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Compaction of elastic granular materials:
inter-particles friction effects and plastic events†

Thi-Lo Vu,abc Saeid Nezamabadi cd and Serge Mora *c

The uni-axial compaction of granular materials made of elastic neo-Hookean particles is investigated in

the quasi-static regime. Two-dimensional disk assemblies are simulated using the Finite Element model

coupled with Contact Dynamics method for dealing both with finite deformations of the particles and

contact interactions. Due to large deformations of the particles, the packing fraction of the system

increases continuously during the compaction process, reaching values close to 1. The influence of the

coefficient of friction between the particles on the macroscopic and micro-structural behaviors of the

system is thoroughly discussed.

Granular materials made of rigid or semi-rigid particles have
been widely studied experimentally and numerically in the past,
leading a comprehensive understanding of their mechanical
properties. The compaction of solid particle assemblies is
an important industrial problem since it is involved in a wide
range of processes such as pharmaceutical tableting,1–3 powder
metallurgy4–6 and ceramics.7–10 Since high pressures are often
involved during compaction, the confining stresses can be on
the order of the elastic modulus of the particles or of their yield
stress. In this case, the solid particles cannot be anymore
considered as rigid or semi-rigid: even if the initial shapes of
the particles are spherical, these shapes continuously evolve
during the compression and become non-spherical.

In order to model soft granular systems, a simple approach
is to use the Discrete Element Method (DEM) by considering the
deformable contacts between particles for which the contact
force and deformation are deduced from contact laws depending
on the interpenetration of the particles (e.g. Hertzian contact
law).11–14 This approach is hence based on small deflections of
the particle surface. However, accounting the large deformations
of soft particles requires to introduce the internal degrees of
freedom with an appropriate contact treatment. In this context,
the first simple strategy is the Bonded Particle Model (BPM),

which consists in discretizing each particle as an aggregate of
rigid primary particles with cohesive interactions. A soft particle
can hence deform as a result of the relative motions of its primary
particles while staying together as a solid particle.15 Another
approach allowing taking into account the realistic behavior of
soft particles, is based on an implicit Material Point Method
(MPM) coupled with the Contact Dynamics (CD) method.15–17 In
the MPM, each particle is discretized by a set of material points
and the implicit MPM formulation permits to couple efficiently
with implicit modeling of unilateral contacts and friction between
particles as in the CD method.18,19 An alternative technique consists
in combining the Finite Element Method (FEM) with DEM.20,21 In
this case, each particle is discretized by the FEM and interactions
between particles are modeled by DEM. As an application example,
Gethin et al. (2001)22 applied this technique to the compaction of
metal powders.

In this paper, our numerical approach is based on the FEM-CD
coupling. Since here, we consider neo-Hookean rubber-like
particles undergoing finite elastic (reversible) strains, the FEM
formulation is based on the finite strain theory.23 In the previous
works,24,25 by using this approach, numerical simulations of the
uni-axial compression of a system of 100 rubber-like cylindrical
particles have been presented. The numerical results have been
successfully compared with experiments. In these simulations, the
relatively low number of particles and the coefficient of friction were
imposed by the experiments, as well as the range of the explored
packing fractions (smaller than 88%). Here, we go further by
carrying out a parametric numerical study of the inter-particles
friction effect during an uni-axial compaction of a similar system
(made of non-Brownian particles that can undergo large elastic
deformation), but containing a larger amount of particles (400)
in order to minimize finite size effects.26

The paper is organized as follows. Details about the granular
system and the numerical method are given in Section II.
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The packing fraction, defined as the ratio of the volume of
particles to the actual system volume, is then determined by the
ratio between the cumulative surface of the particle cross
sections and the actual box area in the XY plane. Here, the
packing fraction of the initial configuration is chosen to be
equal to F = 0.80. Note that the effects of gravity, surface
tension27,28 and adhesion29 are neglected.

