

New and updated convex shape models of asteroids based on optical data from a large collaboration network

J. Hanuš, J. Ďurech, D. Oszkiewicz, R. Behrend, B. Carry, M. Delbo, O.

Adam, V. Afonina, R. Anquetin, P. Antonini, et al.

▶ To cite this version:

J. Hanuš, J. Ďurech, D. Oszkiewicz, R. Behrend, B. Carry, et al.. New and updated convex shape models of asteroids based on optical data from a large collaboration network. Astronomy and Astrophysics - A&A, 2016, 586, pp.A108. 10.1051/0004-6361/201527441 . hal-02404240

HAL Id: hal-02404240 https://hal.science/hal-02404240v1

Submitted on 27 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

New and updated convex shape models of asteroids based on optical data from a large collaboration network

J. Hanuš^{1,2}, J. Ďurech³, D. A. Oszkiewicz⁴, R. Behrend⁵, B. Carry², M. Delbo², O. Adam⁶, V. Afonina⁷,
R. Anquetin^{8,45}, P. Antonini⁹, L. Arnold⁶, M. Audejean¹⁰, P. Aurard⁶, M. Bachschmidt⁶, B. Baduel⁶, E. Barbotin¹¹,
P. Barroy^{8,45}, P. Baudouin¹², L. Berard⁶, N. Berger¹³, L. Bernasconi¹⁴, J-G. Bosch¹⁵, S. Bouley^{8,45}, I. Bozhinova¹⁶,
J. Brinsfield¹⁷, L. Brunetto¹⁸, G. Canaud^{8,45}, J. Caron^{19,20}, F. Carrier²¹, G. Casalnuovo²², S. Casulli²³, M. Cerda²⁴,
L. Chalamet⁸⁶, S. Charbonnel²⁵, B. Chinaglia²², A. Cikota²⁶, F. Colas^{8,45}, J.-F. Coliac²⁷, A. Collet⁶, J. Coloma^{28,29},
M. Conjat², E. Conseil³⁰, R. Costa^{28,31}, R. Crippa³², M. Cristofanelli³³, Y. Damerdji⁸⁷, A. Debackère⁸⁶, A. Decock³⁴,
Q. Déhais³⁶, T. Déléage³⁵, S. Delmelle³⁴, C. Demeautis³⁷, M. Dróźdź³⁸, G. Dubos^{8,45}, T. Dulcamara⁶, M. Dumont³⁴,
R. Durkea³⁹, R. Dymock⁴⁰, A. Escalante del Valle⁸⁵, N. Esseiva⁴¹, R. Esseiva⁴¹, M. Esteban^{24,42}, T. Fauchez³⁴,
M. Fauerbach⁴³, M. Fauvaud^{44,45}, S. Fauvaud^{8,44,45}, E. Forné^{28,46,7}, C. Fournel⁸⁶, D. Fradet^{8,45}, J. Garlitz⁴⁷,
O. Gerteis⁶, C. Gillier⁴⁸, M. Gillon³⁴, R. Giraud³⁴, J.-P. Godard^{8,45}, R. Goncalves⁴⁹, Hiroko Hamanowa⁵⁰,
Hiromi Hamanowa⁵⁰, K. Hay¹⁶, S. Hellmich⁵¹, S. Heterier^{52,53}, D. Higgins⁵⁴, R. Hirsch⁴, G. Hodosan¹⁶, M. Hren²⁶,
A. Hygate¹⁶, N. Innocent⁶, H. Jacquinot⁵⁵, S. Jawahar⁵⁶, E. Jehin³⁴, L. Jerosimic²⁶, A. Klotz^{6,57,58}, W. Koff⁵⁹,
P. Korlevic²⁶, E. Kosturkiewicz^{4,38,88}, P. Krafit⁶, Y. Krugly⁶⁰, F. Kugel¹⁹, O. Labrevoir⁶, J. Lecacheux^{8,45}, M. Lehky⁶¹,
A. Leroy^{8,45,62,3}, B. Lesquerbault⁶, M. J. Lopez-Gonzales⁶⁴, M. Lutz⁶, B. Mallecot^{8,45}, J. Manfroid³⁴, F. Manzini³²,
A. Martiniak⁴, A. Martin^{65,66}, B. Modave⁶, R. Montaigut^{8,45,48,63}, J. Montie^{52,53}, E. Mor

(Affiliations can be found after the references)

Received 24 September 2015 / Accepted 22 October 2015

ABSTRACT

Context. Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. These efforts already provided deep insight into physical properties of main-belt asteroids or large collisional families. Going into finer detail (e.g., smaller collisional families, asteroids with sizes ≤ 20 km) requires knowledge of physical parameters of more objects.

Aims. We aim to increase the number of asteroid shape models and rotation states. Such results provide important input for further studies, such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides bulk density estimates in combination with known masses, but also constrains theoretical collisional and evolutional models of the solar system.

Methods. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as input for the convex inversion method, and derive 3D shape models of asteroids together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that 100 observers who submit their optical data to publicly available databases.

Results. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature, or for which masses will most likely be determined from their gravitational influence on smaller bodies whose orbital deflections will be observed by the ESA *Gaia* astrometric mission. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and three near-Earth asteroids. The shape model revisions and determinations were enabled by using additional optical data from recent apparitions for shape optimization.

Key words. minor planets, asteroids: general - techniques: photometric - methods: observational - methods: numerical

[†] Deceased.

1. Introduction

Asteroid modeling efforts in the last decade resulted in an extensive dataset of almost 400 convex shape models and rotation states (see the review by Durech et al. 2015a). The majority of these models was determined by the lightcurve inversion method (LI) developed by Kaasalainen & Torppa (2001) and Kaasalainen et al. (2001). About 100 models are based on disk-integrated, dense-in-time optical data (e.g., Torppa et al. 2003; Slivan et al. 2003; Michałowski et al. 2005; Marciniak et al. 2009, 2011). Combining dense-in-time data with sparse-intime measurements from large sky surveys, or using only sparsein-time data, increased the number of available shape models by a factor of 4 (Durech et al. 2009; Hanuš et al. 2011, 2013a,c). Future data from Gaia, Panoramic Survey Telescope and Rapid Response System (PanSTARRS), and Large Synoptic Survey Telescope (LSST) should result in an increase of shape models by an order of at least one magnitude (Durech et al. 2005). The methods that will be used for analysis of these future data of unprecedented amount and quality, by the means of complex shape modeling, are similar to those applied here and developed within the scope of our recent studies.

Most asteroid shape models derived by the LI method and their optical data are available in the Database of Asteroid Models from Inversion Techniques (DAMIT¹; Ďurech et al. 2010).

We would like to emphasize and acknowledge that the shape modeling stands on the shoulders of hundreds of observers, often amateurs, who regularly obtain photometric data with their small and mid-sized telescopes. These observations have significantly contributed to the great progress of the shape modeling field in the last decade. Although there is much more sparse than dense data available, the latter will always remain important because their much higher photometric accuracy and rotation coverage leads to higher quality shape models. This is a typical example of the great interaction between the professional and amateur community (Mousis et al. 2014).

Knowing the rotational parameters and shapes of asteroids is very important for numerous applications. The large amount of currently known asteroid models already provided a deep insight into physical properties of main-belt asteroids (MBAs) and large collisional families: (i) an excess of prograde rotators within (MBAs) larger than ~50 km in diameter, predicted by numerical simulations (Johansen & Lacerda 2010), was confirmed by Kryszczyńska et al. (2007), Hanuš et al. (2011); (ii) an excess of retrograde rotators within near-Earth asteroids (NEAs) is consistent with the fact that most of the NEAs come from the v_6 resonance (La Spina et al. 2004). To enter the v_6 resonance via Yarkovsky effect², the object must be a retrograde rotator; (iii) an anisotropy of spin-axis directions of MBAs asteroids with diameters ≤30 km and NEAs was revealed and explained by the YORP effect³, collisions, and mass shedding (Hanuš et al. 2011; Pravec et al. 2012); (iv) a bimodality of prograde and retrograde rotators symmetric with respect to the center of the family is caused by the combined Yarkovsky, YORP, and collisional dynamical evolution (Kryszczyńska 2013; Hanuš et al. 2013a); (v) the larger dispersion of spin-axis directions of smaller ($D \leq 50$ km) prograde than retrograde asteroids suggests that spin states of prograde rotators are affected by resonances (Hanuš et al. 2013c); or (vi) the disruption of asteroid pairs⁴ was most likely the outcome of the YORP effect that spun up the original asteroid (Polishook 2014).

With the use of convex shape models in combination with asteroidal stellar occultations and disk-resolved images obtained by space telescopes or ground-based telescopes equipped with adaptive optics (AO) systems, the size of the model can be constrained, making it possible to determine the asteroid volume. Even when the object is considerably nonconvex, the scaled convex model from occultations and AO data tends to compensate by average fitting to the disk-resolved data. As a result, the overestimation of the volume is smaller than would correspond to the convex hull. The volume can then provide, in combination with mass estimates, realistic values of bulk densities (Ďurech et al. 2011; Hanuš et al. 2013b).

The mass is one of the most challenging parameters to measure for an asteroid. Mass estimates are now available for 280 asteroids, but only 113 of these are more precise than 20% (Carry 2012; Scheeres et al. 2015). However, the situation is expected to improve significantly in the near future. The observations of the ESA *Gaia* astrometric satellite will provide masses accurate to better than 50% for ≈150 asteroids (and for ≈50 with an accuracy better than 10%; Mouret et al. 2007, 2008) by the orbit deflection method. The advantage of the masses determined by *Gaia* is in the uniqueness of the mission: we should obtain a comprehensive sample with well-described biases (e.g., the current mass estimates are currently strongly biased toward the inner main belt).

To maximize the possible outcome by means of density determinations, we focus on determination of shape models for asteroids for which accurate mass estimates are available or will most likely be determined by *Gaia*. Moreover, it is also important to update shape models for such asteroids using recently obtained optical data. By doing this, we can provide better constraints on the rotational phase (i.e., on the asteroid orientation, which is important for scaling the size) of these asteroids due to the improvement of the rotation period, and more accurate rotation state and shape parameters.

Convex models, together with thermal infrared observations, have also been used as inputs for thermophysical modeling, enabling the determination of geometric visible albedo, size, and surface properties (e.g., Müller et al. 2011; Hanuš et al. 2015). This application is particularly important because it can make use of the large sample of infrared data for more than 100 000 asteroids acquired by the NASA's Wide-field Infrared Survey Explorer (WISE). The missing input here is shape models of sufficient quality (Delbo et al. 2015).

Moreover, convex models or at least rotational states are usually necessary inputs for more complex shape modeling, which can be performed if additional data, such as stellar occultations, AO images or interferometry containing information about the nonconvexities, (Kaasalainen & Viikinkoski 2012; Carry et al. 2010a,b, 2012; Viikinkoski et al. 2015; Tanga et al. 2015) are available.

Finally, large flat areas/facets on convex shape models, represented by polyhedra, usually indicate possible concavities

¹ http://astro.troja.mff.cuni.cz/projects/asteroids3D
² A thermal receil force effecting retains of control of the state of the state

² A thermal recoil force affecting rotating asteroids (Bottke et al. 2001).

³ Yarkovsky–O'Keefe–Radzievskii–Paddack effect, a torque caused by the recoil force from anisotropic thermal emission, can alter the rotational periods and orientation of spin axes; see, e.g., Rubincam (2000), Vokrouhlický et al. (2003).

⁴ An asteroid pair consists of two unbound objects with almost identical heliocentric orbital elements that were originally part of a bound system.

(Devogèle et al. 2015). Candidates for highly irregular bodies can be identified for further studies.

In Sect. 2, we introduce the dense- and sparse-in-time optical disk-integrated data, which we used for the shape model determinations. We describe the lightcurve (convex) inversion method in Sect. 3, present updated and new shape model determinations in Sects. 4.1 and 4.2, comment on several individual solutions in Sect. 4.3, and conclude our work in Sect. 5.

2. Optical disk-integrated photometry

Similar to Hanuš et al. (2011, 2013a,c), we use two different types of optical disk-integrated data: (i) dense-in-time photometry, i.e., classical continuous multihour observations; and (ii) sparse-in-time photometry consisting of a few hundred individual calibrated measurements from several astrometric observatories, typically covering \sim 15 years.

Dense photometry was acquired from publicly available databases, from those of our collaborators, or directly from several individual observers. The historical data from the second half of the twentieth Century are mainly stored in the Asteroid Photometric Catalogue (APC⁵; Piironen et al. 2001). Currently, the common practice, which is used mostly by observers from the United States, is a regular data submission to the Minor Planet Center in the Asteroid Lightcurve Data Exchange Format (ALCDEF⁶; Warner et al. 2011). These data are publicly available and often also published in the Minor Planet Bulletin⁷, where the synodic rotation period is reported. Many European observers send their data to the Courbes de rotation d'astéroïdes et de comètes database (CdR⁸), maintained by Raoul Behrend at Observatoire de Genève. Composite lightcurves with best-fitting synodic rotation periods are then published on the web page.

We obtained the first type of sparse-in-time photometric data for this study from the AstDyS site (Asteroids - Dynamic Site⁹) and processed the data according to Hanuš et al. (2011). We solely employ sparse data from the USNO-Flagstaff station (IAU code 689) and the Catalina Sky Survey Observatory (IAU code 703, Larson et al. 2003), weighting them with respect to dense data (unity weight) by 0.3 and 0.15, respectively. As an alternative to this type of sparse-in-time data, we use the Lowell Photometric Database (Oszkiewicz et al. 2011; Bowell et al. 2014). The photometry from several astrometric surveys, including both USNO-Flagstaff and Catalina Sky Survey, reported to the Minor Planet Center (MPC), was reprocessed; e.g., systematic effects in the magnitude calibration were removed. This enormous dataset typically consists of several hundreds of individual measurements for each of the ~320000 asteroids that were processed so far. Although the accuracy of the recalibrated photometry is improved, the dataset for each asteroid is still a mixture of measurements from several observatories with different photometric quality. Compared to the data of USNO-Flagstaff and Catalina observatories downloaded from AstDyS, Lowell data provide an increased quantity of measurements from more observing geometries. These data, however, are, on average, of poor photometric quality, as they also contain measurements from observatories that were originally rejected in Hanuš et al. (2011) owing to low accuracy. We assigned to Lowell data the weight of 0.1. A subset of Lowell data was already analyzed by Ďurech et al. (2013) and a complex analysis of the reliability of shape models, based solely on these data, is underway (Ďurech et al. 2016). On top of that, the volunteer project Asteroids at home¹⁰, which makes use of distributed computing and runs in the framework of Berkeley Open Infrastructure for Network Computing (BOINC), currently employs shape model computations based on Lowell data (Ďurech et al. 2015b). Thousands of individual home computational stations of volunteers are currently participating in the project.

Tables 1 and A.1 include the information about the optical data used for the shape model determination, such as the number of dense-in-time lightcurves and apparitions covered by dense-in-time observations and the number of sparsein-time measurements from corresponding astrometric surveys. Table A.2 provides references to the dense data used for the shape model determinations and Table A.3 links the observers to their observatories.

3. Convex inversion and reproducibility

In this work, we use the lightcurve inversion method of Kaasalainen & Torppa (2001) and Kaasalainen et al. (2001), which is already a well-documented, investigated, and employed technique for asteroid shape modeling (for more details, see the review by Ďurech et al. 2015a).

The main advantage of using convex inversion is that convex models are usually the only stable or unambiguous inversion result (Durech & Kaasalainen 2003); they best portray the resolution level or information content of disk-integrated photometry. To demonstrate this more intuitively, consider an asteroid with a large planar region (or many regions) on the surface (e.g., an ellipsoid with a sizable chunk or chunks chopped off), and a large crater (say, half the size of the plane) at one end of the plane. Then it is impossible to tell from lightcurve data (no matter how large solar phase angles, i.e., shadows) where the crater is in the plane, or whether it is two craters half the size, or even myriads of small craters on the surface that have the same combined area as the big one (even if the crater filled most of the plane). In other words, one simply cannot say whether the lightcurves are caused just by small-scale surface roughness on a convex shape, or by huge nonconvexities that would be obvious in any disk-resolved data. Hence, any nonconvex model from disk-integrated photometric data is inevitably ambiguous, while the convex model is unambiguous. This also explains why the assumption of the nonconvexity represented by a large plane in the convex model (e.g., Devogèle et al. 2015), while often a good guess because of physical constraints, cannot usually be more than an assumption.

Convex inversion was successfully used for shape model determinations of almost 400 asteroids. On top of that, several convex models were validated by disk-resolved and delay-Doppler images or by direct comparison with images obtained by space probes (e.g., Kaasalainen et al. 2001; Carry et al. 2012). The parameter space of shape, rotation period, spin vector orientation, and scattering properties (simple three-parameter empirical model) is systematically investigated in the means of a χ^2 -metric

$$\chi^{2} = \sum_{i} \frac{\left\| L_{\text{OBS}}^{(i)} - L_{\text{MOD}}^{(i)} \right\|}{\sigma_{i}^{2}},$$
(1)

