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and quantum field theory [START_REF] Ebrahimi-Fard | New identies in dendriform algebras[END_REF]10], in connection with the theory of renormalization of Connes and Kreimer [START_REF] Connes | Hopf algebras, renormalization and non-commutative geometry[END_REF]5,6]. Some years later after [START_REF] Loday | Une version non commutative des algèbre de Lie: les algèbres de Leibniz[END_REF], Loday and Ronco introduced the concept of tridendriform algebra in the study of polytopes and Koszul duality [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF]. The construction of free (tri)dendriform algebras can be referred to [START_REF] Loday | Une version non commutative des algèbre de Lie: les algèbres de Leibniz[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF]. The free objects play a crucial role in the study of any algebraic structures, such as the construction of free differential algebras in terms of differential monomials, the construction of free Rota-Baxter algebras [15] which is more involved, the free differential Rota-Baxter algebras [16] composing the construction of free differential algebras followed by that of the free Rota-Baxter algebras, and the free integro-differential algebras [12,[START_REF] Gao | Construction of free commutative integro-differential algebras by the method of Gröbner-Shirshov basis[END_REF] for analyzing the underlying algebraic structures of boundary problems for linear ordinary differential equations. In [28], the authors proposed the concepts of (tri)dendriform family algebras and they obtained that Rota-Baxter family algebras induce (tri)dendriform family algebras. Besides, they construct free commutative (tri)dendriform family algebras.

It is natural to ask how to use reduced planar rooted trees (also known as Schröder trees) to construct free (tri)dendriform family algebras. Here we exhibit a way to construct free (tri)dendriform family algebras via typed decorated Schröder trees, whose vertices are decorated by elements of a set X and edges are decorated by elements of a semigroup Ω. Typed decorated trees are used by Bruned,Hairer and Zambotti in [2] to give a systematic description of a canonical renormalisation procedure of stochastic PDEs. They also appear [27] in a context of low dimension topology and also appear in [START_REF] Bergeron | Combinatorial species and tree-like structures[END_REF] for the description of combinatorial species. The concept of typed decorated planar binary trees enables us to construct free dendriform family algebras, and the concept of typed valently decorated Schröder trees will be used to construct free tridendriform family algebras.

The layout of the paper is as follows. In Section 1, we prove that any Rota-Baxter family algebra R on a base ring k indexed by a semigroup Ω induces an ordinary Rota-Baxter algebra structure on R ⊗ kΩ (Theorem 2.4) and vice-versa. The semigroup Ω at hand is not necessarily commutative. Then we prove that Rota-Baxter family algebras can induce (tri)dendriform family algebras (Proposition 2.10). Finally, we give the relationship between (tri)dendriform family algebras and (tri)dendriform algebras (Theorem 2.11). Section 3 is devoted to typed decorated planar binary trees. We derive a useful recursive expression for typed decorated planar binary trees endowed with the operations (≺ ω , ω ) ω∈Ω introduced in the third section (Definition 3.7). We first construct dendriform family algebras (Proposition 3.10) in terms of typed decorated planar binary trees, then we prove the freeness of this dendriform family algebra (Theorem 3.12). In Section 4, closely related to Section 3, we first introduce the concept of typed valently decorated Schröder trees. Secondly, we construct tridendriform family algebras (Proposition 4.8) in terms of typed valently decorated Schröder trees, and finally prove the freeness of this tridendriform family algebra (Theorem 4.10).

The related notions of matching Rota-Baxter algebra, matching dendriform algebra and matching pre-Lie algebra are addressed in the recent paper [13]. The main difference is that the parameter at hand runs into a set Ω without any semigroup structure: see Remark 2. 2 (b) therein.

Notation: In this paper, we fix a ring k and assume that an algebra is a k-algebra. Denote by Ω a semigroup, unless otherwise specified.

Rota-Baxter family algebras and (tri)dendriform family algebras

In this section, we first recall the concepts of Rota-Baxter family algebras and (tri)dendriform family algebras. We then give a method to induce Rota-Baxter (resp. (tri)dendriform) algebras from Rota-Baxter (resp. (tri)dendriform) family algebras, and vice-versa.

2.1. Rota-Baxter family algebras. Rota-Baxter algebras (first called Baxter algebras) are originated in the work of the American mathematician Glen E. Baxter [START_REF] Baxter | An analytic problem whose solution follows from a simple algebraic identity[END_REF] in the realm of probability theory. The following is the concept of Rota-Baxter family algebra proposed by Guo, which arises naturally in renormalization of quantum field theory [7, Proposition 9.1], see also [START_REF] Kreimer | Hopf-algebraic renormalization of Kreimer's toy model[END_REF]. Definition 2.2. ([7, 17]) Let Ω be a semigroup and λ ∈ k be given. A Rota-Baxter family of weight λ on an algebra R is a collection of linear operators (P ω ) ω∈Ω on R such that

P α (a)P β (b) = P αβ P α (a)b + aP β (b) + λab , for a, b ∈ R and α, β ∈ Ω.
Then the pair (R, (P ω ) ω∈Ω ) is called a Rota-Baxter family algebra of weight λ. If further R is commutative, then (R, (P ω ) ω∈Ω ) is called a commutative Rota-Baxter family algebra of weight λ.

Definition 2.3. Let (R, (P ω ) ω∈Ω ) and (R , (P ω ) ω∈Ω ) be two Rota-Baxter family algebras of weight λ. A map f : R → R is called a Rota-Baxter family algebra morphism if f is an algebra homomorphism and f

• P ω = P ω • f for each ω ∈ Ω.
The following theorem precises the link between Rota-Baxter family algebras and ordinary Rota-Baxter algebras.

Theorem 2.4. (R ⊗ kΩ, P) is a Rota-Baxter algebra of weight λ, where

P : R ⊗ kΩ → R ⊗ kΩ x ⊗ ω → P ω (x) ⊗ ω
if and only if (R, (P ω ) ω∈Ω ) is a Rota-Baxter family algebra of weight λ.

Proof. For x, y ∈ R and α, β ∈ Ω, we have

P(x ⊗ α)P(y ⊗ β) = P α (x) ⊗ α (P β (y) ⊗ β) = P α (x)P β (y) ⊗ αβ = P αβ P α (x)y + xP β (y) + λxy ⊗ αβ = P P α (x)y + xP β (y) + λxy ⊗ αβ = P P α (x)y ⊗ αβ + xP β (y) ⊗ αβ + λxy ⊗ αβ = P P α (x) ⊗ α (y ⊗ β) + (x ⊗ α) P β (y) ⊗ β + λ(x ⊗ α)(y ⊗ β) = P P(x ⊗ α)(y ⊗ β) + (x ⊗ α)P(y ⊗ β) + λ(x ⊗ α)(y ⊗ β) ,
as required. Conversely, we obtain

P α (x)P β (y) ⊗ αβ = P(x ⊗ α)P(y ⊗ β) = P P(x ⊗ α)(y ⊗ β) + (x ⊗ α)P(y ⊗ β) + λ(x ⊗ α)(y ⊗ β) = P P α (x) ⊗ α (y ⊗ β) + (x ⊗ α) P β (y) ⊗ β + λ(x ⊗ α)(y ⊗ β) = P P α (x)y ⊗ αβ + xP β (y) ⊗ αβ + λxy ⊗ αβ = P P α (x)y + xP β (y) + λxy ⊗ αβ = P αβ P α (x)y + xP β (y) + λxy ⊗ αβ.
So we get P α (x)P β (y) = P αβ P α (x)y + xP β (y) + λxy . In other words, P ⊗ kΩ is an Ω-graded Rota-Baxter algebra, with ω-homogeneous component equal to P ⊗ kω fo any ω ∈ Ω. Identifying each homogeneous component on both sides of the Rota-Baxter identity leads to the Rota-Baxter family identy. This completes the proof.