B. Numerical model

1. General approach. The numerical technique used in this
work, which couples the FEM and CD methods and was
implemented in the LMGC90 code,30 has been described and
validated in a previous paper.25 To model the system presented
above, two-dimensional simulations are performed by considering
an equivalent system defined by reducing the cylindrical particles
to circular disks and the box to a rectangular area with 3 rigid fixed
lines and a rigid mobile line as walls. In the simulations, these
walls are modeled as rigid bodies. Moreover, in order to compute
more precisely the contact between particles, and between walls
and particles as well as to optimize the computational cost, each
particle is discretized using a mesh which is denser at the
periphery than in its central region; see Fig. 1. It hence reduces
the number of degrees of freedom of the system. In this manner,
each particle is meshed with about 400, 3-nodes triangular
elements.

In the simulations, the contact is considered to be frictional
between particles and frictionless between walls and particles.
The later reduces the occurrence of arches between the lateral
walls31 and of stress gradients,32 minimizing wall effects. The
inter-particles friction is assumed to follow Coulomb friction
law. For each simulation, the same coefficient of friction mf between
all particles is considered. Moreover, to perform a statistical analysis,
each simulation with the same physical parameters was performed
using three equivalent different initial configurations.

2. Material behavior of the particles. All the particles are
assumed to have the same material behavior and to follow the
isotropic neo-Hookean constitutive law.23 The bulk mechanical
behavior of an elastic body can be described by a strain energy
density function. For a neo-Hookean material, the strain energy
density function is given by:33,34

C ¼ m
2
I1 � 3ð Þ � m ln J þ l

2
ln Jð Þ2; (1)

with I1 = Tr(FTF) and J = det(F). F denotes the deformation
gradient tensor defined as F = I + ru (I being the second-order
identity tensor and u the displacement field). l and m are the
Lamé’s parameters and m denotes also the shear modulus. The
Poisson’s ratio n is related to l and m via:

n = l/2(l + m). (2)

Here, we wish to consider incompressible particles (n = 0.5). For
simplifying the numerical procedure, the Poisson’s ratio is
fixed to n = 0.495. Taking a Poisson’s ratio slightly lower than
0.5 makes the particle almost incompressible without significant
changes compared to the case of incompressible particles. Other-
wise, with n = 0.5, the Lamé’s first parameter l would be infinity

Fig. 1 A 2D assembly of 400 cylindrical particles subjected to uniaxial
compression. The granular material lays in a rectangular box with the width
W = 0.42 m and the initial length L = 0.51 m. The top wall moves down
with a constant velocity of v during time t. Axis X is set parallel to the
mobile wall and axis Y is in the direction of the velocity v. A typical finite
element mesh of a particle is shown on the right.

Section III concerns the analysis of the stress applied to the 
system boundary during the compaction in a wide range of packing 
fractions, from the rigidity transition to packing fractions close to 1. 
The stress distribution inside the system is investigated in Section 
IV. Finally, the role of the inter-particles coefficient of friction on 
plastic events occurring in the system during the compaction is 
highlighted and discussed in Section V. Section VI provides a short 
summary and discussion.

II. Methods
A. Description of the system

The systems investigated in this paper consist of sets of 400 
cylindrical elastic particles with parallel axis (aligned along axis 
Z) placed in a box (width W = 0.42 m along axis X and initial 
length L = 0.51 m along axis Y, and height H along axis Z) with 
rigid walls; see Fig. 1. One of the two walls parallel to the XZ 
plane, denoted later as the top wall, is mobile: it moves inward 
the box with an imposed constant velocity v. Since the other 
walls are fixed, the granular system undergoes a uni-axial 
compression. The wall opposite to the mobile one, located at 
Y = 0, is denoted as the bottom wall. The particle diameters are 
set in the range [Dmin : Dmax] with Dmin = 0.01 m and Dmax = 
0.015 m and their height is H. The particle size distribution is 
uniform by particle volume fractions; i.e. all size classes have 
the same volume of particles so that crystallization is inhibited. 
The initial configurations are defined by randomly distributing 
the particle positions in the XY plane of the box with the initial 
size of L � W.

In the following, the plane-strain conditions in the XY plane 
are considered, assuming the system is invariant along Z.
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3. Quasi-static condition. The shear wave velocity, c ¼
ffiffiffiffiffiffiffiffi
m=r

p
with r the mass density of the particles, is a character-

istic velocity of the (quasi-)incompressible elastic material. The
time needed for the stress to propagate from one side to an
other side of the system scales as L/c with L the length of the
system. On the other hand, the characteristic timescale for the
load in the system is L/v. Hence, the propagation time is
negligible compared to the loading characteristic time if v { c.

