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Abstract

We construct pairs of non-isometric hyperbolic 3-orbifolds with the
same topological type and volume. Topologically these orbifolds are map-
ping tori of pseudo-Anosov maps of the surface of genus 2, with singular
locus a fibred (hyperbolic) link with five components.
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1 Introduction

In this brief note, building upon techniques and ideas already used in [LPS], we
construct a hyperbolic 3-manifold that is a branched cover of a link in another
hyperbolic manifold (the mapping torus of an pseudo-Anosov map of the surface
of genus 2) in two different ways. More precisely we show

Theorem 1. Given two integers n > m ≥ 2, there are infinitely many non
isometric pairs (M,L) where M is a fibred hyperbolic 3-manifold and L a five-
component link contained in another fibred hyperbolic 3-manifold |O| such that
M is a 2mn-sheeted branched cover of L in two non-equivalent ways.

Here L is transverse to the fibration of the manifold in which it is contained.
As a straightforward consequence of the above result, we obtain

Corollary 2. There are infinitely many pairs of non-isometric hyperbolic 3-
orbifolds that have the same topological type and volume.

Indeed, the two orbifolds of each pair mentioned in the corollary are obtained
as quotients of M by the action of two groups of order 2mn: in both cases, the
space of orbits is |O| and the points with non trivial stabilisers map onto L with
orders of ramification (2, 2, 2m, 2m,n) in one case and (2, 2, 2n, 2n,m) in the
other.

∗Partially supported by the Centre for Mathematics of the University of Coimbra –
UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC and co-
funded by the European Regional Development Fund through the Partnership Agreement
PT2020.
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In order to build our examples, we start by describing certain (branched)
covers of surfaces. As in [LPS], the 3-manifolds and orbifolds we are looking
for will be then obtained as mapping tori of pseudo-Anosov maps defined on
the surfaces considered. The maps will be chosen so that they “commute” with
the covering projections, indeed all maps will be lifts of a single Anosov map
defined on the common quotient of all surface covers, that is a torus in this
construction.

2 Surface covers

Given two integers n > m ≥ 2 we wish to construct two non-equivalent 2mn-
sheeted covers from the (closed, connected, orientable) surface Sg of genus g =
6nm − n −m + 1 onto the surface of genus 2, branched over five points, with
orders of ramification (2, 2, 2m, 2m,n) for the first cover and (2, 2, 2n, 2n,m) for
the second one. We shall see the bases of the two covers as two 2-orbifolds:
Σ2(2, 2, 2m, 2m,n) and Σ2(2, 2, 2n, 2n,m). Both orbifolds are orbifold double
covers of the torus T (2, 2, 2m, 2n) with four cone points of orders (2, 2, 2m, 2n).

In order to make the construction of the different coverings easier to un-
derstand we will separate it in two different steps. In step one we will con-
struct an mn-sheeted branched cover from Sg to the orbifold Σ5(m,m, n, n)
of genus five with four cone points of orders (m,m, n, n). In step two we will
show that the orbifold Σ5(m,m, n, n) double covers both Σ2(2, 2, 2m, 2m,n)
and Σ2(2, 2,m, 2n, 2n). Using the fact that the deck transformations of the
covering constructed commute, we will also see that Σ2(2, 2, 2m, 2m,n) and
Σ2(2, 2,m, 2n, 2n) have a common quotient, which is the Z/2×Z/2 quotient of
Σ5(m,m, n, n). This quotient will be T (2, 2, 2m, 2n).

Figure 1: The orbifold Σ5(m,m, n, n).

The branched covers just discussed can be summarised in the following com-
muting diagram of covers:

Sg

Σ5(m,m, n, n)

Σ2(2, 2, 2m, 2m,n) Σ2(2, 2,m, 2n, 2n)

T (2, 2, 2m, 2n)
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Note that all covers associated to arrows appearing in the diagram are reg-
ular. The group of deck transformations associated to Sg −→ Σ5(m,m, n, n) is
isomorphic to Z/m× Z/n, the other being double covers, as already observed.

