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PARALLEL LATTICE-BOLTZMANN TRANSPORT SOLVER IN COMPLEX GEOMETRY

MATTHIEU BOILEAU, BÉRENGER BRAMAS, EMMANUEL FRANCK, PHILIPPE HELLUY, LAURENT NAVORET

Abstract. We present an efficient solver for the conservative transport equation with variable coefficients in
complex geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach.
The chosen formalism allows to obtaining an explicit and conservative scheme that requires no matrix inversion
and that is unconditionally stable with respect to the time step size. We present the method and its optimized
parallel implementation on complex toroidal geometries. This solver will be used as a building block for tokamak
plasma physics simulation.

1. Introduction

In many fields of physics one is conducted to solve conservative transport equations of the form

(1.1) ∂tσ +∇ · (σv) = 0.

In this equation, the unknown is the function σ(x, t) that depends on a space variable x ∈ R3 and of the time
t. The vector field v(x, t) is given.
Such equation arises for instance in plasma physics, where σ is the charged particles density function.
A tokamak is an experimental device for creating hot plasma. It generally has a toroidal shape and present
a cylindrical symmetry around the vertical axis. See Figure 1.1. The geometry of the poloidal plane however
can be complicated. It is therefore quite natural to consider numerical methods that are well adapted to
unstructured meshes in the poloidal planes, while the mesh is structured in the toroidal direction. See Figure
1.1. This what we do in this paper.
Another aspect of plasma physics in tokamak is that some charged particles can be fast. If the transport
equation is solved with a classical explicit scheme, this imposes very small time steps, because of the Courant
Friedrichs Lewy or CFL condition. This is annoying because the fast particles generally have a light contribution
to the main physical phenomena. In this paper we propose a method that is free of any stability condition on
the time step size.
The method reuses ideas coming from the Lattice-Bolzmann Method (LBM) [4] or from the kinetic schemes
[3, 5]. The main point is to replace the transport equation (1.1), where the velocity v is not constant, by a
few transport equations at constant velocity, coupled by a stiff local source term. The coupled system is solved
with splitting algorithm that separate the free transport steps and the stiff source terms. The free transport
steps are easier to solve, because of the transport is at constant velocity. They can also be solved by a CFL-less
Discontinuous Galerkin (DG) method in the toroidal plane and by an exact characteristic method in the toroidal
direction. It is also possible, by an adequate splitting algorithm, to achieve high order accuracy of the whole
procedure. In the end we obtain a CFL-less high-order and conservative scheme with interesting properties.
The price to pay is that the initial number of unknowns is increased by a factor of four (but this increase is also
observed in the implementation of high-order time integration schemes).

Figure 1.1. Tokamak shape. The toroidal direction is indicated by the blue arrow. The
poloidal direction is represented by the red arrow. Source: Wikipedia.
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The resulting scheme has also nice parallelization possibilities. In a poloidal plane, the DG method involves
block-triangular linear systems that are well solved by an optimized task-based OpenMP implementation. In
the toroidal direction, the transport equations are solved by a simple shift operator. It is here implemented by
simple MPI send/receive operations.
In this work we describe the whole mathematical, numerical and programming construction. We then verify its
accuracy and efficiency with some test-cases.

2. Mathematical formalism

2.1. Change of coordinates. In this work, we are particularly interested in solving the transport equation in
tokamak geometry. It is useful for this purpose to be able to write the conservative transport equation in an
arbitrary system of coordinates. Let us thus consider a change of variable

x = x(r).

The Jacobian of this change of variables is defined by

j(r) = detx′(r).

We consider then the change of unknown

ρ(r, t) = j(r)σ(x(r), t).

The velocity field in the r variable is given by

u(r, t) = j(r)x′(r)−1v(x(r), t).

In the new variables, the transport equation becomes

∂tρ+∇ · ρu = 0.

For tokamak applications, we are particularly interested in the change form Cartesian to cylindrical coordinates.
We denote by

x = (x, y, z)T

the Cartesian coordinates and by
r = (r, z, ϕ)T

the cylindrical coordinates. The change of variables is given by

x = r cosϕ,

y = r sinϕ,

z = z.

We also define the cylindrical frame

er =

 cosϕ
sinϕ

0

 , ez =

 0
0
1

 , eϕ =
1

r

 − sinϕ
cosϕ

0

 .