In the simulations, we take for the shear modulus a constant
value consistent with rubber-like elastomer, fixed to m = 0.15
MPa. The corresponding mass density for such material is

r = 1180 kg m�3;24,34 hence, c ¼
ffiffiffiffiffiffiffiffi
m=r

p
� 10 m s-1. In the following,

the simulations with applied velocities of 0.005 m s�1, 0.01 m s�1

and 0.035 m s�1 are carried out, accordingly to the condition
established above.

Moreover, to reinforce the quasi-static condition of the
simulations, a Rayleigh damper model is considered with the
relative damping Rayleigh coefficients of a = 35 s�1 and b = 1 �
10�4 s. The time step in the simulations is dt = 9 ms. For more details
about the choice of these parameters, see a previous work.25

III. Stress transmission

We consider uni-axial and quasi-static compressions of the
granular system, as described above. The mean value of the yy
component of the Cauchy stress tensor at the bottom of the box,
hsyyiY=0, is shown as a function of the packing fraction F for four
coefficients of friction mf, in Fig. 2. hsyyiY=0 is computed by
dividing the contact forces acting on the bottom wall by the
length of this wall. The error bars in Fig. 2 represent the
statistical variability of hsyyiY=0 obtained from the three initial
equivalent configurations. The small error bar amplitudes
show that, although the number of particles (400) is limited,
the simulations are able to produce significant and

representative values of the transmitted stress, independent of
the initial configuration.

For each value of the coefficient of friction mf, hsyyiY=0 first
fluctuates close to zero below a critical value FJ of the packing
fraction, that depends on the coefficient of friction mf. These
fluctuations can be explained by the inertial particle move-
ments: at low packing fractions, the particles are free to move
before being totally damped by the Rayleigh damper and wall-
particle collisions may occur, inducing sometimes a non zero
force at the bottom wall. For F 4 FJ the values of hsyyiY=0

obtained for v = 0.01 m s�1 and v = 0.005 m s�1 are indis-
tinguishable whereas the ones for v = 0.035 m s�1 slightly differ
for F close to FJ. This is again due to few free particles having
non zero velocity and striking the bottom wall. Reducing the
top wall velocity minimizes these strikes and hence, the forces
involved in these rebounds at the bottom wall. In this case, the
stress due to impacts is negligible compared to the stress due to
the static contact forces applied by the other particles.

Beyond FJ, hsyyiY=0 increases with F: the stress applied to the
top wall is transmitted by the particles to the bottom wall. FJ is
hence the packing fraction at the rigidity transition.35–38 As
already observed in ref. 39–42, the packing fraction at the
rigidity transition decreases as mf increases: the relative dis-
placement of the particles is reduced by the friction, and the
distribution of the particles over the new available area is more
easily blocked. For the high values of F, the increase rate of
hsyyiY=0 with respect to the packing fraction F also increases,
and ultimately diverges due to the (quasi-)incompressibility of
the particles. Indeed, once all the space of the rigid box is filled
by the deformed particles, no compaction is possible anymore.
Moreover, for any value of F, hsyyiY=0 is larger as the coefficient
of friction mf is larger. It can be again explained by reducing the
particle rearrangements due to the friction.

Fig. 3 shows hsyyiY=0 as a function of F� FJ in log–log-scales. We
observe that hsyyiY=0 well follows a power law hsyyiY=0 B (F � FJ)

a

over a wide range of packing fractions. Such a power law has already

Fig. 2 Mean value of the normal stress applied by the granular system to
the bottom wall, hsyyiY=0, normalized by the Young’s modulus E of the
particles, as a function of the packing fraction F for four coefficients of
friction mf. The arrow indicates the value FJ(mf = 0) of the packing fraction at
the rigidity transition for mf = 0. The error bars for hsyyiY=0 are determined
by the statistical error of the three initial equivalent configurations.

