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Abstract—This paper studies the impacts of low-bit quantization
to wideband signal reconstruction with a sub-Nyquist sampling
scheme Modulated Wideband Converter (MWC). Several real
types of analog-to-digital converters (ADCs) are firstly simulated
to the MWC and their results on wideband signal reconstruction
are compared based on the low-bit criterion of the ADCs. Assess-
ing the wideband reconstruction performances, this study proposes
a trade-off between the oversampling factor, the number of bits
and the type of quantizer, which can achieve the performance of
reconstruction as close as possible to the ideal reconstruction.

Index Terms—Modulated Wideband Converter, spectrum sens-
ing, sub-Nyquist sampling, Σ∆ analog-to-digital converter.

I. INTRODUCTION

Sampling a wideband signal is a challenging task due to
the problems of large bandwidth requirement and the lim-
ited sampling rate of conventional ADCs. In the context of
spectrum sensing where the carrier frequency is unknown, the
whole bandwidth of sensing signal may need to be digitally
converted. As a result, the high sampling rate may exceed
the capabilities of ADC hardware. If the bandwidth of each
sensed signal rises up to several tens of GHz, the Nyquist-
Shannon theorem states that the sampling rate should be at least
twice the signal bandwidth [1], at beyond the capability of any
traditional ADCs. Consequently, some methods to reduce the
sampling rate have been presented in literature. Especially, the
Modulated Wideband Converter (MWC) scheme [2] relying on
Compressed Sensing (CS) theory [3] [4] is under the hypothesis
that the signal to be sensed is sparsely distributed across the
wideband spectrum.

MWC is attractive for practical implementation since it
solves the problem of the high sampling rate requirement by
reducing the input bandwidth of wideband signal and this
bandwidth can be sampled by a conventional ADC at a normal
rate, usually called sub-Nyqusit sampling system. The MWC
consists of a multi-branch of analog devices, each branch
includes a mixer, a lowpass filter and an ADC. Besides, the
MWC must meet two requirements so that the wideband signal
can be reconstructed accurately. First, the wideband input signal
must comprise of sparse sub-channels. Secondly, all analog
devices in the MWC scheme are assumed to be ideal [5].
For example, the MWC output can be reconstructed when it

is obtained from an ideal lowpass filter (flat passband, non-
existence phase shift, transition band and stopband) and high
resolution ADCs without any distortion. In [6], it has been
demonstrated that MWC can be implemented with non-ideal
hardware (mixers, lowpass filters) with proposed calibration
method to the analog and physical distortion or imperfections.
In addition, to implement the analog compressed acquisition
chain of the MWC, the impacts of each non-ideal component
need to be evaluated independently. By assuming the other
components ideally, in [7], it has been demonstrated that MWC
can be implemented with non-ideal and commercial off-the-
shelf SXLP-36+ lowpass filter with little performance loss. This
paper continually focuses on the implementation MWC system
with non-ideal low-bit ADCs.

The benefits of low-bit ADCs are low cost, low power
consumption in case of green communications and simple hard-
ware. Furthermore, the low-bit ADCs have not been thoroughly
investigated in the context of MWC. The main constraint of
a low-bit ADC, however, is the significant quantization error
between input and quantized output. The advantage of a low-
bit memoryless ADC is that it can be deployed in the MWC
easily, and a common way to reduce the quantization error is
to implement oversampling [8]. Nevertheless, in the context of
wideband sampling, the MWC scheme aims to reduce sampling
rate into sub-Nyqusit rate. Thus, we take an alternative approach
by increasing the sub-Nyquist sampling rate by only a few
times. In addition, 1-bit Σ∆ ADC is studied in the MWC
due to its noise shaping capability of the quantization error
at baseband. We then show that the Σ∆ ADC can reduce the
quantization error better than a memoryless ADC applied with
an optimal quantization technique at moderate oversampling
values. The main motivation of this paper is to reproduce a
prototype of a CS scheme based on the MWC with non-ideal
low-bit ADCs for spectrum monitoring applications (cognitive
network, cellular network, Internet-of-Things...). Issued from
our simulation results, a trade-off is proposed between over-
sampling rate and number of bits of an ADC which can be
reasonable for a sub-Nyquist sampling system under the con-
dition of low-bit, low consumption and hardware complexity.