⁵ http://asteroid.astro.helsinki.fi/

⁶ http://www.minorplanet.info/alcdef.html

⁷ http://www.minorplanet.info/minorplanetbulletin.html

⁸ http://obswww.unige.ch/~behrend/page_cou.html

⁹ http://hamilton.dm.unipi.it/

¹⁰ https://asteroidsathome.net/

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Astero	id λ_1	β_1	λ_2	β_2	Р	$N_{\rm lc}$	$N_{\rm app}$	$N_{\rm LOW}$	Original model
3Juno104207.2095323811332Kaasalainen et al. (2002)7Iris191957.1388433914372Kaasalainen et al. (2002)16Psyche32-74.19594811819567Kaasalainen et al. (2002)17Thetis2402212.266035710690Durech et al. (2003)20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kalliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torpa et al. (2003)29Amphirite136-205.3901196615323Kaasalainen et al. (2002)30Laetitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.9879838808Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia155631558.75171244450Marceiniak et al. (2013)46Angelina135631558.751712444450Marceiniak et al. (2014) <th></th> <th>[deg]</th> <th>[[deg]</th> <th>[deg]</th> <th>[deg]</th> <th>[h]</th> <th></th> <th></th> <th></th> <th>published by</th>		[deg]	[[deg]	[deg]	[deg]	[h]				published by
7Iris191919857.1388433914372Kaasalainen et al. (2002)16Psyche32-74.19594811819567Kaasalainen et al. (2002)17Thetis2402212.266035710690Durcch et al. (2003)20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kalliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)27Euterpe82442653910.4123546Stephens et al. (2012)29Amphitrite136-205.3901196615323Kaasalainen et al. (2002)39Lactitia322305.1382386826448Kaasalainen et al. (2002)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2011)45Alexandra152197.02264388506Warner et al. (2003)44Alexandra152197.22619228550Marciniak et al. (2011) <t< td=""><td>3 Juno</td><td>104</td><td>20</td><td></td><td></td><td>7.209532</td><td>38</td><td>11</td><td>332</td><td>Kaasalainen et al. (2002)</td></t<>	3 Juno	104	20			7.209532	38	11	332	Kaasalainen et al. (2002)
16Psyche32 -7 4.19594811819567Kaasalainen et al. (2002)17Thetis2402212.266035710690Durech et al. (2003)20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kalliope19644.1482011017343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)29Amphitrite136-205.3901196615323Kaasalainen et al. (2002)39Lacitiia322305.3901196615323Kaasalainen et al. (2002)40Harmonia22348.99848237405Hanuš et al. (2011)41Daphne199-305.98798388508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2002)46Angelina135631558.75171244450Durech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia8269-6.04132288554Torppa et al. (2003) <tr< td=""><td>7 Iris</td><td>19</td><td>) 19</td><td>198</td><td>5</td><td>7.138843</td><td>39</td><td>14</td><td>372</td><td>Kaasalainen et al. (2002)</td></tr<>	7 Iris	19) 19	198	5	7.138843	39	14	372	Kaasalainen et al. (2002)
17Thetis2402212.266035710690Durech et al. (2009)19Fortuna96567.443224811565Torppa et al. (2003)20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kalliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)29Amphitrite136-205.3901196615323Kaasalainen et al. (2002)39Lactitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.6991511016574Hanuš et al. (2013b)54Alexandra152197.02264388506Warner et al. (2003b)64Angelina135631558.75171244450Marciniak et al. (2011)76Freia13812319179.97365712545Kaasalainen et al. (2002) <t< td=""><td>16 Psych</td><td>ne 32</td><td>2 -7</td><td></td><td></td><td>4.195948</td><td>118</td><td>19</td><td>567</td><td>Kaasalainen et al. (2002)</td></t<>	16 Psych	ne 32	2 -7			4.195948	118	19	567	Kaasalainen et al. (2002)
19Fortuna96567.443224811565Torppa et al. (2003)20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kalliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)29Amphirite82442653910.40193546Stephens et al. (2012)39Lactitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2012)46Angelina135631558.75171244450Durech et al. (2012)76Freia13812319179.973065712463Marciniak et al. (2012)76Freia13812319179.973065712454Kaasalainen et al. (2003)76Freia13812319179.973065712 <td< td=""><td>17 Thetis</td><td>s 240</td><td>) 22</td><td></td><td></td><td>12.26603</td><td>57</td><td>10</td><td>690</td><td>Durech et al. (2009)</td></td<>	17 Thetis	s 240) 22			12.26603	57	10	690	Durech et al. (2009)
20Massalia30476124818.09759369380Kaasalainen et al. (2002)22Kaliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)27Euterpe82442653910.40193546Stephens et al. (2012)29Amphitritie136-205.3901196615323Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Lisis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2013)54Alexandra152197.02264388506Warner et al. (2020)64Angelina135631558.75171244450Durech et al. (2014)76Freia13812319179.973065712453Kaasalainen et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2014)76Treia13812319179.973065712454 <t< td=""><td>19 Fortu</td><td>na 96</td><td>5 56</td><td></td><td></td><td>7.44322</td><td>48</td><td>11</td><td>565</td><td>Torppa et al. (2003)</td></t<>	19 Fortu	na 96	5 56			7.44322	48	11	565	Torppa et al. (2003)
22Kaliope19644.14820110217343Kaasalainen et al. (2002)23Thalia159-4012.312415012466Torppa et al. (2003)27Euterpe82442653910.40193546Stephens et al. (2012)29Amphitrite136-205.3901196615323Kaasalainen et al. (2002)39Lactitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia152197.02264388506Warner et al. (2013b)54Alexandra152197.02264388506Warner et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2011)76Freia13812319179.973065712455Marciniak et al. (2011) <td>20 Massa</td> <td>alia 304</td> <td>76</td> <td>124</td> <td>81</td> <td>8.09759</td> <td>36</td> <td>9</td> <td>380</td> <td>Kaasalainen et al. (2002)</td>	20 Massa	alia 304	76	124	81	8.09759	36	9	380	Kaasalainen et al. (2002)
23Thalia159-4012.312415012466Torppa et al. (2003)27Euterpe82442653910.40193546Stephens et al. (2012)29Amphiritie322305.1382386826448Kaasalainen et al. (2002)39Laetitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2012)46Angelina152197.02264388506Warner et al. (2008b)64Angelina135631558.75171244450Durech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2003)94Aurora659242-77.22619228550Marciniak et al. (2011)95Arethusa119238.70221152417Durech et al. (2003)	22 Kallio	ope 196	5 4			4.148201	102	17	343	Kaasalainen et al. (2002)
27Euterpe82442653910.40193546Stephens et al. (2012)29Amphitrite136-205.3901196615323Kaasalainen et al. (2002)39Laetitia322305.1382386826448Kaasalainen et al. (2002)40Harmonia2234 8.90848 237405Hanuš et al. (2011)41Daphne199-30 5.98798 338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-34 5.699151 1016 574 Hanuš et al. (2013b)54Alexandra15219 7.02264 388506Warner et al. (2010)76Freia1381231917 9.97306 5712463Marciniak et al. (2012)87Sylvia8264 5.183641 5512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe8269 6.04132 288554Torppa et al. (2011)94Aurora65 9 242 -7 7.22619 228550Marciniak et al. (2011)107Camilla7251 4.83928 3410543Torppa et al. (2003)110Lydia148 -39 340 -57 10.925815311	23 Thalia	a 159	-40			12.31241	50	12	466	Torppa et al. (2003)
29Amphitrite136 -20 5.390119 66 15 323 Kaasalainen et al. (2002)39Laetitia 322 30 5.138238 68 26 448 Kaasalainen et al. (2002)40Harmonia 22 34 8.90848 23 7 405 Hanuš et al. (2011)41Daphne 199 -30 5.98798 33 8 508 Kaasalainen et al. (2011)42Isis 113 45 13.58364 31 8 499 Hanuš et al. (2011)45Eugenia 125 -34 5.699151 101 16 574 Hanuš et al. (2013b)54Alexandra 152 19 7.02264 38 8 506 Warner et al. (2012)86Angelina 135 6 315 5 8.75171 24 4 450 Durech et al. (2012)87Sylvia 82 64 5.183641 55 12 463 Marciniak et al. (2012)87Sylvia 82 64 5.183641 55 12 453 Torpa et al. (2003)94Aurora 65 9 242 -7 7.22619 22 8 550 Marciniak et al. (2011)107Camilla 72 51 4.843928 410 543 Torpa et al. (2003)110Lydia 148 -39 340 -57 10.92581 53 11 398 Durech et al. (2007) <t< td=""><td>27 Euter</td><td>pe 82</td><td>2 44</td><td>265</td><td>39</td><td>10.40193</td><td>54</td><td>6</td><td></td><td>Stephens et al. (2012)</td></t<>	27 Euter	pe 82	2 44	265	39	10.40193	54	6		Stephens et al. (2012)
39 Lactitia 322 30 5.138238 68 26 448 Kaasalainen et al. (2002) 40 Harmonia 22 34 8.90848 23 7 405 Hanuš et al. (2011) 41 Daphne 199 -30 5.98798 33 8 508 Kaasalainen et al. (2002) 42 Isis 113 45 13.58364 31 8 499 Hanuš et al. (2011) 45 Eugenia 125 -34 5.699151 101 16 574 Hanuš et al. (2013b) 54 Alexandra 152 19 7.02264 38 8 506 Warner et al. (2003b) 64 Angelina 135 6 315 5 8.75171 24 4 450 Durech et al. (2011) 76 Freia 138 12 319 17 9.97306 57 12 463 Marciniak et al. (2011) 87 Sylvia 82 69 6.04132 28 8 554 Torppa et al. (2003) 94 Aurora	29 Ampł	nitrite 136	5 -20			5.390119	66	15	323	Kaasalainen et al. (2002)
40Harmonia22348.90848237405Hanuš et al. (2011)41Daphne199-305.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125-345.69915110116574Hanuš et al. (2013)54Alexandra152197.02264388506Warner et al. (2008b)64Angelina135631558.75171244450Marciniak et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe82696.04132288554Torppa et al. (2003)94Aurora659242-77.22619228550Marciniak et al. (2011)107Camilla72514.8439283410543Torppa et al. (2003)110Lydia148-39340-5710.925815311398Durech et al. (2007)121Hermione1165.550881489536Descamps et al. (2003)130Elektra176-895.2246635613358Durech	39 Laetit	tia 322	2 30			5.138238	68	26	448	Kaasalainen et al. (2002)
41Daphne199 -30 5.98798338508Kaasalainen et al. (2002)42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125 -34 5.69915110116574Hanuš et al. (2013b)54Alexandra152197.02264388506Warner et al. (2008b)64Angelina135631558.75171244450Durech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe82696.04132288554Torppa et al. (2003)94Aurora659242 -7 7.22619228550Marciniak et al. (2011)107Camilla72514.8439283410543Torppa et al. (2003)110Lydia148 -39 340 -57 10.925815311398Durech et al. (2007)121Hermione1165.5246635613358Durech et al. (2007)129Antigone211554.9571605211535Torppa et al. (2003)130Elektra176 -89 5.2246635613358 </td <td>40 Harm</td> <td>onia 22</td> <td>2 34</td> <td></td> <td></td> <td>8.90848</td> <td>23</td> <td>7</td> <td>405</td> <td>Hanuš et al. (2011)</td>	40 Harm	onia 22	2 34			8.90848	23	7	405	Hanuš et al. (2011)
42Isis1134513.58364318499Hanuš et al. (2011)45Eugenia125 -34 5.69915110116574Hanuš et al. (2013b)54Alexandra15219 7.02264 388506Warner et al. (2008b)64Angelina135631558.75171244450Durech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia8264 5.183641 5512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe8269 6.04132 288554Torppa et al. (2003)94Aurora659242 -7 7.22619228550Marciniak et al. (2011)95Arethusa11923 8.70221 152417Durech et al. (2007)101Lydia148 -39 340 -57 10.925815311398Durech et al. (2007)121Hermione116 5.550881 489536Descamps et al. (2007)121Hermione116 5.5224663 5613358Durech et al. (2007)130Elektra176 -89 5.224663 5613358Durech et al. (2011)360Carlova356143676.18959 <t< td=""><td>41 Daph</td><td>ne 199</td><td>-30</td><td></td><td></td><td>5.98798</td><td>33</td><td>8</td><td>508</td><td>Kaasalainen et al. (2002)</td></t<>	41 Daph	ne 199	-30			5.98798	33	8	508	Kaasalainen et al. (2002)
45Eugenia125 -34 5.69915110116574Hanuš et al. (2013b)54Alexandra152197.02264388506Warner et al. (2008b)64Angelina135631558.75171244450Ďurech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia82645.1836415512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe82696.04132288554Torppa et al. (2003)94Aurora659242-77.22619228550Marciniak et al. (2011)95Arethusa119238.70221152417Ďurech et al. (2011)107Camilla72514.8439283410543Torppa et al. (2003)110Lydia148-39340-5710.925815311398Ďurech et al. (2007)121Hermione1165.550881489536Descamps et al. (2003)129Antigone211554.9571605211535Torppa et al. (2007)130Elektra176-895.2246635613358Ďurech et al. (2011)360Carlova356143676.1895994 <td>42 Isis</td> <td>113</td> <td>45</td> <td></td> <td></td> <td>13.58364</td> <td>31</td> <td>8</td> <td>499</td> <td>Hanuš et al. (2011)</td>	42 Isis	113	45			13.58364	31	8	499	Hanuš et al. (2011)
54 Alexandra152197.02264388506Warner et al. (2008b)64 Angelina135631558.75171244450Durech et al. (2011)76 Freia13812319179.973065712463Marciniak et al. (2012)87 Sylvia82645.1836415512545Kaasalainen et al. (2002), Berthier et al. (2014)88 Thisbe82696.04132288554Torppa et al. (2003)94 Aurora659242-77.22619228550Marciniak et al. (2011)95 Arethusa119238.70221152417Durech et al. (2011)107 Camilla72514.8439283410543Torppa et al. (2003)110 Lydia148-39340-5710.925815311398Durech et al. (2007)121 Hermione1165.550881489536Descamps et al. (2003)130 Elektra176-895.2246635613358Durech et al. (2007)354 Eleonora16243676.1895994435Durech et al. (2011)360 Carlova356143676.1895994435Durech et al. (2011)386Siegena289259.765038312460Marciniak et al. (2012)409Aspasia228<	45 Euger	nia 125	5 -34			5.699151	101	16	574	Hanuš et al. (2013b)
64Angelina135631558.75171244450Ďurech et al. (2011)76Freia13812319179.973065712463Marciniak et al. (2012)87Sylvia8264 5.183641 5512545Kaasalainen et al. (2002), Berthier et al. (2014)88Thisbe8269 6.04132 288554Torppa et al. (2003)94Aurora659242 -7 7.22619228550Marciniak et al. (2011)95Arethusa11923 8.70221 152417Ďurech et al. (2011)107Camilla7251 4.843928 3410543Torppa et al. (2003)110Lydia148 -39 340 -57 10.925815311398Ďurech et al. (2007)121Hermione116 5.550881 489536Descamps et al. (2003)120Antigone21155 4.957160 5211535Torppa et al. (2003)130Elektra176 -89 5.224663 5613358Ďurech et al. (2011)360Carlova356143676.1895994435Ďurech et al. (2011)366Siegena289259.765038312460Marciniak et al. (2012)409Aspasia2289.02145 <t< td=""><td>54 Alexa</td><td>undra 152</td><td>2 19</td><td></td><td></td><td>7.02264</td><td>38</td><td>8</td><td>506</td><td>Warner et al. (2008b)</td></t<>	54 Alexa	undra 152	2 19			7.02264	38	8	506	Warner et al. (2008b)
76 Freia 138 12 319 17 9.97306 57 12 463 Marciniak et al. (2012) 87 Sylvia 82 64 5.183641 55 12 545 Kaasalainen et al. (2002), Berthier et al. (2014) 88 Thisbe 82 69 6.04132 28 8 554 Torppa et al. (2003) 94 Aurora 65 9 242 -7 7.22619 22 8 550 Marciniak et al. (2011) 95 Arethusa 119 23 8.70221 15 2 417 Durech et al. (2003) 107 Camilla 72 51 4.843928 34 10 543 Torppa et al. (2003) 110 Lydia 148 -39 340 -57 10.92581 53 11 398 Durech et al. (2007) 121 Hermione 1 16 5.550881 48 9 536 Descamps et al. (2003) 130 Elektra 176 -89 5.224663 56 13 358 Durech et al. (2007)	64 Angel	lina 135	6 6	315	5	8.75171	24	4	450	Ďurech et al. (2011)
87 Sylvia 82 64 5.183641 55 12 545 Kaasalainen et al. (2002), Berthier et al. (2014) 88 Thisbe 82 69 6.04132 28 8 554 Torppa et al. (2003) 94 Aurora 65 9 242 -7 7.22619 22 8 550 Marciniak et al. (2011) 95 Arethusa 119 23 8.70221 15 2 417 Durech et al. (2011) 107 Camilla 72 51 4.843928 34 10 543 Torppa et al. (2003) 110 Lydia 148 -39 340 -57 10.92581 53 11 398 110 Lydia 148 -39 340 -57 10.92581 53 11 398 120 Antigone 211 55 4.957160 52 11 535 Torppa et al. (2003) 130 Elektra 176 -89 5.224663 56 13 358 Durech et al. (2007) 354 Eleonora 162 43 4.277184 64 13 482 Hanuš et al. (2011) 360 Carlova 3 56 143 67 6.18959 9 4 435 Durech et al. (2009) 372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011) 386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 <td< td=""><td>76 Freia</td><td>138</td><td>8 12</td><td>319</td><td>17</td><td>9.97306</td><td>57</td><td>12</td><td>463</td><td>Marciniak et al. (2012)</td></td<>	76 Freia	138	8 12	319	17	9.97306	57	12	463	Marciniak et al. (2012)
88Thisbe8269 6.04132 288 554 Torppa et al. (2003)94Aurora659242 -7 7.22619 228 550 Marciniak et al. (2011)95Arethusa11923 8.70221 152417Ďurech et al. (2011)107Camilla7251 4.843928 3410 543 Torppa et al. (2003)110Lydia148 -39 340 -57 10.925815311398Ďurech et al. (2007)121Hermione116 5.550881 489536Descamps et al. (2003)129Antigone21155 4.957160 5211535Torppa et al. (2003)130Elektra176 -89 5.224663 5613358Ďurech et al. (2007)354Eleonora16243 4.277184 6413482Hanuš et al. (2011)360Carlova356143676.1895994435Ďurech et al. (2009)372Palma234 -5 51548.57964388406Hanuš et al. (2012)409Aspasia2289.02145228438Warner et al. (2008b), Hanuš et al. (2013b)423Diotima3514 4.775377 5812540Ďurech et al. (2007)511Davida29822 5.129365 5817 <td>87 Sylvia</td> <td>a 82</td> <td>2 64</td> <td></td> <td></td> <td>5.183641</td> <td>55</td> <td>12</td> <td>545</td> <td>Kaasalainen et al. (2002), Berthier et al. (2014)</td>	87 Sylvia	a 82	2 64			5.183641	55	12	545	Kaasalainen et al. (2002), Berthier et al. (2014)
94 Aurora 65 9 242 -7 7.22619 22 8 550 Marciniak et al. (2011) 95 Arethusa 119 23 8.70221 15 2 417 Ďurech et al. (2011) 107 Camilla 72 51 4.843928 34 10 543 Torppa et al. (2003) 110 Lydia 148 -39 340 -57 10.92581 53 11 398 Ďurech et al. (2007) 121 Hermione 1 16 5.550881 48 9 536 Descamps et al. (2009) 129 Antigone 211 55 4.957160 52 11 535 Torppa et al. (2003) 130 Elektra 176 -89 5.224663 56 13 358 Ďurech et al. (2007) 354 Eleonora 162 43 4.277184 64 13 482 Hanuš et al. (2011) 360 Carlova 3 56 143 67 6.18959 9 4 435 Ďurech et al. (2009) 372 Palma 234 -5 51 54 8.57964 38	88 Thisb	e 82	. 69			6.04132	28	8	554	Torppa et al. (2003)
95Arethusa11923 8.70221 152417Ďurech et al. (2011)107Camilla7251 4.843928 3410543Torppa et al. (2003)110Lydia148 -39 340 -57 10.925815311398Ďurech et al. (2007)121Hermione116 5.550881 489536Descamps et al. (2009)129Antigone21155 4.957160 5211535Torppa et al. (2003)130Elektra176 -89 5.224663 5613358Ďurech et al. (2007)354Eleonora16243 4.277184 6413482Hanuš et al. (2011)360Carlova356143676.1895994435Ďurech et al. (2009)372Palma234 -5 51548.57964388406Hanuš et al. (2011)386Siegena289259.765038312460Marciniak et al. (2012)409Aspasia2289.02145228438Warner et al. (2008b), Hanuš et al. (2013b)423Diotima3514 4.775377 5812540Ďurech et al. (2003)511Davida29822 5.129365 5817588Torppa et al. (2003)532Herculina1009 9.40404 7411410Kaasa	94 Auroi	ra 65	59	242	-7	7.22619	22	8	550	Marciniak et al. (2011)
107 Camilla7251 4.843928 34 10 543 Torppa et al. (2003)110 Lydia148 -39 340 -57 10.92581 53 11 398 Ďurech et al. (2007)121 Hermione116 5.550881 48 9 536 Descamps et al. (2009)129 Antigone211 55 4.957160 52 11 535 Torppa et al. (2003)130 Elektra176 -89 5.224663 56 13 358 Ďurech et al. (2007)354 Eleonora162 43 4.277184 64 13 482 Hanuš et al. (2011)360 Carlova3 56 143 67 6.18959 9 4 435 Ďurech et al. (2009)372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011)386 Siegena28925 9.76503 83 12 460 Marciniak et al. (2012)409 Aspasia228 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b)423 Diotima 351 4 4.775377 58 12 540 Ďurech et al. (2007)511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003)532Herculina 100 9 9.40404 74 11 410 Kaasalainen et al. (2007)	95 Areth	usa 119	23			8.70221	15	2	417	Ďurech et al. (2011)
110Lydia148 -39 340 -57 10.92581 53 11 398 \tilde{Durech} et al. (2007)121Hermione116 5.550881 48 9 536 Descamps et al. (2009)129Antigone211 55 4.957160 52 11 535 Torppa et al. (2003)130Elektra176 -89 5.224663 56 13 358 Durech et al. (2007)354Eleonora162 43 4.277184 64 13 482 Hanuš et al. (2011)360Carlova3 56 143 67 6.18959 9 4 435 Durech et al. (2009)372Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011)386Siegena28925 9.76503 83 12 460 Marciniak et al. (2012)409Aspasia228 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b)423Diotima 351 4 4.775377 58 12 540 Durech et al. (2007)511Davida29822 5.129365 58 17 588 Torppa et al. (2003)532Herculina100 9 9.40404 74 11 410 Kaasalainen et al. (2002)	107 Cami	lla 72	2 51			4.843928	34	10	543	Torppa et al. (2003)
121Hermione1165.550881489536Descamps et al. (2009)129Antigone21155 4.957160 5211535Torppa et al. (2003)130Elektra176 -89 5.224663 5613358Durech et al. (2007)354Eleonora16243 4.277184 6413482Hanuš et al. (2011)360Carlova356143676.1895994435Durech et al. (2009)372Palma234 -5 51548.57964388406Hanuš et al. (2011)386Siegena289259.765038312460Marciniak et al. (2012)409Aspasia2289.02145228438Warner et al. (2008b), Hanuš et al. (2013b)423Diotima3514 4.775377 5812540Durech et al. (2007)511Davida29822 5.129365 5817588Torppa et al. (2003)532Herculina1009 9.40404 7411410Kaasalainen et al. (2002)	110 Lvdia	. 148	-39	340	-57	10.92581	53	11	398	Ďurech et al. (2007)
129Antigone21155 4.957160 5211535Torpa et al. (2003)130Elektra176 -89 5.224663 5613358Durech et al. (2007)354Eleonora16243 4.277184 6413482Hanuš et al. (2011)360Carlova35614367 6.18959 94435Durech et al. (2009)372Palma234 -5 5154 8.57964 388406Hanuš et al. (2011)386Siegena28925 9.76503 8312460Marciniak et al. (2012)409Aspasia228 9.02145 228438Warner et al. (2008b), Hanuš et al. (2013b)423Diotima3514 4.775377 5812540Durech et al. (2007)511Davida29822 5.129365 5817588Torpa et al. (2003)532Herculina1009 9.40494 7411410Kaasalainen et al. (2002)	121 Herm	ione 1	16			5.550881	48	9	536	Descamps et al. (2009)
130Elektra176 -89 5.224663 56 13 358 $Durech et al. (2007)$ 354 Eleonora16243 4.277184 64 13 482 Hanuš et al. (2011) 360 Carlova3 56 143 67 6.18959 9 4 435 Durech et al. (2009) 372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011) 386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Durech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	129 Antig	one 211	55			4.957160	52	11	535	Torppa et al. (2003)
354 Eleonora 162 43 4.277184 64 13 482 Hanuš et al. (2011) 360 Carlova 3 56 143 67 6.18959 9 4 435 Durech et al. (2009) 372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011) 386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Durech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	130 Elekt	, ra 176	-89			5.224663	56	13	358	\check{D} urech et al. (2007)
360 Carlova 3 56 143 67 6.18959 9 4 435 Ďurech et al. (2009) 372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011) 386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Ďurech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	354 Eleon	iora 162	43			4.277184	64	13	482	Hanuš et al. (2011)
372 Palma 234 -5 51 54 8.57964 38 8 406 Hanuš et al. (2011) 386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Durech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	360 Carlo	va a	56	143	67	6 18959	9	4	435	\tilde{D} urech et al. (2009)
386 Siegena 289 25 9.76503 83 12 460 Marciniak et al. (2012) 409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Ďurech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	372 Palma	a 234	, 50 L _5	51	54	8 57964	38	8	406	Hanuš et al. (200)
409 Aspasia 2 28 9.02145 22 8 438 Warner et al. (2008b), Hanuš et al. (2013b) 423 Diotima 351 4 4.775377 58 12 540 Ďurech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 00 9 9.40494 74 11 410 Kaasalainen et al. (2002)	386 Siege	na 280	25	51	51	9 76503	83	12	460	Marciniak et al. (2012)
423 Diotima 351 4 4.775377 58 12 540 Ďurech et al. (2007) 511 Davida 298 22 5.129365 58 17 588 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kaasalainen et al. (2002)	409 Asnas	sia 202	28			9 02145	22	8	438	Warner et al. $(2008h)$ Hanuš et al. $(2013h)$
511 Davida 298 22 5.123365 58 Torppa et al. (2003) 532 Herculina 100 9 9.40494 74 11 410 Kasslainen et al. (2002)	423 Dioti	ma 251	20 /			4 775377	58	12	540	\tilde{D} urech et al. (2007)
511 Davida 270 22 5.12500 50 17 500 Toppa et al. (2002) 532 Herculina 100 9 940404 74 11 410 Kassalainen et al. (2002)	511 David	lia 551	2 22			5 120365	58	12	588	Torpha et al. (2007)
	532 Herei	100) 0			9 40494	74	11	410	Kaasalainen et al. (2002)
776 Porbaniai 246 25 7 66701 50 11 402 Živrash et al (2007)	776 Damba	$\frac{11110}{212}$, , ; , , , , , , , , , , , , , , , , ,			7 66701	50	11	402	\tilde{D} urach at al. (2002)

