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Trajectory Tracking Control Design for Large-Scale
Linear Dynamical Systems With Applications

to Soft Robotics
Maxime Thieffry , Alexandre Kruszewski, Thierry-Marie Guerra, and Christian Duriez, Senior Member, IEEE

Abstract— This article presents new results to control process
modeled through linear large-scale systems. Numerical methods
are widely used to model physical systems, and the finite-element
method is one of the most common methods. However, for this
method to be precise, it requires a precise spatial mesh of the
process. Large-scale dynamical systems arise from this spatial
discretization. We propose a methodology to design an observer-
based output feedback controller. First, a model reduction step
is used to get a system of acceptable dimension. Based on this
low-order system, two linear matrix inequality problems provide
us, respectively, with the observer and controller gains. In both
the cases, model and reduction errors are taken into account
in the computations. This provides robustness with respect to
the reduction step and guarantees the stability of the original
large-scale system. Finally, the proposed method is applied to a
physical setup—a soft robotics platform—to show its feasibility.

Index Terms— Large-scale systems, model-order reduction,
robust control, soft robotics.

I. INTRODUCTION

THE use of simulation shortens the development time
of engineering systems. Different designs, actuation or

sensing methods, and control approaches can be tested out
quickly. For computer-based simulations, the demand for a
highly accurate description of realistic phenomena leads to
work with systems of very large dimensions. There are many
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examples of large-scale systems that present challenges, such
as power networks, urban traffic networks, digital communi-
cation networks, or robotics. When these systems are part of
a control loop, one is interested in their reactions with respect
to these inputs. This article is about designing a controller for
such large systems.

Solutions have been proposed to control large-scale systems:
for nonlinear systems, Tong et al. [1] and Hsiao et al. [2]
present different methodologies to design controllers for non-
linear large-scale systems based on decentralized fuzzy con-
trol. Simulation results show the interest and the effectiveness
of the approach, but examples are restricted to interconnected
systems of small dimensions compared with examples avail-
able in the numerical simulations’ literature.

A second track investigated to study the systems of large
dimensions is model-order reduction. It provides a low-order
model that represents the behavior of the large-scale system
and it is more suitable to design a controller for this reduced-
order model. However, due to the approximation errors, con-
trollers designed for this low-order model can lead to unstable
closed-loop systems when applied to the large-scale plants.
To handle this issue, a method to build a low-dimension
controller by optimizing the H∞ norm of the low-order model
is presented in [3]. This method ensures the stability of the
large-scale closed-loop model. A similar idea is presented
in [4], where a low-order controller is computed while guar-
anteeing the large-scale closed-loop stability through linear
matrix inequality (LMI) constraints.

The theoretical results of this article aim at being generic
regarding the range of applications. In this article, soft robotics
examples illustrate the proposed method. Compliant bodies
offer high adaptability to environment and inherent safe inter-
actions with humans. In addition, soft robotics is an active field
of research, especially for closed-loop dynamic control [5], [6]
that makes this new type of robots a good experimental
platform. When dealing with soft robots control, significant
results exist for kinematics control, but a few methods exist
for dynamic control [6]. Many works are focused on open-loop
control of soft robots, such as [7] or [8]. The computational
cost of accurate models is a major drawback of model-based
controllers, both because of the complexity of the design and
for the practical implementation on the hardware. To avoid
this constraint, Thuruthel et al. [9] proposed a learning-based
open-loop dynamic controller to perform dynamic motions.
However, open-loop strategies suffer from well-known bottle-
necks, such as the robustness of the controller with respect
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to modeling uncertainties and the response of the system
with respect to external perturbations. This is why closed-
loop algorithms are presented hereafter. A dynamic controller
based on constant curvature assumptions is presented in [10],
where the model is used to generate a feed-forward action
coupled with a PID controller. Also based on the piecewise
constant curvature model, Della Santina et al. [11] presented a
dynamic controller that enables dynamic trajectory tracking for
a continuous soft robot while handling interactions with the
environment. Our approach aims at being generic regarding
the geometry of the robot, and thus, we propose to design the
control law based on a mechanical model of the structure.

A simulation framework to design, model, and control
soft robots is presented in [12]. It uses the finite-element
method (FEM) to simulate soft bodies in real time and it has
been used to propose different methods to control soft robots.
Coevoet et al. [13] presented an open-loop optimization-based
method to control soft robots interacting with its environment.
Then, [14] proposes a closed-loop inverse kinematics con-
troller based on a quasi-static FEM model. To overcome this
quasi-static assumption, [15] presents a model-based dynamic
controller for soft robots. This article proposes to use FEM to
build a large-scale dynamic model of the system and proposes
a methodology to perform dynamic trajectory tracking.

A. Notations and Definitions

The notations used in this article are standard. We denote
that R is the set of real numbers, R

n is the set of real vectors of
dimension n, and R

n×m is the set of matrices with n rows and
m columns. For any vector or matrices x or M in R

n, R
n×m ,

xT , and MT are their transpose. For any matrix M ∈ R
n×n ,

M = MT > 0 defines a symmetric positive definite matrix.
For a vector x ∈ R

n , the notation diag(x) refers to a square
diagonal matrix, where the elements of the diagonal are the
elements of x and the entries outside the diagonal are all zeros.