The paper is organized as follows: Section II presents back-
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ground and theory of the MWC. In Section III, the low-
bit memoryless ADC is introduced and simulated followed
by a presentation of the oversampling process. Section IV
explains the Σ∆ ADC and section V presents the performances
of reconstruction and theoretical Signal-to-Quantization-Noise
Ratio (SNRQ) between different low-bit ADCs. The conclusion
is given in Section VI.

II. MODULATED WIDEBAND CONVERTER

The sub-Nyquist sampling MWC scheme is illustrated in
Figure 1. On each channel in time domain, the input signal x(t)
is firstly split into M replicas, corresponding to M channels of
the MWC. Then each replica is multiplied by a periodic mixing
function pi(t), with 1 ≤ i ≤ M . The result xi(t) is continually
filtered and converted to digital signal yi[n].

Fig. 1: The block diagram of the Modulated Wideband Converter
(MWC).

The principle of the sub-Nyquist sampling MWC scheme
is to shift all the subbands of the wideband input signal into
baseband. This can help reduce the sampling rate since all
useful information of the input signal at baseband will be kept
by the lowpass filter. To perform this assumption, the input
signal must follow the condition of sparsity [5], [9].

Assuming that the mixing function pi(t) is periodic with
Tp = 1/Fp. On each channel of the MWC, the input signal is
multiplied by a Tp periodic sequence. Then, sampling rate of
the ADC is denoted Fs = 1/Ts and for convenience, the cutoff
frequency of the lowpass filter is chosen in [−Fs

2 ; Fs

2 ]. Hence,
the system in frequency domain is:

Xi(f) = (Pi ∗X)(f), (1)

where Pi(f), X(f) are Fourier transform of mixing function
pi(t) and input signal x(t), respectively. After the lowpass filter,
the filtered signal Yi(f) has the spectrum:

Yi(f) = H(f)Xi(f), (2)

where H(f) is the lowpass filter transfer function. Lastly, the
MWC output at Fs sampling rate is:

Ỹi(f) = Fs

+∞∑
k=−∞

Yi(f − kFs), (3)

where Ỹi(f) denotes the spectrum of the sampled signal yi[n]
in frequency domain. The system equation can be rewritten by
combining equations (1), (2) and (3):

Ỹi(f) = Fs

+∞∑
k=−∞

H(f − kFs)(Pi ∗Xi)(f − kFs). (4)

Therefore, with Pi(f) =
∑+∞

l=−∞ pilδ(f − lFp), pil =

Fp

∫ Tp/2

−Tp/2
pi(t)e

−j2πlFptdt is simply the Fourier coefficient
decomposed from pi(t). Equation (4) can be derived as:

Ỹi(f) =

+∞∑
l=−∞

pilFs

+∞∑
k=−∞

H(f−kFs)X(f− lFp−kFs). (5)

Let us denote Zl(f) = H(f)X(f − lFp) as the signal
X(f) shifted by lFp, and Zl(f) keeps only a bandwidth Fs at
baseband after lowpass filter H(f). Equation (5) then becomes:

Ỹi(f) =
+∞∑

l=−∞

pilFs

+∞∑
k=−∞

Zl(f − kFs)

=

+∞∑
l=−∞

pilZ̃l(f).

(6)

The expression Fs

∑+∞
k=−∞ Zl(f−kFs) is the Fourier trans-

form of sampled signal zl[n] at sampling frequency Fs. The
mixing sequence is periodic, thus, the summation from infinity
is then bounded in [−L0, L0] with −L0 ≤ l ≤ L0. The system
equation (6) in time domain is yi[n] =

∑L0

l=−L0
pilzl[n]. In

[9], L is defined as a ratio between the Fnyq and Fp, such as
L = Fnyq/Fp and L0 = L−1

2 . Hence, L is the size of the
mixing sequences. The notations yi[n] and zl[n] are inverse
Fourier transform of Ỹi(f) and Zl(f) respectively. Finally, the
whole system can be simplified in matrix form as:

y = Pz, (7)

with (P)il = pil is a M × L matrix, (y)i = yi[n] is a
M × 1 vector and (z)l = zl[n] is a L × 1 vector. From
these assumptions, the equivalent model to the MWC [5], [9]
is shown in Figure 2.

