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This paper deals with the robust stabilization of a class
of Linear Parameter Varying (LPV) systems in the sam-
pled data control case. Instead of using a state observer
or searching for a dynamic output feedback, the con-
sidered controller is based on output derivatives estima-
tion. This allows the stabilization of the plant with very
large parameter variations or uncertainties. The proof
of stability is based on the polytopic representation of
the closed loop under Lyapunov conditions and system
transformations. The result is a control structure with
only one parameter tuned via very simple conditions.
Finally, the effectiveness of the proposed method is ver-
ified via a numerical example of a second order LPV
system.

1 Introduction
In the industrial process control field, most users are

using traditional PID controller which was developed in
1940s or improved PID controller. These controllers are
very famous because of their low number of tuning pa-
rameters and the fact that modeling the plant is not
mandatory. Thus, there are often tuned with a simple
(linear) non physical model [1,2] leading to poor results
when a process has a large operating domain. In addi-
tion, due to the non-linear nature of most systems or
the variation of their parameters, it is difficult to tune
them correctly without a good model or a more complex
control structure.

Because internal states of most industrial plants
cannot be directly measured and only their outputs are

available for control purposes, output feedback design,
static output feedback [3, 4], dynamic output feedback
[5] and fuzzy observer-based control approaches [6, 7]
have been employed. The design procedure of these con-
trollers needs a good model and for some of them the use
of complex optimization techniques. Yet, the choice of
the physical model structure, the identification of its pa-
rameters and then the experimental validation of it are
time-consuming and never simple. Even if the model is
available and good enough, using a dynamic model for
computing the control law implies the identification of
the model parameters.

An important aspect to be considered in the output
feedback control problem is the non availability of all
variable parameters in real-time for the implementation
of the control law. As a matter of fact, the control law
depends on the output of the system and on some of
the varying parameters. If no information about these
variable parameters is available, a constant output feed-
back control gain may be an alternative but yielding, in
general, conservative results.

A solution to those problems is proposed
based on some new results in the framework of
model free control introduced by Cedric et al. [8].
This framework is signal based and thus don’t require
many specifications about the system. The main idea
of this control law is to nullify the system dynamic
and to replace it with the ideal closed loop one. To
implement this controller, the output derivatives need
to be available. In the literature, many variant of such
controller have been developed (see [8–11]). All these



studies state that the stability as well as performances
are ensured but none of them provides a standard proof
on a class of system. Recently, the authors of [12, 13]
have considered the use of the model-free theory and the
polytopic transformation to tackle problems related to
the stability tuning method of non-linear systems with
time-varying parameters. Easy tuning conditions for
the controller parameter guaranteeing the stability are
provided. The considered controller is based on a signal
differentiator and a dynamic nullification. It turns out
that the obtained results require less information on
the system for the controller tuning. This approach
has successfully applied on real applications such as
Permanent Magnet Synchronous Motors (PMSM)
and Electropneumatic System position control. These
applications are published in [14, 15] showing the good
tracking properties of this controller and the simplicity
of its tuning.

In the industrial process field, digital controllers are
omnipresent, and have enabled the explosion of embed-
ded systems and networking control systems. Unlike
analogical controllers, digital controllers, due to their
nature, introduce discrete-time signals and discrete-time
dynamics, via sample and hold devices [16]. This behav-
ior has to be taken into account in the design of a con-
troller as well as continuous Linear Parameter Varying
(LPV) systems with a discrete time model. This dif-
ficulty has been encountered in many problems in the
network control framework [17–21]. One of the solutions
is to consider the sampling effect as a time varying delay
with a particular shape.

Motivating by the above discussion, the main issues
addressed in this work are:

(i) Proposing a new controller design procedures in-
spired from our previous work [12, 13]. This con-
troller is based on a signal differentiators and dy-
namic nullification and implemented in a proces-
sor based device such that the sensor data are only
available at sampling instants.

(ii) By considering the discrete-time dynamics induced
by the digital controller as a piecewise continuous
delay, some stability results are provided. The con-
ditions are based on Lyapunov-Krasovskii theory
and polytopic transformation. The result is pre-
sented as a set of LMI (Linear Matrix Inequalities)
to solve.