2.1 Step one

In this part we start by constructing a cover of order mn from the surface
of genus (m − 1)(n − 1) onto the 2-sphere with four branch points, two of
order n and two of order m. Having fixed an integer h ≥ 0 we will then
adapt the construction in order to have a cover from the surface of genus g =
hmn+(m−1)(n−1) onto the surface of genus h again with four branch points,
two of order n and two of order m. Observe that for the case we are interested
in we have h = 5 and g = 6nm− n−m+ 1 = 5mn+ (m− 1)(n− 1).

To construct the covering we want, it is sufficient to find a surface of genus
(m−1)(n−1) admitting a symmetry of type Z/m×Z/n where the generators of
both cyclic subgroups have fixed points belonging to precisely two orbits of the
Z/m×Z/n-action. A simple way to build a surface having prescribed symmetry
is to use a symmetric graph and see the surface as the boundary of a regular
neighbourhood of a standard embedding of the graph in 3-space (as was done
in [LPS]).

We will build a graph embedded in the 3-sphere. To make things more
explicit, it is convenient to see the 3-sphere S3 ⊂ C2 as the set of points (z1, z2)
such that |z1|2 + |z2|2 = 1. Note that S3 admits a Z/m × Z/n-action defined
on the generators as (z1, z2) 7→ (e2iπ/mz1, z2) and (z1, z2) 7→ (z1, e

2iπ/nz2).
Consider now the following sets of points in 3-sphere: A = {pk = (e2ikπ/m, 0) |
k = 0, . . . ,m − 1} and B = {ql = (0, e2ilπ/n) | l = 0, . . . , n − 1}. Observe
that both sets are invariant by the Z/m × Z/n-action by construction. The
graph we are interested in is the complete bipartite graph with sets of vertices
A and B and set of edges {ekl : k = 0, . . . ,m − 1; l = 0, . . . , n − 1} where
ekl = {(cos t pk + sin t ql) : 0 < t < π/2}. It is clear that the graph is embedded
in S3 in a Z/m×Z/n-equivariant way. Figure 2 shows the case n = 3 and m = 4,
where the solid tori {(z1, z2) ∈ S3 : |z2|2 ≤ 1

2} and {(z1, z2) ∈ S3 : |z2|2 ≥ 1
2}

have their boundaries identified, and their cores are the components of a Hopf
link. Figure 3 shows the whole graph for n = 2 and m = 3.

We then obtain the desired surface by taking the boundary of a sufficiently
small regular and equivariant neighbourhood of the graph. Note that the Euler
characteristic of our graph is m + n − nm, so it follows immediately that the
genus of the boundary surface is mn −m − n + 1. We wish to stress that the
fixed-point set of the cyclic subgroup of order m acting on the 3-sphere is the
circle of equation z1 = 0 containing the set B and, similarly, the fixed-point set
of the cyclic subgroup of order n acting is the circle of equation z2 = 0 containing
the set A. As a consequence, nearby each point of A (respectively B) the cyclic
group of order n (respectively m) has two fixed points on the surface. Since the
Z/m × Z/n-action is freely transitive on the edges of the graph, it is not hard
to see that the quotient of this surface by the action is a sphere with two cone
points of order m and two of order n.

To construct a covering with the same type of action from the surface of
genus hmn + (m − 1)(n − 1) onto a surface of genus h, we start by observing
that the surface we have just built can be decomposed into n m-holed spheres,
m n-holed spheres and mn tubes each attached on one side to some hole of
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Figure 2: A local picture of the (n,m)-complete bipartite graph with vertices
on the Hopf link for n = 3 and m = 4.

the Hopf link

3 vertices on this 
component

2 vertices on this 
component

Figure 3: A global picture of the (n,m)-complete bipartite graph with vertices
on the Hopf link for n = 2 and m = 3.

a sphere of the first type and on the other to some hole of a sphere of the
second type. To generalise the construction it suffices to replace each tube with
a surface of genus h with two holes (see Figure 4): the boundary components of
the surface are attached as the boundary components of the original tubes were.
It is obvious that one can carry out this construction in a Z/m×Z/n-equivariant
way.