Fig. 2: Equivalent scheme of MWC.

In practice, the series of mixers, lowpass filters and ADCs
deployed for all M channels are high-cost, which makes
the MWC scheme to be impractical for high M . Hence, by
introducing a collapsing factor q = Fs/Fp [9], this expression



can be understood as dividing the input signal sampled at
Fs into q signals sampled at Fp. Theoretically, the output of
the MWC can be considered as sampled at Fp with q × M
channels at the input. The following section introduces the
uniform memoryless low-bit ADCs with an optimal quantizing
method and the oversampling technique. These low-bit ADCs
are deployed in the MWC by simulation. The performances of
correct reconstruction and false alarm are then evaluated.

III. LOW-BIT MEMORYLESS ADC AND OVERSAMPLING
METHOD

A. Low-bit memoryless ADC

The signal after lowpass filtering of the MWC is then passed
through an ADC. There are two steps in this stage, sampling
and quantizing. The sampling process is to convert the analog
signal to discrete samples and the quantizing process is to
map these samples into the predetermined voltage levels of
the device, which correspond to the output digital codes of
the ADC. Increasing number of bits in ADC is to reduce the
quantization error but it leads to high-cost and more complex
hardware. Thus, this paper focuses on low-bit quantizer and
studies an optimal quantizing technique which can achieve high
performance on the MWC system.

The easiest way to quantize an analog signal is peak-to-
peak quantization. However, an optimal quantization scheme
must take into account input signal distribution [10]. Let us
assume that the signal after lowpass filter of the MWC has
Gaussian distribution, the optimal Gaussian source quantizing
technique [11] is applied for a common mid-rise quantizer. The
impact of this real ADC into outputs of the MWC system is
evaluated based on performances of correct reconstruction rate
Pc = %(Br

∩
Bd)

%Br
and false alarm rate Pf = %((Bd\Br)∩B̄r)

1−%Br
,

with Br the real subbands from input signal and Bd the detected
subbands. The method on estimating these performances was
explained in [7].

Fig. 3: Correct reconstruction and false alarm rates in function of
SNRs (dB) obtained by the MWC with 1 to 4 bits common mid-rise
quantizers applying optimal Gaussian source quantizing technique.

The memoryless 1 to 4-bit mid-rise ADCs applying an opti-
mal Gaussian source quantizing technique are firstly simulated
in the MWC scheme (in Figure 1) with assumptions that the
mixers and the lowpass filters are ideal. The performances
of these real ADCs based on correct reconstruction and false

alarm are compared to the ideal ADC as in Figure 3. The
performances of correct reconstruction and false alarm are in
function of SNR changing from 0 to 30 dB. In the simulation,
the parameters of the MWC are chosen as the number of
MWC channels M = 4, the collapsing factor q = 7, the
ratio between mixing frequency and Nyquist frequency L = 96,
and the Nyquist frequency Fnyq = 1 GHz. Assuming that in
[0, Fnyq/2], there are six subbands which can be reconstructed
Nt = 6. The bandwidth of each subband is B = 7 MHz with
identical power levels.

It can be observed in Figure 3 that high-bit ADCs need to be
deployed (3 and 4-bit) to approach the ideal quantization. The
main problem of low-bit quantization is the quantization error.
To reduce the quantization error, the oversampling technique
will be presented to the MWC in the following section.