Remark 1. The vector eϕ is not a unit vector: its Euclidean norm is equal to 1/r. This is important for keeping
a conservative form to the transport equation in cylindrical coordinates (see below).

We now consider the conservative transport equation (1.1). We assume that the velocity field is expressed in
cylindrical coordinates

v =

 vx
vy
vz

 = urer + uzez + uϕeϕ,

and we set
u = (ur, uz, uϕ)T .

Then, defining
ρ = σr,

the conservative transport equation (1.1) keeps a conservative form in cylindrical coordinates

(2.1) ∂tρ+ ∇(r,z,ϕ) · (ρu) = 0.

This can be rewritten

(2.2) ∂tρ+ ∇(r,z) ·
(
ρ

(
ur
uz

))
+ ∂ϕ(ρuϕ) = 0.

Remark 2. The conclusion of these considerations is that, even in cylindrical coordinates, it is possible to solve
a transport equation of the form (1.1) as if we were in Cartesian coordinates. In the test cases of Section 5 we
thus note the three coordinates (x, y, z) even if we are considering cylindrical cases.
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2.2. Lattice-Boltzmann Method (LBM). We consider a LBM with nv kinetic velocities λk, k = 0 . . . nv−1.
The kinetic velocities are constant in cylindrical coordinates. The nv − 2 first velocities are used for (r, z)
transport. For instance, we can take nv = 6

λk = λek,

and

e0 =

 1
0
0

 , e1 =

 −1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
−1
0

 .

The last two velocities are used for the ϕ direction

env−2 =

 0
0
1

 , env−1 =

 0
0
−1

 .

The kinetic approximation is given by

ρ =

nv−1∑
k=0

fk,

(2.3) ∂tfk + λk ·∇fk =
1

τ
(feqk − fk),

with
feqk =

ρ

nv
+
ρu · ek

2λ
.

This can also be written

(2.4) feqk =
ρ

nv
+
ρu · λk

2λ2
.

If we use a splitting method, we have to solve free transport equations

(2.5) ∂tfk + λk ·∇fk = 0,

interlaced with relaxation steps for applying the source term in (2.3). For more details, we refer to [1, 2, 3, 5, 7].

3. Transport solver

For several reasons (parallelism, memory optimizations, tokamak geometries, etc.) we consider meshes with a
cylindrical symmetry. The starting point is thus a two-dimensional unstructured, but conformal mesh made of
second order curved quadrilaterals with eight nodes (“Q8” family in the finite element terminology). In practice,
this mesh represents one poloidal plane (ϕ = Cst) of the tokamak. This mesh is extruded in the third direction
for obtaining the full tokamak.
In the poloidal plane, the transport equations will be solved with an implicit DG scheme, which we describe
below. In the toroidal direction we can solve the transport equations with a simple shift, because of the
cylindrical geometry. In practice, a possible implementation is to associate to each poloidal plane one MPI
process. Thus, the shift simply consists in an MPI send/receive operation with the neighbor planes. This
approach imposes a constraint on the time step. An alternative would be to replace the shift by a semi-
Lagrangian solver. This would imply exchanges with more neighbors and thus more MPI communications.

3.1. DG formulation. In this section we describe briefly the transport solver in the poloidal plane. For more
details we refer (for instance) to [8, 2]. The objective is to solve a two-dimensional transport equation, with
constant velocity v

∂tf + v ·∇(x,y)f = 0.

The poloidal solver is based on the Discontinuous Galerkin (DG) method. In order to avoid too constraining
CFL conditions, we only envisage implicit solvers. The poloidal mesh is a two-dimensional mesh made of curve
quadrilateral cells with eight nodes also none as “Q8” elements in the finite element literature. In each cell L
we consider polynomial basis functions ψL

i of degree p. For efficiency reason, the basis functions are Lagrange
polynomials based on Gauss-Lobatto quadrature points.
The transported function f is approximated in cell L by a linear expansion on the basis functions

f(x, n∆t) ' fnL(x) =
∑
j

fnL,jψ
L
j (x), x ∈ L.