Fig. 3 Mean value of the normal stress applied by the granular system to
the bottom wall, hsyyiY=0, normalized by the Young’s modulus E of the
particles, as a function of the excess packing fraction F � FJ, in log–log
scales, for two values of the coefficient of friction (mf = 0 and mf = 0.8). The
dashed lines are the power-law fits of K(F � FJ)a with K and a as the fitting
parameters. Inset: Values of FJ (left axis) and a (right axis) as a function of
the coefficient of friction mf. The error bars are determined by the statistical
error of the three initial configurations.

(see eqn (2)) and a Lagrange multiplier algorithm can be used for 
the simulation.
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particles (where Dy is the y-projection length of a deformed
particle and Dx its x-projection) is presented as a function of the
packing fraction F.

Note that the mean value of the xy component of the Cauchy
stress tensor, hsxyi, is equal to zero due to the x 2 �x
symmetry of the system.

B. Spatial distribution of the stress

Three snapshots of the uni-axial compression of a system with the
coefficient of friction of mf = 0.2 are shown in Fig. 6 for different
packing fractions: before the rigidity transition, F = 0.804
(Fig. 6(a)), after the rigidity transition, F = 0.86 (Fig. 6(b)), and at
high packing fraction, F = 0.98 (Fig. 6(c)). The gray scales indicate
the values of syy/E inside the particles. The force chains appearing
at the rigidity transition are here observable in terms of stresses.45

They materialize the strong heterogeneity of the stress distribution
inside the system.

The probability density functions (pdf) of syy/hsyyi is shown
in Fig. 7 for several packing fractions and mf = 0.2. As expected,
syy can be positive (the matter being stretched) or negative (the
matter being squeezed). We also observe that the maximum of

Fig. 4 Mean value of the yy component of the Cauchy stress tensor, hsyyi,
as a function of the mean value of the xx component of the Cauchy stress
tensor, hsxxi, for the four coefficients of friction mf. The error bars are
determined by the statistical error of the three initial configurations.

Fig. 5 Mean value of the ratio between the y-projection length of a
deformed particle (Dy) and its x-projection (Dx) as a function of the packing
fraction F for the four coefficients of friction mf. The error bars are
determined by the statistical error of the three initial configurations.

been demonstrated in experiments39,43 and numerical simulations 
in bi-axial compaction, but in a far smaller range of packing 
fractions.11,39 In our simulations, the exponent a is found 
to decrease with the coefficient of friction mf. It varies from 
a = 1.32 � 0.4 for mf = 0 to the asymptotic value of a = 1.45 � 0.4 
for mf 4 0.6. These values of a are different from those obtained 
by other authors in a bi-axial experiment with a limited resolution of 
the force measurement,39,43 and are also different from simulations 
done by assuming first order infinitesimal deformations.11,44 These 
discrepancies may arise from the differences in the loading 
geometry, the system size, or the size polydispersity. In addition, 
the validity of the approximation of infinitesimal (Hookean) 
elasticity made in the previous studies is doubtful. Even close to 
the rigidity transition, since the stress is generated by a small 
amount of particles within the principal chain forces,45 the 
deformation of these particles are finite. Hence, simulations 
taking properly into account the finite deformations of the 
particles are required even for the determination of a scaling 
law close to the rigidity transition. The exponents found in the 
literature are close to 1, which is the well-known value predicted 
for a Hertzian contact between two particles, i.e. for small 
deformations. The rigorous treatment of the large deformations 
leads here to significantly higher exponents, at least for neo-
Hookean particles. Strikingly, the power laws found here are 
good up to 93% packing fractions (Fig. 3). The divergence in syy 

for F C 1 mentioned above naturally implies that the scaling 
laws are no longer applicable near the maximum packing 
fraction. For the packing fractions larger than 0.93, one leaves 
the domain in which hsyyiY=0 follows the power law to enter a 
new domain with a stiffer increase of hsyyiY=0 as the packing 
fraction increases.

IV. Local stress
A. Mean values of the Cauchy stress

In the simulations, the Cauchy stress tensor s can be computed 
at any point inside the particles, allowing obtaining its mean 
value in the whole system. Having the frictionless contact at the 
walls, the values of hsyyiY=0 and hsyyi are equal except close to the 
rigidity transition point because of the dynamics effects discussed 
in Section III. In the following, we do not focus anymore on the 
rigidity transition, but on high packing fractions for which no 
difference between the two stresses is relevant.