B. Oversampling

The quantization error is produced during the quantized
process, and usually called quantization noise. The quantized
sample is given by:

ŷi[n] = yi[n] + ei[n], (8)

with ei is the quantization noise. Indeed, when ŷi is chosen at
mid-point of quantization regions, the random additive noise ei
has amplitude distribution in −∆/2 ≤ ei ≤ ∆/2 (with ∆ is
quantization interval). In the MWC system, the input signal is
filtered at Fc = Fs/2 and then sampled at Fs with the root mean
square of quantization noise is E(f) = ∆√

12
[12]. Thus, the

distribution of quantization noise is uniform in Fs bandwidth.
The quantization noise spectral density in Fs bandwidth is:

Ne(f) =

∣∣E(f)2
∣∣

Fs
=

∆2

12Fs
. (9)

At this time, the MWC filtered signal is bounded in [−Fc, Fc]
at baseband. Finally, this baseband quantization noise spectral
density is:

SB =

∫ Fc

−Fc

Ne(f)df =
∆2

12

(
2Fc

Fs

)
=

∆2

12
. (10)

Let us denote m is the oversampling factor with F ′
s = mFs,

when F ′
s is a sampling frequency greater than Fs, m times.

Hence,

SBm =
∆2

12

(
2Fc

F ′
s

)
=

∆2

12

(
2Fc

mFs

)
=

SB

m
. (11)

From (11), it can be seen that oversampling helps reducing
the noise power spectral density. Thus, the lowpass filter and
downsampling process would reduce the filtered noise power.
The hypothesis of the MWC system is to sample under the
Nyquist rate, Fs ≪ Fnyq . Hence, the moderate value of m
needs to be chosen carefully to meet this condition of sub-
Nyquist sampling, mFs ≪ Fnyq . Figure 4 shows a conventional
MWC system and its oversampling counterpart. The decimator
in oversampling scheme plays a role as a digital filter, to
suppress the samples outside filtered bandwidth Fc.



Overall, the memoryless quantizer is easy to implement into
the MWC and it can improve 3 dB in Signal-to-Quantization-
Noise Ratio (SNRQ) per doubling sampling rate [8]. Neverthe-
less, due to the hypothesis of sub-Nyquist sampling rate, the
following section presents the Σ∆ ADC which can shape quan-
tization noise at baseband significantly lower than a memoryless
ADC (such as mid-rise ADC) with a moderate oversampling
value.

(a) MWC conventional sampling scheme.

(b) MWC oversampling scheme.

Fig. 4: MWC conventional sampling and oversampling schemes.

IV. Σ∆ ANALOG-TO-DIGITAL CONVERTER

The 1-bit Σ∆ ADC is a low power consumption and simple
hardware [13]. The Σ∆ ADC is a combination of noise shaping,
oversampling and decimation stages as shown in Figure 5. The
functions of noise shaping and oversampling are performed
by the Σ∆ modulator. The first order of Σ∆ modulator is
illustrated in Figure 6. The 1-bit digital output of the Σ∆
modulator is then passed through the digital decimation filter.
The output of decimation filter provides a digital representation
of the quantized input signal at sampling rate Fs.

Fig. 5: Σ∆ ADC block diagram.

The Σ∆ modulator includes an analog difference node, an
integrator, a 1-bit quantizer and a 1-bit digital-to-analog con-
verter (DAC) in the feedback loop. The signal which is applied
to the integrator is the difference between the analog input yi
and the predicted analog input from the quantized output ŷi
by the DAC. This difference is considered as the quantization
error. This quantization error is accumulated by the integrator
and the quantized by a 1-bit quantizer. The quantization error
of 1-bit quantizer is large, however, the decimation filter can
provide an accurate output by averaging the sampled input over
several sample periods [14].

In z-domain, let us denote the transfer function of the
integrator which is I(z), the Σ∆ modulator equation in z-
domain gives [14]:

Ỹi(z) = Ei(z) + I(z)(Yi(z)− z−1Ỹi(z))

= Ei(z)
1

1 + I(z)z−1
+ Yi(z)

I(z)

1 + I(z)z−1
,

(12)

Fig. 6: First-order Σ∆ modulator.

the ideal integrator is considered as I(z) = 1
1−z1 , the output of

Σ∆ modulator in (12) can be simplified:

Ỹi(z) = Y (z) + (1− z−1)E(z). (13)

In time domain, the output of the Σ∆ modulator is ŷiΣ∆[n] =
yi[n] + ei[n] − ei[n − 1] due to the integrator (accumulating
quantization error from the last stage). Let us denote that
neΣ∆[n] = ei[n] − ei[n − 1] is the noise at output of Σ∆
modulator. Thus, in frequency domain neΣ∆ becomes:

NeΣ∆(f) = E(f)− E(f)e−jωT ′
s

= 2E(f) sin(
ωT ′

s

2
)e−j(ωT ′

s−π)/2,
(14)

where E(f) is ei[n] in frequency domain and F ′
s = 1/T ′

s =
mFs is oversampling frequency of the MWC. Hence, the
noise spectral density in F ′

s bandwidth (oversampling of Fs)
is NeΣ∆ = |NeΣ∆(f)|2

F ′
s

. Assuming that the Σ∆ has the
same quantization level ∆ as mid-rise quantizer in previous
section, E(f) = ∆/

√
12 from equation (9), then NeΣ∆ =

4∆2(sin(πf
F ′
s
))2

12F ′
s

. The baseband quantization noise spectral density
is:

SBΣ∆ =

∫ Fc

−Fc

NeΣ∆(f)df ≈ π2

3

SB

m3
, (15)

with SB is the baseband quantization noise spectral density
with normal sampling rate Fs as in equation (10). It is easy
to see from equation (15) that the quantization noise in Σ∆
quantizer is reduced much more than these types of memoryless
quantizers as in equation (5) when m is high. Indeed, [8]
has shown that by doubling the sampling frequency Fs, the
quantization noise will decrease by 3(2m′ + 1) dB in band of
interest, with m′ is doubling factor.

V. SIMULATION RESULTS

In the MWC, the output of lowpass filter is firstly sampled
and then quantized. Then, the SNRQ is computed by comparing
the power of the quantization input to the power of the
quantization noise:

SNRQ = 10 log10

(
Ỹ 2
i (f)

E2(f)

)
, (16)



where E2(f) = ∆2

12 and ∆ = Xm

2n with Xm is the quantization
range and n is number of bits for a memoryless uniform
quantizer. Hence, equation (16) becomes:

SNRQ = 10 log10

(
12Ỹ 2

i (f)
X2

m

22n

)

= n20 log10 2 + 10 log10 12 + 20 log10

(
Ỹi(f)

Xm

)

≈ n6.02 + 10.79 + 20 log10

(
Ỹi(f)

Xm

)
(dB).

(17)

It is easy to see that for the peak-to-peak uniform quantizer,
increasing 1 bit can improve 6 dB in SNRQ. Then, for m times
oversampling, the SNRQm can improve 10 log10 m (dB). In
case of Σ∆ quantizer, the SNRQΣ∆ will be:

SNRQΣ∆ = 10 log10

(
Ỹ 2
i (f)

∆2

12m3 × π2

3

)
= 30 log10 m+ n20 log10 2 + 10 log10 12

+ 10 log10 3− 20 log10 π + 20 log10

(
Ỹi(f)

Xm

)
(dB).

(18)

Hence, when m = 2, the Σ∆ quantizer can improve
30 log10 m = 9 dB while the memoryless peak-to-peak quan-
tizer can improve only 10 log10 m = 3 dB in the SNRQ. In
case of optimal quantizing technique for Gaussian source, let
us assume that 1-bit quantizer is used, the quantization level will
be 1.59 [11], then the quantization range is Xm = 2× 1.59 =
3.18. Consequently, the quantization noise spectrum will be
E2

G(f) =
∆2

12 = 3.182

12×2n . Hence:

SNRQG = 10 log10

(
Ỹ 2
i (f)
3.182

12m×22n

)
= 10 log10 12− 20 log10 3.18 + 10 log10 m

+ n20 log10 2 + 20 log10 (Ỹi(f)) (dB).

(19)

In practice, the quantization range in Σ∆ quantizer is usually
set at Xm = 4, it corresponds to the input voltage of the
device 2V. At oversampling factor m = 2, number of bits
n = 1, the SNRQΣ∆ = 8.6 + 20 log10 (Ỹi) (dB) while
SNRQG = 9.8 + 20 log10 (Ỹi) (dB). It can be seen that at
double sampling rate (m = 2), the optimal Gaussian quantizing
technique can improve the SNRQ better than the Σ∆ quantizer.
In case m = 4, however, the Σ∆ quantizer can perform
better than the optimal Gaussian quantizer, since SNRQΣ∆ =
17.7 + 20 log10 (Ỹi) (dB) and SNRQG = 12.8 + 20 log10 (Ỹi)
(dB) at m = 4 and n = 1. Figure 7 shows the performances
of correct reconstruction and false alarm with the same MWC
parameters as in Figure 3.