(iii) Proving the existence of a stabilizing deriva-
tive/controller pair for all models belonging to a
special class of second order Single-Input-Single-
Output LPV systems.

(iv) Describing a simplified design procedure for the lat-
ter case.

This paper is organized as follows: The third section
summarizes some of the main theoretical ideas which
are shaping the model free-control presented by [12,13].
A time-delay approach to deal with sampling effects is
proved. The fourth part of this paper is devoted to the

polytopic representation of the closed loop and then to
the global stability conditions synthesis. A study case of
a particular class of second order non-linear LPV system
is considered in section five leading to a simplified design
procedure. The last part gives some conclusions and
perspectives.

Notation: Throughout the article, the sets N
∗,

R, R
n, R

∗

+ and R
n×n denote, respectively, the set of

positive integers without zero, real numbers, real posi-
tive numbers without zero, n-dimensional vectors and
n × n matrices. 0(m×n) presents the zero matrix of
dimension m × n. Define M((1:p)×(1:q)) the p × q ma-
trix whose entries are the (1 : p) and (1 : q) elements of
the matrix M((1:m)×(1:n)) such that p ≤ m and q ≤ n.
diag(V ) presents the N ×N diagonal matrix whose en-
tries are the N elements of the vector V . M(α) refers
to an alpha-dependant matrix. For a matrix M, sym-
bols MT , M−1, M (n), Ṁ , M̃ and M̂ refer, respectively,
to the transpose, the inverse, the nth derivative, the
first derivative, an approximated value and an estimated
value of M. τ is the estimator parameter. For a vector
V , V (sk) means that the data are only available at sam-
pling instants sk. d(t) is the induced time-varying delay
with an upper bound h. ∗ stands for the suitable ex-
pression induced by symmetry. P denotes a compact
and convex set such that P := Co(Pi, i ∈ {1..N}) :=

{P (σ(t)) |
∑N

i=1 µi(σ(t))Pi; µiσ(t) ∈ ∆µ(σ(t)), i ∈
{1..N}}. µi(σ(t)) are the weighting functions whose
argument σ(t) ∈ R

nσ may depend on the state or some
exogenous signals. These functions should satisfy the
convex sum propriety ∆µ(σ(t)) := {

∑N
i=1 µi(σ(t))σ(t) =

1;∀i ∈ {1..N},0 ≤ µi(σ(t)) ≤ 1}.

2 Problem formulations

In recent years, the Linear Parameter Varying
(LPV) models which represent a particular class of non-
linear systems have attracted considerable interest. Sev-
eral approaches have been developed to represent, in
equivalent manner, a non-linear system as LPV sys-
tem [22–24]. For our study, consider the LPV system
described by:

{

ẋm(t) = Am(σ(t))xm(t)+Bmu(t)
y(t) = Cmxm(t)

(1)

where xm(t) ∈ R
ν is the state vector, u(t) ∈ R is the in-

put vector and y(t) ∈R is the output vector. Am(σ(t)) ∈
R

ν×ν , Bm ∈ R
ν×1 and Cm ∈ R

1×ν are known matrices.
σ(t) denotes a vector of time varying parameters sup-
posed to be non-measured but bounded in the time.
Since Am(σ(t)) depends on σ(t), it can be generically
describe by the polytopic form by considering the well
known non-linear sector approach [25, 26]. This trans-
formation allows to obtain a polytopic representation of



the state space (1) in a compact and convex set P:

{

ẋm(t) =
∑N

i=1 µi(σ(t))Ami
xm(t)+Bmu(t)

y(t) = Cmxm(t)
(2)

where the integer N is the number of subsystems and
Ami

∈ R
n×n are known matrices. The functions µi are

the weighting functions depend on some exogenous sig-
nals. These functions verify the convex sum property
∆µ(σ(t)) in the polytopic model domain of validity.