2.2 Step two

For the remaining coverings we follow the same strategy: we start by considering
a symmetric graph embedded in R3. Consider the unit circle C0 in the plane
of equation x3 = 0. In the same plane, consider four circles Ci, i = 1, 2, 3, 4, of
centres (1, 1, 0), (−1, 1, 0), (−1,−1, 0), and (1,−1, 0) respectively, all of radius√

2 − 1. The set Γ = ∪4i=0Ci is a graph in the plane of equation x3 = 0. By
construction, Γ is invariant by the action of the π-rotations about the x1 and
x2 axes. Once more, consider a small and invariant regular neighbourhood of
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Figure 4: A tube and a surface of genus h = 5 that replaces it in the construction.

Γ: its boundary is clearly a surface of genus 5. We wish to identify this surface
with the quotient Σ5(m,m, n, n) of the cover constructed in Step one. We do
so by imposing that the outermost points of intersection of the surface with
the x1 axis are the two cone points of order m and the outermost points of
intersection of the surface with the x2 axis are two cone points of order n. It
is now straightforward to realise that the quotient of Σ5(m,m, n, n) by the π-
rotation about the x1 (respectively x2) axis is the orbifold Σ2(2, 2, 2m, 2m,n)
(respectively Σ2(2, 2, 2n, 2n,m)). The two π-rotations commute and generate
a Klein group of order four. The quotient of Σ5(m,m, n, n) by its action is
T (2, 2, 2m, 2n).

Remark that, although the two double branched covers from the surface
of genus five to that of genus two are equivalent, the 2mn-sheeted branched
coverings Sg −→ Σ2(2, 2, 2m, 2m,n) and Sg −→ Σ2(2, 2, 2n, 2n,m) are not, for
the orders of ramification are different. Notice that the two double branched
covers are equivalent since the surface of genus five admits a cyclic symmetry of
order four (a π/2-rotation about the x3-axis) which conjugates the two covering
involutions. This symmetry preserves the marked points, although not their
orders and generates, together with the Klein group, a dihedral group of order
eight.

3 Mapping tori

We wish now to construct 3-manifolds as mapping tori of homeomorphisms
defined on the surfaces built in the previous section. We want, moreover, that
the mapping tori fulfill some extra requirements.

Lemma 3. Consider the five surfaces Sg, Σ5(m,m, n, n), Σ2(2, 2, 2m, 2m,n),
Σ2(2, 2, 2n, 2n,m), and T (2, 2, 2m, 2n) constructed in the previous section. For
each of the five surfaces it is possible to choose a homeomorphism of the surface
in such a way that the five chosen homeomorphisms and the associated mapping
tori satisfy the following conditions.

1. Each covering of surfaces induces a covering of the corresponding mapping
tori.
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Figure 5: The circle pattern in the x3 = 0-plane and the position of the cone
points of orders n and m on the genus-5 surface boundary of a regular neigh-
bourhood (not shown in the picture).

2. The mapping tori associated to the homeomorphisms of Σ2(2, 2, 2m, 2m,n)
and Σ2(2, 2, 2n, 2n,m) are homeomorphic.

3. The cone points of Σ2(2, 2, 2m, 2m,n) and Σ2(2, 2, 2n, 2n,m) are fixed by
the chosen homeomorphisms and they close up to equivalent five-component
links in the mapping tori.

Proof. The first condition is easy to fulfill. Indeed, it is sufficient to choose any
homeomorphism ψ of the torus which fixes four points (corresponding to the
four cone points of T (2, 2, 2m, 2m)). Since we are dealing with finite covers there
is a non-trivial power of ψ that lifts to all covers and, up to choosing possibly
a further power, we can even ensure that the fibres of the cone points are fixed
pointwise by the lift.

To ensure that the remaining two conditions hold, we need that the lifts of ψ
to Σ2(2, 2, 2m, 2m,n) and Σ2(2, 2,m, 2n, 2n) are conjugate, and the conjugation
maps the cone points of the first orbifold to those of the second.