The time dependence of velocity, displacement, state, and
input vectors v(t), q(t), x(t), and u(t) is omitted. This article
is concerned with discrete-time systems and the value of any
variable x at time tk is simply written as x = x(tk) and the
value of this variable at time tk+1, i.e., at the next time step,
is written as x+ = x(tk+1).

Given a vector x ∈ R
n and function V (x) : R

n �→ R,
we denote �V x) = V (x+) − V (x). A star ∗ indicates a
transposed quantity in an expression or in a symmetric matrix.
For example, ∗P A − P < 0 stands for AT P A − P < 0 and
( P ∗

A P ) < 0 stands for ( P AT

A P ) < 0.

II. PROBLEM STATEMENT

A. Introduction

Let us start from a linear large-scale system given in the
following equation:

M :
�

x+ = Ax + Bu

y = Cx
(1)

where A ∈ R
n×n , B ∈ R

n×m , m being the number of actuators,
C ∈ R

p×n is a matrix defining the system’s outputs, and p is
the number of outputs.

System matrices A, B , and C come from numerical meth-
ods, such as the FEM. For this model to be precise, the number
of variables in the state vector x has to be significantly high
and system (1) is thus a large-scale system with n � 1.

The large dimension of system (1) makes difficult the use
of standard tools of automatic control (such as pole placement
or LMI constraints problem) to design a controller for this
system. To tackle this problem, we propose to use model-
order reduction methods to obtain a low-order system that
represents faithfully the full-order system. Based on this low-
order state, the designs of both the controller and the observer
are tractable.

B. Presentation of Reduction Algorithms

In this article, we construct the low-order system using
projection-based model reduction. Two main categories of
the algorithm are found in the literature: singular value
decomposition (SVD)-based methods and Krylov (moment-
matching)-based methods. Balanced truncation and proper
orthogonal decomposition (POD) are two SVD-based meth-
ods. The first one requires the computation of the system’s
gramian, which can sometimes be computationally expensive,
but has the major advantage to offer an a priori error bound.
The second method, POD, also offers such a bound and is,
in addition, directly usable for nonlinear large-scale systems.
For moment-matching reduction algorithms, one can find
the iterative rational Krylov algorithm [16] and its multi-
input–multioutput (MIMO) version [17]. These methods are
computationally tractable even for very large-scale systems.
In this article, we can use any of the aforementioned reduction
methods.

The large-scale state x can be decomposed into a low-order
state xr ∈ R

r and a neglected state xr̄ ∈ R
n−r such that

x = Vr xr + Vr̄ xr̄ with

�
xr = W T

r x
xr̄ = W T

r̄ x
(2)

The projectors W and V are orthogonal, and it holds
W T

r Vr = I and W T
r Vr̄ = 0. It is now possible to design a

controller based on the low-order state xr . From (1) and (2),
the dynamics of the low-order state writes

xr+ = W T
r AVr� �� �

Ar

xr + W T
r B� �� �
Br

u + W T
r AVr̄ xr̄ . (3)

The dynamics of the low-order state xr still depends on
the neglected state xr̄ and the matrix W T

r AVr̄ ∈ R
r×(n−r) is

of large dimensions. Of course, the controller designed should
ensure stability of the exact low-order model (3), and the states
xr̄ have to be taken into account. Considering that the term
based on the unknown state xr̄ should be modest compared
with xr (due to the model reduction), a way to tackle this issue
is to consider the error reduction as an unknown disturbance
du associated with an unavoidable modeling error ε. Thus,
an adequate controller has to cope with these uncertainties to
make them vanish via the robustness property of the feedback
control law.
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C. Contributions

This article is a very important extension to our previous
work [15] that presented an FEM-based dynamic controller
for soft robots. Especially, it introduces dynamic trajectory
tracking by modifying the structure of the control law, and
it presents new synthesis via LMI constraints’ problems to
set the gains of both control law and observer. Moreover,
a stability proof of the observer-based control is provided,
including a guaranteed region of convergence via input to state
stability (ISS) properties.

In the rest of this article, we present a trajectory tracking
controller based on a low-order model with uncertainties
[see model Mr , (8)]. The control strategy is presented in
Sections IV and V, and it includes both feed-forward and
observer-based output feedback elements. Under the assump-
tion made, the proposed method ensures the stability of the
full-order model M [see (1)] through LMI problems. The
algorithm, computed thanks to the low-order model, is then
applied to the full-order model and real-world experiments
are gathered in Section VI.

III. LOW-ORDER MODEL

As said earlier, (3) presents the exact dynamics of the low-
order state xr , but it still depends on the neglected state xr̄ that
is of large dimensions. To ensure the stability of the exact
reduced-order model (3), we decompose the reduction error
W T

r AVr̄ xr̄ into two orthogonal parts: an input disturbance du

plus an unavoidable modeling error ε

W T AVr̄ xr̄ = Br du + B⊥
r ε = �Br B⊥

r

	 
du

ε

�
(4)

where B⊥
r is an orthogonal complement of Br , such as

B⊥T

r Br = 0 and B⊥T

r B⊥
r = I and the square matrix

�
Br B⊥

r

	
is full rank.

