in black
dashed line; we use the same choice of colours for
the experimental splittings (colour online).

VI. CONCLUSIONS AND PERSPECTIVES

For this study, we built an experimental
setup made of a gas-filled spheroid cavity (ZoRo)
rotating up to 30 Hz. We successfully model
the experimental acoustic spectrum of the cav-
ity with a perturbation theory and finite-element
calculations. To identify the modes, we need
to introduce a second-order geometry correc-
tion and use the equatorial symmetries of the
modes, sources and receivers. We have success-
fully measured the Coriolis effects on the acous-
tic response, allowing the first experimental de-
termination of the Ledoux coefficients5 and their
correction due to the ellipticity of the cavity25.

We aim to use this modal acoustic velocime-
try method to image flow fields in our ZoRo ap-
paratus. Having identified modes up to l = 10
and n = 3, we can expect a spatial resolution
of 1/5 of the cavity radius8. This modal acous-
tic velocimetry is thus a robust, versatile and
non-intrusive velocimetry method. As a long-
term goal, we aim to study more complex large-
scale rotating flows, including non-uniform ro-
tation rates, and use acoustic splitting data to
retrieve the time-dependent three components
of flow velocity in the whole volume. It could
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FIG. 9. Comparison between the theoretical Ledoux
coefficients multiplied by l + 1 (connected by lines
for n = 0, 1, 2) and their experimental counterparts
deduced from the mode splitting measured in ZoRo
(rotating at 20 Hz) for several l-modes of various
m, being either symmetric (ES, hot-coloured trian-
gles) or anti-symmetric (EA, cold-coloured circles)
with respect to the equator (colour online). When
possible, several ±m pairs are included for one nSl
multiplet.

also be interesting to increase rotation rates to
probe the limits of the perturbation theory, to in-
vestigate higher-order Coriolis effects25 and cen-
trifugal effects20,42. Another perspective is to

use other internal gases with different diffusive
behaviour, leading to a change of peaks width,
potentially allowing better peak separation (SF6

has thinner n = 0 modes than air for example).
We plan to use this modal acoustic velocime-

try to describe the physics of zonal jets. Fu-
ture planned experiments include changing (in-
creasing or decreasing) the pressure within the
spheroid and differential heating of the working
gas to reproduce the forcings and forces balance
seen in astro-geophysical bodies.
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