2.2. Dendriform family algebras and tridendriform family algebras. The concept of dendriform family algebras was proposed in [28], as a generalization of dendriform algebras invented by Loday [START_REF] Loday | Une version non commutative des algèbre de Lie: les algèbres de Leibniz[END_REF] in the study of algebraic K-theory.

Definition 2.5. [START_REF] Loday | Une version non commutative des algèbre de Lie: les algèbres de Leibniz[END_REF] A dendriform algebra is a k-module D with two binary operations ≺, such that for x, y, z ∈ D,

(x ≺ y) ≺ z = x ≺ (y ≺ z + y z), (x y) ≺ z = x (y ≺ z), (x ≺ y + x y) z = x (y z).
Definition 2.6. [28] Let Ω be a semigroup. A dendriform family algebra is a k-module D with a family of binary operations (≺ ω , ω ) ω∈Ω such that for x, y, z ∈ D and α, β ∈ Ω,

(x ≺ α y) ≺ β z = x ≺ αβ (y ≺ β z + y α z), (1) (x α y) ≺ β z = x α (y ≺ β z), (2) (x ≺ β y + x α y) αβ z = x α (y β z). (3) 
The concept of tridendriform family algebras was also introduced in [28], which is a generalization of tridendriform algebras invented by Loday and Ronco [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF] in the study of polytopes and Koszul duality.

Definition 2.7. [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF] A tridendriform algebra is a k-module T equipped with three binary operations ≺, and • such that for x, y, z ∈ T ,

(x ≺ y) ≺ z = x ≺ (y ≺ z + y z + y • z), (x y) ≺ z = x (y ≺ z), (x ≺ y + x y + x • y) z = x (y z), (x y) • z = x (y • z), (x ≺ y) • z = x • (y z), (x • y) ≺ z = x • (y ≺ z), (x • y) • z = x • (y • z).
Definition 2.8.

[28] Let Ω be a semigroup. A tridendriform family algebra is a k-module T equipped with a family of binary operations (≺ ω , ω ) ω∈Ω and a binary operation • such that for x, y, z ∈ T and α, β ∈ Ω,

(x ≺ α y) ≺ β z = x ≺ αβ (y ≺ β z + y α z + y • z), (4) (x α y) ≺ β z = x α (y ≺ β z), (5) (x ≺ β y + x α y + x • y) αβ z = x α (y β z), (6) (x α y) • z = x α (y • z), (7) (x ≺ α y) • z = x • (y α z), (8) (x • y) ≺ α z = x • (y ≺ α z), (9) (x • y) • z = x • (y • z). ( 10 
)
Remark 2.9. When the semigroup Ω is taken to be the trivial monoid with one single element, a dendriform (resp. tridendriform) family algebra is precisely a dendriform (resp. tridendriform) algebra.

Let RBF λ be the category of Rota-Baxter family algebras of weight λ, and let DDF (resp. DTF) be the category of dendriform (resp. tridendriform) family algebras. A functor ε : RBF λ → DTF has been introduced in [28, Theorem 4.4]. Further we have Proposition 2.10. Let Ω be a semigroup.

(a) A Rota-Baxter family algebra (R, (P ω ) ω∈Ω ) of weight λ induces a dendriform family algebra (R, (≺ ω , ω ) ω∈Ω ), where

x ≺ ω y := xP ω (y) + λxy and x ω y := P ω (x)y, for x, y ∈ R.

(b) A tridendriform family algebra (T, (≺ ω , ω ) ω∈Ω , •) induces two dendriform family algebras (T, (≺ ω , ω ) ω∈Ω ) and (T, (≺ ω , ω ) ω∈Ω ), where

x ≺ ω y : = x ≺ ω y + x • y and x ω y := x ω y, x ≺ ω y : = x ≺ ω y and x ω y := x ω y + x • y, for x, y ∈ T.

Proof. (a) For any x, y, z ∈ R and α, β ∈ Ω,

(x ≺ α y) ≺ β z = (xP α (y) + λxy) ≺ β z = (xP α (y) + λxy)P β (z) + λ(xP α (y) + λxy)z = xP α (y)P β (z) + λxyP β (z) + λxP α (y)z + λ 2 xyz = xP αβ (yP β (z) + P α (y)z + λyz) + λx(yP β (z) + P α (y)z + λyz) = x ≺ αβ (yP β (z) + P α (y)z + λyz) = x ≺ αβ (y ≺ β z + y α z), (x α y) ≺ β z = P α (x)y ≺ β z = P α (x)yP β (z) + λP α (x)yz = P α (x)(yP β (z) + λyz) = P α (x)(y ≺ β z) = x α (y ≺ β z),
x α (y β z) = x α (P β (y)z) = P α (x)(P β (y)z) = (P α (x)P β (y))z = P αβ (P α (x)y + xP β (y) + λxy)z = (P α (x)y + xP β (y) + λxy) αβ z = (x α y + x ≺ β y) αβ z.

(b) The proof is straightforward.

Let η : RBF λ → DDF and γ : DTF → DDF be the functors obtained in Proposition 2.10. Then we have the commutative diagram:

RBF λ η $ $ ε / / DTF γ DDF
The following result precises the link between (tri)dendriform family algebras and ordinary (tri)dendriform algebras.

Theorem 2.11.

(a) (D ⊗ kΩ, ≺, ) is a dendriform algebra, if and only if, (D, (≺ ω , ω ) ω∈Ω ) is a dendriform family algebra, where

(x ⊗ α) ≺ (y ⊗ β) :=(x ≺ β y) ⊗ αβ (x ⊗ α) (y ⊗ β) :=(x α y) ⊗ αβ, for x, y ∈ D and α, β ∈ Ω.
(b) (T ⊗ kΩ, ≺, , •) is a tridendriform algebra, if and only if, (T, (≺ ω , ω ) ω∈Ω , •) is a tridendriform family algebra, where

(x ⊗ α) ≺ (y ⊗ β) :=(x ≺ β y) ⊗ αβ, (x ⊗ α) (y ⊗ β) :=(x α y) ⊗ αβ, (x ⊗ α) • (y ⊗ β) :=(x • y) ⊗ αβ, for x, y ∈ T and α, β ∈ Ω.
Proof. We only prove Item (b), as the proof of Item (a) can be deduced from tridendriform case. Since a dendriform family algebra is a tridendriform family algebra which product • is equal to zero. Applying Item (b) to a dendriform family algebra D, we obtain a tridendriform algebra D ⊗ kΩ which product • is trivial, that is to say a dendriform algebra.