This paper is interested in finding the easiest
method to tune dynamic output controller for this class
of systems. The controller is implemented in a processor
based device such that the sensor data are only available
at sampling instants sk (Fig. 1).

y(t)

y(sk)

r(sk)u(t)

u(sk)

Fig. 1. Robust data sampled controller

In order to deal with the sampling effects, the LPV
system (2) is then remodelled as follows:

{

ẋm(t) =
∑N

i=1 µi(σ(t))Ami
xm(t)+Bmu(sk)

y(t) = Cmxm(t)
(3)

The controller considered in this paper is a partic-
ular case of dynamic output feedback controller. The
goal being here is to tune a controller with the less in-
formation on the plant as possible i.e. by considering
the largest uncertainties on the plant parameters, the
less controller parameter possible and a fixed structure.

3 The controller/derivative conception
From the controller point of view, the dynamic of

the system (3) can be replaced by the ultra-local model
[8]:

y(n)(t) = F (t)+αu(sk) (4)

where F (t) = f(y, ẏ, . . .) is the structure function con-
taining all-poles dynamic with eventually some distur-

bances. Note that the function F (t) MUST be control
independent (no zero dynamics). This model considers
that only the order n ∈ N

∗ of the differential equation
and an approximation of the input control gain α̂ are
available.

Since the idea of the controller structure is to nullify
the system dynamic and then to replace it with the ideal
dynamic for the closed loop, we consider the following
control law introduced by [13] and represented in Fig.2:

Proposition 1. Control Law

u(t) = ûn(t)+ ûr(t)

= − 1
α̂

F̂ (t)+ 1
α̂

(−KŶ (t)+k0r(sk))
(5)

where

• F̂ (t) is an estimation of the ”structure” function
F (t);

• α̃ is an approximation of the input gain α. Note that
the choice of the parameter α̂ will be informed by
the analysis of non-grouped terms in the structural
function F ;

• Ŷ (t) = [z0(t) . . . zn−1(t)]T is a vector composed
of zi(t): the estimations of the successive derivatives
of the system output y(i)(t);

• r(sk) is the reference;
• K = [k0, . . . , kn−1] is a vector composed of the coef-

ficients ki of the desired dynamic of the closed sys-
tem given by specifications.

This controller gives a perfect closed loop only if a
good estimation of the output derivatives and the func-
tion F(t) are available. There exist in the literature
many techniques for the signal derivation. The sim-
plest one is to use a filtered differentiators i.e. any sta-
ble transfer function with a stable denominator and a
pure differentiators for the numerator. Other possibili-
ties consist in the use of algebraic differentiators [8,27],
Luenberger unknown input observer or sliding mode ob-
servers [28–31].

In order to set a simple solution, for design purpose,
we consider a simple filtered derivative approach:







z0(s)
y(s) = 1

τs+1

zi(s)
y(s) =

(

s
τs+1

)i

, ∀i = 1..n−1
(6)

This estimator is causal and ensures a good estimation
if its parameter τ is sufficiently smaller than the fastest
dynamic of the system. It provides the successive esti-
mations zi(t) of y(i)(t) for all i ∈ {1, . . . , n−1} where n
presents the system order.

The implementation of the controller in discrete
time (Fig. 2) is rather simple to achieve since it is lin-
ear. However, a bad choice of the sampling period could
lead to an unstable closed loop.



y(sk)

++

u(t)

r(sk) ûr(t)

ûn(t)

Fig. 2. Controller plant

Finally, based on the results of [12,13], the sampled
data controller/derivative pair composed of the control
law (5) and the estimator (6) is given by the following
proposition:

Proposition 2. The sampled data state representation
of the controller and its derivative can be given by:

{

ẋe(t) = Aoxe(t)+Bo1y(sk)+Bo2r(sk)
u(t) = Coxe(t)+Do1y(sk)+Do2r(sk)

(7)

with ẋe(t) = [z1(t) . . . zn(t) ˆ̇u(t)]T where û(s)
u(s) = 1

τs+1

and

Ao = Ae − Beu

α̂
(Cfx +KCeyx)

Bo1 = Bey − Beu

α̂
(Cfy +KCeyy)

Bo2 = Beu

α̂
k0

Co = − 1
α̂

(Cfx +K Ceyx)
Do1 = − 1

α̂
(Cfy +K Ceyy)