Table 1. Rotational states and summary of used photometry for asteroids for which we updated their shape models based on new disk-integrated optical data.

Notes. We also provide the reference to the original model and in two cases to the plausible non-convex model as well. The table gives ecliptic coordinates λ_1 and β_1 of the best-fitting pole solution, ecliptic coordinates λ_2 and β_2 for the possible second (mirror) pole solution, sidereal rotational period *P*, the number of dense lightcurves N_{lc} spanning N_{app} apparitions, the number of sparse-in-time measurements from Lowell N_{LOW} , and the reference to the original model.

where the *i*th brightness measurement $L_{OBS}^{(i)}$ (with an uncertainty of σ_i) is compared to the corresponding modeled brightness $L_{MOD}^{(i)}$. The best-fitting parameter set is searched for.

A significant minimum in the parameter space indicates a unique solution. Visual examination of the fit in the period subspace is performed as well as the comparison between observed and modeled lightcurves. Additionally, the pole-ecliptic latitudes should be similar within the two pole solutions, which are typically determined as a result of the ambiguity (symmetry) presented in most lightcurve inversion models (Kaasalainen & Lamberg 2006). On the other hand, the pole-ecliptic longitudes of these so-called mirror solutions should differ by ~180 degrees. The pole ambiguity is present in the majority of our shape models.

Moreover, we also compute the principal moments of inertia of each shape model, assuming a homogeneous mass distribution, and compare these moments with the moment of inertia along the rotation axis. A reliable solution should rotate within \sim 10–20 degrees of the axis with the largest moment of inertia.

If available, we use a priori information about the rotation period of the asteroid from the Minor Planet Lightcurve Database¹¹ (Warner et al. 2009) to significantly reduce, usually by at least two orders of magnitude, computation requirements. Hence, we investigate the parameter space only in the proximity of the expected rotation period.

It should be kept in mind that none of the shape models should be taken as granted, i.e., each asteroid model contains an uncertainty (both in shape and rotation state), which increases with decreasing amount, variety, and quality of the optical data. It was already shown in Hanuš et al. (2015) that by varying a shape model within its uncertainty, one can obtain significantly different fits to the thermal infrared data by the thermophysical modeling. Thus, the shape uncertainty plays an important role for the interpretation of the thermal infrared data. This demonstrates the need of accounting for the shape model uncertainties

¹¹ http://cfa-www.harvard.edu/iau/lists/

Lightcurve\discretionary-Dat.html

in all further shape model applications. Also, the overall shape model based mostly on sparse data usually contains many flat facets (areas) with rather sharp edges, thus most of the lowdetail topography is hidden (i.e., we have a large uncertainty in the shape). As we use more dense data, the shape becomes smoother and has more details. This limits the application of the lower-resolution shape models based mostly on sparse data.

In the ecliptic coordinate frame, the typical pole direction uncertainties are: (i) $\leq 5^{\circ}$ in latitude β and $\leq 5^{\circ}/\cos\beta$ in longitude λ for asteroid models based on large multiapparition dense lightcurve datasets; (ii) $\sim 5-10^{\circ}$ in β and $\sim 5-10^{\circ}/\cos\beta$ in λ for models based on combined multiapparition dense data and sparse-in-time measurements; and finally; (iii) $\sim 10-30^{\circ}$ in β and $\sim 10-30^{\circ}/\cos\beta$ in λ for models based on combined fewapparition dense data with sparse-in-time measurements or only sparse-in-time data.

To sum up, we follow the same procedure for the shape model determinations as in Hanuš et al. (2011, 2013a,c). Finally, we would like to emphasize that our work can be easily reproduced by anyone who is interested. The LI code and the lightcurve data are available in DAMIT, as well as the user manual.

4. Results and discussions

4.1. Updated shape models

We updated shape models of 36 asteroids with known mass estimates or for which masses will be most likely determined by the orbit deflection method from the *Gaia* astrometric observations (Mouret et al. 2007, 2008, and personal communication with François Mignard). For each one of these asteroids, there were new available optical dense data (see Table A.2). We combined these new data with Lowell data and the already available dense photometry from DAMIT. If applicable, we replaced the original sparse data from AstDyS with the Lowell data.

In most cases, rotational states of updated shape models are similar to those of the original models in the DAMIT database. The only exceptions, which we individually commented on in Sect. 4.3, are asteroids (27) Euterpe, and (532) Herculina. We performed the LI independently from any previous shape modeling results (e.g., we did not use information about the spin axis).

Updated models provide better constraints on the rotational phase, thus these models allow us, for example, to better link recently obtained AO and occultation profiles with the orientation of the shape model at the time of the observation. This is essential for a potential scaling of the sizes of shape models to compute the volume, and consequently bulk densities. Obviously, the uncertainties in rotation period, spin axis direction, and shape model should be improved as there are more data used for the modeling.

Optimized rotation state parameters and information about optical data are listed in Table 1. References to the optical densein-time data can be found in Table A.2.

4.2. New shape models

The majority of our new shape model determinations is obtained by combining dense-in-time data with sparse-in-time measurements from the Lowell database. However, the fact that Lowell data contain for each asteroid a mixture of measurements from several observatories makes it difficult to find a representative weight with respect to the dense data. Indeed, a specific single value of the weight can result in an overestimation for some asteroids, while it can underestimate others. Despite these issues, we decided to use a weight of 0.1 for the Lowell data as a whole and to present corresponding shape models. As a consequence, we sometimes obtained a unique shape solution if we combined dense data and the sparse data from AstDyS (i.e., from USNO and Catalina), but not if we used the Lowell data instead. We present these shape models as well.

Moreover, 57 out of 250 shape models are based only on sparse data from USNO-Flagstaff and Catalina Sky Survey observatories. That these models can nevertheless be reliable was already shown in Hanuš & Durech (2012) and Hanuš et al. (2013c). As suggested there, we ran the LI search for shape and rotation state parameters with two different shape resolutions: (i) standard one; and (ii) lower one, which serves as a test of the solution stability. For this case, the asteroid's synodic rotation period is also available in the Minor Planet Lightcurve Database (LCDB, Warner et al. 2009), an additional test for the reliability can be performed. A rotation period derived by the LI (a period interval of 2-1000 h is typically scanned), which matches that already reported, points to a secure solution. In practice, all shape solutions based solely on sparse data that fulfilled our stability tests had rotation periods in an agreement with synodic periods from LCDB. This also demonstrates that our other unique solutions, for which a previous period estimate is not available, are reliable. We present nine of these shape and rotation state solutions; these are labeled in Table A.1.

We present shape models of three NEAs, which all have negative values of their pole latitudes β , and obliquities larger than 90°. The fact that they all show retrograde rotation supports the consensus that about half of the NEAs migrated through the ν_6 secular resonance, which causes an observed excess of retrograde rotators (La Spina et al. 2004).

We further present shape models of 13 asteroids that are classified as Hungarias. The majority of them (10 out of 13) exhibit retrograde rotation, which is in an agreement with the findings of Warner et al. (2014), who reported, in a sample of 53 Hungarias, a 75% representation of retrograde rotators.

Thirty-one of the derived shape models are those asteroids whose density will be measured in future or was already obtained. While for some of them, estimations on their masses are already available, the masses of the others will be determined from *Gaia* astrometric measurements. Constraining the model sizes of these asteroids using disk-resolved images, stellar occultation data, or thermophysical modeling will directly facilitate estimation of bulk densities.

Rotation state parameters and information about used optical data for all new shape model determinations are listed in Table A.1. References to the optical dense-in-time data can be found in Table A.2.

4.3. Individual asteroids

(27) *Euterpe*. The lightcurve amplitude of this asteroid is very low (≤ 0.1 mag) and the dense data cover multiple apparitions. Thus, we decided to exclude the Lowell data from the shape modeling because they were dominated by noise. Our derived rotation period (10.40193 h) is slightly different than that derived by Stephens et al. (2012) (10.40825 h), which resulted in a different pole solution of $(\lambda, \beta) = (82, 44)^{\circ}$ and $(\lambda, \beta) = (265, 39)^{\circ}$ for the mirror solution. The solution in longitude λ is similar to that of Stephens et al. (2012), but their latitude has a different sign (-39 and -30, respectively).

(532) Herculina. Our (single) pole solution only differs by ~180° in longitude λ from that reported by Kaasalainen et al. (2002), thus it corresponds to their mirror solution. In contrast to their solution, our model is based on additional data from 2005 and 2010 apparitions.

(537) Pauly. The rotation period of 14.15 h from the LCDB is in contradiction with our shape modeling result: our period of 16.2961 h fits the data significantly better and thus is preferred.

(596) Scheila. The observations taken on December 11th, 2010 with the Catalina Schmidt telescope exhibited a comet-like appearance (Larson 2010). This behavior was later confirmed by Jewitt et al. (2011) from the HST observations on December 27th, 2010 and on January 4th, 2011 and interpreted as caused most likely by a collision with a 35m asteroid. All photometric data used for the shape modeling date prior to this event, so the shape model does not reflect any potential changes in the shape, period, or spin orientation induced by the collision (Bodewits et al. 2014).

(8567) 1996 HW₁. The shape model of this NEAs was already determined by Magri et al. (2011) from a combination of dense lightcurves and radar Doppler images. We derived a consistent shape model and rotational state solution from combined dense and sparse data. The main difference between these two models is the fact that the Doppler images contain nonconvex signatures that were translated into their shape model. Even if our shape model is purely convex, it reliably represents the overall shape of the real asteroid. This case once again demonstrates the reliability of the convex inversion method.

(9563) Kitty. We derived the shape model of this asteroid without knowledge of a previous period estimate. However, Chang et al. (2015) recently reported period $P = 5.35 \pm$ 0.03 h based on the optical data from the Intermediate Palomar Transient Factory that is in perfect agreement with our independent determination of $P = 5.38191 \pm 0.00005$ h.

5. Conclusions

In this work, we updated shape models of 36 asteroids with mass estimates by including new optical dense-in-time data in the shape modeling. For 250 asteroids, including 13 Hungarias and three NEAs, we derived their convex shape models and rotation states from combined disk-integrated dense- and sparsein-time photometric data or from only sparse-in-time data. This effort was achieved with the help of the community of ~100 individual observers who shared their lightcurves. All new models are now included in the DAMIT database and are available to anyone for additional studies. For nine asteroids, we provide, together with shape models and pole orientations, their first rotation period estimates.

Our work is a typical example in which a contribution of hundreds of observers, who are regularly obtaining photometric data with their small and mid-sized telescopes, was necessary to achieve presented results. The initial motivation of the observers is to derive the synodic rotation period (sometimes this is an object of a publication in the Minor Planet Bulletin), however, the shape modeling provides a welcome additional opportunity for the usage of their optical data. We acknowledge all the observers who submit their observations to the public databases and invite others to do so as well. This practice allows us an easy and straightforward access to the data and largely avoids an overlook of the precious data.

The shape models can be used as inputs for various studies, such as spin-vector analysis, detection of concavities, thermophysical modeling with the varied-shape approach by Hanuš et al. (2015), nonconvex modeling, size optimization by disk-resolved images or occultation data, or density determinations.

Shape models based only on sparse data (or combined with a few dense lightcurves) are convenient candidates for follow-up observations, both to confirm the rotation periods and to improve the shape models, which is necessary, e.g., for thermophysical modeling. Finally, we maintain a web page with a list of asteroids, for which mass estimates are available and the shape model determination still requires additional photometric data (Hanuš 2015). These objects are candidates for accurate density determination and any lightcurve support is welcome.

Acknowledgements. J.H. greatly appreciates the CNES post-doctoral fellowship program. J.H. and M.D. were supported by the project under the contract 11-BS56-008 (SHOCKS) of the French Agence National de la Recherche (ANR), JD by grant GACR 15-04816S of the Czech Science Foundation, DO by the grant NCN 2012/S/ST9/00022 of Polish National Science Center, and A. Marciniak by grant 2014/13/D/ST9/01818 of Polish National Science Center. We thank the referee, Mikko Kaasalainen, for his thorough review of our manuscript and his constructive comments and suggestions that led to a significant improvement of the text. The computations have been carried out on the "Mesocentre" computers. hosted by the Observatoire de la Côte d'Azur, and on the computational cluster Tiger at the Astronomical Institute of Charles University in Prague (http:// sirrah.troja.mff.cuni.cz/tiger). Data from Pic du Midi Observatory were partly obtained with the 0.6 m telescope, a facility operated by observatoire Midi-Pyrénées and Association T60, an amateur association. The Joan Oró Telescope (TJO) of the Montsec Astronomical Observatory (OAdM) is owned by the Catalan Government and operated by the Institute for Space Studies of Catalonia (IEEC). We thank Franck Pino (INO-AZ) and Lech Mankiewicz (EU-HOU/Comenius) for the remote access to Ironwood North.

References

- Alkema, M. S. 2013a, Minor Planet Bulletin, 40, 133
- Alkema, M. S. 2013b, Minor Planet Bulletin, 40, 68
- Alton, K. B. 2011, Minor Planet Bulletin, 38, 8
- Benishek, V. 2014, Minor Planet Bulletin, 41, 126
- Berthier, J., Vachier, F., Marchis, F., Durech, J., & Carry, B. 2014, Icarus, 239, 118
- Bodewits, D., Vincent, J.-B., & Kelley, M. S. P. 2014, Icarus, 229, 190
- Bottke, W. F., Vokrouhlický, D., Brož, M., Nesvorný, D., & Morbidelli, A. 2001, Science, 294, 1693
- Bowell, E., Oszkiewicz, D. A., Wasserman, L. H., et al. 2014, Meteor. Planet. Sci., 49, 95
- Brinsfield, J. W. 2007a, Minor Planet Bulletin, 34, 58
- Brinsfield, J. W. 2007b, Minor Planet Bulletin, 34, 108
- Brinsfield, J. W. 2008a, Minor Planet Bulletin, 35, 179
- Brinsfield, J. W. 2008b, Minor Planet Bulletin, 35, 86
- Brinsfield, J. W. 2009, Minor Planet Bulletin, 36, 64
- Brinsfield, J. W. 2010a, Minor Planet Bulletin, 37, 19
- Brinsfield, J. W. 2010b, Minor Planet Bulletin, 37, 50
- Brinsfield, J. W. 2011, Minor Planet Bulletin, 38, 73
- Brinsfield, J. W. 2012, Minor Planet Bulletin, 39, 55
- Buchheim, R. K. 2005, Minor Planet Bulletin, 32, 79
- Buchheim, R. K. 2007, Minor Planet Bulletin, 34, 13
- Buchheim, R. K. 2014, Minor Planet Bulletin, 41, 241
- Cantu, S., Adolphson, M., Montgomery, K., & Renshaw, T. 2015, Minor Planet Bulletin, 42, 28
- Carry, B. 2012, Planet. Space Sci., 73, 98
- Carry, B., Dumas, C., Kaasalainen, M., et al. 2010a, Icarus, 205, 460
- Carry, B., Kaasalainen, M., Leyrat, C., et al. 2010b, A&A, 523, A94 Carry, B., Kaasalainen, M., Merline, W. J., et al. 2012, Planet. Space Sci., 66, 200
- Chang, C.-K., Ip, W.-H., Lin, H.-W., et al. 2015, ApJS, 219, 27
- Clark, M. 2010, Minor Planet Bulletin, 37, 89
- Delbo, M., Mueller, M., Emery, J., Rozitis, B., & Capria, M. T. 2015, Asteroids IV, in press
- Descamps, P., Marchis, F., Durech, J., et al. 2009, Icarus, 203, 88
- Devogèle, M., Rivet, J. P., Tanga, P., et al. 2015, MNRAS, 453, 2232
- Ďurech, J., & Kaasalainen, M. 2003, A&A, 404, 709
- Ďurech, J., Grav, T., Jedicke, R., Denneau, L., & Kaasalainen, M. 2005, Earth Moon Planets, 97, 179
- Durech, J., Kaasalainen, M., Marciniak, A., et al. 2007, A&A, 465, 331