The unknowns are the coefficients fnL,j of the linear expansion.
We first consider the simplest first order implicit DG approximation scheme. It reads: ∀L,∀i

(3.1)
∫
L

fnL − f
n−1
L

∆t
ψL
i −

∫
L

v ·∇ψL
i f

n
L +

∫
∂L

(
v · n+fnL + v · n−fnR

)
ψL
i = 0.
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∂L ∩ ∂R
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R

Figure 3.1. Normal vector convention.
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Figure 3.2. Dependency graph.

where:

• R denotes the neighbor cells along ∂L.
• v · n+ = max(v · n, 0), v · n− = min(v · n, 0). We thus use an upwind numerical flux.
• nLR is the unit normal vector on ∂L oriented from L to R. See Figure 3.1.

In the above formalism, we only describe a first order time scheme. In practice, we actually use a second order
implicit Crank-Nicolson time stepping [2]. But it is very similar to the above description.

3.2. Downwind algorithm. An important feature of the DG method is that because of the upwind nature
of the numerical flux, it is rather easy to solve the linear system for computing the distribution function at
time tn, fn from the distribution function fn−1 of the previous time step. It can be solved step by step simply
sweeping the mesh in the direction of the velocity vector. More precisely, we say that a cell L is upwind with
respect to a cell R if v · nLR > 0 on ∂L ∩ ∂R. In a cell L, the solution depends only on the values of f in
the upwind cells. For a given velocity v we can build a dependency graph. Vertices are associated to cells and
edges to cells interfaces or boundaries. We consider two fictitious additional vertices: the “upwind” vertex and
the “downwind” vertex. The dependency graph for simple unstructured mesh and a given constant velocity is
represented on Figure 3.2. The construction can be generalized to any unstructured mesh with flat faces (in
order to avoid loops in the graph).

For solving one transport equation for a given velocity v, the algorithm is the following:

• First we perform a topological ordering of the dependency graph.
• First time step: Assembly, LU decomposition and storage of the local cell matrices. These computations

can also be redone during each time-step for saving memory (but it is more CPU demanding).
• For each cell (in topological order):

– Compute volume terms.
– Compute upwind fluxes.
– Solve the local linear system.
– Extract the results to the downwind cells.

3.3. Parallelization. Because of the dependency graph we cannot perform all the computations in parallel.
For instance, for the mesh of Figure 3.2. It is necessary to compute the solution in cell 0 first. Then cells 1 and
2 can be done in parallel, etc.
The parallelization is done by a task graph approach. Depending on the compilation options, this can be based
on OpenMP tasks or on a specialized DAG (Direct Acyclic Graph) clustering algorithm.
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4. Kinetic solver

4.1. Transport. The main task of the kinetic solver is devoted to the resolution of the transport equations
(2.5). If the kinetic velocity λk is in the (r, z) direction, then one uses the DG algorithm of Section 3.2. If the
kinetic velocity is in direction ϕ then the shift algorithm is used.

4.2. Relaxation. We denote by fnk the kinetic fields at time step n, corresponding to time tn = n∆t. We
denote by f∗k the value of the fields after the free transport step (2.5).
For obtaining the new value of the field at time step n+ 1, the kinetic fields f∗k are recombined according to

fn+1
k = 2f∗,eqk − f∗k .

This over-relaxation formula ensures second order accuracy in time [5, 6].

4.3. Boundary conditions. For the moment, the boundary conditions are based on a known exterior state.
More precisely, in the DG scheme (3.1) if R corresponds to a boundary, then the unknown value of fR is given
by

fR = feq(ρ, u),

where ρ and u are imposed boundary data and feq is given by (2.4).

5. Numerical tests

5.1. Transport in two-dimensional geometry. We present now a few test cases for assessing the good
behavior of the solver described above.
We consider the two-dimensional rotation of a Gaussian pulse. The pulse is given by

g(x, y, z, t) = exp(−30(((x′ − 1)2 + y′2 + z′2),

with

x′ = cos(αt)x+ sin(αt)y,

y′ = cos(αt)y − sin(αt)x,

z′ = 0,

and (for instance)
α = 1/4.

This exact solution satisfies the transport equation

∂tg + v ·∇g = 0,

with

v = α

 −yx
0

 .

We check that
∇ · v = 0

and thus
∂tg + ∇ · (gv) = 0,

The computational domain is the disk

Ω =
{

(x, y, z), x2 + y2 < 4, z = 0
}
.