Lemma 1: Assuming that xr̄ is bounded in a domain around
the trajectory, then a bound of ε is given by the following
equation:

	ε	 ≤ η (5)

and a overestimated upper bound η of the modeling error ε is

W T
r AVr̄ xr̄ = Br du + B⊥

r ε

B⊥T

r W T
r AVr̄ xr̄ = B⊥T

r Br du + B⊥T

r B⊥
r ε

B⊥T

r W T
r AVr̄ xr̄ = ε

⇒ 	ε	 ≤ ��B⊥T

r W T
r AVr̄ xr̄

�� = η. (6)

The study of the reduction error W T
r AVr̄ xr̄ gives a value of

this bound. Not all reduction methods listed earlier provide the
computation of the large matrix Vr̄ , as it is computationally
expensive, but one can study this bound using

x+ = Ax + Bu

W T
r x+ = W T

r Ax + W T
r Bu

W T
r x+ = W T

r A(Vr xr + Vr̄ xr̄ ) + W T
r Bu

W T
r x+ = W T

r AVr W T
r x + W T

r AVr̄ xr̄ + W T
r Bu

⇒ W T
r AVr̄ xr̄ = W T

r x+ − Ar W T
r x − Br u. (7)

It is always possible to get an estimation of the upper bound
of ε. For a simple trajectory, running simulations around the
trajectory is sufficient. For a global bound, simulations can
be provided covering the entire workspace of the effector and
considering the worst case. Experimental values of this bound
are provided in Section VI with the experimental validation of
the method.

Finally, with notations presented above and from (3) and (4),
the low-order dynamics writes

Mr :
�

xr+ = Ar xr + Br u + Br du + B⊥
r ε

yr = Cr xr .
(8)

IV. CONTROL DESIGN

A. Reference Model

The trajectory is defined through a linear reference model
M∗ sharing the same dimensions as the low-order model Mr ,
and s∗ is the reference signal

M∗ :
�

x∗
r+ = A∗

r x∗
r + B∗

r s∗

y∗
r = C∗

r x∗
r .

(9)

The trajectory error et is defined in the reduced-order state
space as

et = xr − x∗
r . (10)

The objective is to design a controller such that it minimizes
the tracking error et . To achieve this objective, an observer-
based output feedback controller is designed that uses both
feed-forward and feedback elements.

B. Observer design

The design is based on a so-called unknown input
PI-observer. It assumes that the dynamics of du can be
captured via a cascade of integrators, i.e., the pth variation of
du is zero. Under this assumption, denoting B̃r = �Br 0 . . . 0

	
and defining an extended state (x̂ T

r D̂T
u )T , the observer writes


x̂r+
D̂u+

�
=



Ar B̃r

0 J

�

x̂r

D̂u

�
−KoCr (xr − x̂r)+



Br

0

�
u (11)

with⎛
⎜⎜⎜⎜⎜⎜⎝

d̂u+
d̂(1)

u+
...

d̂(p−1)
u+
d̂(p)

u+

⎞
⎟⎟⎟⎟⎟⎟⎠

� �� �
D̂u+

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I I 0 . . . 0

0 I I
. . . 0

... 0
. . .

. . . 0
...

...
. . . I I

0 0 . . . 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

� �� �
J

⎛
⎜⎜⎜⎜⎜⎜⎝

d̂u

d̂(1)
u
...

d̂(p−1)
u

d̂(p)
u

⎞
⎟⎟⎟⎟⎟⎟⎠

� �� �
D̂u

. (12)

To keep the observability property, the following constraint
must be satisfied:

rank(Br ) ≤ p (13)
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where p is the number of outputs. Let us define the observation
error eo

eo =



xr − x̂r

Du − D̂u

�
=



eox

eod

�

⇒ eo+ =
�


Ar B̃r

0 J

�
− Ko(Cr O)

�
� �� �

Ao−KoCo

eo +



B⊥
r
0

�
ε .(14)

The computation of the matrix Ko is detailed in Section V.

C. Observer-Based Output Feedback

The control law used to perform dynamic trajectory tracking
is a PI-like control (Li , integral part) based on a reference
model state x∗

r (L∗) and the estimated states x̂r , d̂u (L and Lu )

u = −L∗x∗
r − �L Lu Li

	⎛⎝x̂r

d̂u

xi

⎞
⎠ . (15)

The dynamics of the trajectory error et writes, from (9) and (8)

et+ = xr+ − x∗
r+

= Ar xr + Br u + Br du + ε − A∗
r x∗

r − B∗
r s∗. (16)

The proposed control law leads to the following trajectory
error dynamics:
et+ = Ar xr −Br

�
Lx̂r +L∗x∗

r +Lud̂u + Li xi
	+ Br du + B⊥

r ε

− A∗
r x∗

r − B∗
r s∗

et+ = Ar
�
et + x∗

r

	− Br
�
Lx̂r + L∗x∗

r + Lud̂u + Li xi
	

+ Br du + B⊥
r ε − A∗

r x∗
r − B∗

r s∗. (17)

As x̂r = xr − eo = et + x∗
r − eo, it holds

et+ = Ar
�
et + x∗

r

	
− Br

�
L
�
et + x∗

r − eox

	+ L∗x∗
r + Lud̂u + Li xi

	
+ Brdu + B⊥

r ε − A∗
r x∗

r − B∗
r s∗

et+ = (Ar − Br L)et + �Ar − A∗
r − Br (L + L∗)

	
x∗

r

+ Br Leox + Br (du − Lud̂u) − Br Li xi − B∗
r s∗ + B⊥

r ε.