- Ďurech, J., Kaasalainen, M., Warner, B. D., et al. 2009, A&A, 493, 291
- Ďurech, J., Sidorin, V., & Kaasalainen, M. 2010, A&A, 513, A46
- Durech, J., Kaasalainen, M., Herald, D., et al. 2011, Icarus, 214, 652
- Ďurech, J., Hanuš, J., Vančo, R., Oszkiewicz, D., & Bowell, E. 2013, in AAS/Division for Planetary Sciences Meeting Abstracts, 45, 304.05
- Ďurech, J., Carry, B., Delbo, M., Kaasalainen, M., & Viikinkoski, M. 2015a, Asteroids IV, in press
- Ďurech, J., Hanuš, J., & Vančo, R. 2015b, Astronomy and Computing, 13, 80
- Ďurech, J., Hanuš, J., Oszkiewicz, D., & Vančo, R. 2016, A&A, in press, DOI: 10.1051/0004-6361/201527573
- Ferrero, A., Klinglesmith, III, D. K., & Pilcher, F. 2014, Minor Planet Bulletin, 41, 33
- Hanuš, J. 2015, Minor Planet Bulletin, 42, 208
- Hanuš, J., & Ďurech, J. 2012, Planet. Space Sci., 73, 75
- Hanuš, J., Ďurech, J., Brož, M., et al. 2011, A&A, 530, A134
- Hanuš, J., Brož, M., Ďurech, J., et al. 2013a, A&A, 559, A134
- Hanuš, J., Marchis, F., & Durech, J. 2013b, Icarus, 226, 1045
- Hanuš, J., Ďurech, J., Brož, M., et al. 2013c, A&A, 551, A67
- Hanuš, J., Delbo, M., Ďurech, J., & Alí-Lagoa, V. 2015, Icarus, 256, 101
- Higgins, D. 2008, Minor Planet Bulletin, 35, 30
- Higgins, D., & Goncalves, R. M. D. 2007, Minor Planet Bulletin, 34, 16
- Higgins, D., & Pilcher, F. 2009, Minor Planet Bulletin, 36, 143
- Higgins, D., & Warner, B. D. 2009, Minor Planet Bulletin, 36, 159
- Higgins, D., Pravec, P., Kusnirak, P., et al. 2006a, Minor Planet Bulletin, 33, 89
- Higgins, D., Pravec, P., Kusnirak, P., et al. 2006b, Minor Planet Bulletin, 33, 8
- Higgins, D., Pravec, P., Kusnirak, P., Reddy, V., & Dyvig, R. 2006c, Minor Planet
- Bulletin, 33, 64
- Jehin, E., Gillon, M., Queloz, D., et al. 2011, The Messenger, 145, 2
- Jewitt, D., Weaver, H., Mutchler, M., Larson, S., & Agarwal, J. 2011, ApJ, 733, L4
- Johansen, A., & Lacerda, P. 2010, MNRAS, 404, 475
- Kaasalainen, M., & Lamberg, L. 2006, Inverse Problems, 22, 749
- Kaasalainen, M., & Torppa, J. 2001, Icarus, 153, 24
- Kaasalainen, M., & Viikinkoski, M. 2012, A&A, 543, A97
- Kaasalainen, M., Torppa, J., & Muinonen, K. 2001, Icarus, 153, 37
- Kaasalainen, M., Torppa, J., & Piironen, J. 2002, Icarus, 159, 369
- Klinglesmith, III, D. A., Hanowell, J., Risley, E., et al. 2014, Minor Planet Bulletin, 41, 139
- Klinglesmith, D. A., DeHart, A., Hanowell, J., & Hendrickx, S. 2015, Minor Planet Bulletin, 42, 101
- Koff, R. A. 2001, Minor Planet Bulletin, 28, 77
- Koff, R. A. 2002, Minor Planet Bulletin, 29, 25
- Koff, R. A. 2004, Minor Planet Bulletin, 31, 58
- Koff, R. A. 2005, Minor Planet Bulletin, 32, 32
- Koff, R. A. 2006. Minor Planet Bulletin, 33, 31
- Koff, R. A., & Brincat, S. M. 2000, Minor Planet Bulletin, 27, 49
- Koff, R. A., & Brincat, S. M. 2001, Minor Planet Bulletin, 28, 67
- Koff, R. A., Brincat, S. M., Stephens, R. D., & Pravec, P. 2001, Minor Planet Bulletin, 28, 46
- Kryszczyńska, A. 2013, A&A, 551, A102
- Kryszczyńska, A., La Spina, A., Paolicchi, P., et al. 2007, Icarus, 192, 223
- La Spina, A., Paolicchi, P., Kryszczyńska, A., & Pravec, P. 2004, Nature, 428, 400
- Larson, S. M. 2010, IAU Circ., 9188, 1
- Larson, S., Beshore, E., Hill, R., et al. 2003, in BAAS, 35, AAS/Division for Planetary Sciences Meeting Abstracts 35, 982
- Magri, C., Howell, E. S., Nolan, M. C., et al. 2011, Icarus, 214, 210
- Marchis, F., Lainey, V., Descamps, P., et al. 2010, Icarus, 210, 635
- Marciniak, A., Michałowski, T., Hirsch, R., et al. 2009, A&A, 498, 313
- Marciniak, A., Michałowski, T., Polińska, M., et al. 2011, A&A, 529, A107
- Marciniak, A., Bartczak, P., Santana-Ros, T., et al. 2012, A&A, 545, A131
- Martinez, L. E. 2012, Minor Planet Bulletin, 39, 25
- Michałowski, T., Kaasalainen, M., Marciniak, A., et al. 2005, A&A, 443, 329
- Miles, R., & Warner, B. D. 2009, Minor Planet Bulletin, 36, 66
- Mouret, S., Hestroffer, D., & Mignard, F. 2007, A&A, 472, 1017
- Mouret, S., Hestroffer, D., & Mignard, F. 2008, Planet. Space Sci., 56, 1819
- Mousis, O., Hueso, R., Beaulieu, J.-P., et al. 2014, Exp. Astron., 38, 91
- Müller, T. G., Ďurech, J., Hasegawa, S., et al. 2011, A&A, 525, A145
- Oey, J. 2006, Minor Planet Bulletin, 33, 96
- Oey, J. 2008, Minor Planet Bulletin, 35, 132
- Oev, J. 2009a, Minor Planet Bulletin, 36, 4
- Oey, J. 2009b, Minor Planet Bulletin, 36, 162
- Oey, J., Vilagi, J., Gajdos, S., Kornos, L., & Galad, A. 2007, Minor Planet Bulletin, 34, 81
- Oey, J., Pilcher, F., Benishek, V., Higgins, D., & Pravec, P. 2012, Minor Planet Bulletin, 39, 86
- Oszkiewicz, D. A., Muinonen, K., Bowell, E., et al. 2011, J. Quant. Spectr. Rad. Transf., 112, 1919

- Owings, L. E. 2009, Minor Planet Bulletin, 36, 51
- Owings, L. E. 2013a, Minor Planet Bulletin, 40, 104
- Owings, L. E. 2013b, Minor Planet Bulletin, 40, 8
- Piironen, J., Lagerkvist, C., Torppa, J., Kaasalainen, M., & Warner, B. 2001, in BAAS, 33, 1562
- Pilcher, F. 2008a, Minor Planet Bulletin, 35, 51
- Pilcher, F. 2008b, Minor Planet Bulletin, 35, 71
- Pilcher, F. 2008c, Minor Planet Bulletin, 35, 135
- Pilcher, F. 2009a, Minor Planet Bulletin, 36, 133
- Pilcher, F. 2009b, Minor Planet Bulletin, 36, 25
- Pilcher, F. 2009c, Minor Planet Bulletin, 36, 100 Pilcher, F. 2010a, Minor Planet Bulletin, 37, 98
- Pilcher, F. 2010b, Minor Planet Bulletin, 37, 167
- Pilcher, F. 2010c, Minor Planet Bulletin, 37, 119
- Pilcher, F. 2010d, Minor Planet Bulletin, 37, 148
- Pilcher, F. 2010e, Minor Planet Bulletin, 37, 45
- Pilcher, F. 2010f, Minor Planet Bulletin, 37, 21
- Pilcher, F. 2011a, Minor Planet Bulletin, 38, 183
- Pilcher, F. 2011b, Minor Planet Bulletin, 38, 76
- Pilcher, F. 2011c, Minor Planet Bulletin, 38, 50
- Pilcher, F. 2011d, Minor Planet Bulletin, 38, 156
- Pilcher, F. 2012a, Minor Planet Bulletin, 39, 57
- Pilcher, F. 2012b, Minor Planet Bulletin, 39, 220
- Pilcher, F. 2013a, Minor Planet Bulletin, 40, 33
- Pilcher, F. 2013b, Minor Planet Bulletin, 40, 189
- Pilcher, F. 2013c, Minor Planet Bulletin, 40, 85
- Pilcher, F. 2013d, Minor Planet Bulletin, 40, 161
- Pilcher, F. 2014a, Minor Planet Bulletin, 41, 155
- Pilcher, F. 2014b, Minor Planet Bulletin, 41, 47
- Pilcher, F. 2014c, Minor Planet Bulletin, 41, 250
- Pilcher, F. 2015a, Minor Planet Bulletin, 42, 190
- Pilcher, F. 2015b, Minor Planet Bulletin, 42, 280
- Pilcher, F. 2015c, Minor Planet Bulletin, 42, 91

Polishook, D. 2009, Minor Planet Bulletin, 36, 119

Pray, D. P. 2004a, Minor Planet Bulletin, 31, 34 Prav, D. P. 2004b, Minor Planet Bulletin, 31, 6

Ruthroff, J. C. 2010, Minor Planet Bulletin, 37, 158

Ruthroff, J. C. 2011, Minor Planet Bulletin, 38, 86

Stephens, R. D. 2001, Minor Planet Bulletin, 28, 5 Stephens, R. D. 2003, Minor Planet Bulletin, 30, 1

Stephens, R. D. 2005, Minor Planet Bulletin, 32, 2

Stephens, R. D. 2006, Minor Planet Bulletin, 33, 100

Stephens, R. D. 2007a, Minor Planet Bulletin, 34, 31

Stephens, R. D. 2007b, Minor Planet Bulletin, 34, 102

Stephens, R. D. 2007c, Minor Planet Bulletin, 34, 64

Stephens, R. D. 2008, Minor Planet Bulletin, 35, 60

Stephens, R. D. 2009, Minor Planet Bulletin, 36, 59

Stephens, R. D. 2010a, Minor Planet Bulletin, 37, 28

Stephens, R. D. 2010b, Minor Planet Bulletin, 37, 122

Stephens, R. D. 2012, Minor Planet Bulletin, 39, 226

Stephens, R. D. 2013, Minor Planet Bulletin, 40, 92

Stephens, R. D. 2014a, Minor Planet Bulletin, 41, 92

Stephens, R. D. 2014b, Minor Planet Bulletin, 41, 226

Stephens, R. D. 2014c, Minor Planet Bulletin, 41, 171

Stephens, R. D. 2015a, Minor Planet Bulletin, 42, 70

Stephens, R. D. 2015b, Minor Planet Bulletin, 42, 104

Pravec, P., Wolf, M., & Šarounová, L. 1998, Icarus, 136, 124

39.204

press

601

111

Planet Bulletin, 42, 90

Polishook, D. 2014, Icarus, 241, 79

Rubincam, D. P. 2000, Icarus, 148, 2

- Pilcher, F., & Franco, L. 2014, Minor Planet Bulletin, 41, 35
- Pilcher, F., & Higgins, D. 2011, Minor Planet Bulletin, 38, 32 Pilcher, F., & Jardine, D. 2009, Minor Planet Bulletin, 36, 52

Pilcher, F., Benishek, V., Delos, S., et al. 2012a, Minor Planet Bulletin, 39, 46 Pilcher, F., Delos, S., Ahrendts, G., & Barker, T. 2012b, Minor Planet Bulletin,

Pilcher, F., Alvarez, E. M., Ferrero, A., et al. 2014, Minor Planet Bulletin, 41, 70

Pilcher, F., Ferrero, A., Klinglesmith, III, D. A., & Hanowell, J. 2015, Minor

Scheeres, D. J., Britt, D., Carry, B., & Holsapple, K. A. 2015, Asteroids IV. In

Shevchenko, V. G., Chiorny, V. G., Gaftonyuk, N. M., et al. 2008, Icarus, 196,

Skiff, B. A., Bowell, E., Koehn, B. W., et al. 2012, Minor Planet Bulletin, 39,

Slivan, S. M., Binzel, R. P., Crespo da Silva, L. D., et al. 2003, Icarus, 162, 285

A108, page 7 of 24

Pilcher, F., Ferrero, A., & Oey, J. 2012c, Minor Planet Bulletin, 39, 228

Polishook, D., Ofek, E. O., Waszczak, A., et al. 2012, MNRAS, 421, 2094

Pravec, P., Scheirich, P., Vokrouhlický, D., et al. 2012, Icarus, 218, 125

- Stephens, R. D., & Warner, B. D. 2008, Minor Planet Bulletin, 35, 84
- Stephens, R. D., & Warner, B. D. 2013, Minor Planet Bulletin, 40, 93
- Stephens, R. D., Malcolm, G., Koff, R. A., Brincat, S. M., & Warner, B. 2001, Minor Planet Bulletin, 28, 1
- Stephens, R. D., Warner, B. D., Megna, R., & Coley, D. 2012, Minor Planet Bulletin, 39, 2
- Stephens, R. D., Coley, D., & Warner, B. D. 2014, Minor Planet Bulletin, 41, 8
- Strabla, L., Quadri, U., & Girelli, R. 2011, Minor Planet Bulletin, 38, 169
- Strabla, L., Quadri, U., & Girelli, R. 2012, Minor Planet Bulletin, 39, 177
- Strabla, L., Quadri, U., & Girelli, R. 2013, Minor Planet Bulletin, 40, 232
- Tanga, P., Carry, B., Colas, F., et al. 2015, MNRAS, 448, 3382
- Torppa, J., Kaasalainen, M., Michałowski, T., et al. 2003, Icarus, 164, 346
- Viikinkoski, M., Kaasalainen, M., & Durech, J. 2015, A&A, 576, A8
- Vokrouhlický, D., Nesvorný, D., & Bottke, W. F. 2003, Nature, 425, 147
- Warner, B. D. 1999, Minor Planet Bulletin, 26, 31
- Warner, B. 2000, Minor Planet Bulletin, 27, 4
- Warner, B. 2001, Minor Planet Bulletin, 28, 4
- Warner, B. D. 2005a, Minor Planet Bulletin, 32, 29
- Warner, B. D. 2005b, Minor Planet Bulletin, 32, 54 Warner, B. D. 2005c, Minor Planet Bulletin, 32, 4
- Warner, B. D. 2006a, Minor Planet Bulletin, 33, 82
- Warner, B. D. 2006b, Minor Planet Bulletin, 33, 58 Warner, B. D. 2006c, Minor Planet Bulletin, 33, 85
- Warner, B. D. 2006d, Minor Planet Bulletin, 33, 35
- Warner, B. D. 2007a, Minor Planet Bulletin, 34, 72
- Warner, B. D. 2007b, Minor Planet Bulletin, 34, 104
- Warner, B. D. 2008a, Minor Planet Bulletin, 35, 56
- Warner, B. D. 2008b, Minor Planet Bulletin, 35, 163 Warner, B. D. 2009a, Minor Planet Bulletin, 36, 109
- Warner, B. D. 2009b, Minor Planet Bulletin, 36, 7
- Warner, B. D. 2009c, Minor Planet Bulletin, 36, 172
- Warner, B. D. 2010a, Minor Planet Bulletin, 37, 112
- Warner, B. D. 2010b, Minor Planet Bulletin, 37, 24
- Warner, B. D. 2010c, Minor Planet Bulletin, 37, 57
- Warner, B. D. 2010d, Minor Planet Bulletin, 37, 127
- Warner, B. D. 2011a, Minor Planet Bulletin, 38, 142
- Warner, B. D. 2011b, Minor Planet Bulletin, 38, 25
- Warner, B. D. 2011c, Minor Planet Bulletin, 38, 63
- Warner, B. D. 2012a, Minor Planet Bulletin, 39, 158
- Warner, B. D. 2012b, Minor Planet Bulletin, 39, 16
- Warner, B. D. 2012c, Minor Planet Bulletin, 39, 69
- Warner, B. D. 2012d, Minor Planet Bulletin, 39, 245
- Warner, B. D. 2013a, Minor Planet Bulletin, 40, 71
- Warner, B. D. 2013b, Minor Planet Bulletin, 40, 137
- Warner, B. D. 2014a, Minor Planet Bulletin, 41, 27
- Warner, B. D. 2014b, Minor Planet Bulletin, 41, 144
- Warner, B. D. 2015a, Minor Planet Bulletin, 42, 54
- Warner, B. D. 2015b, Minor Planet Bulletin, 42, 115
- Warner, B. D. 2015c, Minor Planet Bulletin, 42, 132 Warner, B. D., Shepard, M. K., Harris, A. W., et al. 2006, Minor Planet Bulletin,
- 33, 102 Warner, B. D., Behrend, R., Poncy, R., & Coliac, J.-F. 2008a, Minor Planet
- Bulletin, 35, 25 Warner, B. D., Durech, J., Fauerbach, M., & Marks, S. 2008b, Minor Planet
- Bulletin, 35, 167
- Warner, B. D., Harris, A. W., & Pravec, P. 2009, Icarus, 202, 134
- Warner, B. D., Stephens, R. D., & Harris, A. W. 2011, Minor Planet Bulletin, 38, 172
- Warner, B. D., Harris, A. W., Stephens, R. D., & Coley, D. 2014, in AAS/Division for Planetary Sciences Meeting Abstracts, 46, 509.12
- ¹ Centre National d'Études Spatiales, 2 place Maurice Quentin 75039 Paris Cedex 01, France
- e-mail: hanus.home@gmail.com

A108, page 8 of 24

- ² Laboratoire Lagrange, UMR7293, Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Blvd de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France
- Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic
- ⁴ Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
- ⁵ Geneva Observatory, 1290 Sauverny, Switzerland
- Aix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pythéas (UMS 3470), 04870 Saint-Michell'Observatoire, France

- ⁷ Centre for Science at Extreme Conditions, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
- Association T60, Observatoire du Pic du Midi, 65200 Bagnères-de-Bigorre, France
- 0 Observatoire des Hauts Patys, 84410 Bédoin, France
- 10 Observatoire de Chinon, Mairie de Chinon, 37500 Chinon, France
- 11 Villefagnan Observatory, France
- ¹² Harfleur Observatory, France
- ¹³ 490 chemin du gonnet, 38440 Saint Jean de Bournay, France
- 14 Observatoire des Engarouines, 1606 chemin de Rigoy, 84570 Malemort-du-Comtat, France
- Collonges Observatory, 90 allée des résidences, 74160 Collonges, 15 France
- 16 SUPA, School of Physics & Astronomy, North Haugh, St Andrews, KY169SS, UK
- 17 Via Capote Observatory, Thousand Oaks, CA 91320, USA
- 18 Le Florian, Villa 4, 880 chemin de Ribac-Estagnol, 06600 Antibes, France
- 19 Observatoire de Dauban, 04150 Banon, France
- 20Levendaal Observatory, Uiterstegracht 48, 2312 TE Leiden, The Netherlands
- 21 European Southern Observatory, La Silla, Coquimbo, Chile
- ²² Eurac Observatory, Bolzano/Bozen, Italy
- 23 Vallemare di Bordona, Rieti, Italy
- 24 Observatorio Astronómico Caimari, 07144 Costitx, Spain
- ²⁵ Observatoire de Durtal, 49430 Durtal, France
- ²⁶ OAM Mallorca, 07144 Costitx, Spain
- 27 20 parc des Pervenches, 13012 Marseille, France
- 28 Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain
- 29 Observatorio El Vendrell, 1193 Trragona, Spain
- ³⁰ AFOEV (Association Française des Observateurs d'Etoiles Variables), Observatoire de Strasbourg 11, rue de l'Université, 67000 Strasbourg, France
- ³¹ Observatori d'Ager, 08014 Barcelona, Spain
- ³² Stazione Astronomica di Sozzago, 28060 Sozzago, Italy
- 33 Santa Lucia Stroncone, 05039 Stroncone, Italy
- 34 Institut d'Astrophysique de l'Université Liège, Allèe du 6 Aout 17, 4000 Liège, Belgium
- 35 Haleakala-Faulkes Telescope North, Hawaii, USA
- ³⁶ Seine-Maritime, Le Havre, 76600 Haute-Normandie, France
- 37 Village-Neuf Observatory, 9bis rue du Sauvage, 68300 Saint-Louis, France
- Mt. Suhora Observatory, Pedagogical University. Podchorążych 2, 30-084, Cracow, Poland
- 39 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA
- ⁴⁰ Waterlooville, UK