Fig. 4 displays hsyyi as a function of the mean value of the xx 
component of the Cauchy stress tensor, hsxxi. For frictionless 
particles (mf = 0), hsyyi C hsxxi. This means that like in a liquid 
at rest, the vertical component of the force applied at the 
mobile wall is integrally redistributed in any direction. This 
liquid-like behavior for the Cauchy stress tensor is not valid 
anymore in the case of the frictional particles, and hsyyi is then 
larger than hsxxi. Indeed, for the frictional particles, the non 
isotropic (uni-axial) loading of the system leads to an anisotropic 
deformation of the particles. The latter is averagely more 
pronounced in the loading direction (y direction). This can be 
observed in Fig. 5, in which the mean value of Dx/Dy for all
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the pdf is for syy C 0 at low packing fractions, F o 0.94; see
inset of Fig. 7. For larger packing fractions, the maximum of
this pdf is for a non zero negative value of syy, whose absolute
value rapidly increases with F. Hence, for F o 0.94 the most
common value of syy within the particles is zero, while for
F 4 0.94, the most probable value of syy is smaller than zero.
The same behavior is also observed for the other values of the
coefficient of friction.

A global measure of the heterogeneities in the distribution
of syy can be obtained by computing the coefficient of variation
(or the relative standard deviation) of syy, defined as:46

CvðsyyÞ ¼
hsyy2i � hsyyi2
hsyyi2

: (3)

Fig. 8 presents Cv(syy) as a function of F. Note that the
values of Cv(syy) are only computed for F Z FJ since hsyyi is
nearly equal to zero for the packing fractions lower than FJ. The
error bars denote the statistical variability of Cv(syy) for the

different initial configurations. For any values of the coefficient
of friction, Cv(syy) decreases with F. This is compatible with
Fig. 6: the distribution of syy is more dispersed near the rigidity
transition (Fig. 6(b)) compared to the higher packing fractions
(Fig. 6(c)). This is also observed in the previous work,25 for the
coefficient of variation of the strain energy density, but in a
smaller granular system (100 particles), for a unique value of
the coefficient of friction and for a limited range of the packing
fractions (Fo 0.88). Interestingly, Cv(syy) exhibits an inflection
point near the packing fraction delimiting the two regimes
evidenced in Section III. Furthermore, for a given value of
the packing fraction, Cv(syy) significantly depends on the
coefficient of friction: the distribution of syy is more spread
out (i.e. more heterogeneous) when the coefficient of friction
increases; see inset of Fig. 8. This is because the friction
prevents the particle rearrangements, leading to large deformations
of the particles under compression and hence, to more pronounced
heterogeneities inside the particles.

Fig. 6 Three snapshots of the compaction of the granular system with the coefficient of friction of mf = 0.2: (a) F = 0.804, (b) F = 0.86 and (c) F = 0.98.
The gray level indicates the values of the yy component of the Cauchy stress tensor, divided by the Young’s modulus of the particles, syy/E.

Fig. 7 Probability density function of syy/hsyyi for three packing fractions
and for mf = 0.2. The data come from three initial configurations. Inset:
Most probable value of syy/hsyyi as a function of the packing fraction F for
several values of the coefficient of friction.

Fig. 8 Coefficient of variation of syy as a function of the packing fraction
F for four different coefficients of friction mf. The error bars correspond to
the variation of this mean value for the three initial configurations. Inset:
Probability density function of syy/hsyyi for the packing fraction of F = 0.86
and for four different coefficients of friction mf.
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The decrease of Cv(syy) with the packing fraction can be
explained by the evolution of the micro-structure. During the
compaction, the particles are more and more deformed and then,
the average contact length between the particles increases. The
stress at inter-particles contacts is therefore more regular while the
packing fraction increases. In addition, due to these deformations,
the average coordination number Z, defined as the average number
of contact neighbors per particle, increases (Fig. 9). The contact
forces are then more and more equally distributed along the
perimeter of the particles, which explains why Cv(syy) decreases as
the packing fraction increases. Note that the fraction of the particles
with 7 neighbors starts to increase from F C 0.93 (see inset of
Fig. 9) i.e. at the packing fraction delimiting the two regimes
previously illustrated. With the size polydispersity of the system,
the particles with 7 neighbors require large deformations so that
they can be partially embedded in the remaining spaces between
their neighbors. This shows that the sneaking of the squeezed
parts of the particles inside the empty spaces between the particles
plays an important role in the final regime of the compaction
(F 4 0.93). Furthermore, the coordination number is found to
increase as a power-law with the packing fraction:12,17,44