(18)

In (18), an adequate choice to recover du − d̂u is to set
Lu = I to get

et+ = (Ar − Br L)et + �Ar − A∗
r − Br (L + L∗)

	
x∗

r

+ �
Br L Br

	 
 eox

du − d̂u

�
− Br Li xi − B∗

r s∗ + B⊥
r ε

et+ = (Ar − Br L)et + �Ar − A∗
r − Br (L + L∗)

	
x∗

r

+ �
Br L B̃r

	
eo − Br Li xi − B∗

r s∗ + B⊥
r ε. (19)

The integral term xi is defined as

xi+ = xi + �yr − y∗
r

	
xi+ = xi + Cr et + �Cr − C∗

r

	
x∗

r . (20)

Defining z =
⎛
⎝et

x∗
r

xi

⎞
⎠ and Ac =

⎛
⎝Ar Ar − A∗

r 0
0 A∗

r 0
Cr Cr − C∗

r I

⎞
⎠, it follows:

z+ =
⎡
⎣Ac −

⎛
⎝Br

0
0

⎞
⎠�L (L + L∗) Li

	⎤⎦ z

+
⎛
⎝Br L B̃r

0 0
0 0

⎞
⎠ eo +

⎛
⎝−B∗

r
B∗

r
0

⎞
⎠ s∗ +

⎛
⎝B⊥

r
0
0

⎞
⎠ ε. (21)

Now, we can write the closed-loop model, including the
observer and the controller as


z+
eo+

�
= G



z
eo

�
+ B̃∗

r s∗ + �̃ε (22)

with

G =

⎛
⎜⎜⎝Ac −

⎛
⎝Br

0
0

⎞
⎠�L (L + L∗) Li

	 ⎛
⎝Br L B̃r

0 0
0 0

⎞
⎠

0 Ao − KoCo

⎞
⎟⎟⎠
(23)

and

B̃∗
r =

⎛
⎜⎜⎝
⎡
⎣−B∗

r
B∗

r
0

⎤
⎦

0

⎞
⎟⎟⎠ ; �̃ =

⎛
⎜⎜⎜⎜⎝

⎡
⎣B⊥

r
0
0

⎤
⎦

�
B⊥

r
0

�
⎞
⎟⎟⎟⎟⎠ . (24)

Section V present how to compute the observer and
controller gains that, under the assumption mentioned in
Lemma 1, stabilize the closed-loop system and minimize the
trajectory error. In the general case, finding all-in-one the
Lyapunov function, the observer, and controller gains result is
a non-convex problem. The structure of (21) associated with
the matrix G of (22) allows to combine a quasi-separation
principle (solving the observer design apart from the controller
design) and ISS properties to solve the problem. Global stabil-
ity of the closed loop together with the region of convergence
is provided. The control algorithm can thus be summarized
as follows.

Step 1: Computation of the observer gain.
Step 2: Computation of the controller gains.
Step 3: Proof of stability and study of convergence
region for the closed-loop algorithm [see system (22)].

V. COMPUTATION OF CONTROLLER

AND OBSERVER GAINS

Let us recall the definition of ISS.
[18, Th. 5]: A system with state x and input u is ISS if and

only if it admits a smooth Lyapunov function V (x) such that
its variation satisfies

�V (x, u) ≤ −α(	x	) + γ (	u	) (25)

where α, γ ∈ K∞. �
In the rest of this article, we will use quadratic K∞ functions

defined as

α(	x	) = αx T Mx, α > 0, M > 0. (26)
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The ISS property will come at hand to study the stability
property of the closed loop according to both the modeling
error � and the input disturbance du .

A. Computation of Observer Gain

The first objective is to compute Ko in (14) while mini-
mizing the impact of the unknown modeling error ε on the
observer error eo that writes

Find Ko and Vo(eo) = eT
o Poeo for the model:

eo+ = (Ao − KoCo)eo +



B⊥
r
0

�
ε

such that:

�Vo < −αoeT
o Poeo + γoε

T ε

with: α0 > 0, γo > 0, Po > 0. (27)

(27) is equivalent to

[∗]Po

�
(Ao − KoCo)eo +



B⊥

r
0

�
ε

�
− eo Poeo < −αoeT

o Poeo + γoε
T ε

⇔ �
eT

o εT
	 [∗]Po

�
Ao − KoCo



B⊥

r
0

��

eo

ε

�

+ �
eT

o εT
	 
−Po + αo Po 0

0 −γo I

�

eo

ε

�
< 0. (28)

Using Schur’s complement, this is equivalent to the follow-
ing matrix inequality condition:

(27) ⇔

⎛
⎜⎜⎝

−Po + αo Po 0 ∗
0 −γo I ∗

PoAo − K̃oCo Po

�
B⊥

r
0

�
−Po

⎞
⎟⎟⎠ < 0 (29)

with the classical change of variables K̃o = PoKo. It ensures
that for large enough time, the trajectory error converges to a
hyperball, whose radius depends on γo and αo.