Do2 = k0
α̂

(8)

where the different matrices are defined by

Ae =























− 1
τ

0 . . . . . . . . . 0 0
− 1

τ2 − 1
τ

0 . . . . . . 0 0

− 1
τ3 − 1

τ2 − 1
τ

0 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

− 1
τn−1 − 1

τn−2 . . . . . . − 1
τ

0 0

− 1
τn − 1

τn−1 . . . . . . . . . − 1
τ

0

0 0 . . . . . . . . . 0 − 1
τ























CT
fx =

(

− 1
τn − 1

τn−1 . . . − 1
τ

−α̂
)

, Cfy = 1
τn

CT
eu =

(

0(1×n)

1

)

, Ceyy =

(

0
Bey(1:n−1)

)

Ceyx =

(

1 0(1×n)

Ae((1:n−1)×(1:n))
0

)

, Beu =

(

0(1×n)
1
τ

)

BT
ey =

(

1
τ

1
τ2 . . . 1

τn 0
)

(9)

From this proposition, one can conclude that the
proposed control law requires less information on the
system for the controller tuning: only the dynamic or-
der, an estimation of the non-linear functions bounded
and an approximation of the input gain are required.

4 Stability analyses

Consider the sampled-data closed loop composed of
the LPV system (3) and the controller/derivative pair
described in Proposition 2:

{

ẋ(t) = A(σ(t))x(t)+Adx(sk)+Br(sk)
y(t) = Cx(t)

(10)

where x(t) = [xm(t) xe(t)]T presents the extended closed
loop state and for all µi(σ(t)) ∈ ∆µ(σ(t)),

A(σ(t)) =
∑N

i=1 µi(σ(t))

(

Ami
0

0 Ao

)

Ad =

(

BmDo1Cm BmCo

Bo1Cm 0

)

, B =

(

BmDo2

Bo2

)

C =
(

0 . . . 0 Cm

)

(11)

Because the plant is not Linear time invariant, the
data-sampling impact on the closed loop cannot be stud-
ied via discretization. In order to maintain the con-
tinuous nature of the system, time-delay approaches
are more suitable for this case [32–34]. Modeling of
continuous-time systems with digital control in the form
of continuous-time systems with delayed control input
was introduced by [32,33] and further developed by [34].
It consists in considering the discrete-time dynamics in-
duced by the digital controller as a piecewise continuous
delay:

sk = t− (t−sk) = t−d(t), ∀t ∈ [sk, sk+1] , k ∈ N

where sk is the sampling instant and d(t) = t − sk is
the induced time-varying delay satisfying 0 ≤ d(t) ≤
h, ḋ(t) ≤ η < ∞ and h = τ/κ, κ ∈ R

∗

+.

The sampled data closed loop (10) is then re-
modeled as a closed loop system with time-varying delay
satisfying d(t) > 0 as follow:







ẋ(t) = A(σ(t))x(t)+Adx(t−d(t))+Br(t−d(t))
x(s) = φ(s), −h ≤ s ≤ 0
y(t) = Cx(t)

(12)
where the different matrices are defined by (11),
φ(.) is the initial functional such that x(s) = φ(s) ∈
L2 [−h, 0] ≡

{

f(.)|
∫

∞

0 fT (t)f(t)dt < ∞
}

. Here, we con-
sider that the delay h > d(t) > 0 is piecewise-linear with
derivative ḋ(t) = η = 1 for t 6= sk.



The stability of this closed loop has been studied in
the linear case by [35]. The result is the following:

Theorem 1. The unforced system ẋ(t) = Ax(t) +
Adx(t − d(t)) + Bu(t), x(s) = φ(s) for − h ≤ s ≤ 0 is
stable if there exist a symmetric and positive-definite
common matrix P , common matrices W1, W2, W3, W4

and symmetric and positive-definite common matrices
Q, R and S such that the following LMI holds:

M =









M11 M12 M13 M14

∗ M22 M23 M24

∗ ∗ M33 M34

∗ ∗ ∗ M44









< 0 (13)

where

M11 = AT P + P T A + Q + R − W1 − W T
1 + hAT SA,

M12 = −W2 + W T
1 + P Ad + hAT SAd,

M13 = −W3, M14 = −W4 + W T
1 ,

M22 = −(1 − η)Q + W2 + W T
2 + hAT

d SAd,

M23 = W3, M24 = W4 + W T
2 , M33 = −R,

M34 = W T
3 , M44 = W4 + W T

4 − 1
h S.