Z � ZJ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� FJ

p
; (4)

with ZJ corresponding to FJ, and for low to moderate values of F�
FJ (see Fig. 9). This relation was observed in many other soft
particulate systems like foams or emulsions.12,44 For the packing
fractions larger than FC 0.93, the coordination number increases
faster than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� FJ

p
. This result may be due to the very large

deformation of the particles, making possible the occurrence of
new contacts.

V. Plasticity
A. Irreversibility at the global scale

The evolution of the mean stress hsyyi as a function of F,
during the compressive loading and unloading by the constant

velocity of v = 0.035 m s�1, is shown in Fig. 10 for a granular
system with the coefficient of friction of mf = 0.2. Indeed, the
system is first subjected to a compressive loading up to the
packing fraction of F = 0.95, before being gradually and
completely unloaded. hsyyi is smaller during the decompaction
than during the compaction for a given value of F (smaller than
0.95). As a consequence, the work done by the force applied to
the mobile wall during loading is larger than the energy
released during unloading. For a quasi-static compaction (i.e.
in the limit of infinitely small velocities of the mobile wall as it
is the case here), the dissipation due to the (Rayleigh) damping
is expected to be negligible. The remaining source of energy
dissipation is hence the inter-particles friction, except in two
cases for which there is no frictional energy dissipation: parti-
cles without friction (mf = 0) or with very large coefficients of
friction. In the last case, this occurs because there is no inter-
particles sliding and, hence no particle rearrangement.

The relative difference between loading stress, hsL
yyi, and

unloading stress, hsUL
yy i, for four coefficients of friction and for

several values of the packing fraction corresponding to the unloading
points (F = 0.85, 0.90 and 0.95), is shown in Fig. 11(a). We observe
that these relative differences are not null, and even, for mf = 0 (no
frictional dissipation), the relative difference of the stress is the
highest and declines when the coefficient of friction increases;
see Fig. 11(a). We hence observe that the energy dissipation is
more important when the inter-particles friction is smaller in the
granular systems.

In order to go further let us consider now, for the compressive
loading, the evolution of non-affine displacement field un.a(r), i.e.
the non-homogeneous part of the displacement field of the
material points of the system.47 un.a(r) is computed by considering
an interval displacement vDt of the mobile wall (with Dt as the
elapsed time of the interval). Here, the interval displacement is set
to be vDt = 1.14 � 10�4 m. The mean non-affine displacement
hun.ai normalized by vDt, is displayed as a function of the packing
fraction F in Fig. 11(b) for four coefficients of friction. hun.ai/(vDt)
fluctuates close to zero with some major peaks. The mean non-
affine displacement is found to be higher when the coefficient of

Fig. 9 Mean coordination number Z as a function of the excess packing
fraction F � FJ for four coefficients of friction. The error bars correspond
to the variation of Z for the three initial configurations. The dashed lines
are the power-law fit; see eqn (4). Inset: Proportion of particles with 2, 3, 4,
5, 6 and 7 contacts with other particles (resp. NP2, NP3, NP4, NP5, NP6, NP7) in
the granular system with the coefficient of friction of mf = 0.2.

Fig. 10 Evolution of the mean stress normalized by the Young’s modulus,
hsyyi/E, as a function of the packing fraction F during the compressive
loading up to F = 0.95 and then, unloading from this packing fraction. The
applied velocity for loading and unloading is equal to 0.035 m s�1 and the
coefficient of friction is mf = 0.2.
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friction is smaller. It is interesting to note that these peaks are
correlated with the sudden changes in the values of hsL

yyi–hsUL
yy i,

presented in Fig. 11(a). We thus observe a correlation between the
mean non-affine displacement and the energy dissipation during
the compressive loading and unloading of the granular system,
seen above.