For x ⊗ α, y ⊗ β, z ⊗ γ ∈ T ⊗ kΩ, we get (x ⊗ α) ≺ (y ⊗ β) ≺ (z ⊗ γ) = (x ≺ β y) ⊗ αβ ≺ (z ⊗ γ) = (x ≺ β y) ≺ γ z ⊗ αβγ = x ≺ βγ (y ≺ γ z + y β z + y • z) ⊗ αβγ (by Eq. (4)) = (x ⊗ α) ≺ (y ≺ γ z + y β z + y • z) ⊗ βγ = (x ⊗ α) ≺ (y ≺ γ z) ⊗ βγ + (y β z) ⊗ βγ + (y • z) ⊗ βγ = (x ⊗ α) ≺ (y ⊗ β) ≺ (z ⊗ γ) + (y ⊗ β) (z ⊗ γ) + (y ⊗ β) • (z ⊗ γ) , (x ⊗ α) (y ⊗ β) ≺ (z ⊗ γ) = (x α y) ⊗ αβ ≺ (z ⊗ γ) = (x α y) ≺ γ z ⊗ αβγ = x α (y ≺ γ z) ⊗ αβγ (by Eq. (5)) = (x ⊗ α) (y ≺ γ z) ⊗ βγ = (x ⊗ α) (y ⊗ β) ≺ (z ⊗ γ) , (x ⊗ α) (y ⊗ β) (z ⊗ γ) = (x ⊗ α) (y β z) ⊗ βγ = x α (y β z) ⊗ αβγ = (x ≺ β y + x α y + x • y) αβ z ⊗ αβγ (by Eq. (6)) = (x ≺ β y + x α y + x • y) ⊗ αβ (z ⊗ γ) = (x ≺ β y) ⊗ αβ + (x α y) ⊗ αβ + (x • y) ⊗ αβ (z ⊗ γ) = (x ⊗ α) ≺ (y ⊗ β) + (x ⊗ α) (y ⊗ β) + (x ⊗ α) • (y ⊗ β) (z ⊗ γ), (x ⊗ α) (y ⊗ β) • (z ⊗ γ) = (x α y) ⊗ αβ • (z ⊗ γ) = (x α y) • z ⊗ αβγ = x α (y • z) ⊗ αβγ (by Eq. (7)) = (x ⊗ α) (y • z) ⊗ βγ = (x ⊗ α) (y ⊗ β) • (z ⊗ γ) , (x ⊗ α) ≺ (y ⊗ β) • (z ⊗ γ) = (x ≺ β y) ⊗ αβ • (z ⊗ γ) = (x ≺ β y) • z ⊗ αβγ = x • (y β z) ⊗ αβγ (by Eq. (8)) = (x ⊗ α) • (y β z) ⊗ βγ = (x ⊗ α) • (y ⊗ β) (z ⊗ γ) , (x ⊗ α) • (y ⊗ β) ≺ (z ⊗ γ) = (x • y) ⊗ αβ ≺ (z ⊗ γ) = (x • y) ≺ γ z ⊗ αβγ = x • (y ≺ γ z) ⊗ αβγ (by Eq. (9)) = (x ⊗ α) • (y ≺ γ z) ⊗ βγ = (x ⊗ α) • (y ⊗ β) ≺ (z ⊗ γ) , (x ⊗ α) • (y ⊗ β) • (z ⊗ γ) = (x • y) ⊗ αβ • (z ⊗ γ) = (x • y) • z ⊗ αβγ = x • (y • z) ⊗ αβγ (by Eq. (10)) = (x ⊗ α) • (y • z) ⊗ βγ = (x ⊗ α) • (y ⊗ β) • (z ⊗ γ) .
Conversely, we notice that the tridendriform structure on T ⊗kΩ is Ω-graded, with ω-homogeneous component equal to T ⊗kω for any ω ∈ Ω. Idenfying each homogeneous component in both sides of the three dendriform axioms leads to tridendriform family axioms on T . This completes the proof.

Free dendriform family algebras

In this section, we construct free dendriform family algebras. For this, let us first briefly recall the construction of free dendriform algebras. For details, see [START_REF] Loday | Une version non commutative des algèbre de Lie: les algèbres de Leibniz[END_REF][START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Loday | Dialgebra, in Dialgebras and related operad[END_REF]26].

3.1. Free dendriform algebras. Let X be a set. For n ≥ 0, let Y n, X be the set of planar binary trees with n + 1 leaves and with internal vertices decorated by elements of X. The unique tree with one leaf is denoted by |. So we have Y 0, X = {|}. Here are the first few of them.

Y 0, X = {|}, Y 1, X = x x ∈ X , Y 2, X = x y , x y x, y ∈ X , Y 3, X =              x y z , x y z , x y z , x y z , x y z x, y, z ∈ X              . For T ∈ Y m, X , U ∈ Y n, X
and x ∈ X, the grafting ∨ x of T and U over the vertex x is defined to be the planar binary tree T ∨ x U ∈ Y m+n+1, X obtained by adding a new vertex decorated by x and joining the roots of T and U to the new vertex. Given a planar binary tree T ∈ Y n, X not equal to |, there is a unique decomposition T = T l ∨ x T r for some x ∈ X. For example,

x = | ∨ x |, x y = y ∨ x |, x y = | ∨ x y .
Let DD(X) := n≥1 kY n, X . Define binary operations ≺ and on DD(X) recursively by

(a) | T := T ≺ | := T and | ≺ T := T | := 0 for T ∈ Y n, X with n ≥ 1. (b) For T = T l ∨ x T r and U = U l ∨ y U r , define T ≺ U := T l ∨ x (T r ≺ U + T r U), T U := (T ≺ U l + T U l ) ∨ y U r .
Let j be the unique linear map from X into DD(X) defined by j(x) = x for x ∈ X. The following result is well-known. Theorem 3.3. [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF] Let X be a set. Then (DD(X), ≺, ), together with the map j, is the free dendriform algebra on X.

3.2.

Free dendriform family algebras. In this subsection, we apply typed decorated planar binary trees to construct free dendriform family algebras. For this, let us first recall typed decorated rooted trees studied in [2,11].

For a rooted tree T , denote by V(T ) (resp. E(T )) the set of its vertices (resp. edges).

Definition 3.4.

[2] Let X and Ω be two sets. An X-decorated Ω-typed (abbreviated typed decorated) rooted tree is a triple T = (T, dec, type), where

(a) T is a rooted tree. (b) dec : V(T ) → X is a map. (c) type : E(T ) → Ω is a map.
In other words, vertices of T are decorated by elements of X and edges of T are decorated by elements of Ω.

As we can see from the examples drawn above, the graphical representation of planar binary trees is slightly different from the graphical representation of rooted trees used in [2, 11]: the root and the leaves are now edges rather than vertices. Here the set V(T ) must be replaced by the set IV(T ) of internal vertices of T , and the set E(T ) must be replaced by the set IE(T ) of internal edges, i.e. edges which are neither a leaf nor the root. Hence we propose the following definition: Definition 3.5. Let X and Ω be two sets. An X-decorated Ω-typed planar binary tree is a triple T = (T, dec, type), where (a) T is a planar binary tree. (b) dec :

IV(T ) → X is a map. (c) type : IE(T ) → Ω is a map.
Note that in the definition of dendriform family algebras, Ω is a semigroup. However in the following construction of free dendriform family algebras, if the semigroup Ω has no identity element, it will be convenient to consider the monoid Ω 1 := Ω {1} obtained from Ω by adjoining an identity: 1ω := ω1 := ω, for ω ∈ Ω and 11 := 1.

Let X be a set and let Ω be a semigroup. For n ≥ 0, let Y n := Y n, X, Ω be the set of X-decorated Ω 1 -typed planar binary trees with n + 1 leaves, such that leaves are decorated by the identity 1 in Ω 1 and internal edges are decorated by elements of Ω. Let us expose some examples for better understanding. For convenience, we omit the decoration 1 in the sequel.