USA 48

49

51

52

53

54

- ⁴¹ Observatoire St-Martin, 31 grande rue, 25330 Amathay Vésigneux, France
- 42 Observatorio CEAM, Caimari, Canary Islands, Spain
- Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort 43 Myers, FL 33965, USA
- 44 Observatoire du Bois de Bardon, 16110 Taponnat, France
- 45 Association T60, 14 avenue Edouard Belin, 31400 Toulouse, France

International Occultation Timing Association, Montgomery, AL,

Club d'Astronomie de Lyon Ampere (CALA), Place de la Nation,

Institute of Planetary Research, German Aerospace Center,

51 Centre astronomique de la Couvère, La Ville d'ABas, 35320

Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913,

⁵⁰ Hong Kong Space Museum, Tsimshatsui, Hong Kong, PR China

46 Osservatorio l'Ampolla, Tarragona, Spain 47

Rutherfordstrasse 2, 12489 Berlin, Germany

Astroqueyras, Mairie, 05350 Saint-Véran, France

69120 Vaulx-en-Velin, France

La Couyère, France

Australia

Linhaceira Observatory, Portugal

- ⁵⁵ Observatoire des Terres Blanches, 04110 Reillanne, France
- ⁵⁶ Department of Physics, University of Strathclyde, 16 Richmond Street, Glasgow G1 1XQ, UK
- ⁵⁷ Guitalens Observatory, 5 chemin d'En Combes, 81220 Guitalens, France
- 58 Observatoire Les Makes, G. Bizet 18, 97421 La Rivière, France
- ⁵⁹ 980 Antelope Drive West, Bennett, CO 80102, USA
- ⁶⁰ Institute of Astronomy of Kharkiv Karazin National University, Kharkiv 61022, Sumska Str. 35, Ukraine
- ⁶¹ Severní 765, 50003 Hradec Králové, Czech republic
- ⁶² Uranoscope, Avenue Carnot 7, 77220 Gretz-Armainvilliers, France
- ⁶³ Observatoire OPERA, France
- ⁶⁴ Instituto de Astrofísica de Andalucía, CSIC, Apdo. 9481, 08080 Barcelona, Spain
- ⁶⁵ Mulheim-Ruhr, Germany
- ⁶⁶ Tzec Maun Foundation Observatory, Mayhill, New Mexico, US
- ⁶⁷ Observatorio Montcabrer, C/Jaume Balmes nb 24, Cabrils 08348 Barcelona, Spain
- ⁶⁸ Kingsgrove, NSW, Australia
- ⁶⁹ Sant Gervasi Observatory, 08022 Barcelona, Spain
- ⁷⁰ 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA
- ⁷¹ Rue des Ecoles 2, 34920 Le Crès, France
- ⁷² 11 rue François-Nouteau, 49650 Brain-sur-Allonnes, France
- ⁷³ Ottmarsheim Observatory, 5 rue du Lièvre, 68490 Ottmarsheim, France

- ⁷⁴ Université Claude BERNARD Lyon 1. Observatoire de Pommier, POMMIER, 63230 Chapdes-Beaufort, France
- ⁷⁵ 4 rue de la Bruyère, 37500 La Roche Clermault, France
- ⁷⁶ Observatoire de Blauvac, 293 chemin de St Guillaume, 84570
- Blauvac, France ⁷⁷ Shadowbox Observatory, 12745 Crescent Drive, Carmel, IN 46032, USA
- ⁷⁸ Lowell Observatory, Flagstaff, AZ 86001, USA
- ⁷⁹ Savigny-le-Temple, France
- ⁸⁰ Observatorio Amanecer de Arrakis, MPC274 Alcalá de Guadaíra, Sevilla, Spain
- ⁸¹ Gnosca Observatory, 6525 Gnosca, Switzerland
- ⁸² DeKalb Observatory, 2507 CR 60, Auburn, IN 46706, USA
- ⁸³ Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA
- ⁸⁴ School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
- ⁸⁵ European Space Astronomy Centre, ESA, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
- ⁸⁶ Ironwood North, Hawaii, USA
- ⁸⁷ Centre de Recherche en Astronomie, Astrophysique et Géophysique, BP 63 Bouzereah, Algiers
- ⁸⁸ Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland

Appendix A: Additional tables

Table A.1. New asteroid shape model determinations from disk-integrated optical data.

Asteroid	λ1	B1	λ2	β	Р	Nu	Norm	Nem	N702	NLOW
110001010	[deg]	[deg]	[deg]	[deg]	[h]	- ' IC	- · app	- ' 069	- 105	- LOW
			Near-	Earth ast	eroids					
3752 Camillo	256	-14			37.881	9	1			77
5332 1990 DA	266	-21			5.80285	6	3			190
8567 1996 HW1	283	-34			8.76239	45	2			333
			I	Hungaria	S					
434 Hungaria	109	67			26.4879	40	5			331
1103 Sequoia	60	-59			3.037976	13	3			320
2001 Einstein	87	-43			5.48503	13	4			382
2495 Noviomagum	12	-57			6.65168	4	1			190
3266 Bernardus	227	-32			10.75954	15	4			321
4490 Bambery	53	59			5.82345	15	5			323
4764 Joneberhart	219	-36			5.48411	8	3			313
6087 Lupo	248	-16			4.71654	.7	2		78	
6517 Buzzi	227	-75			8.64468	17	4			337
7660 1993 VM1	321	-44			5.91818	8	2			333
11058 1991 PN10	234	-64			6.51669	7	2		96	
67404 2000 PG26	149	69			5.39877	1	2			275
86257 1999 TK207	28	-60			32.4029	13	2			201
	1.7.4	15	Maın	-belt aste	eroids	50	0			252
12 Victoria"	174	-17			8.66034	53	8			352
18 Melpomene"	11	14	107	50	11.5/031	64	8			326
24 Themis"	331	52	137	59	8.3/419	46	/			/13
26 Proserpina	88	-52	200		13.10977	29	/			563
31 Euphrosyne ^a	88	66	290	6	5.529597	29	8			366
35 Leukothea	15	/	196	0	31.9009	52	1			41/
36 Atalante	45	-49	190	-55	9.92692	30	6			369 501
48 Doris"	297	61	108	4/	11.89010	31	4			591
51 Nemausa"	109	-02	347	-08	10 1402	27	1/			440
56 Melete	103	-27	282	-5	18.1482	3/	6			400
oo Maja	49	-70	225	-08	9.75570	10	3			430
/1 INIODE	88 286	-33			33.8321	49	2			420
98 failule 00 Dilyo	200	10			10.4601	20	2 4			302 410
102 Hore	233	24	270	40	10.1191	29	4			410 516
103 Hera^{a}	112	24	270	40	23.7427	12	2			510
104 Krymene 112 Inbigenia ^{<i>a</i>}	101	66	292	-4 50	31 4625	12	1			J19 416
112 Ipingenia 117 Lomin ^{<i>a</i>}	312	-00	117	-30	0 12/17	10	1			410
120 Lachesis ^{a}	256	-40	82	-10	7.12417 76 5508	35	4			459
120 Eachesis	201	22	23	20	10 68724	17				553
136 Austria	117	53	357	81	11 49662	4	1			401
144 Vibilia ^{a}	248	56	54	48	13 82516	43	4			417
150 Nuwa^a	359	25	177	22	8.13456	33	5			543
154 Bertha ^{a}	28	34	234	${32}$	25.2285	18	3			431
155 Scylla	201	69	356	53	7.95880	7	1	110	108	.01
164 Eva	54	-10	220	00	13.66380	18	4	110	100	390
171 Ophelia	144	29	329	23	6.66454	37	4			453
179 Klytaemnestra ^{<i>a</i>}	65	-6	248	-9	11.17342	3	1			391
180 Garumna	41	-64	196	-64	23.8592	23	2			467
187 Lamberta ^{<i>a</i>}	153	-56	328	-62	10.66703	20	5			482
189 Phthia ^a	26	35	197	45	22.3416	15	3	135	60	
210 Isabella ^a	100	-14	278	-26	6.67190	-	-	176	64	
212 Medea ^a	40	-24	220	-33	10.28414	46	8			397
226 Weringia	284	-14			11.14849	24	4			485
233 Asterope	132	36	322	59	19.6981	13	3			427
237 Coelestina	42	14	230	30	29.1758	10	1			366
245 Vera	265	-51	96	-50	14.35651	3	1			351
246 Asporina	235	-10	47	-36	16.25222	6	1			438
247 Eukrate	103	-22			12.09480	41	3			315
249 Ilse	3	85	222	41	84.995	29	3			461

Notes. The table provides ecliptic coordinates λ_1 and β_1 of the best-fitting pole solution, ecliptic coordinates λ_2 and β_2 for the possible second (mirror) pole solution, sidereal rotational period *P*, the number of dense lightcurves N_{lc} spanning N_{app} apparitions, and the number of sparse-intime measurements from three sources: N_{689} (USNO-Flagstaff), N_{703} (Catalina Sky Survey) and N_{LOW} (Lowell). ^(a) Reliable mass estimate exists or the mass will be most likely determined from Gaia astrometric measurements. ^(b) First rotation period estimate.

Asteroid	λ_1	β_1	λ_2	β_2	P	$N_{\rm lc}$	Napp	N ₆₈₉	N ₇₀₃	N _{LOW}
254 Augusta	[ueg]	[ueg]	[ueg]	[ueg]	[n] 5 80505	6	n			371
254 Augusta 263 Dresda	00	-32 54	23	-55	16 8139	12				605
205 Diesua 270 Anahita	15	-50	207	_59	15 05906	12	4			492
270 Analita 271 Penthesilea	225	-30	42	-59	18 7875	12		129	83	792
271 Philagoria	328	-71	154	-65	17 9410	12	3	12)	05	460
287 Nephthys	356	36	158	39	7 60411	8	3	291	90	100
207 Replicitys 293 Brasilia	103	-7	274	-34	8 17410	4	1	271	70	411
296 Phaetusa	146	53	330	52	4 53809	5	1			340
213 Chaldaea ^a	210	34	45	10	8 38003	21	5			300
315 Constantia	162	56	353	10	5 34750	21	1	/0	115	590
317 Royane	220	_62	40	-70	8 16061	16	2	77	115	504
327 Columbia	52	-02	238	-70	5 03183	10	2	161	108	504
3/13 Ostara	103		204	20 48	110.028	13	2	101	100	3/18
353 Duperto Carola	103	59	13	-10 64	2 738063	6	1	106	80	540
261 Poponio	204	-38	45	-04	12 20624	5	1	100	72	
265 Corduba ^d	294	13	115	43	12 7054	40	25	165	15	116
200 Columb_{a}	255	33 70	00 27	4	6 57106	49	5			440
280 Industria	219	12	201	43	0.37190	10	4			490
201 Incohore	98 254	-38	291	-29	0.49320	9 24	3			303
204 Arduine	304 105	-05	54	70	20.4140	24 0	2 1			409
394 Aruuma	195	-01	30	- 19	10.021/	ð 12	1			393
402 Unice	512	-49	100	-37	10.00844	13	5			5/5
40/ Arachne	241	-63	43	-58	22.6263	5	1			433
419 Aurelia ^a	0	48	174	42	16.8	47	9			120
455 Bruchsalia"	242	-13	73	-21	11.8401	15	2			429
474 Prudentia	301	-54	136	-64	8.57227	5	1			374
480 Hansa	352	18	173	-32	16.1894	8	3	200	64	
482 Petrina	281	61	94	24	11.79214	42	5			337
489 Comacina	265	-16	88	-43	9.02321	5	3			434
490 Veritas ^a	56	34	231	43	7.92811	10	1			435
497 Iva	121	-22	303	-32	4.620850	8	2			359
502 Sigune	178	-36			10.92666	23	3			378
520 Franziska	282	-79	114	-45	16.5045	9	2			384
526 Jena	5	36	183	48	9.51664	3	1	151	44	
537 Pauly	31	32	211	51	16.2961	7	3			472
562 Salome	78	41	275	28	6.35031	9	3			425
564 Dudu	73	-51	213	-36	8.88504	3	1			327
565 Marbachia	334	-22	163	-47	4.58782	7	2			452
567 Eleutheria	317	33	131	53	7.71743	19	4			395
586 Thekla	232	36	55	32	13.6816	3	1			432
596 Scheila ^a	264	-18	89	-9	15.8666	7	1	153	76	
622 Esther	248	-60			47.5039	5	1			431
625 Xenia	307	9	122	7	21.0122	3	1			415
632 Pyrrha	74	-72	253	-74	4.11686	5	1			487
639 Latona	204	10	25	12	6.19127	5	2	160	42	
644 Cosima	278	-31	100	-30	7.55709	16	2			461
660 Crescentia	68	11	236	49	7.91036	18	3			438
670 Ottegebe	128	75			10.03991	4	1			540
681 Gorgo	310	-50	150	-50	6.46063	4	1			319
682 Hagar	56	-78	255	-57	4.85042	6	1			334
686 Gersuind	125	53	260	58	6.31240	5	1			400
687 Tinette	271	18	100	43	7.39710	3	1			297
692 Hippodamia	233	-53	-00		8,99690	3	1			396
698 Ernestina	213	-66	76	-49	5.03660	5		140	76	575
706 Hirundo	92	66	244	54	22,0160	6	1	110		365
742 Edisona	46	_54	175	_43	18 5833	15	3	141	115	505
746 Marlu	202	-66	64	_27	7 78887	11	2	171	115	373
740 Malzovia	55	46	246	27 55	5 027/18	5	ے۔ 1			172
756 Lilliano	201	40	240 52	26	J.72140 7 82750	21	1			423
757 Dortlandia	201	31 60	00	50	6 59110	21 12	4			572
759 Monouni-"	203	-09	90	-30	0.38112	12	2			300
762 Drah	111	48	306	44	12./2011	26	3			461
/02 Pulcova"	194	-42	17	-14	5.83977	8	2			408
/84 Pickeringia"	282	35	103	68	13.16998	1	1		10.1	437
/9/ Montana	6	61	179	45	4.54619	10	_	145	124	
798 Ruth	84	27			8.55068	18	5			426
802 Epyaxa	347	-87			4.39012	4	2	92	50	
830 Petropolitana	217	36	34	41	37.347			151	51	

Astaroid).	R.).	R.	D	Ν.	M	M	λ/	N
Asteroid	λ_1 [deg]	p ₁ [deg]	Λ_2 [deg]	p_2 [deg]	P [h]	/V _{lc}	1v _{app}	18689	11703	IVLOW
856 Backlunda	42	44	226	73	12.02894	2	1	155	103	
870 Manto	96	30	283	35	122.166	44	2			363
872 Holda	77	24	253	32	5.94052	12	2	169	77	201
8/3 Mechthild	249	-52	51	-61	11.00639	9	2			391
8// Walkure	202	/1 _77	47		17.4217	3	1	02	80	390
908 Buda	40	- / / 5	225	-43	14 57498	6	2	92	69	303
928 Hildrun	247	-29	86	-63	14 1163	0	2	146	114	505
944 Hidalgo	277	16	-999	-999	10.05822	15	4	0	0	99
986 Amelia	80	30	282	30	9.51856	4	1	147	110	
898 Hildegard	344	27	164	8	24.8544	15	2	0	0	242
1010 Marlene	299	42	106	47	31.0651	8	1			364
1021 Flammario ^a	32	22	216	55	12.15186	10	2			368
1023 Thomana	86	-65	272	-42	17.5611	8	1			486
1080 Orchis	255	27	71	28	16.0657	13	1			447
1110 Jaroslawa	236	75	202		97.278	50	2	122	147	307
1119 Euboea	122	15	282	22 40	5 26862	2	1	132	147	257
1125 Collebis	132	-40 _58	330	-49 _81	23 4830	Z	1	142	07	551
1137 Raissa	220	-30 -66	230 40	-01 -77	143 644	33	2	142	71	408
1150 Achaia	169	-69	347	-62	61.072	55	4	67	98	100
1175 Margo	184	-43	353	-17	6.01375	4	1	0,	20	395
1192 Prisma	133	-78		± ,	6.55836	5	1			193
1204 Renzia	142	-50	305	-45	7.88695	1	1			528
1244 Deira	314	-46	107	-56	216.98	21	1			331
1278 Kenya	164	-66	281	-77	187.60	27	1			466
1310 Villigera	3	63	240	26	7.83001	4	1			319
1312 Vassar	251	-23			7.93190	4	1			317
1352 Wawel	200	59	32	61	16.9543	5	1			356
1360 Tarka	323	-55	201	= =	8.86606	10	2	126	110	242
1300 Piccolo 1268 Numidia	352 201	49	201	55	10.1834	2	5	130	110 92	
1306 Nullilala 1424 Sundmania	201	-02 76	275	58	94 537	5 16	1	129	65	490
1424 Sundinama	297	42	128	58 47	6 90907	6	1			409
1449 Virtanen	307	58	99	58	30.5005	11	1			354
1459 Magnya	72	-59	207	-51	4.67911		-	137	96	
1486 Marilyn	88	-66	267	-66	4.56695	5	1			492
1508 Kemi	352	108	166	73	9.19182	6	2	0	0	246
1534 Nasi	82	23	268	13	7.93161	3	1			362
1546 Izsak	124	32	322	60	7.33200	3	1	80	80	
1621 Druzhba	240	71			99.100	1	1			365
1648 Shajna	117	54	306	53	6.41369			75	136	201
1665 Gaby	261	41	66	32	67.911	12	1			296
1672 Gezelle	45	79	201	60	40.6824	12	2			300
1070 Kariba 1730 Marceline	74 264	/4 68	201 82	00 44	3.10/338 3.836511	2 2	1			542 268
1735 ITA	204	-46	0∠ 178	_52	12 6103	2	1	148	107	200
1746 Brouwer	21	-67	158	-71	19.7255	4	1	88	64	
1750 Eckert	176	60	-999	-999	377.5	23	1	0	0	193
1772 Gagarin	183	22	358	5	10.93791	3	1	46	110	
1789 Dobrovolsky	319	30	137	34	4.811096	3	2	-	-	380
1793 Zoya	238	64	62	64	5.751872	5	2			398
1816 Liberia	73	-68			3.086156			86	104	
1820 Lohmann	264	65	69	55	14.0449	16	1			281
1825 Klare	2	-58			4.74288	5	1			336
1837 Osita	36	-52	228	-58	3.81880	4	1	102	0.1	337
1838 Ursa	42	64	284	29	16.1635	1	1	102	91	200
1092 Lucienne	20	-40	215	-01	9.31330	1 15	1			280
1902 Snaposnnikov	320 277	31 57	144 66	/9 10	20.9959	15	4			439 270
1925 Frankfint-Audilis 1946 Walraven	211	_27	00 80	40 _50	2.976301	2	1	101	73	270
2306 Bauschinger	239	-64	225	- <i>59</i> -65	21 6704	6	1	101	63	
2313 Aruna	80	-75		05	8.88620	0	1		103	
2358 Bahner	360	57	193	52	10.8528	13	1		69	
2381 Landi	220	-36	14	-66	3.986041	6	1			364
2382 Nonie	205	52			15.1117	7	2			354