B. Computation of Controller Gain

The second objective is to compute the controller gains
L, L∗, and Li in (15), while minimizing the impact of the
modeling and reduction errors on the output tracking error
(y − y∗)

Find L, L∗, Li and Vt (z) = zT Pt z for the model:

z+ =
⎡
⎣Ac −

⎛
⎝Br

0
0

⎞
⎠�L (L + L∗) Li

	⎤⎦ z

+
⎛
⎝Br L B̃r

0 0
0 0

⎞
⎠ eo+

⎛
⎝−B∗

r
B∗

r
0

⎞
⎠ s∗+

⎛
⎝B⊥

r
0
0

⎞
⎠ ε (30)

such that:

�Vt < −α(y − y∗)T (y − y∗) + βt e
T
o



Pt 0
0 I

�
eo

+ γtε
T ε + ωt s

∗T s∗

with: (αt , βt , γt , ωt ) > 0 and Pt > 0.

It holds

(y − y∗) = �
Cr Cr − C∗

r 0
	⎛⎝et

x∗
r

xi

⎞
⎠ = C̃r z

⇒ (y − y∗)T (y − y∗) = zT C̃T
r C̃r z. (31)

Thus, problem (31) is equivalent to

[∗]Pt

⎡
⎣
⎛
⎝Ac −

⎛
⎝Br

0
0

⎞
⎠�L (L + L∗) Li

	⎞⎠ z

+
⎛
⎝Br L B̃r

0 0
0 0

⎞
⎠ eo +

⎛
⎝−B∗

r
B∗

r
0

⎞
⎠ s∗ +

⎛
⎝B⊥

r
0
0

⎞
⎠ ε

⎤
⎦− zT Pt z

< −αt zT C̃T
r C̃r z + βt e

T
o



Pt 0
0 I

�
eo + γtε

T ε + ωt s
∗T s∗.

(32)

Denoting Xt = P−1
t and using Schur’s complement and

congruence property with diag(Xt , [Xt I ], I, I, I ), condition
(33) shown in bottom of the next page, defines an LMI prob-
lem corresponding to the ISS condition (31). LMI problems
are solved using YALMIP for MATLAB [19].

C. Proof of Stability for Complete Low-Order System

The two previous LMI problems compute the controller and
observer gains. This section optimizes the convergence region,
where the proof of stability is given. Once the observer and
controllers gains are obtained, the matrix G defined in (23)
is fully defined. The stability of the complete closed loop
(i.e., the controller and observer) is guaranteed if the following
problem is solved.

System (22) is ISS if it exists a Lyapunov function

V (z, eo) = (zT eT
o )P(

z
eo

) such that

�V (z, eo) < −α([	z	 	eo	]) + γ (	ε	) + ω(	s∗	). (34)

We define α(	x	) = αxT Px , ω(	s∗	) = ωs∗T s∗, and
γ (	ε	) = γ εT ε with P > 0, α > 0, ω > 0, and γ > 0.
Then, the previous ISS condition is satisfied if

(34) ⇔ [∗]P
�
G
� z

eo

�
+ B̃∗

r s∗ + �̃ε
�

−
� z

eo

�T
P
� z

eo

�
< −α

� z
eo

�T
P
� z

eo

�
+ γ εT ε + ωs∗T s∗

⇔ [∗]P[G B̃∗
r �̃] − diag((1 − α)P, ωI, γ I ) < 0.

(35)

This defines a generalized eigenvalue problem in P, α, γ ,
and ω and ensures the stability of system (34) with the
observer gain Ko and controller gains L, L∗, and Li . More-
over, it ensures that V (z, eo) is decreasing for large enough
vectors (z, eo). The system finally converges to an invariant
manifold defined as


z
eo

�T

P



z
eo

�
<

γη2 + ω	s∗	2

α
. (36)
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Fig. 1. Illustration of the convergence region using the ISS property. The
hatching circle corresponds to invariant manifold defined in (41).

This defines a region of convergence for the vector (z, eo).
In order to study the convergence of the reduced-order state
xr , let us write



z
eo

�
=

⎛
⎜⎜⎝

et

x∗
r

xi

eo

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

I −I 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎟⎠
⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠=T

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠ . (37)

Equation (36) is also equivalent to



z
eo

�T

P



z
eo

�
=

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠

T

TT PT

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠<

γη2+ω	s∗	2

α
. (38)

In addition, we have⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠

T

TT PT

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠ ≥

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠

T ⎛⎜⎜⎝
xr

x∗
r

xi

eo

⎞
⎟⎟⎠ λmin(TT PT) (39)

where λmin(A) is the smallest eigenvalue of A. It yields⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠

T

TT PT

⎛
⎜⎜⎝

xr

x∗
r

xi

eo

⎞
⎟⎟⎠ ≥ x T

r xrλmin(TT PT). (40)

Finally, the invariant manifold with respect to the reduced-
order state writes

	xr	2 ≤ γ η2 + ω	s∗	2

λmin(TT PT)α
. (41)

A graphical scheme of the convergence region defined by
(41) is shown in Fig. 1. Section VI will give an example of

the estimation of this bound as well as the experimental results
from the studied robot.