Y 0 = {|}, Y 1 = x x ∈ X , Y 2 = α x y , α x y x, y ∈ X, α ∈ Ω , Y 3 =              α β x y z , α β x y z , β α x y z , α β x y z , α β x y z , . . . x, y, z ∈ X, α, β ∈ Ω              . For T ∈ Y m , U ∈ Y n ,
x ∈ X and α, β ∈ Ω 1 , the grafting ∨ x, (α, β) of T and U over x and (α, β) is defined to be the tree T ∨ x, (α, β) U ∈ Y m+n+1 , obtained by adding a new vertex decorated by x and joining the roots of T and U with the new vertex via two new edges decorated by α and β respectively. The depth dep(T ) of a rooted tree T is the maximal length of linear chains of vertices from the root to the leaves of the tree. For example, 

T ∨ z, (α, β) U = x ∨ z, (α, β) y = α β z y x .
Given a typed decorated planar binary tree T ∈ Y n not equal to |, there is a unique decomposition T = T l ∨ x, (α, β) T r for some x ∈ X and α, β ∈ Ω 1 . For example, 

x = | ∨ x, (1, 1) |, x y α = y ∨ x, (α, 1) |, x y α = | ∨ x, (1, α)
T ≺ ω U := T l ∨ x, (α 1 , α 2 ω) (T r ≺ ω U + T r α 2 U), (11) 
T ω U := (T ≺ β 1 U l + T ω U l ) ∨ y, (ωβ 1 , β 2 ) U r , where ω ∈ Ω. ( 12 
)
In the following, we employ the convention that Proof. We proceed in two steps to prove the result.

+ α βω β x y u z , T ω U = α β x u z ω (| ∨ y, (1, 1) |) = α β x u z ≺ 1 | + α β x u z ω | ∨ y, (ω, 1) | = α β x u z ∨ y, (ω,
Step 1: We first prove (DD(X, Ω), {≺ ω , ω | ω ∈ Ω}) is a dendriform family algebra. Let (by Eq. ( 11))

T = T l ∨ x, (α 1 , α 2 ) T r , U = U l ∨ y, (β 1 , β 2 ) U r , W = W l ∨ z, (γ 1 , γ 2 ) W r ∈ DD(X, Ω).
(T ≺ β U) ≺ γ W = x ≺ β y ≺ γ z = (| ∨ x, (1, 1) |) ≺ β y ≺ γ z = | ∨ x, (1, β) | ≺ β y + | 1
= x ≺ βγ γ y z + β z y = x ≺ βγ y ≺ γ z + y β z = T ≺ βγ (U ≺ γ W + U β W),
verifying Eq. ( 1). Next,

(T α U) ≺ γ W = x α y ≺ γ z = x α (| ∨ y, (1, 1) |) ≺ γ z = x α | + x ≺ 1 | ∨ y, (α, 1) | ≺ γ z
(by Eq. ( 12))

= x ∨ y, (α, 1) | ≺ γ z
(by Item (a) in Definition 3.7 and Eq. ( 13))

= x ∨ y, (α, γ) | ≺ γ z + | 1 z
(by Eq. ( 11))

= x ∨ y, (α, γ) z
(by Item (a) in Definition 3.7 and Eq. ( 13))

= x α | + x ≺ 1 | ∨ y, (α, γ) z
(by Item (a) in Definition 3.7 and Eq. ( 13))

= x α | ∨ y, (1, γ) z 
(by Eq. ( 12))

= x α | ∨ y, (1, γ) | ≺ γ z + | 1 z
(by Item (a) in Definition 3.7 and Eq. ( 13))

= x α (| ∨ y, (1, 1) |) ≺ γ z = x α y ≺ γ z = T α (U ≺ γ W),
verifying Eq. (2). Finally, 

T α (U β W) = x α y β z = x α y β (| ∨ , (z, 1,1) |) = x α y β | + y ≺ 1 | ∨ z, (β,
= (T α U + T ≺ β U) αβ W.
This completes the proof of the initial step. Assume that the conclusion holds for dep(T ) + dep(U) + dep(W) = k and consider the induction step of dep(T )

+ dep(U) + dep(W) = k + 1 ≥ 4. We have (T ≺ β U) ≺ γ W = T l ∨ x, (α 1 , α 2 β) (T r ≺ β U + T r α 2 U) ≺ γ W (by Eq. (11)) = T l ∨ x, (α 1 , α 2 βγ) (T r ≺ β U + T r α 2 U) ≺ γ W + (T r ≺ β U + T r α 2 U) α 2 β W (by Eq. (11)) = T l ∨ x, (α 1 , α 2 βγ) (T r ≺ β U) ≺ γ W + (T r α 2 U) ≺ γ W + T r α 2 (U β W)
(by the induction hypothesis and Eq. ( 3))

= T l ∨ x, (α 1 , α 2 βγ) T r ≺ βγ (U ≺ γ W + U β W) + T r α 2 (U ≺ γ W) + T r α 2 (U β W)
(by the induction hypothesis and Eq. ( 1))

= T l ∨ x, (α 1 , α 2 βγ) T r ≺ βγ (U ≺ γ W + U β W) + T r α 2 (U ≺ γ W + U β W) = (T l ∨ x, (α 1 , α 2 ) T r ) ≺ βγ (U ≺ γ W + U β W) (by Eq. (11)) = T ≺ βγ (U ≺ γ W + U β W).
This proves Eq. (1) in Definition 2.6. Next, we prove Eq. ( 2):

(T α U) ≺ γ W = (T α U l + T ≺ β 1 U l ) ∨ y, (αβ 1 , β 2 ) U r ≺ γ W (by Eq. (12)) = (T α U l + T ≺ β 1 U l ) ∨ y, (αβ 1 , β 2 γ) (U r ≺ γ W + U r β 2 W) (by Eq. (11)) = T α U l ∨ y, (β 1 , β 2 γ) (U r ≺ γ W + U r β 2 W) (by Eq. ( 12 
)) = T α (U l ∨ y, (β 1 , β 2 ) U r ) ≺ γ W (by Eq. (11)) = T α (U ≺ γ W).
Finally, we prove Eq. (3):

T α (U β W) = T α U β (W l ∨ z, (γ 1 , γ 2 ) W r ) = T α (U β W l + U ≺ γ 1 W l ) ∨ z, (βγ 1 , γ 2 ) W r (by Eq. (12)) = T α (U β W l + U ≺ γ 1 W l ) + T ≺ βγ 1 (U β W l + U ≺ γ 1 W l ) ∨ z, (αβγ 1 , γ 2 ) W r (by Eq. (12)) = T α (U β W l ) + T α (U ≺ γ 1 W l ) + T ≺ βγ 1 (U β W l + U ≺ γ 1 W l ) ∨ z, (αβγ 1 , γ 2 ) W r = (T α U + T ≺ β U) αβ W l + (T α U) ≺ γ 1 W l + (T ≺ β U) ≺ γ 1 W l ∨ z, (αβγ 1 , γ 2 ) W r
(by the induction hypothesis and Eqs. ( 1)-( 3))

= (T α U + T ≺ β U) αβ W l + (T α U + T ≺ β U) ≺ γ 1 W l ∨ z, (αβγ 1 , γ 2 ) W r = (T α U + T ≺ β U) αβ (W l ∨ z, (γ 1 , γ 2 ) W r ) (by Eq. (12)) = (T α U + T ≺ β U) αβ W.
This completes the proof of step 1.