In order to get insight on the nature of these non affine
displacements, we examine the non-affine displacement distribution
over the whole system. The high values in the non-affine dis-
placement map is found to be spatially localized; see Fig. 12. It
consists in a local reorganization (referred later as an elementary
event), occurring in a short time step and involving few particles.
The occurred elementary event is centered on an inter-particles
contact point. We observe (if the event is not located too close to
the cell boundaries) quasi-fourfold distributions of the non-affine
displacement field, similar to the stress relaxation associated to
Eshelby’s inclusions;48 see Fig. 12. During an elementary event,
the system suddenly releases a part of the strain energy. In the
energy landscape of the whole system, the system leaves a local
minimum energy state and finds a lower energy state. The
corresponding finite difference of the energy is first converted
into the kinetic energy that will be dissipated through damping.
Similar mechanisms of sudden change on the local minimum in
the energy landscape of a system was demonstrated in attractive
systems as metallic glasses,49–51 soft glassy materials,47,52,53 and
compressed granular materials in simple shear geometry and for
non deformable particles.54

To summarize, the main source of the energy dissipation in
the granular system is not friction, and the energy can be
dissipated through elementary events. The energy dissipation
is more important when the friction coefficient is lower. Since
the sliding of particles generates elementary events, the inter-
particles friction minimizes these events by reducing the sliding.
A large coefficient of friction hence reduces the plastic features of
the compressed granular system.

VI. Concluding remarks

The uni-axial compression of two-dimensional athermal granular
assemblies composed of incompressible neo-Hookean elastic
particles has been investigated numerically, with a special focus
on the inter-particles friction effects. Once the applied stress is of
the order of the elastic modulus of the particles, the deformations of
the particles exceed the well-studied limit of the semi-rigid particles,
and packing fractions close to 1 can be achieved. In this regime,
the initially circular particles become faceted, and the mean
coordination number tends to the value of 6 and even, some
particles have more than 6 neighbors. The stress distribution in
the granular system becomes more and more homogeneous as
the packing fraction increases beyond the rigidity transition. It
means that the discrete features of the granular system are less
and less pronounced.

Irreversible features during the compaction were demonstrated.
They result from elementary events consisting in the localized
sliding of particles, and are reminiscent to what is observed in
other plastic systems as soft glassy materials or metallic glasses.
The friction effect on the energy dissipation in the compressed
granular assemblies at large packing fraction was highlighted.
For large packing fractions, irreversibility is mainly driven by
elasticity because the strain energy stored in the particles is far

Fig. 11 (a) Relative difference of hsyyi between the compressive loading
and unloading as a function of the packing fraction F for four coefficients
of friction and for several packing fractions corresponding to the unloading
points (F = 0.85 (1), 0.9 (2) and 0.95 (3)); (b) mean non-affine displacement
hun.ai normalized by an interval displacement vDt (vDt = 1.14 � 10�4 m) as a
function of the packing fraction F for four coefficients of friction.

Fig. 12 Snapshot of non-affine displacement distribution in the granular
system with the coefficient of friction of mf = 0.2 for the packing fraction of
F = 0.96. The gray scale indicates the magnitude of the non affine
displacement normalized by vDt (vDt = 1.14 � 10�4 m).
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larger than the energy dissipated by friction. The stabilizing 
effect of friction reduces the occurrences of elementary events 
and thus, lowers energy dissipation. We did not address here 
the case of elementary events occurring in systems close to the 
rigidity transition. In such configurations, the friction effect is 
expected to be higher due to particle movements; and because 
of the small deformation of particles, the strain energy stored in 
them is lower. This limit will be investigated in a future work.

The long-ranged interactions between elementary events are 
known to redistribute the stress in the material, which is at the 
origin of formation of spatial heterogeneities (e.g. shear bands) 
at the macroscopic scale.53,55,56 Our system is too small to study 
such interactions. The recent observation of quadrupolar 
Eshelby-like stress distribution in granular systems54 is an 
indication that the plastic behavior of soft granular systems 
could be described in the framework of plasticity theory of soft 
glasses plasticity. The study of neo-Hookean particle assemblies 
with larger number of particles but with a looser mesh density, will 
be the subject of a forthcoming study with the aim of analyzing the 
interactions between different plastic events and the resulting 
spatial heterogeneities for different coefficients of friction.
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