D. Summary of Closed-Loop Algorithm

The study of the open-loop system says that for a given
workspace in which the reduced-order state xr is bounded by
a given constant c, the modeling error � is bounded by η

	xr	2 < c ⇒ 	�	 < η.

Then, three LMI problems guarantee that if the modeling
error � is bounded by η, then the reduced-order state converges
to an invariant manifold defined in (36) and (41). If this
region of convergence is smaller than the workspace in which
	xr	2 < c is satisfied, then the closed-loop system is stable.

1) Control Design Algorithm:

Study of open-loop system

	�	 < η ⇒ 	xr	2 ≤ γ η2 + ω	s∗	2

λmin(TT PT)α
.

Solve three LMI problems.

If
γ η2 + ω	s∗	2

λmin(TT PT)α
< c

then the closed-loop is stable.

VI. EXPERIMENTAL VALIDATION

To illustrate the interest and the effectiveness of the method-
ology proposed, it is tested on soft robotics application.
The modeling step is done using the SOFA framework [12],
a unified software to model soft structures thanks to the FEM.
For this model to be precise, the number of nodes of the mesh
has to be significantly high and the model studied is also a
large-scale system.

A. Experimental Setup

Experiments are conducted on a trunk-like robot presented
in Fig. 2 with a schematic view in Fig. 3. It is entirely made of
silicone, the structure is 18 cm long, and the thicknesses at its
base and its tip are, respectively, 2.5 and 1 cm. The structure
is driven by four cables—actuated by four servomotors—that
permit to work in the three dimensions of space. The output
of the system is the position of the tip (red point in Fig. 2) that
is measured using a magnetic microsensor, whose frequency
can reach 240 Hz. In the following, the sampling time for the
real-time experiments is set to 25 Hz.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Xt ∗ ∗ ∗ ∗ ∗
0 −βt



Xt 0
0 I

�
∗ ∗ ∗ ∗

0 0 −ωt I ∗ ∗ ∗
0 0 0 −γt I ∗ ∗

Ac −
⎛
⎝Br

0
0

⎞
⎠�L (L + L∗) Li

	
Xt

⎛
⎝Br L Xt B̃r

0 0
0 0

⎞
⎠

⎛
⎝−B∗

r
B∗

r
0

⎞
⎠

⎛
⎝B⊥

r
0
0

⎞
⎠ −Xt ∗

C̃r Xt 0 0 0 0 −αt I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (33)
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Fig. 2. Soft robot used for experimental validation. It is entirely made of
silicone. Top: front view of the robot. Bottom: side view. Red = end-effector,
location of the sensor.

Fig. 3. Design of the robot. Slice view (left) and side view (right). The robot
is actuated with four cables in red.

Fig. 4. FEM mesh of the trunk-like robot presented in Fig. 2. The mesh is
made of 1557 nodes and 2972 tetrahedrons.

B. Modeling

The finite-element mesh of this robot is made of 1557 nodes,
see Fig. 4. The dimensions of the state vector in system (55)
is also 1557 × 3 × 2 = 9342 state variables (three directions
of space for displacement and velocity). Then, model-order
reduction provides us with a low-order system of dimension 6,
as explained in Section VI-D.

1) Nonlinear Large-Scale Model: Let us start with the
formulation given by the second law of Newton that models
the dynamic behavior of a body as

M(q)v̇ = P(q) − F(q, v) + H
T (q)λ (42)

where q ∈ R
n is the vector of generalized degrees of freedom,

M(q) is the inertia matrix, and v = q̇ ∈ R
n is the vector

of velocity. F(q, v) represents internal forces applied to the
simulated object depending on the current state and P(q)
gathers known external forces. The matrices M, F, and P are
square matrices of dimensions n × n. H

T (q) is the matrix
containing the constraint directions, while λ ∈ R

m is the vector
of actuators forces. The procedure to get these different terms
is given shortly, and the reader can refer to [12] for details.
We integrate (42) using a time-stepping implicit scheme (back-
ward Euler) to have unconditional stability. Let us consider
the time interval [tk, tk+1] whose length is h = tk+1 − tk .

In practice due to hardware limitation, the time step is equal
to 0.04 s. Let us denote δq = q+ −q = hv+ and δv = v+ −v;
with these notations, (42) writes

M(q+)δv = h(P(q+) − F(q+, v+)) + hH
T (q+)λ

q+ = q + hv+. (43)

The internal forces F are a nonlinear function of the posi-
tions and the velocities. We then apply a Taylor series expan-
sion to F and make the following first-order approximation:

F(q+, v+) = F (q + δq, v + δv)

≈ F(q, v) + ∂F(q, v)

∂q
δq + ∂F(q, v)

∂v
δv. (44)

Defining

S(q, v) =



M(q) + h
∂F(q, v)

∂v
+ h2 ∂F(q, v)

∂q

�
. (45)

As δq = hv+ = hδv + hv, it follows:

S(q, v)δv =h



P(q+)−F(q, v)−h

∂F(q, v)

∂q
v

�
+hH

T (q)λ.