Step 2: We show that DD(X, Ω) is generated by

x x ∈ X . Let T = T l ∨ x, (α 1 , α 2 ) T r with
x ∈ X and α 1 , α 2 ∈ Ω 1 . We employ induction on dep(T ) ≥ 1. For the initial step of dep(T ) = 1, we have

T = | ∨ x, (1, 1) | = x ∈ x x ∈ X .
Assume that the conclusion holds for T with dep(T ) = k and consider the induction step of dep(T ) = k + 1 ≥ 2. Since T l and T r can not be | simultaneously, there exist three cases to consider. Case 1: T l = | and T r |. Then α 1 = 1 and 

T = T l ∨ x, (α 1 , α 2 ) T r = | ∨ x, (1, α 2 ) T r = | ∨ x, (1, α 2 ) (| ≺ α 2 T r + | 1 T r ) (
= x ≺ α 2 T r .
By the induction hypothesis, T r is generated by x x ∈ X and so T is generated by

x x ∈ X .
Case 2: T l | and T r = |. This case is similar to Case 1. Case 3: T l | and T r |. Then = (T l ∨ x, (α 1 , 1) |) ≺ α 2 T r (by Eq. ( 11))

T = T l ∨ x, (α 1 , α 2 ) T r = T l ∨ x, (α 1 , α 2 ) (| ≺ α 2 T r + | 1 T r ) (
= (T l α 1 | + T l ≺ 1 |) ∨ x, (α 1 , 1) | ≺ α 2 T r
(by Item (a) in Definition 3.7 and Eq. ( 13)) = T l α 1 (| ∨ x, (1, 1) |) ≺ α 2 T r (by Eq. ( 12))

= T l α 1 x ≺ α 2 T r .
By the induction hypothesis, T l and T r are generated by x x ∈ X and so T is generated by x x ∈ X . This completes the proof.

Now we arrive at our main result in this section.

Definition 3.11. Let X be a set and let Ω be a semigroup. A free dendriform family algebra on X is a dendriform family algebra (D, (≺ ω , ω ) ω∈Ω ) together with a map j : X → D that satisfies the following universal property: for any dendriform family algebra (D , (≺ ω , ω ) ω∈Ω ) and map f : X → D , there is a unique dendriform family algebra morphism f :

D → D such that f = f • j.
The free dendriform family algebra on X is unique up to isomorphism.

Let j : X → DD(X, Ω) be the map defined by j(x) = x for x ∈ X.

Theorem 3.12. Let X be a set and let Ω be a semigroup. Then (DD(X, Ω), (≺ ω , ω ) ω∈Ω ), together with the map j, is the free dendriform family algebra on X.

Proof. By Proposition 3.10, we are left to show that (DD(X, Ω), (≺ ω , ω ) ω∈Ω ) satisfies the universal property. For this, let (D, (≺ ω , ω ) ω∈Ω ) be a dendriform family algebra. First of all, if there exists a dendriform family algebra morphism f : DD(X, Ω) → D extending f : X → D in the sense that f ( x ) = f (x) for any x ∈ X, then such an f is unique, due to the fact that the collection of trees Assume that f (T ) has been defined for T with dep(T ) = k and consider the induction step of dep(T ) = k + 1 ≥ 2. Note that T l and T r can not be | simultaneously and define f (

T ) := f (T l ∨ x, (α 1 , α 2 ) T r ) :=          f (x) ≺ α 2 f (T r ), if T l = | T r ; f (T l ) α 1 f (x), if T l | = T r ; f (T l ) α 1 f (x) ≺ α 2 f (T r ), if T l | T r . ( 15 
)
We are left to prove that f is a morphism of dendriform family algebras:

f (T ≺ ω U) = f (T ) ≺ ω f (U) and f (T ω U) = f (T ) ω f (U),
in which we only prove the first equation by induction on dep(T ) + dep(U) ≥ 2, as the proof of the second one is similar. Write

T = T l ∨ x, (α 1 , α 2 ) T r and U = U l ∨ y, (β 1 , β 2 ) U r .
For the initial step dep(T ) + dep(U) = 2, we have T = x and U = y for some x, y ∈ X. So 

f (T ≺ ω U) = f (| ∨ x, (1, 1) |) ≺ ω y = f | ∨ x, (1, ω) | ≺ ω y + | 1 y (by Eq. (11)) = f | ∨ x, (1, ω)
≺ ω U) = f (| ∨ x, (1, α 2 ) T r ) ≺ ω U = f | ∨ x, (1, α 2 ω) (T r ≺ ω U + T r α 2 U) (by Eq. ( 11 
)) = f (x) ≺ α 2 ω f (T r ≺ ω U + T r α 2 U) (by Eq. ( 15 
)) = f (x) ≺ α 2 ω f (T r ) ≺ ω f (U) + f (T r ) α 2 f (U) (by the induction hypothesis on dep(T ) + dep(U)) = f (x) ≺ α 2 f (T r ) ≺ ω f (U) (by Eq. (1)) = f (| ∨ x, (1, α 2 ) T r ) ≺ ω f (U) (by Eq. (15)) = f (T ) ≺ ω f (U).
Case 2: T l | and T r = |. This case is similar to Case 1. Case 3:

T l | and T r |. Then f (T ≺ ω U) = f (T l ∨ x, (α 1 , α 2 ) T r ) ≺ ω U = f T l ∨ x, (α 1 , α 2 ω) (T r α 2 U + T r ≺ ω U) (by Eq. (11)) = f (T l ) α 1 f (x) ≺ α 2 ω f (T r α 2 U + T r ≺ ω U) (by Eq. ( 15 
)) = f (T l ) α 1 f (x) ≺ α 2 ω f (T r ) α 2 f (U) + f (T r ) ≺ ω f (U) (by the induction hypothesis on dep(T ) + dep(U)) = f (T l ) α 1 f (x) ≺ α 2 f (T r ) ≺ ω f (U) (by Eq. (1)) = f (T l ∨ x, (α 1 , α 2 ) T r ) ≺ ω f (U) (by Eq. (15)) = f (T ) ≺ ω f (U).
Case 4: T l = | and T r = |. Then T = x for some x ∈ X and we have

f (T ≺ ω U) = f | ∨ x,(1,ω) U = f (x) ≺ ω f (U) = f (T ) ≺ ω f (U)
according to (15). This completes the proof.

Free tridendriform family algebras

In this section, we construct free tridendriform family algebras in terms of typed valently decorated Schröder trees. For this, let us first recall the construction of free tridendriform algebras. See [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF] for more details. 4.1. Free tridendriform algebras. Let X be a set. For n ≥ 0, let T n, X be the set of planar rooted trees with n + 1 leaves and with vertices valently decorated by elements of X, in the sense that if a vertex has valence k, then the vertex is decorated by an element in X k-1 . For example, the vertex of x is decorated by x ∈ X while the vertex of x y is decorated by (x, y) ∈ X 2 . Here are the first few of them.

T 0, X = {|}, T 1, X = x x ∈ X , T 2, X = x y , x y , x y
x, y ∈ X ,

T 3, X =              x y z , x y z , x y z , z y x , x z y , x z y , . . . x, y, z ∈ X              . For T (i) ∈ T n i , X , 0 ≤ i ≤ k, and x 1 , . . . , x k ∈ X, the grafting of T (i) over (x 1 , . . . , x k ) is k+1 x 1 ,...,x k (T (0) , . . . , T (k) ).
Any planar rooted tree T can be uniquely expressed as such a grafting of lower depth trees. For example, (b) For m+1 x 1 ,...,x m (T (0) , . . . , T (m) ) and n+1 y 1 ,...,y n (U (0) , . . . , U (n) ), define

T ≺ U := m+1 x 1 ,...,x m-1 ,x m (T (0) , . . . , T (m-1) , T (m) U + T (m) ≺ U + T (m) • U), T U := n+1 y 1 ,y 2 ,...,y n (T U (0) + T ≺ U (0) + T • U (0) , U (1) 
, . . . , U (n) ),

T • U := m+n+1 x 1 ,...,x m-1 ,x m , y 1 ,...,y n (T (0) , . . . , T (m-1) , T (m) U (0) + T (m) ≺ U (0) + T (m) • U (0) , U (1) 
, . . . , U (n) ).

Let j : X → DT(X) be the map defined by j(x) = x for any x ∈ X. The following result is well-known. Theorem 4.1. [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF][START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF] Let X be a set. Then (DT(X), ≺, , •), together with j, is the free tridendriform algebra on X.