In practice, this test case validates the solver in a single poloidal plane, where the variables (r, z) are replaced
by (x, y) (see Remark 2).
We compute numerically the above solution with two different meshes with refinement levels of 5 and 10 (see
Figure 5.2) and with nt = 500 and nt = 1000 time steps. The time step is given by ∆t = 2π/nt. The numerical
solution is plotted at time tmax = 2π on Figure 5.1. We check that the Gaussian shape is well preserved by the
LBM scheme. We also check the order of convergence in the L2 norm. The measured numerical order is here
2.405.
The time scheme is only second order accurate and is thus the limiting factor for the convergence. Anyway
we also check the spatial convergence of the scheme for higher order DG approximation. For this, we use a
sufficiently small time step in such a way that the error due to the time approximation is negligible. We perform
simulations with two meshes with two different refinements of 10 and 20 (see Figure 5.2). We then obtain the
numerical orders of Table 1.
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Figure 5.1. Numerical solution at times t = 0 (left) and t = 2π (right) after the Gaussian
pulse has done a quarter turn.

p num. order
1 0.997
2 2.68
3 3.772

Table 1. Numerical order of the DG scheme for several values of the polynomial order p. In
this test, the time step is chosen in such a way that the time error is negligible.

5.2. Transport in a 3D periodic cylinder. Now we activate also transport in the third direction.
We consider a three-dimensional helical shift of a Gaussian pulse. The pulse is given by

g(x, y, z, t) = exp(−30((x′ − 1)2 + y′2 + z′2),

with

x′ = cos(2πβt)x+ sin(2πβt)y,

y′ = cos(2πβt)y − sin(2πβt)x,

z′ = z + αt.

We can also consider a periodic function in the z direction

g(x, y, z, t) = exp(−30((x′ − 1)2 + y′2) sin(πz′).

This exact solution satisfies the transport equation

∂tg + v ·∇g = 0,

with

v = α

 −2πy
2πx
−1

 .

We check that
∇ · v = 0

and thus
∂tg + ∇ · (gv) = 0,

The computational domain is the cylinder

Ω =
{

(x, y, z), x2 + y2 < 4, −1 = zmin < z < 1 = zmax

}
.

We wish a maximal time tmax = 1. In this way the Gaussian pulse will move a little bit, without touching
the boundaries. Parallelism is managed by OpenMP and MPI. OpenMP is used for optimizing the transport
solver in the poloidal planes. MPI communications are used for the parallelism in the toroidal direction. If, for
instance, we choose np = 64 MPI processes, and a kinetic velocity λ = 1, we have

∆z =
zmax − zmin

np
,
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Figure 5.2. Poloidal meshes with refinements 5, 10, 20 and 40.

1016 × 100 2 × 101 3 × 101 4 × 101
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rro
r
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2nd order

Figure 5.3. L2 error as a function of the refinement level

the time step is given by

∆t =
∆z

λ
= 0.03125.

We thus have to perform nt time iterations

nt =
tmax

∆t
= 32.

In order to check the convergence order, we have considered three different meshes of the poloidal plane with
refinement of 5,10, 20 and 40. A few meshes are represented on Figure 5.2.

We then perform computations with respectively 32, 64, 128, 256 MPI processes and compute the error in the
L2 norm. We obtain the error curve of Figure 5.3. The order of convergence based on the 64 and 128 refinement
levels is 2.226 (2.155 for 128-256 refinements).
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6. Conclusion

In this work, we have proposed a new optimized numerical method for solving non-homogeneous conservative
transport equations in toroidal geometries. The method is conservative high-order in space and time, has the
complexity of a time-explicit scheme and is efficiently parallelized. It is also able to handle unstructured meshes
of the poloidal plane, which is very useful for numerical simulations in tokamaks, like ITER.
The method will now be applied to more physical configurations. The transport has first to be coupled with a
toroidal Poisson solver for computing the electric potential generated by the charge density motion. It is also
envisaged to add to the model the imposed magnetic field, which is essential for confining the plasma. Finally,
the model can also be enriched with more realistic toroidal geometries and more complex transport models,
with several populations of particles such as in richer gyrokinetic models.
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