(46)

And finally

v+ = v + hS(q, v)−1



P(q+) − F(q, v) − h
∂F(q, v)

∂q
v

�
+ hS(q, v)−1

H
T (q)λ. (47)

Let us define the state vector x as

x =



v
q

�
. (48)

The nonlinear state-space expression is given by (49), shown
in bottom of the next page.

C. Large-Scale Linear Discrete-Time State-Space Model

Let q0 ∈ R
n be a stable equilibrium point that could be

obtained using an inverse problem. It is induced by the gravity
field P(q0) that is considered constant, i.e., P(q0) = P, and
the actuation input λ0. The Taylor expansion is made around
this configuration q0 and it holds

∂F(q, v)

∂q
= ∂F(q, v)

∂q

����
q=q0
v=0

= K and
∂F

∂v
= ∂F(q, v)

∂v

����
q=q0
v=0

= D.

(50)

Moreover, we consider constant inertia matrix M(q) = M.
With these notations, we get

S = (M + hD + h2
K). (51)

Defining the new input vector u = λ − λ0 and q = q − q0,
the linear state-space equation is


I 0
−h I

�
x+ =



v − hS−1[F+hKv]

q

�
+



hS−1
H

T

0

�
u (52)

From (49) to (52), the value of P vanishes as it is included in
the equilibrium point. F are the internal forces of the previous



8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

time step that can be written as F = Kq . Time step h is a
nonnull scalar, and thus, we have


I 0
−h I

�−1

=



I 0
h I

�
. (53)

With these notations, state space (52) writes

x+ =



I 0
h I

�

v − hS−1[Kq + hKv]

q

�

+



I 0
h I

�

hS−1

H
T

0

�
u . (54)

Finally, the state-space equation can be written in the standard
form

M :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+ =
"

I − h2S−1
K −hS−1

K

h I − h3S−1
K I − h2S−1

K

#
� �� �

A

"
v

q

#

+
"

hS−1
H

T

h2S−1
H

T

#
� �� �

B

u

y = Cx

(55)

where A ∈ R
2n×2n , B ∈ R

2n×m , m being the number of
actuators and C ∈ R

p×2n is a matrix defining the end-effector
coordinates, and p is the number of outputs.

D. Low-Order Model

As the computation of H∞ is computationally more expen-
sive, a common way to measure the accuracy of the reduced-
order system is to measure the H2 norm error between the
full- and reduced-order models

	M − Mr 	H2 . (56)

In this article, we use a moment-matching reduction method,
implemented within the MORE toolbox [20], to perform the
reduction. Table I gathers the comparison of the H2 errors for
different sizes of reduced systems, provided that the norm of
the full-order model 	M	H2 = 0.42. The best result regarding
the H2 norm error is achieved for reduced-order systems of
dimension 26 and higher; they present an error of 24.67%
compared with the full-order model. The H2 error between the
full-order system and the reduced-order system of dimension
2 is 25.4%, which is close to the optimal solution. Indeed,
the H2 error decreases from a system with dimension 2 to
dimension 6 and then converges slowly to the optimal solution.
A good compromise between the accuracy and the complexity
of the low-order model is also to choose a reduced-order
system of dimension 6.

TABLE I

COMPARISON OF THE H2 NORM ERROR BETWEEN THE FULL-
AND REDUCED-ORDER SYSTEMS FOR DIFFERENT

DIMENSIONS OF REDUCED SYSTEMS

Fig. 5. Real-time open-loop behavior of the robot. Black: reference signal.
Blue: end-effector’s displacement. Top: measurements of displacement along
the x-axis. Bottom: measurements of displacement along the y-axis.

E. Real Setup’s Behavior in Open Loop

The open-loop behavior of the robot is shown in Fig. 5.
It presents the displacements of the end-effector (i.e., the out-
put of the system) in the open loop controlled by solving an
inverse problem.

Remark: With an accurate calibration process, it is possible
to obtain a zero static error in the open loop. However,
the open-loop algorithms do not offer any guarantee about
the performances of the control algorithm, especially in the
presence of perturbations. Moreover, due to hardware limita-
tions, the calibration has to be done regularly, as phenomena,
such as fatigue, are difficult to model.

F. Validation of Model in Simulations

1) Validation of Model: The experiments of Fig. 5 are
repeated in simulation, and the results are shown in Fig. 6.
Fig. 5 compared with Fig. 6 shows that the main behavior of
the robot is captured by the model.

2) Bound η of the Modeling Error: By running multiple
simulations, we cover a workspace of the robot that is con-
sidered as exhaustive (we cover the whole range of possible
actuation) and we get the maximal values of the norms of the
full- and reduced-order states

	x	 = 2.39 108 and 	xr	 = 2.37 108. (57)

In this workspace and from (7), the norm of the modeling
error is

η = 4.19 103. (58)



I 0

−h I

�
x+ =

⎛
⎝v + hS(q, v)−1(P(q+) − F(q, v) − h

∂F(q, v)

∂q
v)

q

⎞
⎠+



hS(q, v)−1

H
T (q)

0

�
λ (49)
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Fig. 6. Open-loop simulation of the robot controlled via an inverse problem.
Black: reference signal. Blue: end-effector’s displacement. Top: displacement
along the x-axis. Bottom: displacement along the y-axis.