Asteroid	λ_1	β_1	λ_2	β_2	<i>Р</i> [h]	$N_{\rm lc}$	N_{app}	N_{689}	N ₇₀₃	$N_{\rm LOW}$
2393 Suzuki	80	53	222	38	9.2875				92	
2659 Millis	109	-49	288	-48	6.12464	2	1			566
2713 Luxembourg	164	4	343	4	3.58132				97	
2725 David Bender	198	-37	58	-57	9.95798	3	1	37	115	
2741 Valdivia	269	-31	103	-59	4.09668	4	1			482
2785 Sedov	206	48	26	54	5.47761				127	
2791 Paradise	100	-16			9.80729	3	1		40	
2802 Weisell	255	-50	112	-63	37.705			27	156	
2948 Amosov	267	-64	33	-73	7.39889				120	
2962 Otto	230	-58			2.53632				111	
3247 Di Martino	53	-70	231	-75	5.44517				87	
3258 Somnium	119	-47	274	-71	5.33803	7	1			567
3285 Ruth Wolfe	142	33			3.93494	3	1		75	
3301 Jansje	361	28	173	40	9.42533	8	1			630
3428 Roberts	63	49	231	49	3.27835			24	129	
3455 Kristensen	9	10	186	10	8.09218				129	
3478 Fanale	95	64	297	62	3.244843	5	1			627
3544 Borodino	294	-60	157	-57	5.43460	7	2			515
3693 Barringer	243	-43			6.62564				81	
3725 Valsecchi	77	-54	242	-53	3.56973				83	
3773 Smithsonian	257	-51	81	-50	6.98132	5	1			622
3786 Yamada	84	52	218	48	4.03295	3	1			463
3787 Aivazovskij	75	59	238	57	2.980807				138	
3918 Brel	71	58	238	47	3.09679	1	1		114	
4080 Galinskij	209	-74			7.35845				162	
4265 Kani	106	60	310	54	5.72755	4	1			730
4284 Kaho	6	-21	193	0	4.05763				79	
4554 Fanynka	220	55	64	63	4.77502				84	
4570 Runcorn	123	57	287	31	20.1514	11	1		87	
4917 Yurilvovia ^b	224	20	48	1	4.17744				90	
5008 Miyazawakenji ^b	144	-52	322	-25	49.239				101	
5111 Jacliff	259	-45			2.83990				107	
5208 Royer	258	74	54	37	3.88494				138	
5231 Verne	175	-45	359	-88	4.32058			20	76	
5317 Verolacqua	224	-51			3.02181				119	
5489 Oberkochen	195	-41	13	-66	5.62439	3	1			470
5596 Morbidelli	173	-80			5.40043				78	
5776 1989 UT2 ^b	360	-72			4.34079				133	
6000 United Nations	13	-84			3.26191			21	143	
6026 Xenophanes ^b	266	-54	80	-56	3.78170				100	
6192 1990 KB1	61	67	239	75	78.631	16	2		91	
6406 1992 MJ	20	-63	221	-55	6.81818	3	1			508
6410 Fujiwara	243	-85			7.00669	2	1			552
6755 Solov'yanenko	224	54	47	58	8.1680				101	
6905 Miyazaki	33	7	214	-4	2.733348				120	
7233 Majella	298	-87	80	-71	3.81240				77	
8043 Fukuhara ^b	96	-41			22.7606				117	
8860 Rohloff ^b	37	-58			18.8411				114	
9542 Ervan ^b	200	-5	21	-22	2.79473				120	
9563 Kitty	272	-28	91	-34	5.38191				111	
10064 1988 UO ^b	78	-45	240	-57	12.1277				122	
14197 1998 XK72	192	-74	38	-62	10.6453	4	1			441
16173 2000 AC98	37	-48	209	-37	6.48550				97	
16468 1990 HW1 ^b	119	-84	/	21	94.13	1	1		72	
18487 1996 AU3	245	-45	91	-70	6 59077	1	1		120	
28736 2000 GE133	240 240	_52	134	-84	4 65442	3	1		118	
28887 2000 KO58	182	_35	354	_78	6 84315	6	1		110	368
31060 1996 TR6	216	-66	74	_39	5 10432	U	1		108	500
32776 Nriag	210	_50	102	_76	3 08670				141	
33116 1998 RO12	239 744	- <i>59</i> 60	45	-70	6 34660	Δ	1		122	
34484 2000 SR124	116	_59	- - -5 268	0	6 17516	Ŧ	1		00	
42023 1000 SR124	46	60	200	00	8 3880				155	
12723 1777 SK10	-10	09			0.5009				155	

Aster	oid Date		N _{LC} Observer
3 Juno	2013 09	- 2013 09	9 1 Maurice Audejean
7 Iris	2010 12	- 2010 12	2 2 Gérald Rousseau
	2013 08	- 2013 08	3 1 Patrick Sogorb
16 Psych	e 2003 05	- 2003 05	5 2 Eric Barbotin
	2003 05	- 2003 05	5 2 Laurent Bernasconi
17 Thetis	s 2007 04 ·	- 2007 04	4 1 Arnaud Leroy
	2011 02	- 2011 02	2 3 Ramón Naves
	2011 03	- 2011 03	3 1 Quentin Déhais
19 Fortu	na 2011 04	- 2011 04	4 1 Ramón Naves
	2011 04	- 2011 04	4 2 Gérald Rousseau
20 Massa	alia 2012 03 -	- 2012 05	5 13 David Higgins
	2012 06	- 2012 06	5 2 Frederick Pilcher
22 Kallio	ope 2004 06	- 2004 06	5 2 Alain Klotz
	2004 06	- 2004 06	5 3 René Roy, Raoul Behrend
	2004 06	- 2012 02	2 10 René Roy
	2006 11	- 2006 11	1 4 Hiromi Hamanowa, Hiroko Hamanowa
	2006 12	- 2006 12	2 1 Jean-François Coliac
	2007 02	- 2007 03	3 5 Enric Forné
	2007 02	- 2007 03	3 9 Warner (2007a)
	2007 03	- 2007 03	3 1 Arnaud Leroy, Sylvain Bouley
			Guillaume Dubos, Raoul Behrend
	2007 03 - 2007 03	1 R	Ramón Costa
	2007 03 - 2007 03 2012 01 - 2012 01	4 F	Emmanuel Conseil
	2012 01 - 2012 01 2012 02 - 2012 02	1 1	Jacques Montier
	$2012\ 02 = 2012\ 02$ $2012\ 02 = 2012\ 02$	1 J	Jean-François Colliac
	2012 02 - 2012 02 2012 02 - 2012 02	1 N	Maurice Audeiean
3 Thalia	$2012\ 02 - 2012\ 02$		Pilcher (2010f)
) Illalla	$2009\ 08 - 2009\ 09$		Gárald Dougsoon
	$2010\ 12 - 2011\ 01$		Damán Navas
	$2011\ 01 - 2011\ 02$ $2015\ 02 - 2015\ 02$	4 K	Crea Turnele, Vereniles Aferina
	2013 02 - 2013 02	1 0	Greg Tulliolo, verolika Atolilla
7 17 4	2000.07 2011.00	42 C	Alexander Scholz, Sharat Jawanar
/ Euterpe	2000 07 - 2011 08	43 5	Stephens et al. (2001), Stephens (2001), Stephens et al. (2
	2010 06 - 2010 07	5 P	Pilcher (2011c)
	2010 07 - 2010 07		Jacques Montier, Serge Heterier
9 Amphitrite	2006 10 - 2006 11	9 E	Hiromi Hamanowa, Hiroko Hamanowa
	2007 11 - 2007 11	1 E	Enric Forné
	2008 02 - 2008 02	1 P	Polishook (2009)
	2009 04 - 2009 04	2 A	Arnaud Stiepen, Olivier Wertz
		Ľ	Davide Ricci, Yassine Damerdji
		R	René Giraud, Raoul Behrend
	2009 04 - 2009 04	2 J	Jean-François Pirenne, Pierre Piron
		E	Damien Renauld, Lucas Salvador
		В	Benjamin Vanoutryve, Raoul Behrend
	2009 04 - 2009 04	2 N	Mathieu Waucomont, Alice Decock
		S	Sophie Delmelle, Maïte Dumont
		Т	Thomas Fauchez, Raoul Behrend
	2009 04 - 2009 04	2 C	Olivier Adam, Arnaud Collet
		В	Benjamin Modave, Niyonzima Innocent
		R	Raoul Behrend
	2012 02 - 2012 02	3 F	François Kugel, Jérôme Caron
J Laetitia	1998 03 - 1998 03	1 Y	Yurij Krugly
	2003 03 - 2003 03	1 C	Claudine Rinner
	2003 03 - 2003 03	1 S	Stéphane Charbonnel
	2004 05 - 2005 07	4 J	Josep Coloma
	$2010\ 10 - 2010\ 11$	3 R	Ramón Naves
	2012.02 - 2012.02	2 N	Maurice Audeiean
) Harmonia	2003 01 - 2003 01	1 A	Alain Klotz
	2003.01 - 2003.01 2003.05 - 2003.05	3 I	Laurent Bernasconi
	2003 03 - 2003 03 2008 12 2010 04	J L	Pilcher (2000a, 2010b)
Donhac	2000 12 - 2010 00 2001 11 - 2001 11		I nunci (2009a, 20100) L'auront Pornassoni
	2001 11 - 2001 11	4 L	Laurent Bernasconi
2 ISIS	2011 01 - 2011 02	5 R	
Eugenia	1998 12 - 1999 01	2 F	Federico Manzini, Raoul Behrend
	1998 12 - 2005 06	5 F	Federico Manzini
	2005 06 - 2005 07	3 N	Matthieu Conjat
	2007 11 - 2009 05	15 N	Marchis et al. (2010)
	2010 07 - 2010 07	1 R	René Roy

Table A.2. New observations used for updating the shape models and observations that are not included in the UAPC used for new shape model determinations.

		Asteroid Date		N _{LC} Observer
		2014 05 - 2014 06	3	Jean-Paul Teng, André Peyrot
		2014.06 2014.06	2	Alain Klotz, Raoul Behrend
		$2014\ 06 - 2014\ 06$	2	Ramon Naves
		2014 06 - 2014 06	2	Romain Montaigut, Arnaud Leroy
		2014.06 2014.06	3	Nicolas Esseiva Raoul Behrend
54 4	levandra	$2014\ 00 = 2014\ 00$	5	Iean-Paul Teng, Raoul Behrend
57 1	поланата	$2005\ 00 = 2005\ 00$	5	Michael Fauerbach
		2007 02 - 2007 02	2	Stéphane Fauvaud Marcel Fauvaud
		2007 02 2007 02	-	Jean-Marie Vugnon
		2008 01 - 2008 01	5	Warner et al. (2008b)
		2009 03 - 2009 05	8	Higgins & Warner (2009)
64 A	Angelina	2005 01 - 2005 01	3	Laurent Bernasconi
76 F	Freia	2005 09 - 2005 09	1	Pierre Antonini
		2000 09 - 2000 10	6	Shevchenko et al. (2008)
		2007 12 - 2007 12	3	Stephens & Warner (2008)
		2009 03 - 2009 03	2	Christophe Demeautis
		2012 06 - 2012 07	6	Emmanuel Jehin, Jean Manfroid
		2014 12 2015 04	-	Michael Gillon
		$2014\ 12 - 2015\ 04$	5	Nicolas Esseiva, Raoul Behrend
		2013 04 - 2013 04	3	Robin Esseiva, Nicolas Esseiva
<u> 9</u> 9	Thisba	2007.01 2007.01	1	Raoui Belliellu Daná Day
00 1	llisue	200701 - 200701 201202 - 201202	1	Maurice Audeiean
94	Aurora	$2012\ 02$ $2012\ 02$ $2010\ 03 - 2010\ 03$	1	Raymond Poncy
95 A	Arethusa	$2006\ 07 - 2006\ 07$	4	Laurent Bernasconi
,,,,,	nounda	2006 08 - 2006 08	1	Jean-Gabriel Bosch
		2006 08 - 2006 08	4	Raymond Poncy
107 C	Camilla	2004 09 - 2004 11	2	Laurent Bernasconi
		2008 05 - 2008 06	3	Polishook (2009)
		2010 07 - 2010 07	1	Fabien Reignier
		2010 07 - 2010 07	2	Jacques Montier, Serge Heterier
110 1	Lydia	$2003\ 12 - 2003\ 12$	11	Pray (2004a)
		$2003\ 12 - 2012\ 10$	2	Stephens & Warner (2013)
		$2000\ 00 - 2000\ 00$	2	Mourice Audeieon
		2008 12 - 2013 03 2012 10 - 2014 01	6	Warner (2014b)
121 F	Hermione	2003 12 - 2003 12	1	Laurent Brunetto
		2003 12 - 2003 12	1	Philippe Baudouin
		2003 12 - 2004 02	4	René Roy
		2004 01 - 2004 01	1	Stefano Sposetti
		2004 01 - 2004 01	2	Jean Lecacheux, François Colas
		2004 02 - 2004 02	2	Federico Manzini
		2004 02 - 2005 02	4	Laurent Bernasconi
		2007 03 - 2007 09	19	Descamps et al. (2009)
		2009 11 - 2009 11	4	Kobert Buchheim
120	Antigona	2011 01 - 2011 02 2004 02 2004 02	3 1	Jeronie Calona Paoul Rebrand
147 F	anugone	200+02-200+03 2005 01 2005 01	+ 1	Yassine Damerdii
		2005 01 - 2005 01 2005 04 - 2005 04	2	René Rov
		$2010\ 05 - 2010\ 05$	1	John Ruthroff
		$2010\ 05 - 2010\ 05$ $2010\ 05 - 2010\ 05$	5	Axel Martin
		2010 06 - 2010 07	3	Jérôme Caron
130 E	Elektra	2009 12 - 2009 12	1	Pére Antoni Salom, Mateu Esteban
				Raoul Behrend
		2011 03 - 2011 03	3	Jacques Montier, Raoul Behrend
		2011 04 - 2011 04	1	Giovanni Casalnuovo, B. Chinaglia
az · -	-1	2011 04 - 2011 04	1	Giovanni Casalnuovo
354 E	leonora	2001 04 - 2001 04	1	Stefano Sposetti
		2002.06 - 2002.06	2	Silvano Casulli Liilori Dalloroa
			1	Iniari Pallares
		2000 00 - 2000 00 2006 07 2006 09	∠ ∕\	Josep Colollia Enric Forné
		2000 07 = 2000 08 2011 05 = 2011 05	3	Etienne Morelle, Raoul Behrend
		$2011\ 05 = 2011\ 05$	3	Maurice Audeiean
		2011 05 - 2011 05	4	Giovanni Casalnuovo, B. Chinaglia
		2011 05 - 2011 05	1	Giovanni Casalnuovo

		Asteroid	Date		$N_{\rm LC}$ Observer
360	Carlova	2012.01 -	2012.02	3	Maurice Audeiean
372	Dalma	2012 01	2005.08	2	Dierre Antonini
512	r anna	2005 08 -	2005 08	2 5	
		2005 08 -	2005 09	2	Laurent Bernascom
		2011 09 -	2011 10	4	Eric Barbotin
386	Siegena	2007 02 -	2007 03	7	Stephens (2007c)
409	Aspasia	2004 02 -	2004 02	1	Laurent Bernasconi
		2008 01 -	2008 01	5	Warner et al. (2008b)
		2008.02	2008 02	1	Arnaud Leroy
		2008 02 -	2008 02	1	Christenha Demogratia
		2008 02 -	2008 02	1	Lan Ennesis Calies
		2008 02 -	2008 02	1	Jean-François Conac
		2010 10 -	2010 11	3	Raymond Poncy
423	Diotima	2005 01 -	2005 01	1	Roger Dymock
		2009 11 -	2009 11	3	Maurice Audejean
		2009 11 -	2009 11	4	Pére Antoni Salom, Mateu Esteban
511	Davida	2005.06 -	2005.06	2	Reiner Stoss, Jaime Nomen
011	Duridu	2000 00	2000 00	-	Salvador Sanchez, Raoul Behrend
		2010.05	2010.06	6	Mauriae Audeieen
		2010 05 -	2010 00	0	
		2010 06 -	2010.06	3	Joe Garlitz
		2015 04 -	2015 04	1	Christophe Gillier
		2015 04 -	2015 04	1	Inna Bozhinova, Alexander Scholz
					Alex Hygate
		2015 04 -	2015 05	2	René Roy. Raoul Behrend
		2015.04	2015.05	1	René Roy
		2015 04 -	2015 05	1	David Romauf
		2015 05 -	2015 05	1	
		2015 05 -	2015 05	I	Pierre Antonini, Raoul Benrend
		2015 05 -	2015 05	1	Pierre Antonini
532	Herculina	2005 01 -	2005 04	4	Josep Coloma
		2005 02 -	2005 02	1	Hilari Pallares
		2010 04 -	2010 04	1	Florian, Corentin
					Titouan Raoul Behrend
		2010.05	2010.05	1	Jacques Montier Jean-Pierre Previt
		2010 05 -	2010 05	2	Daná Day
		2010 05 -	2010 05	2	
		2010 05 -	2010.06	3	Maurice Audejean
		2010 06 -	2010 06	1	Jacques Montier, Serge Heterier
					Jean-Pierre Previt
776	Berbericia	2003 11 -	2003 11	2	Pray (2004a)
		2005 02 -	2005 02	2	Federico Manzini
		2005.03 -	2005 03	2	I aurent Bernasconi
		2005 05	2010 03	õ	Stephens (2010b)
		2000 00 -	2010 03	0	
		2008 12 -	2008 12	2	Maleu Cerda, Pere Antoni Salom
		2010 02 -	2010 04	11	Axel Martin
		2015 03 -	2015 03	2	René Roy
		2015 04 -	2015 04	1	David Romeuf
				N	Jew models
12	Victoria	2000 10 -	2000 10	9	López-Gonzáles
	, ietoita	2010.07	2010.07	1	René Roy Raoul Behrend
		2010 07 -	2010 07	2	Dopp Starkey
		2010 07 -	2010 07	1	
		2011 11 -	2011 11	1	Andre Debackere, Loic Chalamet
					Carine Fournel, Raoul Behrend
		2011 11 -	2011 11	2	Anna Marciniak
		2012 02 -	2012 02	1	Maurice Audejean, Raoul Behrend
		2012 02 -	2012 02	5	Maurice Audejean
		2013.01 -	2013.03	7	Pilcher (2013d)
18	Melnomen	e 2012.08 -	2013 03	16	Pilcher (2013a, 2014a)
10	wieipomen	2012.00 -	2017-01	2	Eve Kosturkiowicz, Waldomar Ogłoza
		2012 07 -	2012 08	3	Ewa Kosturkiewicz, waldellar Ogłoza
				_	Marek Drozdz
		2012 07 -	2012 07	5	Stefano Mottola
24	Themis	2012 10 -	2014 04	9	Pilcher (2013c, 2014c)
		2011 11 -	2011 11	1	Toni Santana-Ros
26	Proserpina	2007 12 -	2009 06	11	Pilcher (2008c, 2013b)
	r	2010 07 -	2010 07	1	Axelle Spiridakis, Tanguy Déléage
		2010 07		-	André Debackére, Raoul Rebrend
		2010 09	2010.09	2	Inclues Montier
		2010 08 -	2010.00	2	Diame Antonici
		2010 09 -	2010 09	2	Pierre Antonini
		2012 03 -	2012 03	2	Anna Marcınıak, Toni Santana-Ros
31	Euphrosyn	e 2008 04 –	2013 04	18	Pilcher & Jardine (2009), Pilcher (2012a, 2013b)
		2011 09 -	2011 09	1	Pierre Farissier