Our goal is to extend this result to linear varying
parameters (LPV) systems to guarantee the closed-loop
(12) stability using some appropriate weighting matri-
ces. In order to reduce the conservatism, time-delay de-
pendent conditions in terms of the solutions to Linear
Matrix Inequalities LMI will be developed. The follow-
ing lemma is needed in the sequel.

Lemma 1. If there exist matrices H, G(t) ∈ P and a
symmetric and positive definite matrix F with the ap-
propriate dimensions verifying:

H +

N
∑

i=1

µi

N
∑

j=1

µj(Gi)
T FGj < 0 (14)

then,

H +(Gi)
T FGi < 0, ∀i = 1..n. (15)

Proof. Supposing that there exist matrices H, G(t) ∈ P
and a symmetric and positive definite matrix F with the
appropriate dimensions verifying the condition (14). by
applying the Schur Complement Theorem, this condi-
tion becomes:

N
∑

i=1

µi

(

H Gi

(Gi)
T −F −1

)

< 0.

Then, we apply one again the Schur Complement The-

orem:

N
∑

i=1

µi(H +(Gi)
T FGi) < 0.

The fact that
∑N

i=1 µi is bounded, the last equality im-
plies the condition (15). �

Theorem 2. The unforced system (12) is stable if there
exist a symmetric and positive-definite common matrix
P , common matrices W1, W2, W3, W4 and symmetric
and positive-definite common matrices Q, R and S such
that the following LMI holds:

Ξ =









Ξ11 Ξ12 Ξ13 Ξ14

∗ Ξ22 Ξ23 Ξ24

∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44









< 0 (16)

where for A(σ(t)) ∈ P, ∀i = 1 . . .N :

Ξ11 = AT
i P + P T Ai + Q + R − W1 − W T

1 + hAT
i SAi,

Ξ12 = −W2 + W T
1 + P Ad + hAT

i SAd,

Ξ13 = −W3, Ξ14 = −W4 + W T
1 ,

Ξ22 = −(1 − η)Q + W2 + W T
2 + hAT

d SAd,

Ξ23 = W3, Ξ24 = W4 + W T
2 , Ξ33 = −R,

Ξ34 = W T
3 , Ξ44 = W4 + W T

4 − 1
h S.

Proof. Consider the proof of the Theorem 1 developed
by [35] with the following Lyapunov-Krasovskii func-
tional:

V (x(t)) = V1(x(t))+V2(x(t))+V3(x(t))+V4(x(t))

where

V1(x(t)) = xT (t)Px(t)

V2(x(t)) =
∫ t

t−d(t) xT (s)Qx(s)ds

V3(x(t)) =
∫ t

t−h
xT (s)Rx(s)ds

V4(x(t)) =
∫ 0

−h

∫ t

t+θ
ẋT (s)Sẋ(s)dsdθ

(17)

with P > 0, Q > 0, R > 0 and S > 0. Since the state
matrix parameters are supposed time-varying such that
A(t) =

∑N
i=1 µi(σ(t))Ai, M11 and M12 of the Theorem

1 became:

M11 =
∑N

i=1 µi(σ(t))AT
i P +

∑N
i=1 µi(σ(t))P T Ai + Q + R − W1

−W T
1 + h

∑N
i=1 µi(σ(t))

∑N
j=1 µj(σ(t))AT

i SAj

M12 = −W2 + W T
1 + P Ad + h

∑N
i=1 µi(σ(t))AT

i SAd

Using Lemma 1 and relations given in the proof of
[35], one gets:

M =
∑N

i=1 µi(σ(t))Ξ < 0



were
∑N

i=1 µi(σ(t)) is bounded and implies Ξ < 0. �

5 Study case: second order LPV systems
The stability of the closed loop with time-varying

delay for a given system was proven in the last section.
Since the model free control is sensitive to the presence
of invariant zeros [36], the following class of second or-
der single input single output linear system with time
varying parameters and delay will be considered in the
rest of this paper:

y(2)(t) = −a0(t)y(t) − a1(t)ẏ(t) + αu(t − d(t)),
|ai(t)| < ai ∀i = 0,1

(18)

where y(t) ∈R is the system output, u(t−d(t)) ∈R is the
control input, α is the input gain and ai ∈ R are scalar
time varying unknown parameters that their absolute
value is bounded by ai, ∀i = 0,1 i.e. a0(t) ∈ [−ā0 + ā0]
and a1(t) ∈ [−ā1 + ā1].