4.2.

Free tridendriform family algebras. In this subsection, we introduce typed valently decorated Schröder trees to construct free tridendriform family algebras. Let us first propose Definition 4.2. Let X and Ω be two sets. A X-valently decorated Ω-typed (abbreviated typed valently decorated) Schröder tree is a triple T = (T, dec, type), where (a) T is a Schröder tree.

(b) dec : IV(T ) → n≥1 X n is a map sending any vertex of arity n + 1 to X n . (c) type : IE(T ) → Ω is a map.

Remark 4.3. The trees in DT(X) employed to construct free tridendriform algebras are indeed X-valently decorated { }-typed Schröder trees, where { } is any set with one single element.

Let X be a set and let Ω be a semigroup. For n ≥ 0, let T n := T n, X, Ω be the set of X-valently decorated Ω 1 -typed Schröder trees with n + 1 leaves, such that the leaves are decorated by the identity 1 in Ω 1 and internal edges are decorated by elements of Ω. Let us expose some examples. Note that the edge decoration 1 is omitted for convenience.

T 0 = {|}, T 1 = x x ∈ X , T 2 = α x y , α x y , x y x, y ∈ X, α ∈ Ω , T 3 =              α β x y z , α β x y z , α x y z , z y x , x z y α , . . . x, y, z ∈ X, α, β ∈ Ω              . Denote by DT(X, Ω) := n≥1 kT n .
For typed valently decorated Schröder trees

T (i) ∈ T n i , 0 ≤ i ≤ k, and x 1 , . . . , x k ∈ X, α 0 , . . . , α k ∈ Ω 1 , the grafting of T (i) over (x 1 , . . . , x k ) and (α 0 , . . . , α k ) is (16) T = k+1; α 0 ,...,α k x 1 ,...,x k (T (0) , . . . , T (k) )
obtained by joining the k + 1 roots of T (i) to a new vertex valently decorated by (x 1 , . . . , x k ) and decorating the new edges from left to right by α 0 , . . . , α k respectively. Any typed valently decorated Schröder tree T ∈ DT(X, Ω) can be uniquely expressed as such a grafting of lower depth typed valently decorated Schröder trees in Eq. ( 16), and we define the breadth of T as the arity of the internal vertex adjacent to the root, i.e. bre(T ) := k + 1. For example, (T (0) , . . . , T (m-1) , T (m)

α m U + T (m) ≺ ω U + T (m) • U), (17) 
T ω U := n+1; ωβ 0 ,β 1 ,...,β n y 1 ,y 2 ,...,y n (T ω U (0) + T ≺ β 0 U (0) + T • U (0) , U (1) , . . . , U (n) ), (18) 
T • U := m+n+1; α 0 ,...,α m-1 ,α m β 0 ,β 1 ,...,β n x 1 ,...,x m-1 ,x m ,y 1 ,...,y n (T (0) , . . . , T (m-1) , T (m) α m U (0) + T (m) ≺ β 0 U (0) + T (m) • U (0) , (19) 
U (1) , . . . , U (n) ).

Here in Eq. ( 19) when T (m) = | = U (0) , we employ the convention that

(20) | ≺ 1 | + | 1 | + | • | := |, and (21) 
| 1 T := T ≺ 1 | := T and | ≺ 1 T := T 1 | := 0.
Let us expose some examples for better understanding. 21))

= ω y x , x • y = 2; 1,1 x (|, |) • 2; 1,1 y (|, |) = 3; 1,1,1 x,y (|, | ≺ 1 | + | 1 | + | • |, |) (by Eq. (19)) = m+1; α 0 ,...,α m-1 ,α m βγ x 1 ,...,x m-1 ,x m T (0) , . . . , T (m-1) , T (m) ≺ βγ (U ≺ γ W + U β W + U • W) + T (m) α m (U ≺ γ W+ U β W + U • W) + T (m) • (U ≺ γ W + U β W + U • W) = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) ) ≺ βγ (U ≺ γ W + U β W + U • W) (by Eq. (17)) = T ≺ βγ (U ≺ γ W + U β W + U • W).
The proofs of Eqs. ( 5)-( 10) are similar and are moved to Appendix.

Step 2: We show that DT(X, Ω) is generated by x x ∈ X . We employ induction on dep(T ) ≥ 1. For the initial step dep(T ) = 1, we have T =

x 1 x m . . . = x 1 • x 2 • . . . • x m
where

x i ∈ x x ∈ X with 1 ≤ i ≤ m.
For any induction step dep(T ) ≥ 2, we apply a secondary induction on bre(T ) ≥ 2.

For the initial step bre(T ) = 2, since dep(T ) ≥ 2, we have T x for any x ∈ X and there are three cases to consider. Case 1: T (0) = | and T (1) |. Then α 0 = 1 and (1) ) (by Item (a) in Definition 4.5 and Eq. ( 21)) (1) (by Eq. ( 17)) = x ≺ α 1 T (1) .

T = 2; α 0 ,α 1 x (T (0) , T (1) ) = 2; 1,α 1 x (|, T (1) ) = 2; 1,α 1 x (|, | ≺ α 1 T (1) + | 1 T (1) + | • T
= 2; 1,1 x (|, |) ≺ α 1 T
By the induction hypothesis, T (1) is generated by x x ∈ X and so T is generated by

x x ∈ X .
Case 2: T (0) | and T (1) = |. This case is similar to Case 1. Case 3: T (0) | and T (1) |. Then

T = 2; α 0 ,α 1 x (T (0) , T (1) ) = 2; α 0 ,α 1 x (T (0) , | ≺ α 1 T (1) + | 1 T (1) + | • T ( 1 
) ) (by Item (a) in Definition 4.5 and Eq. ( 21)) 1) (by Item (a) in Definition 4.5 and Eq. ( 21)) 1) (by Eq. ( 18)) 1) .

= 2; α 0 ,1 x (T (0) , |) ≺ α 1 T (1) (by Eq. (17)) = 2; α 0 ,1 x (T (0) α 0 | + T (0) ≺ 1 | + T (0) • |, |) ≺ α 1 T ( 
= T (0) α 0 2; 1,1 x (|, |) ≺ α 1 T ( 
= T (0) α 0 x ≺ α 1 T ( 
By the induction hypothesis, T (0) and T (1) are generated by x x ∈ X and so T is generated by x x ∈ X . Now let us consider the case when dep(T ) = k + 1 ≥ 2 and bre(T ) = m + 1 ≥ 3. Then we can write T = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) ), there exist four cases to consider. Case 4: T (0) = | and T (1) |. Then α 0 = 1 and

T = m+1; 1,α 1 ,...,α m x 1 ,x 2 ,...,x m (|, T (1) , . . . , T (m) ) = 2; 1,α 1 x 1 (|, T (1) ) • 2; 1,α 2 x 2 (|, T (2) ) • . . . • 2; 1,α m x m (|, T (m) )
(by Item (a) in Definition 4.5 and Eq. ( 19))

= x 1 ≺ α 1 T (1) • x 2 ≺ α 2 T (2) • . . . • x m ≺ α m T (m) . (by Case 1)
By the induction hypothesis, T (i) with 1 ≤ i ≤ m are generated by x x ∈ X and so T is generated by x x ∈ X .