Figure 7 verified that the improvement in SNRQ of Σ∆ and
Gaussian source mid-rise quantizers are proved by calculating

Fig. 7: Correct reconstruction and false alarm rates in function of
SNRs (dB) obtained by the MWC with oversampling factor 2 to 4,
1-bit Σ∆ and Gaussian source mid-rise quantizers.

in equation (18) and (19). It should be noted that the SNR
in these figures is different to SNRQ since SNR is the ratio
between wideband input signal and the noise in the communi-
cations environment while SNRQ is the ratio between filtered
signal and the quantization noise, which is produced during the
quantization process. Moreover, Figure 8 shows an example of
spectrum reconstructions at 20 dB SNR with the ideal ADC and
1-bit Σ∆ ADC versus 1-bit Gaussian source mid-rise ADC at
oversampling factors changing from 2 to 4. It can be observed
that at m = 2, although the locations of input spectrum are
reconstructed correctly, there are more reconstructed errors in
spectrum reconstructions than at m = 4.

Fig. 8: Example of reconstructed spectra (at 20 dB SNR) with ideal
ADC and 1-bit Σ∆ ADC versus 1-bit Gaussian source mid-rise ADC
at oversampling m = 2 and m = 4.

In case 2-bit quantizers, Figure 9 illustrates the performances
obtained by the MWC with 2-bit Σ∆ and Gaussian source mid-
rise quantizers and oversampling factors are changed from 2 to



Fig. 9: Correct reconstruction and false alarm rates in function of
SNRs (dB) obtained by the MWC with oversampling factor 2 to 4,
2-bit Σ∆ and Gaussian source mid-rise quantizers.

4.
From the Figures 7 and 9, with oversampling factor m = 2,

the Gaussian source quantizer can perform better than the Σ∆
quantizer even in cases 1-bit and 2-bit. At m = 4, however, the
Σ∆ quantizer can have better performance because equation
(15) has shown that the bigger of m, the better performance
can be archived in Σ∆ quantizer. The simulations in Figures
7 and 9 have verified the theoretical calculation of the SNRQ

above. From these results, they will lead to the trade-off that
at 1-bit quantizers, the Σ∆ quantizer with oversampling factor
m = 4 can approach the performance of the ideal quantizer as
in Figure 7, because with four times oversampling, the sampling
rate F ′

s is still under the Nyquist sampling rate Fnyq (F ′
s =

4Fs ≪ Fnyq), while increasing one bit, the complexity and
power consumption of the hardware will increase also [13].

Overall, the simulations in previous section show that a 4-
bit common mid-rise ADC applying optimal Gaussian source
quantizing technique (mid-rise, Gaussian, n = 4, m = 1)
can provide the performance as well as the ideal ADC. Al-
ternatively, 1-bit Σ∆ ADC at four times oversampling (Σ∆,
n = 1, m = 4) can perform nearly the same the ideal ADC
performance. While at the same oversampling factor, a common
ADC applying optimal Gaussian source quantizing technique
needs 2 bits to approach the same ideal ADC performance (mid-
rise, Gaussian, n = 2, m = 4).

VI. CONCLUSION

To conclude, this subject is attractive in green communica-
tions because low-bit ADCs into the MWC under the hypothesis

of CS have low power consumption compared to traditional
ADCs (16-bit resolution [5]). By the simulation results, a low-
bit non-ideal ADC is studied and implemented to the MWC
system which can provide an output as close as the ideal one.
Then, a trade-off between oversampling factor, number of bits
and type of quantizers has been proposed (Σ∆: n = 1, m = 4
or mid-rise + Gaussian: n = 2, m = 2). In the future, a
real ADC which exists in the market will be integrated and
evaluated. Besides, the power of each subband will be changed
to examine the impacts of multi-spectrum input signal and real
ADC in spectrum reconstruction rates in the context of wide
spectrum sensing.
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