By choosing xm(t) = [y(t) ẏ(t)]T as a state space
vector, the closed loop system with time-varying de-
lay composed of the second order system (18) and the
controller/derivative pair (7) can be represented by the
state space form (12) as follows:

{

ẋ(t) = A(σ(t))x(t)+Adx(t−d(t))+Br(t−d(t))
y(t) = Cx(t)

(19)
where the different matrices are defined by (11) with
(8), (9) and:

Am1 =

(

0 1
+ā0 +ā1

)

, Am2 =

(

0 1
+ā0 −ā1

)

Am3 =

(

0 1
−ā0 +ā1

)

, Am4 =

(

0 1
−ā0 −ā1

)

Bm =

(

0
α

)

, Cm =
(

1 0
)

5.1 Tuning Method
The first result brings out the general nature of the

controller by ensuring that if there exist a solution to
the stabilization problem for this class of second order
system with a some non zero āi, then there is a solution
for any systems of this class i.e. any āi. In addition,
this result is constructive since it allows to compute the
controller parameters. These results are formalized in
the following theorem:

Theorem 3. If the closed loop composed of the system

Σa : y(2)(t) = −a0(t)y(t)−a1(t)ẏ(t)+αu(t−dx(t))
(20)

and the controller/derivative pair
{

ẋe(t) = Ao(τx)xe(t) + Bo1
(τx)y(t − dx(t)) + Bo2

(τx)r(t − dx(t))
u(t) = Co(τx)xe(t) + Do1

(τx)y(t − dx(t)) + Do2
(τx)r(t − dx(t))

(21)

where the different matrices are given by (8), is asymp-
totically stable for all continuous and bounded function

ai(.) : R2 7→ [−ai, ai], i ∈ {0, 1},
0 < dx(t) < hx

(22)

Then, there exists a stabilizer controller/derivative for
all system

Σb : z(2)(t) = −b0(t)z(t)−b1(t)ż(t)+βv(t−dz(t)) (23)

with

bi(.) : R2 7→ [−γ2−iai, γ2−iai], i ∈ {0, 1}
β = γ2α

0 < dz(t) < hz

(24)

The new controller/derivative pair of the system Σb

is then deduced from the one of the system Σa as follows:

{

że(t) = Ao(τz)ze(t) + Bo1
(τz)z(t − d(t)) + Bo2

(τz)w(t − d(t))
v(t) = Co(τz)ze(t) + Do1

(τz)z(t − d(t)) + Do2
(τz)w(t − d(t))

(25)

such that

Ao(τz) = γT2Ao(τx)T −1
2

Bo1(τz) = γT2Bo1(τx)
Bo2(τz) = γT2Bo2(τx)

Co(τz) = Co(τx)T −1
2

Do1(τz) = Do1(τx)
Do2(τz) = Do2(τx)

Kz = γnKxT −1
1

w(t) = r(γt)

(26)

with 0 < d(t) < h = max(hx, hz) and

γ = τx/τz

T1 = diag(1, γ)
T2 = diag(1, γ, 1)

(27)

Proof. Supposing that the system closed loop com-
posed of the SISO system given by (20) and the con-
troller/derivative given by (21) is stable. In this case,
the state space representation (12) becomes:

d

dt

(

xm(t)

xe(t)

)

=

(

Am(σ(t)) 0

0 Ao(τx)

)(

xm(t)

xe(t)

)

+

(

BmDo1
(τx)Cm BmCo(τx)

Bo1
(τx)Cm 0

)(

xm(t − dx(t))
xe(t − dx(t))

)

+

(

BmDo2
(τx)

Bo2
(τx)

)

r(t − dx(t))

(28)

where the matrices are described by (8) and (9). Then,



this state space can be written as:
{

d

dt
X(t) = A(σ(t), τx)X(t) + Ad(τx)X(t − dx(t)) + B(τx)r(t − dx(t))