Case 5: T (0) | and T (1) = |. This case is similar to Case 4. Case 6: T (0) | and T (1) |. Then

T = m+1; α 0 ,α 1 ,...,α m x 1 ,x 2 ,...,x m (T (0) , T (1) , . . . , T (m) ) = 2; α 0 ,α 1 x 1 (T (0) , T (1) ) • 2; 1,α 2 x 2 (|, T (2) ) • . . . • 2; 1,α m x m (|, T (m) )
(by Item (a) in Definition 4.5 and Eq. ( 19)) (m) . (by Case 1 and Case 3) By the induction hypothesis, T (i) with 1 ≤ i ≤ m are generated by x x ∈ X and so T is generated by

= T (0) α 0 x 1 ≺ α 1 T (1) • x 2 ≺ α 2 T (2) • . . . • x m ≺ α m T
x x ∈ X . Case 7: T (0) = | and T (1) = |. Then T = m+1; 1,1,α 2 ,...,α m x 1 ,x 2 ,x 3 ,...,x m (|, |, T (2) , . . . , T (m) ) = 2; 1,1 x 1 (|, |) • 2; 1,α 2 x 2 (|, T (2) ) • . . . • 2; 1,α m x m (|, T (m) )
(by Item (a) in Definition 4.5 and Eq. ( 19))

= x 1 • x 2 ≺ α 2 T (2) • . . . • x m ≺ α m T (m) . (by Case 1)
By the induction hypothesis, T (i) with 1 ≤ i ≤ m are generated by x x ∈ X and so is T . This completes the proof.

The concept of free tridendriform family algebra is given as usual. Definition 4.9. Let X be a set and let Ω be a semigroup. A free tridendriform family algebra on X is a tridendriform family algebra (T, (≺ ω , ω ) ω∈Ω , • ) together with the map j : X → T that satisfies the following universal property: for any tridendriform family algebra (T , (≺ ω , ω ) ω∈Ω , • ) and map f : X → T , there is a unique tridendriform family algebra morphism f : T → T such that f = f • j. The free tridendriform family algebra is unique up to isomorphism.

Let j : X → DT(X, Ω) be the map defined by j(x) = x for x ∈ X. Now we arrive at our main result in this section. Theorem 4.10. Let X be a set and let Ω be a semigroup. The tridendriform family algebra (DT(X, Ω), (≺ ω , ω ) ω∈Ω , •), together with the map j, is the free tridendriform family algebra on X.

Proof. By Proposition 4.8, we are left to prove (DT(X, Ω), (≺ ω , ω ) ω∈Ω , •) satisfies the universal property. For this, let (T , (≺ ω , ω ) ω∈Ω , • ) be a tridendriform family algebra. First of all, if there exists a tridendriform family algebra morphism f : DT(X, Ω) → T extending f : X → T in the sense that f ( x ) = f (x) for any x ∈ X, then such an f is unique, due to the fact that the collection of trees (|, T (m) ), [START_REF] Loday | Dialgebra, in Dialgebras and related operad[END_REF] together with: 

2; α 0 ,α 1 x (V, W) = x if V = W = |, = V α 0 x if V | and W = |, = x ≺ α 1 W if V = | and W |, = V α 0 x ≺ α 1 W if V | and W |,
f (T ≺ ω U) = f x 1 • . . . • f x m-1 • f x m ≺ ω U = f x 1 • . . . • f x m-1 • f x m ≺ ω f (U) (from the definition of f ) = f x 1 • . . . • f x m-1 • f x m
≺ ω f (U) (from an iteration of Axiom (9))

= f (T ) ≺ ω f (U).

If dep(T ) + dep(U) ≥ 3 and bre(T ) = 2 (secondary initial step), then we have f (T ≺ ω U) = f 2; α 0 ,α 1 ω

x 1 T 0) , T (1) 
α 1 U + T (1) ≺ ω U + T (1) • U = f T (0) α 0

x 1 ≺ α 1 ω T (1) α 1 U + T (1) ≺ ω U + T (1) • U = f (T (0) ) α 0 f

x 1

≺ α 1 ω f T (1) α 1 U + T (1) ≺ ω U + T (1) • U (by definition of f )

= f (T (0) ) α 0 f

x 1

≺ α 1 ω f (T (1) ) α 1 f (U) + f (T (1) ) ≺ ω f (U) + f (T (1) ) • f (U)

(by the main induction hypothesis)

= f (T (0) ) α 0 f

x 1 ≺ α 1 f (T (1) ) ≺ ω f (U)

= f (T (0) ) α 0 f

x 1 ≺ α 1 f (T (1) ) ≺ ω f (U)

= f (T ) ≺ ω f (U) (again by definition of f ). The verification of the two identities f (T ω U) = f (T ) ω f (U) and f (T • U) = f (T ) • f (U) is similar and left to the reader. Remark 4.11. We can deduce Theorem 3.12 from Theorem 4.10, as dendriform family algebras are tridendriform family algebras with a zero product •. Indeed, the free dendriform family algebra generated by X is the quotient of DT(X, Ω) by the tridendriform family ideal I generated by DT(X, Ω)•DT(X, Ω). It is not difficult to show that I is linearly generated by all Ω-typed Schröder trees which are not binary, so the quotient is isomorphism to DD(X, Ω).

Definition 2. 1 .

 1 Let λ be a given element in k. A Rota-Baxter algebra of weight λ is a pair (R, P) consisting of an algebra R with a linear operator P : R → R that satisfies the Rota-Baxter equation P(a)P(b) = P P(a)b + aP(b) + λab , for a, b ∈ R. Then P is called a Rota-Baxter operator of weight λ. If further R is commutative, then (R, P) is called a commutative Rota-Baxter algebra of weight λ.

Remark 3 . 1 .

 31 In the graphical representation above, the edge pointing downwards is the root, the upper edges are the leaves. The other edges, joining two internal vertices, are called internal edges. Example 3.2. Let T = | and U = y with y ∈ X. Then T ∨ x U = | ∨ x y = x y .

  Example 3.6. Let T = x and U = y with x, y ∈ X. For z ∈ X and α, β ∈ Ω,

  (α, β) z . Denote by DD(X, Ω) := n≥1 kY n . Definition 3.7. Let X be a set and let Ω be a semigroup. We define binary operations (≺ ω , ω ) ω∈Ω on DD(X, Ω) recursively on dep(T ) + dep(U) by (a) | ω T := T ≺ ω | := T and | ≺ ω T := T ω | := 0 for ω ∈ Ω and T ∈ Y n with n ≥ 1. (b) For T = T l ∨ x, (α 1 , α 2 ) T r and U = U l ∨ y, (β 1 , β 2 ) U r , define

| 1 T| 1 y(≺ 1

 111 := T ≺ 1 | := T and | ≺ 1 T := T 1 | := 0. Example 3.8. Let T = x and U = y with x, y ∈ X. For ω ∈ Ω, we have x ≺ ω y = (| ∨ x, (1, 1) |) ≺ ω y = | ∨ x, (1, ω) | ≺ ω y + by Eq. (11)) = | ∨ x, (1, ω) y (by Item (a) of Definition 3.7 and Eq. (13)) | + x ω | ∨ y, (ω, 1) | (by Eq. (12)) = x ∨ y, (ω, 1) | (by Item (a) of Definition 3.7 and Eq. (13)) y, z, u ∈ X and α, β ∈ Ω. For ω ∈ Ω, T ≺ ω U = z ∨ x, (α, β)

.

  1) | (by Item (a) of Definition 3.7 and Eq. (13)) Proposition 3.10. Let X be a set and let Ω be a semigroup. Then (DD(X, Ω), (≺ ω , ω ) ω∈Ω ) is a dendriform family algebra, generated by x x ∈ X .