3) Invariant Manifold for the System Studied: The invariant
manifold defined in (41) and depicted in Fig. 1 is defined with
the following parameters:

α = 0.05

γ = 10−2

ω = 2.10−3. (59)

For the case where s∗ = 0, i.e., the robot comes back to its
rest shape, the invariant manifold writes

	xr	2 ≤ γ η2

λmin(TT PT)α
= 9.14 106. (60)

In this case, the invariant manifold corresponds to 3.87%
of the robot workspace. Therefore, for an initial condition
that satisfies (57), the system is stable and converges to the
invariant manifold.

G. Experimental Validation

Experiments are conducted with the same sampling time as
for the modeling process; point-to-point control and trajectory
tracking experiments are conducted.

1) Point-to-Point Control: For the first experiment, the ref-
erence is set such that the robot starts from its rest position and
converges to a desired position. Once the robot has reached
the target, it is moved 1 cm away from the target. Fig. 7 shows
that the control algorithm is robust enough to deal with this
perturbation. For the second experiment, the robots start from
its rest shape and converge to the first deformed position and
then to the second deformed position. Results are presented
in Fig. 8. It shows a diminution of oscillations, a faster time
response, and a cancellation of the static error compared with
the open loop.

2) Sinusoidal Trajectory: The second set of experiments
consists of tracking a sinusoidal signal along the x-axis of the
robot; the reference for y-axis is zero. Results are presented
in Fig. 9. The behavior along the first axis accurately follows
the trajectory, while the second output oscillates around the
reference signal. Of course, this residual oscillation is due to
the physical coupling between the actuators.

H. Discussion and Limitations

The limits of the algorithm are tested with the third exper-
iment, where the goal is to reach a highly deformed position.

Fig. 7. Point-to-point closed-loop control. Top: output along the x-axis.
Bottom: output along the y-axis. Black: reference signal. Red: output of
reference model. Blue: Robot’s end-effector’s displacement.

Fig. 8. Point-to-point closed-loop control. Desired position corresponds to
Fig. 10(c). Top: output along the x-axis. Bottom: output along the y-axis.
Black: reference signal. Red: output of the reference model. Blue: robot’s
end-effector’s displacement.

Fig. 9. Closed-loop trajectory tracking. Top: output along the x-axis. Bottom:
output along the y-axis. Black: reference signal. Red: output of reference
model. Blue: robot’s end-effector’s displacement.

Prior to the experiment, it has been checked via an inverse
problem that the target is inside the robot workspace. Fig. 10
shows the different positions, where the algorithm is tested.
Fig. 10(a) shows the rest position where the system is lin-
earized. Fig. 10(b) shows a deformation of 5% where the
linearization assumption is valid. Fig. 10(c) corresponds to
the desired position of the successful attempt shown in Fig. 8.
Fig. 10(d) shows an example of unsuccessful attempt to reach
a highly deformed position. This limitation is shown in Fig. 11
and is probably due to the fact that the position is outside the
validity range of the linearization.

Indeed, the proposed closed-loop controller is based on a
linear model: we consider constant mass, stiffness, and damp-
ing. This linearization assumption, necessary to cope with
the high-sized problem, naturally limits the workspace of the
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Fig. 10. (a) Rest position. (b) Limits of the linearization assumption (5%
of deformation). (c) Desired position corresponding to Fig. 8. (d) Desired
position corresponding to Fig. 11.

Fig. 11. Unsuccessful attempt to reach a more distant target [see Fig. 10(d)].
Top: output along the x-axis. Bottom: output along the y-axis. Black:
reference signal. Red: output of reference model. Blue: robot’s end-effector’s
displacement.

robot, and the model remains only valid in a neighborhood of
the linearization. In practice, for the robot under consideration,
the workspace is limited approximately to a circle of radius
6 cm around its rest position. If the reference trajectory is set
outside of this workspace, the performances start to decrease.
Even if it is recognized as a limiting factor, this is not a strong
limitation as 6 cm represent 33.3% of the length of the struc-
ture. Further experimental tests with different robots should
be performed to evaluate and characterize the full potential of
the approach. For larger deformation, more elaborated models
should come at hand (e.g., polytopic descriptions, nonlinear
representation, and so on); this is an ongoing research topic.

In addition, the mechanical coupling between the actuators
limits the performances of the control algorithm, as shown
in Fig. 9. Moreover, the friction between the cables and
the structure also limits the performances of the closed-loop
algorithm, and this requires deepening the actuation system to
remove this constraint.

VII. CONCLUSION

A large-scale model of a physical system is obtained using
the numerical method, such as the FEM. The precision of the
model is linked to the size of the model; as accuracy increases,
so does the size of the state-space model.

We deal with this dimension issue using projection-based
model reduction. The design of a robust controller is done
to take into account both the modeling errors and the model-
ing reduction. A so-called PI-like observer reconstructs the
reduction part via an unknown vector. The conditions are
written as three LMI constraints’ problem. When a solution

to these problems is found, it is applied to the original
full-order model.

To illustrate the interest of this article, theoretical results are
applied to a soft robot. Dynamic control of soft robots is an
open field of research and the results provided in this article
show that the method is relevant to increase the accuracy, range
of speed, and robustness of this kind of robots.
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