To achieve this we need to start with a further quotient of our surfaces. We
point out that this quotient will not be the base space of an orbifold covering
with total space Sg. Consider T (2, 2, 2m, 2m). If we forget the orders of the
cone points we see that the symmetry of order four of the surface of genus five
induces an elliptic involution of T (2, 2, 2m, 2m) which exchanges the two cone
points of order two and those of orders 2m and 2n. Observe that this elliptic
involution is also induced by any of the two π-rotations about the diagonals
x1 = ±x2 in the x3 = 0 plane of the previous construction (see Figure 5).

We can thus start with a homeomorphism ϕ of the 2-sphere quotient of
the torus by the action of the elliptic involution. We require that ϕ fixes six
points: two points a and b corresponding to the orbits of the cone points of
T (2, 2, 2m, 2m) and four others corresponding to the orbits of the fixed-points
of the elliptic involution. Up to passing to a power, we can assume that ϕ lifts
to a homeomorphism ψ of the covering torus which fixes each point a1, a2 in the
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fibre of a and b1, b2 in the fibre of b. We identify this torus with T (2, 2, 2m, 2n)
in such a way that a1 and a2 are cone points of order 2, b1 of order 2m and b2
of order 2n. We also require that {ai, bi} are the images of the fixed points of
the π-rotation about the axis xi, i = 1, 2.

With this choice of ψ, the mapping tori associated to the lifts of ψ discussed
above satisfy all given requirements.

The diagram of surface orbifold covers give thus rise to a diagram of induced
3-dimensional orbifold covers between mapping tori:

M

N(m,m, n, n)

O(2, 2, n, 2m, 2m) O(2, 2,m, 2n, 2n)

Q(2, 2, 2m, 2m)

We stress again that here the orbifoldsO(2, 2, n, 2m, 2m) andO(2, 2, 2n, 2n,m)
have the same topological type, that is are homeomorphic as manifolds and their
singular sets are equivalent links.

4 Hyperbolic structures

To ensure that our mapping tori are hyperbolic manifolds (and orbifolds) it
suffices to choose the homeomorphism ψ described in the previous section to
be Anosov. This can be done without considering the quotient by the elliptic
involution. Indeed, each linear Anosov map commutes with the standard el-
liptic involution corresponding to minus the identity; in particular, the elliptic
involution preserves the fixed points of the Anosov map. Now, to our purposes
it is sufficient that the linear Anosov we choose has at least four fixed points
that are exchanged in pairs by the hyperelliptic involution. Indeed, we only
need to identify these two orbits with the set of cone points of order two, and
of order 2m and 2n respectively. Since Anosov maps have periodic orbits of
arbitrarily large orders, up to perhaps taking a power, we can assume that our
linear Anosov has at least eight fixed points. Now the standard elliptic involu-
tion has precisely four fixed points, all other points belonging to orbits with two
elements. We can thus conclude that the Anosov map has at least four points
that are exchanged in pairs by the standard elliptic involution.

Note that all finite group of deck transformations can be realised as isometry
groups for the hyperbolic structure of the 3-manifolds or orbifolds on which they
act. Here again, since the orders of the groups acting are arbitrarily large we
see that we must have infinitely many non isometric manifolds M having two
non equivalent branched covers on the same link.

Also, by taking powers of ψ we obtain infinitely many commensurable ex-
amples and infinitely many links. Indeed, for a fixed choice of n > m ≥ 2, and
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for a fixed link L, the set of possible volumes of orbifolds with singular set L
and ramifications orders of the form (2, 2, 2n, 2n,m) or (2, 2, 2m, 2m,n) must be
finite. However, by taking mapping tori associated to powers of ψ the volume
must grow, because they cover each other.

Note that the five-component links in |O| are fibred and hyperbolic. Indeed,
the pseudo-Anosov maps defined over the surface of genus 2 with five cone points
restrict to pseudo-Anosov maps of the five-punctured genus-2 surface obtained
by removing the cone points.
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