  Then we apply induction on dep(T ) + dep(U) + dep(W) ≥ 3. For the initial step dep(T ) + dep(U) + dep(W) = 3, we have T = x , U = y and W = z and so

  (a) in Definition 3.7 and Eq. (13))= | ∨ x, (1, βγ) . (11)) = | ∨ x,(1, βγ) 

1 )≺ 1 |

 11 | (by Eq. (12)) = x α y ∨ z, (β, 1) | (by Item (a) in Definition 3.7 and Eq. (13)) = x α y + x ≺ β y ∨ z, (αβ, 1) | (by Eq. (12)) ∨ z, (αβ, 1) | (by Item (a) in Definition 3.7 and Eq. (13)) ∨ z, (1, 1) |) (by Eq. (12))

  by Item (a) in Definition 3.7 and Eq. (13)) = (| ∨ x, (1, 1) |) ≺ α 2 T r (by Eq. (11))

  by Item (a) in Definition 3.7 and Eq. (13))

  family algebra DD(X, Ω). Now let us define a linear map f : DD(X, Ω) → D, T → f (T ) by induction on dep(T ) ≥ 1. Let us write T = T l ∨ x, (α 1 , α 2 ) T r with x ∈ X and α 1 , α 2 ∈ Ω 1 . For the initial step dep(T ) = 1, we have T = x for some x ∈ X and define (14) f (T ) := f (x).

y(

  by Item (a) in Definition 3.7 and Eq. (13)) = f (x) ≺ ω f y (by Eq. (15)) = f x ≺ ω f y (by Eq. (14)) = f (T ) ≺ ω f (U). Assume that the conclusion holds for T and U in DD(X, Ω) with dep(T ) + dep(U) = k and consider the case when dep(T ) + dep(U) = k + 1 ≥ 3, there are four cases to consider. Case 1: T l = | and T r |. Then α 1 = 1 and f (T

  |, |). Let DT(X) := n≥1 kT n, X . Define binary operations ≺, and • on DT(X) recursively on dep(T ) + dep(U) by (a) | T := T ≺ | := T, | ≺ T := T | := 0 and | • T := T • | := 0 for T ∈ T n, X with n ≥ 1.

Example 4 . 4 .

 44 Let T (0) = x , T (1) = y , T (2) = z , u, v ∈ X and α, β, γ ∈ Ω. Then 3; α,β,γ

= 3 .

 3 Definition 4.5. Let X be a set and let Ω be a semigroup. Define binary operations (≺ ω , ω ) ω∈Ω and • on DT(X, Ω) recursively on dep(T ) + dep(U) by (a) | ω T := T ≺ ω | := T, | ≺ ω T := T ω | := 0 and | • T := T • | := 0 for ω ∈ Ω and T ∈ T n with n ≥ 1. (b) Let T = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) ) ∈ T m , U = n+1; β 0 ,...,β n y 1 ,...,y n (U (0) , . . . , U (n) ) ∈ T n , define T ≺ ω U := m+1; α 0 ,...,α m-1 ,α m ω x 1 ,...,x m-1 ,x m

Example 4 . 6 .≺ 1 2; ω, 1 yx

 4611 Let T = x and U = y with x, y ∈ X. For ω ∈ Ω, (a) in Definition 4.5 and Eq. (21)) | + x ω | + x • |, | (by Eq. (18)) = , | (by Item (a) in Definition 4.5 and Eq. (

  x x∈X generate the tridendriform family algebra DT(X, Ω). Now we define a linear map f : DT(X, Ω) → T , T → f (T ) by induction on dep(T ) ≥ 1 and prove that it is a tridendriform family algebra morphism. We use the unique decomposition T = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) )

1 ( 1 ( 1 (

 111 which uniquely defines f (T ) in terms of f (T (0) ), . . . , f (T(m) ) and the operations ((≺ ω , ω ) ω∈Ω , • ). We are going to prove that f is a morphism of tridendriform family algebras:f (T ≺ ω U) = f (T ) ≺ ω f (U), f (T ω U) = f (T ) ω f (U) and f (T • U) = f (T ) • f (U),in which we only prove the first equation, as the proofs of the two other are similar. Starting fromT = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) ), U = n+1; β 0 ,...,β n y 1 ,...,y n (U (0) , . . . , U (n) )we compute:f (T ≺ ω U) = f m+1; α 0 ,...,α m-1 ,α m ω x 1 ,...,x m (T (0) , . . . , T (m-1) , T (m) α m U + T (m) ≺ ω U + T (m) • U) = f 2; α 0 ,α 1 x T (0) , T (1) ) • 2; 1,α 2 x 2 (|, T (2) ) • . . . • 2; 1,α m ω x m (|, T (m) α m U + T (m) ≺ ω U + T (m) • U) T (0) , T (1) ) • . . . • f x m ≺ α m ω (T (m) α m U + T (m) ≺ ω U + T (m) • U) (from the definition of f ) T (0) , T (1) ) • . . . • f x m ≺ α m T (m) ≺ ω U (from Axiom (4)).(23)Now we proceed by induction on dep(T )+dep(U), together with a secondary induction on bre(T ).If dep(T ) + dep(U) = 2 (main initial step), then T (0) = • • • = T (m) = |, and Equation (23) boils down to

Finally, if2; α 0 ,α 1 x 1 ( 1 (

 11 dep(T ) + dep(U) ≥ 3 and bre(T ) ≥ 3, we can push further compilation (23) by using the secondary initial step forx m ≺ α m T (m) , which is of breadth two: f (T ≺ ω U) = f T (0) , T (1) ) • . . . • f x m ≺ α m T (m) ≺ ω f (U) , T (1) ) • . . . • f x m ≺ α m T (m) ≺ ω f (T (0) , T (1) ) • . . . • x m ≺ α m T (m) ≺ ω f (U) (by definition of f ) = f (T ) ≺ ω f (U).
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Proof. We divide into two steps to prove the result.

Step 1: we first prove (DT(X, Ω),

be in DT(X, Ω). Then we apply induction on dep(T ) 

(by Item (a) in Definition 4.5 and Eq. ( 21))

(by Eq. ( 17))

The proofs of Eqs. (5)-(10) are similar. For the induction step of dep(T ) + dep(U) + dep(W) ≥ 4, we have

The remaining proofs of Step 1 in Proposition 4.8. 1) , . . . , W (l) = T α n+1+ ; β 0 ,...,β n-1 ,β n γ 0 ,z 1 ,...,z y 1 ,...,y n-1 ,y n ,z 1 ,...,z

, . . . , 

, . . . , W (l) = T • +1; βγ 0 ,γ 1 ,...,γ z 1 ,z 2 ,...,z 1) , . . . , W (l)

= T • (U β W).

(T • U) ≺ γ W = m+1+n; α 0 ,...,α m-1 ,α m β 0 ,β 1 ,...,β n x 1 ,...,x m ,y 1 ,y 2 ,...,y n T (0) , . . . , T (m-1) , T (m) α m U (0) + T (m) ≺ β 0 U (0) + T (m) • U (0) , U (1) , . . . ,

x 1 ,...,x m-1 ,x m ,y 1 ,...,y n-1 ,y n ,z 1 ,...,z T (0) , . . . , T (m-1) , T (m) α m U (0) + T (m) ≺ β 0 U (0) + T (m) • U (0) , U (1) , . . . , U (n-1) , U (n) β n W (0) + U (n) ≺ γ 0 W (0) + U (n) • W (0) , W (1) , . . . , W (l) = m+1; α 0 ,...,α m x 1 ,...,x m (T (0) , . . . , T (m) ) • n+1; β 0 ,...,β n-1 ,β n γ 0 ,γ 1 ,...,γ y 1 ,...,y n-1 ,y n ,z 1 ,...,z U (0) , . . . , U (n-1) , U (n) β n W (0)

+ U (n) ≺ γ 0 W (0) + U (n) • W (0) , W (1) , . . . , W ( )