Y (t) = CX(t)

(29)

Consider the following variable change: w(t −
dz(t)) = r(γt − dx(γt)) where 0 < dz(t) < hz, γ ∈ R∗

+

and Z(t) = QX(γt), such that Q = diag(T1, T2), T1 =
diag(1, γ) and T2 = diag(1, γ, 1). In this case, the closed
loop (29) becomes:

d
dt

Z(t) = d
dt

(QX(γt)) = Q d
dt

(X(γt)) = Qγ dX
dt

(γt)

i.e.
d

dt
Z(t) = Qγ(A(σ(γt), τx)X(γt) + Ad(τx)X(γt − dx(γt))

+B(τx)r(γt − dx(γt)))

= QγA(σ(γt), τx)Q−1Z(t) + QγAd(τx)Q−1Z(t − dz(t))

+γQB(τx)w(t − dz(γt))

= γ

(

T1Am(σ(t))T −1
1 0

0 T2Ao(τx)T −1
2

)

Z(t)

+ γ

(

T1(BmDo1
(τx)Cm)T

−1

1
T1BmCo(τx)T

−1

2

T2Bo1
(τx)CmT

−1

1
0

)

Z(t − dz(t))

+γ

(

T1BmDo2
(τx)

T2Bo2
(τx)

)

w(t − dz(t)).

Since the variable change is linear, this latter equa-
tion is asymptotically stable for all continuous and
bounded function described by (22). As a matter of
fact, the system

z(2)(t) = −γ2a0(t)z(t)−γa1(t)ż(t)+γ2αv(t−dz(t)),
|ai(t)| ≤ ai, ∀i ∈ {0, 1}

can be stabilized by the controller/derivative pair (25)
described by the matrices given by (26) with (27). Fi-
nally, by considering the variable change bi = γ2−iai

and β = γ2α, one can assume that this system closed
loop is stable for all continuous and bounded function
described by (24). �

Considering the results of the previous Theorem,
the second result is devoted to propose a simplified
method to compute the controller parameter τ for the
class systems defined by equation (18). The Fig.3
presents the stability area of the closed loop system by
considering the landmark (τ2

xa0, τxa1). This domain has
been computed online by applying the Theorem 2 with
the following parameters:

• a null reference : r(t) = 0;
• Kx = [10−4 2.210−2] i.e. the desired dynamic is

given by: y
(2)
r = −10−4yr −2.210−2ẏr;

• τx = 0.01;
• α̃ = α and then without loss of generality α = 1;
• N = 22.
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Fig. 3. Stability set of the closed loop (19) for τx = 0.01, α = 1,

Kx = [10−4 2.210−2] and different delays hx

According to the values of a0 and a1, we can see in
Fig. 3 that the stability region of the system (19) is
related to the time delay h and more precisely to the
ration between τ and the sampling period. Yet, from
this figure and the results given in [12,13], we note that
this stability domain of the same LPV system with a
time-varying delay is smaller than that of the continuous
case (h → 0).

From this Figure, it is possible to tune the param-
eter τ ensuring the stability of all system of the class
(18). For example, consider the following system:

z(2)(t) = −b0(t)z(t)− b1(t)ż(t)+βv(t−dz(t)) (30)

with b0 ∈ [−200, 200], b1 ∈ [−70, 70] and 0 < dz(t) < hz.

From the Fig.3, one can see that a value of τz =
0.005 places the closed loop in the stable area of hx =
τx/5 = 0.002. This implies from Theorem 3 that the
controller (25) defined by (26) and (27) where γ =
τx/τz = 0.01/0.005 stabilizes the system. It should be
stressed that applying the Theorem 3 changes the ra-
pidity of the desired dynamic (but the shape of the re-
sponse will be the same) which will then be given by

the differential equation: z
(2)
r = −410−4zr − 4.410−2żr

i.e Kz = γ2Kxdiag(1,1/γ). Nevertheless, this theorem
does not predict the tracking quality of the desired dy-
namic.