		Astanaid Data		N. Obcomier
		Asteroid Date $2011 \ 10 - 2011 \ 10$	1	Arnaud Leroy
35	Leukothea	2004 12 - 2004 12	6	Laurent Bernasconi
		2007 10 - 2010 02	40	Pilcher (2008a), Pilcher & Jardine (2009), Pilcher (2010c
		2012 09 - 2012 09	3	Maurice Audejean
36	Atalante	1978 08 – 1978 08	1	David Higgins
		2007 02 - 2012 04	11	Gérald Rousseau
		2007 03 - 2007 03	2	Warner (2007a)
		2007 03 - 2008 06	3	Brinsfield (2007a)
10	Dania	$2010\ 10 - 2010\ 09$	6	Pierre Antonini Lieging & Dilabor (2000)
40	Dons	$2009\ 03 - 2009\ 00$	0	Inggliis & Pliciter (2009)
		2010 07 - 2010 07	1	Racul Behrend
		2010 07 - 2010 08	3	Gérald Rousseau
		$2010\ 07\ -\ 2010\ 09$	3	Jacques Montier, Serge Heterier
		2010 08 - 2010 08	1	Arnaud Leroy
		2010 08 - 2010 08	1	Romain Montaigut, Rémi Anquetin
				Pierre Barroy, Bruno Mallecot
		2010 08 - 2010 09	6	Pierre Antonini
51	Nemausa	2007 03 - 2007 03	1	Josef Hanus, Marek Wolf
		2008 08 - 2012 09	6	Maurice Audejean
		2009 10 - 2009 10	1	Pére Antoni Salom, Mateu Esteban
		2011.05 - 2011.06	13	Axel Martin
		2014 03 - 2014 03	1	Pierre Aurard, Thomas Dulcamara
				Marine Lutz, Gwendoline Séné
				Fmilia Splanska, Olivier Labrevoir
				Raoul Behrend
56	Melete	2003 05 - 2003 05	6	Laurent Bernasconi
		2007 04 - 2007 05	8	Warner (2007b)
		2008 10 - 2008 11	8	Pilcher & Jardine (2009)
		2012 09 - 2012 11	4	Maurice Audejean
66	Maja	2007 03 - 2007 03	1	Jean-Gabriel Bosch
		2009 08 - 2011 04	8	Maurice Audejean
71	NT' 1	$2011\ 01 - 2011\ 01$	1	Jérôme Caron
71	Niobe	$2006\ 02 - 2006\ 03$	14	Warner et al. (2006)
00	Iontho	$2009\ 11 - 2010\ 03$ $2007\ 10 - 2007\ 11$	15	Pilcher (2010a) Dilcher (2008b)
90	Dike	2007 10 - 2007 11 2007 03 - 2007 04	5	Jean-Gabriel Bosch
,,	DIKC	$2007\ 03 = 2007\ 04$	1	Enric Forné
		$2007\ 04 - 2007\ 04$	9	Axel Martin
		2011 03 - 2011 04	8	Pilcher (2011a)
103	Hera	2010 06 - 2010 11	19	Pilcher & Higgins (2011)
		2010 07 - 2010 07	1	David Higgins
104	Klymene	2011 04 - 2011 04	2	Gérald Rousseau
		2011 05 - 2011 05	3	Stefano Mottola
112	Iphigenia	2007 10 - 2007 12	7	Pilcher (2008b)
117	Lomia	$2003\ 03 - 2003\ 03$	1	Nathanal Berger
		$2003\ 03 - 2003\ 03$	2	Claudine Rinner
		$2003\ 03 - 2003\ 03$	3	Kene Koy Stánhana Charbonnel
		$2005\ 05 - 2005\ 04$ $2006\ 11 - 2006\ 11$	3	Raymond Poney
		2000 11 - 2000 11 2013 03 - 2013 03	4	Maurice Audeiean
120	Lachesis	2013 03 2013 03 2008 12 - 2012 09	30	Pilcher (2009c)
122	Gerda	2005 08 - 2005 09	3	Buchheim (2007)
		2006 12 - 2006 12	2	Raymond Poncy
		2008 02 - 2008 02	2	Hervé Jacquinot
		2009 04 - 2009 04	3	Pilcher (2009a)
		2011 11 - 2011 11	2	René Roy
144	Vibilia	2006 12 - 2006 12	3	René Roy
		2011 01 - 2011 01	1	Arnaud Leroy
		2011 01 – 2011 02	6	Pierre Antonini
		2011 12 - 2012 04	16	Stephan Hellmich
		2012 03 - 2012 04	4	Krzysztof Sobkowiak, Koman Hirsch
150	Nuwo	2005 01 2005 01	3	Iom Santana-Kos Laurant Barnasconi
130	inuwa	2005 01 - 2005 01 2006 02 - 2006 02	3	Raymond Poncy
		2000 02 - 2000 02 2000 10 - 2000 02	1	Servison
		2007 10 - 2007 10	1	SVI_10011

		Asteroid	Date		N _{LC} Observer
		2009 1	0 - 2009 10	2	Mendicini
		2009 1	0 - 2009 10	2	Vincent
		2009 1	0 – 2009 11	4	Crow
		2009 1	0 – 2009 11	7	Miles
		2009 1	11 – 2009 11	1	Faillace
		2010 1	12 - 2011 01	5	Pilcher (2011d)
154	Doutho	2011 (D2 - 2011 02	2	Rene Roy
134	Dertila	2000 1	11 - 2000 11	1	Warner (2007a)
		2007 0	9 = 2007.01	10	Pilcher (2012a)
155	Scylla	2008 1	1 - 2008 12	7	Pilcher & Jardine (2009)
164	Eva	2008 0	1200012 15 - 200806	6	Warner (2009b)
		2012 (04 - 2012 05	3	Anna Marciniak, Roman Hirsch
					Magdalena Polinska
171	Ophelia	2005 0	03 - 2005 04	5	Pierre Antonini
		2005 0	03 – 2006 07	11	Rui Goncalves
		2005 0	04 - 2005 04	2	Yassine Damerdji
		2005 (04 - 2005 04	2	Federico Manzini
		2005 (06 - 2005 06	1	Rui Goncalves, Raoul Behrend
		2006 (3 - 2006 04	6	Oey (2006)
		2006 (04 – 2006 04	1	Arnaud Leroy, Giller Canaud
					Denis Fradel, Jean-Paul Godard
		2011 (4 - 2011.04	1	Lacques Montier Denys Robilliard
		2011 (4 - 2011.04	1	Jacques Montier
		2011 ()4 - 2011 04	5	Christophe Demeautis
180	Garumna	2004 0	201101 202 - 201109	9	Clark (2010)
		2004 0	3 - 2004 03	1	Donn Starkey
		2004 0	03 - 2004 03	2	Stefano Sposetti, Raoul Behrend
		2004 0	03 - 2004 03	4	René Roy
		2007 1	2 – 2007 12	4	Stephens (2008)
		2011 1	0 – 2011 11	19	Pilcher et al. (2012a)
187	Lamberta	2004 0	$02 - 2004 \ 02$	1	Laurent Bernasconi
		2006 1	10 - 2007 01	3	Hilari Pallares
		2006 1	11 - 2006 11	1	Enric Forné, Luis Miguel
		2006 1	11 - 2006 11	1	Enric Forne, Ramon Costa
		2006 1	11 - 2007 01	3	Enric Forne Stáphana Fauwaud, Margal Fauwaud
		2011 1	11 – 2011 11	2	Franck Richard
180	Phthia	2008 (07 - 2008.09	13	Pilcher (2009b)
212	Medea	2008 (9 - 2000 0	7	René Roy
		2004 1	0 - 2004 11	4	Koff (2005)
		2004 1	1 - 2004 11	1	Rui Goncalves
		2004 1	1 - 2006 02	3	Raymond Poncy
		2010 1	1 – 2011 03	8	Fabien Reignier
		2010 1	2 – 2011 02	4	Fabien Reignier, Raoul Behrend
		2011 0	01 – 2011 01	8	Hiromi Hamanowa, Hiroko Hamanowa
		2014 (09 – 2014 09	1	Olivier Gerteis, Paul Krafft
					Michel Polotto, Benoit Lesquerbault
226	***	2007	0 0000 10	1.5	Luc Arnold, Matthieu Bachschmidt
226	Weringia	2007 (08 - 2008 12	15	Oey (2008, 2009b) Bilahar (2012a)
727	Coalacting	2012 (19 - 2012 11	10	Stephone (2010c)
237	Eukrate	2009 0	19 = 2009 09 1 = 2012 05	26	Joe Garlitz
247	Lukiate	2010 1	11 - 2012 05 11 - 2012 05	10	Pilcher et al. (2012b)
249	Ilse	2012 0	1 - 2012 03	22	Pilcher (2015a)
254	Augusta	2014 1	10 - 2014 11	5	Pilcher (2015c)
271	Penthesile	a 2009 ($01 - 2009\ 02$	7	Pilcher (2009c)
274	Philagoria	2004 0	02 - 2004 02	2	René Roy
	-	2005 0	04 - 2005 05	4	Pierre Antonini
		2010 0	02 - 2010 04	6	Pilcher (2010d)
293	Brasilia	2006 0	04 - 2006 04	1	Stephens (2006)
	D.	2006 0	04 - 2006 06	3	Oey (2006)
296	Phaetusa	2010 0	09 - 2010 10	5	Pilcher (2011c)
313	Chaldaea	2003 ($J_2 = 2003.03$	5	Silvano Casulli Antonio Vecnoggi Marca Chieta (m. 11)
		2003 (15 – 2003 04	3	Antonio Vagnozzi, Niarco Uristofanelli Marza Daialla, Vaira Diazitali
					Marco Falella, Vallo KISOlul

Aster	oid Date		N _{LC} Observer
	2004 07 - 2004 07	4	Laurent Bernasconi
315 Constantia	2008 07 - 2008 07	3	Oey (2009a)
317 Roxane	2013 12 - 2013 12	2	Stéphane Fauvaud
	2014 02 - 2014 02	4	Stephens (2014c)
343 Ostara	2008 10 - 2008 11	11	Stephens (2009)
353 Ruperto-Carola	2006 02 - 2006 02	6	Warner (2006a)
365 Corduba	1994 12 - 2012 07	25	Stefano Mottola, Stephan Hellmich
	2006 04 - 2006 05	3	Raymond Poncy
	2007 07 - 2007 08	8	Warner (2008a)
	2012 07 - 2012 07	2	Pierre Antonini
	2012 07 - 2012 07	2	Maurice Audejean
201.14	2012 07 - 2012 08	8	Joe Garlitz
381 Myrrha	2005 08 - 2005 08	1	Reiner Stoss, Petra Korlevic
			Maja Hren, Aleksandar Cikota
	2005 09 2005 09	2	Ljuban Jerosimic, Raoul Benrend
	2005 08 - 2005 08	3	Keiner Stoss, Jaime Nomen
	2010.07 2010.07	2	Salvador Sanchez, Raoul Benrend
	2010 07 - 2010 07 2015 02 - 2015 02	2 1	Alexander Scholz, Kirstin Hay
	2013 05 - 2013 05	1	Revaluer Scholz, Klistili Hadoson
386 Siegens	1008 04 2010 04	40	Marciniak et al. (2012)
560 Siegena	1998 04 - 2010 04 2004 07 - 2007 03	40	Stephens (2005, 2007c)
	$2004\ 07 = 2007\ 03$ $2011\ 12$ $2011\ 12$	3	Stephens (2005, 2007C) Stephen Hellmich
	2011 12 = 2011 12 2011 02 = 2011 03	7	Emmanuel Jehin Mikael Gillon
	$2011\ 02 = 2011\ 03$ $2012\ 02 = 2012\ 04$	11	Stefano Mottola
	$2012\ 02$ $2012\ 01$ $2012\ 03 - 2012\ 03$	1	Romain Montaigut
	2012 03 - 2012 03 2012 03 - 2012 03	4	Jacques Montier
391 Ingeborg	2000 08 - 2000 12	20	Koff et al. (2001)
402 Chloe	$2009\ 02 - 2009\ 02$	4	Warner (2009a)
	2014 05 - 2014 05	3	Stephens (2014b)
419 Aurelia	2006 12 - 2006 12	1	René Roy
	2007 01 - 2007 01	1	Jean-François Coliac
	2008 02 - 2011 02	31	Pilcher (2008c, 2010e, 2011d)
434 Hungaria	2009 07 - 2014 03	30	Warner (2010b, 2011a, 2014b)
455 Bruchsalia	2005 11 - 2005 12	6	Koff (2006)
	2008 05 - 2008 06	9	Brinsfield (2008a)
474 Prudentia	2014 08 - 2014 08	5	Stephens (2015a)
475 Ocllo	2010 11 - 2010 12	4	Pilcher (2011b)
	2014 11 - 2014 11	4	Stephens (2015b)
482 Petrina	2007 07 - 2007 08	10	Stephens (2009)
	2010 02 - 2010 02	1	James Brinsfield
100 G 1	2012 05 - 2013 10	29	Pilcher et al. (2012c), Pilcher (2014b)
489 Comacina	2001 04 - 2001 04	1	William Koff
490 Veritas	$2001\ 02 - 2001\ 03$	10	Koff & Brincat (2001)
497 Iva	$2009\ 01 - 2009\ 01$	3	warner (2009a) $S_{1} = (20071 - 2014)$
502 Sigune	200706 - 201403	19	Stephens (2007b, 2014c)
520 Franziska	$2014\ 04 - 2014\ 04$	3 7	Bilahar (2014)
520 FIAIIZISKA	2013 12 - 2014 01 2006 10 - 2006 10	1	David Higgins
JUZ Salome	$2000\ 10 = 2000\ 10$ $2012\ 11 = 2012\ 11$	4	Alkema (2013b)
565 Marbachia	2012 11 = 2012 11 2000 03 = 2000 03	4	Koff & Bringet (2000)
505 Warbaenna	$2000\ 05 = 2000\ 05$ $2013\ 08 = 2013\ 09$	3	Stéphane Fauvaud
567 Eleutheria	$2015\ 00\ 2015\ 0)$ $2006\ 10\ -\ 2006\ 10$	2	David Higgins
507 Eleaneria	$2010\ 04 - 2010\ 04$	6	Ruthroff (2010)
	$2010\ 04 - 2010\ 06$	6	Pilcher (2010d)
	2012 11 - 2012 11	1	Maurice Audejean
	2013 11 - 2013 11	2	Stephens (2014a)
	2013 12 - 2013 12	2	Stéphane Fauvaud
586 Thekla	1999 10 – 1999 11	3	Warner (2000, 2010d)
596 Scheila	2005 12 - 2006 01	7	Warner (2006b)
625 Xenia	2010 02 - 2010 02	3	PTF, Polishook et al. (2012)
632 Pyrrha	2011 02 - 2011 03	5	Pilcher (2011d)
639 Latona	2007 09 - 2007 10	3	Warner (2008a)
644 Cosima	2012 12 - 2013 02	6	Strabla et al. (2013)
	2013 02 - 2013 02	8	Alkema (2013a)
660 Crescentia	2009 03 - 2009 03	5	Warner (2009a)
	2014 04 - 2014 05	6	Stephens et al. (2014)

		Asteroid Date	4	N _{LC} Observer
670	Ottegehe	$2014\ 00 - 2014\ 00$ $2014\ 02 - 2014\ 02$	+ 4	Stephens (2014c)
681	Gorgo	2014 02 - 2014 02 2013 04 - 2013 05	+ 1	Pilcher (2013h)
682	Hagar	2013 07 - 2013 03	- -	$\frac{1}{20130}$
686	Gersuind	2013 07 = 2013 08 2013 07 = 2013 07	5	Stéphane Fauvaud
687	Tinette	$1000\ 10\ 1000\ 10$	3	Warner (2000, 2010d)
706	Hirundo	2000.09 - 2000.09	6	Warner (2000, 2010d)
742	Edisona	2000 00 = 2000 00	7	Martin Lehký
/ 72	Luisona	$2003\ 02 = 2003\ 03$	4	Brinsfield (2008a)
		2000 04 = 2000 05 2012 01 = 2012 02	4	Martin Lehký
746	Marlu	2012 01 = 2012 02 2014 10 = 2014 10	8	Klinglesmith et al. (2015)
749	Malzovia	2014 10 = 2014 10 2014 04 = 2014 06	5	Pilcher (2014c)
756	Lilliana	2001.07 - 2007.08	9	Warner $(2010d, 2008a)$
150	Linnana	2006 04 - 2006 04	2	Russell Durkee
		2012.04 - 2012.06	10	Pilcher (2012b)
757	Portlandia	2012 01 - 2012 00 2014 11 - 2014 11	2	Stephens (2015b)
758	Mancunia	2006 12 - 2006 12	4	Warner et al. (2008a)
100		2006 12 - 2007 01	3	Raymond Poncy
		2007 01 - 2007 01	1	Jean-François Coliac, Raoul Behrend
		2007 01 - 2007 01	1	Rui Goncalves
		2007 01 - 2007 01	2	Jean-François Coliac
		2015 06 - 2015 06	2	OAdM
		$2015\ 06 - 2015\ 07$	7	Waldemar Ogłoza, Maciej Winjarski
		2010 00 2010 07		Marek Dróżdż
762	Pulcova	2006 02 - 2006 03	5	Oev (2006)
		2009 11 - 2009 12	3	Alton (2011)
798	Ruth	2002 08 - 2012 07	10	Stephens (2003), new
		2011 05 - 2011 05	1	Martin Lehký
802	Epvaxa	2009 01 - 2011 11	4	Warner (2009a, 2012c)
870	Manto	2013 08 - 2013 10	37	Pilcher et al. (2014)
872	Holda	2007 05 - 2007 05	8	Brinsfield (2007b)
873	Mechthild	2015 04 - 2015 06	8	Pilcher (2015b)
898	Hildegard	1999 06 - 1999 06	2	Warner (1999)
	8	$2008\ 04 - 2008\ 05$	13	David Higgins
908	Buda	2009 03 - 2009 03	5	Warner (2009a)
944	Hidalgo	2004 10 - 2004 10	4	William Koff
986	Amelia	2000 10 - 2000 10	4	Koff (2001)
1010	Marlene	2005 01 - 2005 03	8	Warner (2005b)
1021	Flammario	2005 01 - 2005 01	2	Buchheim (2005)
1023	Thomana	2009 09 - 2009 10	8	Brinsfield (2010b)
1080	Orchis	2010 10 - 2010 10	5	Strabla et al. (2011)
		2010 10 - 2010 11	8	Ruthroff (2011)
1103	Sequoia	2011 08 - 2014 11	11	Warner (2011b, 2015a,c)
1110	Jaroslawa	2013 02 - 2013 04	20	Julian Oey
		2014 08 - 2014 11	24	Pilcher et al. (2015)
1125	China	2013 10 - 2013 10	2	Stephens (2014a)
1137	Raissa	2012 09 - 2012 12	31	Ferrero et al. (2014)
1175	Margo	2009 06 - 2009 07	4	Brinsfield (2010a)
1244	Deira	2007 02 - 2007 04	21	Julian Oey
1278	Kenya	2011 04 - 2011 06	27	Oey et al. (2012)
1310	Villigera	2001 09 - 2001 10	4	Koff (2002)
1312	Vassar	2010 11 - 2010 11	1	Julian Oey
		2010 11 - 2010 11	3	David Higgins
1352	Wawel	2007 12 - 2007 12	5	Brinsfield (2008b)
1360	Tarka	2004 09 - 2014 02	10	Warner (2005a, 2014b)
1366	Piccolo	2003 04 - 2005 12	7	René Roy, Raoul Behrend
1424	Sundmani	a $2012\ 03 - 2012\ 04$	14	Stephens (2012)
1430	Somalia	$2011\ 09 - 2011\ 09$	6	Strabla et al. (2012)
1449	Virtanen	2008 05 - 2008 07	11	Oey (2009b)
1486	Marilyn	2013 08 - 2013 08	5	Benishek (2014)
1508	Kemi	2004 02 - 2004 03	3	Kott (2004)
1546	Izsak	2006 04 - 2006 04	3	Warner (2006c)
1672	Gezelle	2008 10 - 2008 11	9	Brinsfield (2009)
1 (= -		2008 11 - 2008 11	2	Brian Warner
1676	Kariba	$2009\ 03 - 2009\ 03$	3	David Higgins
1730	Marceline	$2010\ 09 - 2010\ 09$	2	Brinsheld (2011)
1/50	Eckert	2009 09 - 2009 11	23	warner (2010c)