One can conclude from this example and Fig.3 that
for all second order system with bounded parameters
and described by the differential equation (18), there
exists a stabilizing τ where the corresponding controller
is described in Proposition 5 and its parameter is tuned
via the following proposition:

Proposition 3. For all linear second order SISO sys-
tem (18) with bounded time varying parameters |ai(t)| ≤
a ∀i ∈ {0,1}, there exists a controller defined by (25)
with (26) and (27) stabilizing the sampled data closed
loop (3). This controller is tuned by choosing a value of



τ and h such that

τ2−i ∗a < 10−2 ∀i = 0,1
h = τ/5
K = [10−4/τ2 0.022/τ ]

(31)

Proof. The proof of this proposition follows from the
numerical computation of the stability set of the second
order systems and the use of Theorem 3.

Remark 1. Since the stability is preserved even for low
value of the parameter τ , it is possible to accelerate the
desired dynamic response without affecting the stability.
If the shape of the response is not satisfying, one must
compute the stability area related to this new dynamic
as was the case in the previous example (Fig.3).

To conclude, one can assume that only the system
bounded and the input gain value α are required for
the stability study of the second order class of systems
described by (18) since there exists always a value of τ
ensuring the sampled data closed loop stability.

5.2 Robustness tests

Another important point concerns the approxima-
tion of the parameter α. By applying the stability theo-
rem of the polytopic systems, the Fig. 4 depicts the
set for which the closed loop stability is guaranteed
for α̃/α ∈ {3,1,0.8} where α̂ is an approximation of α.
One can clearly see that when large uncertainty on the
knowledge of the input gain α occurs, the closed loop
stability can be preserved by considering smaller value
of τ .
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Fig. 4. Stability set of the second order system (19) with τ = 0.01
and K = [10−4 2.210−2] for different approximation of the input

gain α and a time-delay h = τ
5

5.3 Example: Closed loop simulation
Consider a second order LPV system defined by the

dynamic (18) such that a0(t) = 20sin(t) and a1(t) =
−40sin(t) such that ā0 = 20 and ā1 = 40 are the system
parameters bounded. By applying the stability Theo-
rem 2 using SeDuMi [37] as solver and YALMIP [38] as
parser in MATLAB, a feasible solution is provided.

A simulation of this system is given to verify the
analysis results in terms of stability and performance.
Fig. 5 shows the regulation results of states y and ẏ.
All the states successfully converge to zero, which means
that the proposed scheme solves the regulation problem
even in the case when the system has unknown parame-
ters and its states are not measurable. The performance
of the proposed controller/derivative pair is shown in
Fig. 6. This control law affects how fast the estimated
states catch up with original states. Finally, the control
input u converges to zero, as shown in Fig. 7.
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6 conclusions

In contrast of observer based controllers, this paper
proposed a dynamic output controller allowing the sta-
bilisation of a class of LPV systems with non-measurable
parameters. This controller is implemented in a pro-
cessor based device such that the sensor data are only
available at sampling instants. Based on our previ-
ous results [12,13] and by considering the discrete-time
dynamics induced by the digital controller as a piece-
wise continuous delay, some stability results are pro-
vided. The usefulness and robustness of the approach
is shown trough some numerical examples via the study
case of the second order SISO systems. Our future work
will deal with extended the class of system (multi-input
multi-output, zero dynamics), guaranteed performances
and noise rejection of the sampled data systems.
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[33] Åström, K., and Wittenmark, B., 1995. Adaptive
Control. Addison-Wesley.

[34] Fridman, E., 1992. “Use of models with aftereffect

in the problem of design of optimal digital control”.
Automation and remote control, 53(10), pp. 1523–
1528.

[35] Boukas, E., 2008. “Free-weighting matrices delay-
dependent stabilization for systems with time-
varying delays”. ICIC Express Letters, 2(2),
pp. 167–173.

[36] Fliess, M., and Join, C., 2013. “Model-free control”.
International Journal of Control, 86(12), pp. 2228–
2252.

[37] Sturm, J. F., 1999. “Using sedumi 1.02, a
matlab toolbox for optimization over symmetric
cones”. Optimization Methods and Software, 11(1-
4), pp. 625–653.

[38] Lofberg, J., 2004. “Yalmip : a toolbox for modeling
and optimization in matlab”. In IEEE International
Symposium on Computer Aided Control Systems
Design, pp. 284–289.