	Asteroi	d Date		N _{LC} Observer
1789	Dobrovolsky	2011 03 - 2011 03	2	Brian Skiff
1793	Zoya	2008 05 - 2008 05	4	Brinsfield (2008a)
1820	Lohmann	2011 08 - 2011 10	8	David Higgins
		2011 09 - 2011 10	8	Martinez (2012)
1825	Klare	2003 12 - 2004 01	5	Pray (2004a)
1925	Franklin-Adams	2013 01 - 2013 01	2	Warner (2013b)
2001	Einstein	2004 12 - 2012 12	13	Warner (2005b, 2008b, 2010c, 2013a)
2306	Bauschinger	2011 08 - 2011 08	6	Warner (2012b)
2358	Bahner	2008 09 - 2008 10	13	Owings (2009)
2381	Landi	2014 01 - 2014 02	4	Klinglesmith et al. (2014)
		2014 02 - 2014 02	2	Stephens (2014c)
2382	Nonie	2005 08 - 2005 08	6	Warner (2006d)
2495	Noviomagum	2013 07 - 2013 07	4	Warner (2014a)
2725	David	2006 02 - 2006 02	3	Warner (2006a)
2741	Valdivia	2003.05 - 2003.06	4	Pray (2004b)
3258	Somnium	$2006\ 10 - 2006\ 10$	7	Oev et al. (2007)
3266	Bernardus	$2000\ 10\ 2000\ 10$ $2009\ 03\ -\ 2014\ 01$	15	Warner (2009c 2011a 2012d 2014b)
3285	Ruth Wolfe	1000 11 - 1000 11	3	Warner (2011c)
3205	Iansie	2012.06 2012.07	8	Owings (2013b)
2479	Fanala	$2012\ 00 - 2012\ 07$	2	Staphans (2013)
3470	Fallale	2012 10 - 2012 10 2012 10 - 2012 10	2	Owings (2013)
2511	Danadina	$2012\ 10 - 2012\ 10$	2	Devid Hispins
3544	Borodino	200/10 - 200/10	2	David Higgins
2750	C '11	$2014\ 06 - 2014\ 07$	2	Cantu et al. (2015)
3752	Camillo	1995 08 - 1995 08	9	Pravec et al. (1998)
3773	Smithsonian	2006 09 - 2006 09	5	Stephens (200/a)
3786	Yamada	2002 07 - 2002 08	3	Stephens (2003)
3918	Brel	2005 11 - 2005 11	1	David Higgins
4265	Kani	2008 10 - 2008 10	4	Miles & Warner (2009)
4490	Bambery	2006 02 - 2014 01	15	Warner (2006a, 2009c, 2011a, 2012d, 2014b)
4570	Runcorn	2007 03 - 2007 05	11	Julian Oey
4764	Joneberhart	2007 01 - 2010 03	5	Warner (2007a, 2010a)
		2013 05 - 2013 05	3	Stephens et al. (2014)
5332	Davidaguilar	2006 01 - 2006 01	1	Julian Oey
		2008 09 - 2009 02	3	Skiff et al. (2012)
5489	Oberkochen	2013 12 - 2013 12	3	Stephens (2014a)
6087	Lupo	2010 07 - 2012 02	7	Warner (2011b, 2012a)
6192	1990 KB1	2010 02 - 2010 02	2	PTF, Polishook et al. (2012)
		2011 06 - 2011 07	14	Brinsfield (2012)
6406	1992 MJ	2006 06 - 2006 06	3	Higgins & Goncalves (2007)
6410	Fujiwara	2005 07 - 2005 08	2	David Higgins
6517	Buzzi	2004 07 - 2014 02	17	Warner (2005c, 2009a, 2012d, 2014b)
7660	1993 VM1	2011 07 - 2014 08	8	Warner (2012b, 2015a)
8567	1996 HW1	2005 06 - 2005 07	6	Higgins et al. (2006b)
0007	1770 1111 1	$2008\ 08 - 2009\ 01$	39	Magri et al. (2011)
11058	1991 PN10	$2000\ 00\ 2009\ 01$ $2010\ 07\ -\ 2012\ 02$	7	Warner (2011b 2012a)
14197	-	$2010\ 07\ 2012\ 02$ $2010\ 02\ -\ 2010\ 02$, 4	PTF Polishook et al. (2012)
16/68	_	$2010\ 02 = 2010\ 02$ $2010\ 02 = 2010\ 02$	1	PTF Polishook et al. (2012)
28736	- 2000 CE133	$2010\ 02 - 2010\ 02$	3	Higgins (2008)
20130	2000 GE133	200705 = 200705 200511 = 200512	5	Higgins et al. (2006a)
2000/ 22112	2000 KQ38	2003 11 - 2003 12 2006 05 2006 05	4	Higgins et al. (2000)
33110	1990 DU12	2000 03 - 2000 03	4	$ \begin{array}{l} \text{Figures et al. (2000a)} \\ \text{Wormon (2012b, 2015c)} \end{array} $
0/404	- 1000 W/212	2011 08 - 2014 10	/	Warner (2012b, 2015a)
86257	1999 WK13	2010 12 - 2012 07	13	warner (2015b)

Table A.3. Observers, observatory code and observatory name.

Observer name	Obs code	Observatory name
Olivier Adam	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Veronika Afonina	482	Observatory of the University of St Andrews, United-Kingdom
Rémi Anquetin	586	Pic du Midi Observatory
Pierre Antonini	132	Observatoire des Hauts Patys, F-84410 Bédoin, France
Luc Arnold	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Maurice Audejean	B92	Uservatore de Chinon, Mairie de Chinon, 3/500 Chinon, France
Pierre Aurard	511	Haute-Provence Observatory, St-Michel I Observatore, France
Bruen Bachschmidt	511	Haute-Provence Observatory, St-Michel i Observatore, France
Eria Parhatin	311	Halte-Provence Observatory, St-Michel i Observatorie, France
Pierre Barroy	586	Vinciagnan Observatory, France
Philippe Baudouin	500	Harfleur Observatory France
Lucas Berard	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Nathanael Berger	011	490 chemin du gonnet, F-38440 Saint Jean de Bournay, France
Laurent Bernasconi	A14	Observatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France
Jean-Gabriel Bosch	178	Collonges Observatory, 90 allée des résidences, F-74160 Collonges, France
Sylvain Bouley	586	Pic du Midi Observatory
Inna Bozhinova	482	Observatory of the University of St Andrews, United-Kingdom
James Brinsfield	G69	Via Capote Observatory, Thousand Oaks, CA 91320, USA
Laurent Brunetto	139	Le Florian, Villa 4, 880 chemin de Ribac-Estagnol, F-06600 Antibes, France
Giller Canaud	586	Pic du Midi Observatory
Jérôme Caron	A77	Observatoire de Dauban, F-04150 Banon, France
Jérôme Caron	C26	Levendaal Observatory, Uiterstegracht 48, 2312 TE Leiden, Netherlands
Fabien Carrier	809	European Southern Observatory, La Silla, Coquimbo, Chile
Giovanni Casalnuovo	C62	Eurac Observatory, Bolzano, Italy
Silvano Casulli	A55	Vallemare di Bordona, Rieti, Italy
Mateu Cerda	B81	Observatorio Astronómico Caimari
Loïc Chalamet	F59	Ironwood North, Hawaii, USA
Stéphane Charbonnel	949	Observatoire de Durtal, F-49430 Durtal, France
Chinaglia	C62	Eurac Observatory, Bolzano, Italy
Aleksandar Cikota	620	OAM - Mallorca
François Colas	586	Pic du Midi Observatory
Jean-François Collac	511	20 parc des Pervenches, F-15012 Marsenie, France
Iosan Coloma	610	naute-Provence Observatory, St-Michel i Observatore, france
Josep Colonia	019	Agrupation Astronomica de Sabaden, Apartado de Concos 50, 10 Box 50, 06200 Sabaden,
Iosen Coloma	B71	Observatorio El Vendrell
Matthieu Coniat	020	Observatoire de Nice. France
Emmanuel Conseil	020	AFOEV (Association Francaise des Observateurs d'Étoiles Variables). Observatoire de Strasbourg 11.
		rue de l'Université, 67000 Strasbourg, France
Corentin	C62	Eurac Observatory, Bolzano, Italy
Ramón Costa	619	Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell,
		Barcelona, Spain
Ramón Costa	B22	Observatorio d'Ager, Barcelona, Spain
Roberto Crippa	A12	Stazione Astronomica di Sozzago, I-28060 Sozzago, Italy
Marco Cristofanelli	589	Santa Lucia Stroncone, Italy
Yassine Damerdji	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Andre Debackère	F59	Ironwood North, Hawaii, USA
Alice Decock	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Quentin Déhais		Seine-Maritime, Le Havre, Haute-Normandie 76600, France
Tanguy Déléage	F65	Haleakala-Faulkes Telescope North, Hawan, US
Sophie Delmelle	511	Haute-Provence Observatory, St-Michel l'Observatore, France
Christophe Demeautis	138	Village-Neuf Observatory, 9bis rue du Sauvage, F-68300 Saint-Louis, France
Marek Drozdz	596	Mit. Sunora Observatory, Pedagogical University. Podchorązych 2, 30-084, Cracow, Poland
Thomas Dulasmara	JOU 511	FIC UN IVIUI OUSEIVAIOIY Houta Drouance Observatory. St. Michael Pobservatoire. Erange
Moite Dumont	511 511	Haute-Hovenee Observatory, St-Wichel PObservatories, France
Russell Durkee	H30	Shed of Science Observatory 5213 Washburn Ave S. Minneapolis, MN 55/10, USA
Roger Dymock	0/0	Waterlooville
Nicolas Esseiva	540 K27	Machovine Observatoire St-Martin 31 grande rue E-25330 Amathay Vésigneux France
Robin Esseiva	K27	Observatoire St-Martin 31 grande rue, F-25330 Amathav Vésigneux, France
Mateu Esteban	B81	Observatorio Astronómico Caimari
Mateu Esteban	C33	Observatorio CEAM, Caimari, Canary Islands, Spain
Thomas Fauchez	511	Haute-Provence Observatory, St-Michel l'Observatoire, France

Notes. TRAPPIST - TRAnsiting Planets and Planetesimal Small Telescope, Jehin et al. (2011).

Observer name	Obs code	Observatory name
Michael Fauerbach	H72	Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
Marcel Fauvaud		Observatoire du Bois de Bardon, F-16110 Taponnat, France
Stéphane Fauvaud	5 0.4	Observatoire du Bois de Bardon, F-16110 Taponnat, France
Stéphane Fauvaud	586	Pic du Midi Observatory
Florian	517	Geneva Observatory, 1290 Sauverny, Switzerland
Enric Forné	619	Agrupacion Astronòmica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell, Barcelona, Spain
Enric Forné	B29	Osservatorio l'Ampolla, Tarragona, Spain
Carine Fournel	F59	Ironwood North, Hawaii, USA
Denis Fradet	586	Pic du Midi Observatory
Joe Garlitz	511	International Occultation Timing Association, Montgomery, AL, USA
Christopha Cillian	511 624	Haute-Provence Ubservatory, St-Michel F Ubservatoire, France
Mikael Gillon	034 I40	TRAPPIST ESO la Silla Observatory Chile
René Giraud	140 140	TRAPIST ESO la Silla Observatory, Chile
Iean-Paul Godard	586	Pic du Midi Observatory
Rui Goncalves	938	Linhaceira Observatory. Portugal
Hiroko Hamanowa	D19	Hong Kong Space Museum, Tsimshatsui, Hong Kong, China
Hiromi Hamanowa	D19	Hong Kong Space Museum, Tsimshatsui, Hong Kong, China
Josef Hanuš	557	Ondřejov Observatory, Czech Republic
Kirstin Hay	482	Observatory of the University of St Andrews, United-Kingdom
Stephan Hellmich	493	Calar Alto Observatory
Serge Heterier	615	St. Véran
Serge Heterier	J23	Centre astronomique de la Couyère, 30 rue de la Boulais, F-35000 Rennes, France
David Higgins	E14	Hunters Hill Observatory, / Mawalan Street, Ngunnawal ACT 2913, Australia
Koman Hirsch	18/	Borowiec station of Astronomical Observatory Institute UAM, Poznan, Poland
Gauriena Houosan Maia Hran	402 620	OdM Mallorea
Alex Hygate	482	Observatory of the University of St Andrews United-Kingdom
Nivonzima Innocent	511	Haute-Provence Observatory, St-Michel l'Observatoire France
Herve Jacquinot	B26	Observatoire des Terres Blanches, Reillanne
Sharat Jawahar	482	Observatory of the University of St Andrews, United-Kingdom
Emmanuel Jehin	I40	TRAPPIST, ESO la Silla Observatory, Chile
Ljuban Jerosimic	620	OAM - Mallorca
Alain Klotz	148	Guitalens Observatory, 5 chemin d'En Combes, F-81220 Guitalens, France
Alain Klotz	181	Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France
Alain Klotz	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
William Koff	H09	980 Antelope Drive West, Bennett, CO 80102, USA
Petra Korlevic	620	UAM - Mallorca
EWa KOSTUľKICWICZ	511	IVIL SUIIOIA ODSETVALOFY, PEDAgogical University. Podchorązych 2, 30-084, Uracow, Poland Hauta Provence Observatory. St. Michael Pobservatoire, Erance
r aur Mann Vurii Kruoly	121	Institute of Astronomy of Kharkiy National University, Kharkiy, Ukraine
François Kugel	A77	Observatoire de Dauban, F-04150 Banon, France
Olivier Labrevoir	511	Haute-Provence Observatory, St-Michel l'Observatoire. France
Jean Lecacheux	586	Pic du Midi Observatory
Martin Lehký		Severní 765, 50003, Hradec Králové, Czech republic
Arnaud Leroy	586	Pic du Midi Observatory
Arnaud Leroy	A07	Uranoscope, Avenue Carnot 7, F-77220 Gretz-Armainvilliers, France
Arnaud Leroy	Z97	Observatoire OPERA, France
Benoit Lesquerbault	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
M. J. López-Gonzáles	511	Instituto de Astrofísica de Andalucía, CSIC, Apdo. 9481, 08080 Barcelona, Spain
Marine Lutz	596	Haute-Provence Observatory, St-Michel l'Observatoire, France
Druno Mallecot	380 140	ric du Ivildi Observatory TP A PDIST ESO la Silla Observatory Chile
Federico Manzini	140 A 12	r (Ar Frieder Bernander), Cille Stazione Astronomica di Sozzago, L28060 Sozzago, Italy
Anna Marciniak	187	Borowiec station of Astronomical Observatory Institute IJAM Poznań Poland
Axel Martin	628	Mulheim-Ruhr, Germany
Axel Martin	H10	Tzec Maun Foundation Observatory, Mayhill, New Mexico, US
Benjamin Modave	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Romain Montaigut	586	Pic du Midi Observatory
Romain Montaigut	634	Club d'Astronomie de Lyon Ampere (CALA), Place de la Nation, 69120 Vaulx-en-Velin, France
Romain Montaigut	Z97	Observatoire OPERA, France
Jacques Montier	615	Astroqueyras, Mairie, F-05350 Saint-Véran, France
Jacques Montier	J23	51 Centre astronomique de la Couyère, La Ville d'ABas, F-35320 La Couyère, France
Etienne Morelle	490	20 parc des Pervenches, F-13012 Marseille, France
Ben Morton	482	Ubservatory of the University of St Andrews, United-Kingdom
Sterano Mottola		institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2,

Observer name	Obs and a	Obcarriatory name
Observer name	Obs code	12489 Berlin Germany
Ramon Naves	213	Observatorio Montcabrer C/Iaume Balmes nb 24 Cabrils 08348 Barcelona Spain
Jaime Nomen	620	OAM - Mallorca
Julian Oev	E19	Kingsgrove, NSW, Australia
Waldemar Ogłoza		Mt. Suhora Observatory, Pedagogical University. Podchorażych 2, 30-084, Cracow, Poland
Marco Paiella	589	Santa Lucia Stroncone, Italy
Hilari Pallares	619	Agrupación Astronómica de Sabadell, Apartado de Correos 50, PO Box 50, 08200 Sabadell,
		Barcelona, Spain
Hilari Pallares	A90	Sant Gervasi Observatory, Barcelona
Andre Peyrot	181	Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France
Frederick Pilcher	G50	4438 Organ Mesa Loop, Las Cruces, NM 88011, USA
Jean-François Pirenne	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Pierre Piron	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Magdalena Polinska	187	Borowiec station of Astronomical Observatory Institute UAM, Poznań, Poland
Michel Polotto	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Raymond Poncy	1//	Rue des Ecoles 2, F-34920 Le Cres, France
Jean Pierre Previt	J23	Centre astronomique de la Couyere, 30 rue de la Boulais, F-35000 Rennes, France
Fabien Reignier	511	11 rue François-Nouteau, F-49500 Brain-sur-Alionnes, France
Damien Kenaulu Davida Diagi	511	Haute-Provence Observatory, St-Michel i Observatorie, France
Eranek Dichard	586	haute-provence Observatory, St-Michell FObservatorie, France
Claudine Dinner	224	Pic du Midi Observatory, 5 rue du Lièure, E 68400 Ottmarsheim, Erance
Vairo Risoldi	580	Santa Lucia Strongona Halv
Denvs Robilliard	123	Centre astronomique de la Couvère 30 rue de la Roulais E-35000 Rennes France
David Romeuf	323	Université Claude BERARD I von 1 Observatoire de Pommier POMMIER
Duvid Romear		E-63230 Chandes-Beaufort France
Gérald Rousseau		4 rue de la Bruvère, F-37500 La Roche Clermault, France
René Rov	627	Observatoire de Blauvac, 293 chemin de St Guillaume, F-84570 Blauvac, France
John Ruthroff		Shadowbox Observatory, 12745 Crescent Drive, Carmel, IN 46032, USA
Pére Antoni Salom	B81	Observatorio Astronómico Caimari
Pére Antoni Salom	C33	Observatorio CEAM, Caimari, Canary Islands, Spain
Toni Santana-Ros	187	Borowiec station of Astronomical Observatory Institute UAM, Poznań, Poland
Lucas Salvador	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Salvador Sanchez	620	OAM – Mallorca
Alexander Scholz	482	Observatory of the University of St Andrews, United-Kingdom
Gwendoline Séné	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Brian Skiff	690	Lowell Observatory, Flagstaff, AZ 86001, USA
Krzysztof Sobkowiak	187	Borowiec station of Astronomical Observatory Institute UAM, Poznań, Poland
Patrick Sogorb	B00	Savigny-le-Temple
Francisco Soldan	Z/4	Observatorio Amanecer de Arrakis, Alcala de Guadaira, Sevilla, Spain
Axelle Spiridakis	F05	Hareakaia-Paulkes Telescope North, Hawaii, US
Emilia Spianska Stofono Sposotti	511 142	Haute-Provence Observatory, St-Michel i Observatore, France
Dopp Sterkov	145 1162	Dakad Observatory, CH-0525 Offosca, Switzenand
Robert Stephens	646	Center for Solar System Studies, 9302 Pittsburgh Ave. Suite 105, Rancho Cucamonga, CA 01730, USA
Arnaud Stiepen	511	Haute-Provence Observatory St. Michel l'Observatore France
Reiner Stoss	620	AAM – Mallorca
Jean Strainic	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Jean-Paul Teng	181	Observatoire Les Makes, G. Bizet 18, F-97421 La Rivière, France
Titouan	C62	Eurac Observatory, Bolzano, Italy
Greg Tumolo	482	Observatory of the University of St Andrews, United-Kingdom
Antonio Vagnozzi	589	Santa Lucia Stroncone, Italy
Benjamin Vanoutryve	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Jean Marie Vugnon		Association T60, 14 avenue Edouard Belin, F-31400 Toulouse, France
Brian Warner	716	Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA
Jean Marie Vugnon	586	Pic du Midi Observatory
Brian Warner	U82	Center for Solar System Studies/MoreData!, 446 Sycamore Ave., Eaton, CO 80615, USA
Mathieu Waucomont	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Olivier Wertz	511	Haute-Provence Observatory, St-Michel l'Observatoire, France
Maciej Winiarski		Mt. Suhora Observatory, Pedagogical University. Podchorążych 2, 30-084, Cracow, Poland
Marek Wolf	557	Undrejov Observatory, Czech Republic
UAdM	C65	Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM)