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ABSTRACT
This paper presents the results of a research project aiming to optimise the schedul-
ing of activities within a research laboratory of the ‘Commissariat à l’Energie Atom-
ique et aux Energies Alternatives (CEA)’. To tackle this problem, we decompose
every activity into a set of elementary tasks to apply standard scheduling methods.
We model the problem as an extended version of the Multi-Skill Project Scheduling
Problem (MSPSP). As a first approach, we propose a Multi-Skill Project Scheduling
Problem with penalty for preemption, along with its mixed-integer/linear program-
ming (MILP) formulation, where the preemption is allowed applying a penalty every
time an activity is interrupted. However, the previous approach does not take into
account all safety constraints at the facility, and a more accurate variant of the
problem is needed. We propose then to integrate the concept of partial preemption
to the MSPSP. This concept, that has not been yet studied in the scientific litera-
ture, implies that only a subset of resources is released during preemption periods.
The resulting MSPSP with partial preemption (MSPSP-PP) is modelled using two
methodologies: MILP and constraint programming. Regarding the industrial need
of having good solutions in a short time, we also presented a greedy algorithm for
the MSPSP-PP.
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1. Introduction

The hot lab LECA-STAR is a nuclear research facility dedicated to R&D on irradiated
fuels. It plays an essential role in the research projects of the Alternative Energies and
Atomic Energy Commission or CEA (in French: Commissariat à l’Energie Atomique et
aux Energies alternatives), since it ensures the execution of most of the post-irradiation
experiences over nuclear fuel. Given the characteristics of the activities carried out at
the LECA-STAR, an improvement on the scheduling process could be beneficial for
ensuring the best performance of the facility.

Scheduling activities within a nuclear facility is a complex process because of the
many operational and regulatory constraints to be taken into account in the nuclear
field. For example, activities require for their execution the allocation of well-trained
staff having particular skills and authorisations that not all members of the staff may
have. This makes more complex the choice of the staff members that can execute
each activity. The scheduling process becomes even harder when we talk about nu-
clear research facilities, since we must schedule activities that most of the time are
not standardised. An improvement of the scheduling process of such facilities is a
paramount issue.

A literature review allows identifying some applications of scheduling models within
a nuclear environment, all of them for broad scheduling horizons. Chen et al. (2016),
for example, proposed a heuristic method to solve the nuclear power plant construc-
tion scheduling problem, that integrates building construction scheduling and reactor
installation scheduling. Petersen (2016) presents various methods aiming to schedule
the removal of spent nuclear fuel from reactor sites in the USA. His objective was
to reduce the amount of time the shutdown reactors keep the spent fuel on-site, and
thus reduce the total system costs for the federal government. In France, Electricité
de France (EDF), the largest European producer of electricity, has used combinatorial
optimisation techniques to schedule outages and maintenance of nuclear power plants
(Dupin and Talbi 2016; Jost and Savourey 2013).

The activities carried out at the LECA-STAR are very close to a classical R&D
project. Scheduling R&D projects is a complex process. This complexity lies mainly in
the fact that the order and type of activities to be carried out during the project can
vary greatly depending on the results obtained in the early stages. To handle the R&D
project scheduling problem, Reyck and Leus (2008) have used different techniques to
include uncertainties in the scheduling models such as robust optimisation (Hassan-
zadeh et al. 2014; Khemakhem and Chtourou 2013) or fuzzy optimisation (Gavareshki
2004; Norouzi et al. 2015; Pérez et al. 2018). In the same way that for nuclear-related
scheduling activities, most of the literature of R&D project scheduling deals with broad
scheduling horizons.

Working with a relatively short scheduling horizon, which is the case in this ar-
ticle (about a week), may reduce the subjectivity of the activities to be scheduled
in a research project, thus allowing the use of an elementary activity approach, as
proposed by Mancel (2004) for the scheduling of research activities for the Mars Net-
lander project. In her approach, each experiment consists of a series of basic tasks that
are well defined (known duration, resource requirement, etc.). This elementary task
approach allows us to use standard scheduling methods to schedule the activities of
the LECA-STAR research laboratory involving a short scheduling horizon. Another
pragmatic reason for discarding uncertain approaches is that the required data to de-
scribe activity uncertainties is not available. After analysing the characteristics of the
activities carried out in the laboratory, we identify in this paper that the problem at
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hand can be modelled as an extended version of an existing scheduling problem from
the literature: the Multi-Skill Project Scheduling Problem (MSPSP) (Néron 2002),
and, more precisely by two variants : a MSPSP with penalty for preemption and a
MSPSP with partial preemption.

The contribution of the paper compared to previous work is as follows. We explain
in this paper with satefety considerations why the second variant is a better model
for the industrial case study. As the weekly scheduling problem involves about 100 ac-
tivities, which in the scheduling literature is generally considered as moderately large,
exact MILP and/or CP-based approaches are worth investigating. In previous work, a
mixed-integer linear programming (MILP) formulation was proposed for the MSPSP
with penalty for preemption in (Polo-Mej́ıa et al. 2017). A MILP and a constraint pro-
gramming (CP) formulation were proposed in (Polo-Mej́ıa et al. 2018) for the MSPSP
with partial preemption. In both cases, the non trivial industrial requirement that
the same technicians must be present during the whole execution for non-preemptive
activities was ignored. In this paper, we modify the MILP model for the MSPSP with
penalty for preemption, presented in (Polo-Mej́ıa et al. 2017), to incorporate this con-
straint. We also present new MILP and constraint programming (CP) formulations for
the Multi-Skill Project Scheduling Problem with partial preemption that outperform
the previous models when this constraint is considered. This allows us to solve exactly
instances with larger sizes (30 activities vs 15 activities in (Polo-Mej́ıa et al. 2018)).
Additionally, to comply with the industrial need of fast computation times for larger
instances, we describe a greedy algorithm for the MSPSP with partial preemption
that also improves the heuristic previously proposed in (Polo-Mej́ıa et al. 2019)) by
incorporating priority rule based on the relaxation of the MILP models of the two
variants.

The remainder of this paper is structured as follows: In the next section, we de-
scribe some important aspects of how the research facility works and that we must
take into consideration during the modelling process. After this description, we present
in Section 3 the first model we propose to represent the scheduling process of the labo-
ratory, the MSPSP with penalty for preemption, and the associated MILP formulation.
In Section 4, we present a more accurate variant, called Multi-Skill Project Scheduling
Problem with partial preemption (MSPSP-PP). This variant uses the concept of par-
tial preemption, which implies that only a subset of resources is released during the
preemption periods. In the same section, we present the MILP and CP formulations
for the proposed problem, as well as the greedy heuristic. Experimental results for the
MSPSP-PP are presented in Section 5. Finally, we conclude in Section 6.

2. Industrial problem description

Every week more than 100 activities are carried out at LECA-STAR, including main-
tenance (preventive or curative), experimental activities, nuclear transport and regula-
tory controls. The laboratory runs its operations continuously from Monday morning
to Friday night (108 hours). However, not all activities can be scheduled at any mo-
ment due to the absence (known in advance) of some resources and staff during specific
periods. Due to this ‘calendarisation’, we can not guarantee the continuous execution
of activities with a duration larger than the work shifts. Additionally, sometimes we
must preempt (stop an activity in process to continue it later) non-critical activities
(such as certain experimental activities) to give priority to more critical activities
(such as nuclear transports that have stringent constraints for scheduling). Allowing
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the preemption is then necessary for modelling our problem. A preempted activity
can be resumed later by a set of resources different from the one used to start it.
On the other hand, there is a subset of particular activities (set N of non-preemptive
activities) that must be executed without interruption due to safety and operational
constraints.

Activities carried out at LECA-STAR require the allocation of technicians (staffs)
with particular skills and authorisations to be executed. In other words, not all techni-
cians can execute all activities. Thus, activities are defined by their need for resources
(equipment, machines, building) and their need for skills. Each technician has a spe-
cific set of skills it masters; we assume this mastering is done at the same level for
each skill. His periods of presences/absences (calendarisation) are defined in advance
and are not subject to change in this study. Technicians can be allocated to only one
activity at a time, but they can execute several skills per activity at the same time.
For example, the same technician can be responsible for recording the movement of
nuclear material in the database (not everyone can do it), and at the same time, he
performs a cut of the sample. However, for operational reasons, we must guarantee the
allocation of a minimal number of technicians for an activity. For instance, activities in
contaminated or isolated zones require at least two members of staff for surveillance.

The presence of time windows is also important in the nuclear facility. Nuclear
regulation, for example, requires to carry out a series of periodic tests to ensure the
proper functioning of the machines. These tests must be scheduled and executed before
a deadline. Additionally, some of the activities are carried out in partnership with other
laboratories, and they may be subject to receipt of a sample at a fixed contractual date,
and the activity cannot start before such date. In this case, we say that the activity
is subject to a release date. Sometimes an experimental or maintenance activity may
require a set of setup activities. In this case, a precedence relationship exists between
these activities (e.g. activity i cannot start before activity l is completed).

The scheduling of the activities for the following week must be constructed and
validated during a meeting between the heads of research, heads of maintenance, and
engineers responsible for activities that take place at the end of the week. Although
the planners prepare an interim scheduling before this meeting, it is common that
changes must be made during the meeting due to new information or the status of
the administrative progress of the documentation necessary to carry out an activity.
It is then crucial to be able to have a new feasible schedule within a few minutes.
Hence, even if the moderate problem size allow to consider the usage of exact methods
such as the MILP and CP based methods presented in this paper, heuristics are also
a good alternative to exploit the rigorousness of combinatorial optimisation models
while obtaining good quality (not necessarily optimal) schedules in a short time.

3. MSPSP with penalty for preemption

The characteristics of the scheduling process in the nuclear laboratory, where we must
allocate a group of technicians mastering a specific set of skills to execute an activity,
led us to conclude that the facility scheduling problem should be modelled as an
extension of the Multi-Skill Project Scheduling Problem (MSPSP). This problem has
been successfully used in various fields where skill requirements are critical for project
development, such as R&D (Certa et al. 2009) and IT product development (Chen
et al. 2017).

The MSPSP, presented for the first time by Néron (2002), is an extension of the
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Figure 1. Characteristics of the Multi-Skill Project Scheduling Problem (MSPSP).

Resource-Constrained Project Scheduling Problem (RCPSP) (Artigues 2008), where
resources are characterised by the skills they master, and tasks require a certain
amount of resources with a specific skill. The objective is to find a feasible sched-
ule minimising the project makespan while satisfying the precedence relationships and
the resource constraints: a resource cannot execute a skill it does not master, cannot
be assigned to more than one skill requirement at a given time, and must be assigned
to the corresponding activity during its whole processing time (Bellenguez-Morineau
2008). The characteristics of the basic version of the problem are presented in Figure 1.
Although the classic version of the MSPSP is very powerful, being able to model a large
number of scheduling problems, we must make some modifications over the baseline
version to get a most accurate representation of our industrial scheduling problem.

The most significant change is related to the possibility of interrupting an activ-
ity once it has started. The non-preemption constraints (activities execution must be
without interruption) is one of the main characteristics of the MSPSP (Néron 2002).
In our study, it is necessary to allow the preemption of a set of activities, while still
forbidding this preemption for the remaining activities. Nuclear regulation requires
that, for some critical activities, the workspace must be put in a safe configuration
whenever an activity is interrupted, which means a loss of time and a decrease of the
productivity. We must then try to limit the number of times these activities are pre-
empted. Firstly, a suitable approach is to use an MSPSP with penalty for preemption
where we apply a penalty (Mi) every time an activity i, for which we want to limit
the preemption, is preempted. This penalty is then minimised in the objective func-
tion. With this in mind, we can classify the activities into three sets: non-preemptive
activities (N), preemptive activities (P ) and preemptive activities with penalty (W ).

The second set of changes is related to the characteristics of the resources we model.
The MSPSP, as defined by Néron (2002), works only with disjunctive resources, which
means they have a unitary capacity. In our industrial variant, we must work with both
disjunctive multi-skilled resources (technicians) and cumulative (i.e. they can handle
more than one activity at a time) mono-skilled resources (compound machines and
buildings). The technicians can execute several skills per activity at the same time.
However, we must ensure a minimal number of technicians to comply with safety
and operational constraints. Additionally, since some activities have a duration larger
than technicians work shifts, the technicians can partially execute the activities, except
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for non-preemptive activities, i ∈ N , which duration is smaller than work shifts and
cannot be interrupted. Finally, basic formulations of the RCPSP and the MSPSP
assume that resources are available in constant amounts during the whole planning
horizon (Klein 2000). Since representing the absences of technicians over time is crucial
in our problem, we are heading towards a modelling including time-varying resource
capacity.

Traditional MSPSP does not take into account time windows for scheduling the
activities. As stated in Section 2, some of the activities within the nuclear facility
may be subject to time windows. These activities must be scheduled after a fixed
release date (ri) and/or before a deadline (dli). All other characteristics are similar to
classical MSPSP. Now defined the characteristics of the problem, we can describe its
mathematical formulation.

3.1. Mixed-Integer/Linear Programming (MILP)

Various MILP formulations, continuous and discrete-time based, have been proposed in
the literature for the MSPSP. For the continuous-time based models, most of the time,
authors have used precedence-based variables, as in (Correia et al. 2012) with addi-
tional inequalities aiming to enhance the model. A precedence-based non-linear model
for the MSPSP is presented by Kazemipoor et al. (2013). The authors show later how
the model can be linearised through a series of variable conversions. A MILP formula-
tion, having similarities with the model proposed by Correia et al. (2012), was priorly
proposed by Li and Womer (2009) for the MSPSP with minimal and maximal time
lags. Discrete-time based formulations have been proposed by Bellenguez-Morineau
(2006), Montoya et al. (2014) (Correia and Saldanha-da Gama (2015) proposed minor
corrections to this model) and Almeida et al. (2019), all of them using binary time-
indexed step variables. For a given activity i, the binary step variables Zi,t with t lower
than the starting time of the activity are all equal to 0, whereas the variables with t
equal to or greater than the starting time are all equal to 1.

MILP formulations for the preemptive MSPSP are very scant in the scientific liter-
ature. Moreover, the few ones we could find use time-indexed on/off variables. On/off
variables take the value 1 for all the periods t where the activity is in execution. Magh-
soudlou et al. (2018) proposed a MILP formulation for the preemptive MSPSP with
due dates. They used an on/off variable Zi,k,t, taking the value 1 if part k of activity
i is executed at time t, together with another on/off variable (Xi,m,k,t) indicating the
periods t at which each technician m works over each part k of activity i. An allocation
binary variable (Yi,m,k,s) is also used to indicate the skill s that every technician m
performs over each part k of each activity i. Continuous variables are used to deter-
mine the earliness, tardiness and completion time of each activity. Dhib et al. (2015)
also formulated a MILP for a preemptive variant of the MSPSP where all parts of an
activity, each part corresponding to one skill requirement, must start simultaneously
but can be preempted at different times. The authors used an on/off variable Xi,k,l,t

taking the value 1 if resource k performs the skill l for activity i during time t. Con-
tinuous auxiliary variables are used to calculate the starting and completion times of
activities and the completion time of each skill for every activity. The on/off formula-
tion has been identified as the most accurate for modelling the time-varying resource
availability and activity preemption. Two different MILP models for the MSPSP with
partial preemption are evaluated in Polo-Mej́ıa et al. (2017); the one giving the best
results is presented below:
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Notation for parameters. All parameters used in the MILP model are shown in
Table 1.

Variables. Variables used to model the MSPSP with penalty for preemption are
given in Table 2.

Objective function. To assure the normal progress of research projects, the set of
weekly activities must be executed in the shortest possible time. This can be translated
as the minimisation of the project makespan:

min(Cmax)

In our case, we must add to this function a term minimising the penalties (Mi) due
to the preemption of critical activities (those activities for which we want to limit the
preemption). Our problem can then be modelled as:

min

(
Cmax +

∑
i∈W

(
Mi ∗

((
dli∑
t=ri

Xi,t

)
− 1

)))
(1)

s.t. ∑
i∈I

(Yi,t ∗ bri,k) ≤ DRk,t ∀t ∈ H,∀k ∈ K (2)∑
i∈I

Oj,i,t ≤ DOj,t ∀j ∈ J, ∀t ∈ H (3)

Yi,t ∗ bsi,s ≤
∑
j∈J

(Oj,i,t ∗ COj,s) ∀i ∈ I, ∀t ∈ H,∀s ∈ S (4)

∑
j∈J

Oj,i,t ≥ Yi,t ∗ nti ∀t ∈ H,∀i ∈ I (5)

min(dli,T )∑
t=max(1,ri)

Yi,t ≥ Di ∀i ∈ I (6)

Di ∗ (1− Yl,t) ≥
T∑

t′=t

Yi,t′ ∀(i, l) ∈ E,∀t ∈ H (7)

Xi,t ≥ Yi,t − Yi,t−1 ∀i 6∈ P,∀t ≥ 2 (8)

Xi,1 = Yi,1 ∀i 6∈ P (9)

T∑
t=1

Xi,t ≤ 1 ∀i ∈ N (10)

Oj,i,t ≥ Sj,i + Yi,t − 1 ∀j ∈ J, ∀t ∈ H,∀i ∈ N (11)

Oj,i,t ≤ Sj,i ∀j ∈ J, ∀t ∈ H,∀i ∈ N (12)

Cmax ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (13)

Yi,t, Oj,i,t, Sj,i, Xi,t ∈ {0, 1}
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Table 1. Parameters for the MSPSP with penalty for preemption.
Notations for parameters

I Set of activities to be scheduled

N ⊆ I Set of non-preemptive activities

P ⊆ I Set of preemptive activities

W ⊆ I Set of preemptive activities with penalty

E(i, l)
Set of precedence relationships. State that activity l ∈ I
cannot start before activity i ∈ I is completed

K Set of mono-skilled resources

S Set of skills

J Set of available technicians

T Last period of the scheduling horizon

H = {1, 2, ..., T} Set of scheduling periods

DRk,t ∈ Z+ Amount of resource k ∈ K available at time t ∈ H

bri,k ∈ Z+
Amount of resource k ∈ K required for executing activity
i ∈ I

DOj,t ∈ {0, 1}
Presence/absence of technician j ∈ J at time t ∈ H. Equal to
1 if present, 0 otherwise

COj,s ∈ {0, 1}
Indicates whether a technician j ∈ J masters skill s ∈ S or
not. Equal to 1 if mastered, 0 otherwise

bsi,s ∈ Z+
Amount of technicians mastering skill s ∈ S required for
executing activity i ∈ I

nti ∈ Z+
Minimal number of technicians required to execute activity
i ∈ I

Di ∈ Z+ Duration of activity i ∈ I

ri ∈ H Release date for activity i ∈ I

dli ∈ H Deadline for activity i ∈ I

Mi ∈ Z+
Penalty for preempting activity i ∈W (expressed in time
units)

Table 2. Variables for the MSPSP with penalty for preemption.

Notation for variables

Yi,t ∈ {0, 1} Yi,t = 1 ⇐⇒ activity i ∈ I is executed during time t ∈ H

Oj,i,t ∈ {0, 1} Oj,i,t = 1 ⇐⇒ technician j ∈ J is allocated to activity i ∈ I during time t ∈ H

Sj,i ∈ {0, 1} Sj,i = 1 ⇐⇒ technician j ∈ J is assigned to execute activity i ∈ N

Xi,t ∈ {0, 1} Xi,t = 1 ⇐⇒ a part of activity i 6∈ P starts at time t ∈ H

Cmax ∈ R+ Project makespan
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Cmax ∈ R+

Constraints (2) guarantee that the total demand of each resource during all
periods t ∈ H is always lower than the resource capacity. Constraints (3) ensure
that technicians are allocated in period t only if they are available. They also ensure
that the technicians can be allocated to at most one activity during period t. Skill
requirements and a minimal number of technicians are ensured by Constraints (4)
and (5), respectively. Constraints (6) ensure that the durations of the activities are
satisfied; these constraints also limit the activity executions between their release
dates (ri) and deadlines (dli) when there exist. Constraints (7) represent precedence
relationships. The start time of each part of an activity is determined by Constraints
(8) and (9). With inequalities (10) we ensure that preemption is not allowed for
non-preemptive activities. Constraints (11) and (12) ensure that if a technician is
allocated to a non-preemptive activity it must execute it until completeness. These
constraint were not present in the model presented in Polo-Mej́ıa et al. (2017). Finally,
the makespan of the project is calculated using constraints (13).

Even if the MSPSP with penalty for preemption allows to model an important
number of the activities carried out at the LECA-STAR, it does not fulfil all the
safety constraints for a subset of activities. That is why in the next section, we present
a more accurate model that takes into account these additional safety constraints.

4. MSPSP with partial preemption (MSPSP-PP)

Typically, preemptive scheduling problems assume that all resources are released dur-
ing preemption periods, and that they can be used to perform other activities. Nev-
ertheless, at the LECA-STAR, safety constraints require that a subset of resources
remains allocated to the activity when it has been preempted. Suppose one must ex-
ecute an experimental activity that requires an inert atmosphere for its execution. In
practice, one can stop this activity and allow the technicians and some of the equip-
ment to be used in other activities. However, safety and operational constraints force
us to preserve the inert atmosphere even when the activity is stopped until it ends. In
other words, one cannot release the equipment that ensures the inert atmosphere dur-
ing the preemption periods. Traditional preemptive schedule models cannot represent
this behaviour. Until now, the only way to model this activity, while respecting safety
requirements, was to declare it as ‘non-preemptive’. However, this decision can increase
the project makespan, especially in our case-study, where the activities may have re-
strictive time-windows and the availability/capacity of the resources varies over time.
The possibility of only releasing a subset of resources during the preemption periods,
what we call partial preemption, has not yet been studied in the scientific literature.
To comply with this safety requirement, and to fill the gap in the literature, we present
a new variant of the MSPSP that uses the concept of partial preemption: the MSPSP
with partial preemption or MSPSP-PP.

In the MSPSP-PP, if an activity is preempted, we release only a subset of resources
while seizing the others. We can then classify the activities in three types accord-
ing to the possibility of releasing the resources during the preemption periods: 1)
Non-preemptive activities (N), if none of the resources can be released; 2) Partially
preemptive activities (PP ), if a subset of resources can be released; and 3) Preemptive
activities (P ), if all resources can be set free. In our case, the partial preemption is
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Figure 2. Characteristics of the Multi-Skill Project Scheduling Problem with Partial Preemption (MSPSP-

PP).

only related to mono-skilled resources, and we made the hypothesis that technicians
can always be released during preemption periods. This is because, in practice, we
are not interested in allocating staff to an activity that is not in execution. All other
characteristics are the same as those presented in Section 3 and are summarised in
Figure 2.

Summarising, the objective in the MSPSP with partial preemption is to find a
feasible schedule that minimises the total duration of the project (Cmax). Finding a
solution consists in determining the periods during which each activity is executed
and also which resources will execute the activity in every period, while satisfying all
the constraints. We must schedule these activities over renewable resources with lim-
ited capacity; they can be cumulative mono-skilled resources (machines or equipment)
or disjunctive multi-skilled resources (technicians) mastering Nbj skills. Multi-skilled
resources can respond to more than one skill requirement per activity and may exe-
cute it partially (except for non-preemptive activities where technicians must perform
the whole activity). An activity is defined by its duration (Di), its precedence rela-
tionships, its requirements of resources (bri,k), its requirements of skills (bsi,s), the
minimum number of technicians needed to perform it (nti) and the subset of preemp-
tive resources. Activities might or not have either a deadline (dli) or a release date
(ri). Figure 3 illustrates an example of an MSPSP-PP instance and a possible solution.

Using the concept of partial preemption, we can model not only the non-preemption
constraints linked to safety but also we can use it to model resources having complex
setup operations. Even if the setup times are not significant enough to be included
in the model, due to process complexity and safety, it is not desirable to frequently
change the configuration of these resources. Most of the time, the complexity of the
resuming setup time is related only to a subset of resources, while the others can be
easily preempted and resumed without significant impact. We can then declare the
resources with a significant setup as non-preemptive, and those with an insignificant
setup as preemptive. In this way, we can better manage the preemption over activities
with significant setup; at the same time, we delete the subjectivity of choosing the
penalty (Mi) needed in our previous approach. Indeed, choosing the right penalty is
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Figure 3. Example of an MSPSP-PP instance.

a tricky job. If Mi is too big, there is no interest in allowing the preemption of the
activity, what may increase the Cmax of the project. Conversely, if Mi is too small,
this could cause activities to be preempted too many times disturbing the correct
development of activities.

Including the concept of partial preemption in traditional scheduling problems may
allow a reduction in the Cmax. In fact, for almost every scheduling problem in the
scientific literature if an activity requires a non-preemptive resource, then this activity
must be handled as uninterruptible , which produces an increase in the Cmax. Par-
tial preemption acquires prominent importance when we schedule activities having
a narrow time window or when resource availability varies over time. Knowing that
preemptive versions give better values of Cmax, we can then establish the following
relation for makespan value:

Cmax(Preemptive) ≤ Cmax(Partially preemptive) ≤ Cmax(Non-preemptive)

The complexity of the MSPSP with partial preemption can be established using the
classical RCPSP as a starting point. For each instance of the RCPSP, we can match an
instance of the MSPSP with partial preemption, where all resources are mono-skilled,
and none of the resources can be preempted. Thus, we can define the RCPSP as a
particular case of the MSPSP with partial preemption. Since the RCPSP has been
proved to be strongly NP-hard (B lazewicz et al. 1983), we can, therefore, infer that
the MSPSP with partial preemption is also strongly NP-hard.

We present below two formulations for the MSPSP-PP using Mixed-Integer/Linear
Programming (MILP) and Constraint Programming (CP). Early versions of these
formulations are presented in (Polo-Mej́ıa et al. 2018).

4.1. Mixed-Integer/Linear Programming (MILP)

For modelling the MSPSP-PP, we use the standard ‘On/Off’ formulation again. Most
of the constraints are similar to those proposed for the MSPSP with penalty for pre-
emption. The main difference lies in the way we handle the preemption. Before, we
wanted to know how many times an activity was preempted. For the MSPSP-PP we
must identify all periods over which the activity remains stopped. To do this, in the
MILP formulation presented by Polo-Mej́ıa et al. (2018), one uses a set of auxiliary
step binary variables indicating the end and start time of activities. This time, we
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Table 3. Variables for the MSPSP-PP.

Notation for variables

Yi,t ∈ {0, 1} Yi,t = 1 ⇐⇒ activity i ∈ I is executed during time t ∈ H

Oj,i,t ∈ {0, 1} Oj,i,t = 1 ⇐⇒ technician j ∈ J is allocated to activity i ∈ I during time t ∈ H

Sj,i ∈ {0, 1} Sj,i = 1 ⇐⇒ technician j ∈ J is assigned to execute activity i ∈ N

Ppi,t ∈ {0, 1} Ppi,t = 1 ⇐⇒ the activity i ∈ PP is being preempted at time t ∈ H

Gi ∈ R+ Start time of activity i ∈ I

Fi ∈ R+ Finish time of activity i ∈ I

Cmax ∈ R+ Project makespan

reformulated the problem and decided to use continuous variables for determining the
end and start time of each activity. This decision leads to a decrease in the number of
variables and constraints needed by the model. The other difference with the MILP
formulation of Polo-Mej́ıa et al. (2018) is the presence of constraints (11,12) that ensure
that a technician cannot be changed during the execution of a non-preemptive activ-
ity. Adding these constraints to the formulation proposed in Polo-Mej́ıa et al. (2018)
yields a formulation that is outperformed by the new formulation: on the instance set
of 30 activities presented in Section 5, 80 instances out of 200 are solved to optimality
by both formulation but the average time to reach optimality is significantly faster for
the new formulation: 130s vs 184s on the same computer.

Notation for parameters. Additionally to the parameters described in Table 1, we
also use an additional parameter PRi,k ∈ {0, 1} that indicates whether the activity
i ∈ PP allows the release of resource k ∈ K during the preemption periods or not.
The parameter is equal to 0 if the resource can be released, 1 otherwise.

Variables. Variables used to model the Multi-Skill Project Scheduling Problem with
partial preemption are shown in Table 3.

Objective Function. As mentioned in Section 3.1, our primary objective is to min-
imise the project makespan. The problem is then defined as follows:

min(Cmax) (14)

s.t. Constraints (3)-(7) and (11)-(13) remain unchanged. Constraints (2) and (8)-(10)
are changed by:

(∑
i∈I

Yi,t +
∑
i∈PP

PRi,k ∗ Ppi,t

)
∗ bri,k ≤ DRk,t ∀k ∈ K,∀t ∈ H (15)

Ppi,t ≤ 1− Yi,t ∀i ∈ PP,∀t ∈ H (16)

Ppi,t ≤
t∑

t′=1

Yi,t′ ∀i ∈ PP,∀t ∈ H (17)
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Ppi,t ≤
T∑

t′=t

Yi,t′ ∀i ∈ PP,∀t ∈ H (18)

Fi −Gi + 1 ≤ Di +
∑
t∈H

Ppi,t ∀i ∈ PP (19)

Fi −Gi + 1 ≤ Di ∀i ∈ N (20)

Fi ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (21)

Gi ≤ t ∗ Yi,t + (1− Yi,t) ∗ T ∀i ∈ I (22)

Yi,t, Oj,i,t, Sj,i, Ppi,t ∈ {0, 1}
Cmax, Gi, Fi, ∈ R+

Constraints (15) ensure the respect of resource needs during the execution periods
(Yi,t = 1) and also the respect of needs for non-preemptive resources (PRi,k = 1)
during the preemption periods (Ppi,t = 1). With constraints (16) we indicate that Ppi,t
must be zero if the activity i ∈ PP is in execution at time t (Yi,t = 1). Constraints
(17) and (18) ensure that the Ppi,t variables are always equal to zero outside its
execution periods. Constraints (19) ensure that Ppi,t take value of 1 for periods where
the activity i has been preempted. Constraints (20) guarantee that activities within
N are not preempted. The finish time of each activity is calculated with Constraints
(21). Constraints (22) calculate the start time of each activity.

4.2. Constraint Programming (CP)

Constraint programming is a technique coming from logic programming and artificial
intelligence to solve complex combinatorial problems using a declarative description.
The idea is to separate the constraint declaration using a rich constraint language from
the solution-finding process based on the so-called constraint propagation, an active
use of constraints to reduce the search space (Baptiste et al. 2001; Young et al. 2017).
Constraint programming has been successfully applied to solve RCPSP. In (Kreter
et al. 2017), the authors proposed and tested six different CP models for the RCPSP
with calendar constraint, and they showed that CP solutions are highly competitive
with existing MILP formulations of the problem (average runtime required by CP
models is lower). Young et al. (2017) used pure Constraint Programming to solve the
MSPSP. In their work, the authors proposed and tested different configurations of
CP models, together with different search and propagation techniques. Using the best
of their configurations, the authors were able to close an important number of open
instances of the literature, showing a better performance than the Branch-and-Price
algorithm proposed by Montoya et al. (2014), thus proving the interest of using CP
for solving the MSPSP.

Given these promising results, we then propose to use CP for modelling the MSPSP
with partial preemption. To model the MSPSP-PP, we use the software IBM CP Op-
timizer (CPO), making use of the concept of interval variables, a constrained object
tailored to scheduling problems, and also to other specific scheduling constraints al-
ready defined in CPO (Laborie 2009).

In practice, there are two different ways to model preemptive activities using in-
terval variables: either a chain of optional intervals of variable duration whose sum of
durations is equal to the duration of activity (Di); or a chain of Di intervals of unitary
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duration. In the CP formulation presented in Polo-Mej́ıa et al. (2018), the authors
used the first approach with the CPO synchronize function. We propose here to use
the second way together with the CPO alternative function, which has better prop-
agation than synchronize. These modifications lead to a significant improvement in
the performance of the model1. On the set of 30-activity instances presented in Section
5, the previously proposed model was unable to solve any instance to optimality, while
the new CP model solves to optimality 160 instances out of 200 in 85s in average.

Variables

Activities execution intervals: The itvsi interval variables will indicate the inter-
val between the start and the end of each activity i ∈ I. For non-preemptive activities,
the size of the interval must be equal to the duration of the activity (Di). For preemp-
tive and partially preemptive activities, the size of the intervals varies from Di to T
(the solver must decide the final size of the interval variable).

Intervals for each part of activities : In this model each preemptive (i ∈ P )
and partially preemptive activity (i ∈ PP ) is divided in Di parts of unitary duration.
The pari,v interval variable indicates the interval during which each unit of duration
v ∈ Vi (Vi = {1, .., Di}) of activity i 6∈ N is executed. For non preemptive activities
we generate only one part (Vi = {1}) with size equal to the activity duration.

Technicians allocation: We made use of the optional interval variables proposed
in CPO. Optional interval variables may or may not be present in the solution, so as
to satisfy the constraints. The interval variable InTechj,i,v indicates the period when
technician j ∈ J , if present, is working in the part v ∈ Vi of activity i ∈ I.

Number of technicians allocated to each part: The integer variables nTechi,v
indicate the number of technicians that are allocated to execute the part v ∈ Vi of
activity i ∈ I.

Number of technicians per skill allocated to each part: The integer variables
nSks,i,v indicate the number of technicians mastering the skill s ∈ S allocated to the
part v ∈ Vi of the activity i ∈ I.

Objective function

The objective in the MSPSP-PP is to minimise the project makespan. This can be
expressed in CPO as follows:

minimise

(
max
∀i∈I
{itvsi.end}

)
Starting from the idea of trying to allocate always a minimum number of technicians

to the activities, one can add a secondary criterion (lexicographic, using staticLex of

1We thank Dr Philippe Laborie, who helped us to improve the CP formulation.
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CPO) that minimises the total number of technician allocations. The function stat-
icLex defines a multi-criteria policy, ordering the different criteria and performing
lexicographic optimisation. The first criterion is considered to be the most important,
and any improvement of this criterion is worth any loss on the other criteria. The
solver should be able to found better solutions faster when using the minimisation
of the total number of technician allocations as a secondary objective. The objective
function can then be defined as:

minimise

staticLex

max
∀i∈I
{itvsi.end},

∑
i∈I

∑
v∈V

nTechi,v

 (23)

Constraints

Span(a, {b1, .., bn}) constraint states that the interval variable a (if present) spans
over all present interval variables from the set b1, .., bn. In other words, interval
variable a starts together with the first present interval from {b1, .., bn} and ends
together with the last present interval. We use this kind of constraint to span the
pari,v variables within the itvsi variables.

span(itvsi, pari,v : ∀v ∈ Vi) ∀i ∈ I (24)

We also need to ensure that there is not overlapping for the parts of each activity.
The predefined constraint endBeforeStart(a,b) indicates that the interval variable
a must end before the interval variable b begins. These constraints are only necessary
for preemptive and partially preemptive activities, and can be stated as follows:

endBeforeStart(pari,v, pari,p) ∀i 6∈ N, ∀v ∈ Vi, ∀p ∈ Vi : p > v (25)

Let us define rUsagek as a cumulative function indicating the usage of resource k
over the time, and let DRk be a cumulative function indicating the resource capacity
over the time. Also let pulse(A, h) be an elementary pulse function taking the value of
h over the interval A. Preemptive resources (PRi,k = 0) are used during the execution
intervals of the parts (pari,v). Non-preemptive resources (PRi,k = 1), on the other
hand, must be allocated during the whole execution interval of the activity (itvsi). We
can state the resource constraint as follows:

rUsagek =
∑

i∈I:PRi,k=0

∑
p

pulse(parp,i, bri,k) +

∑
i∈I:PRi,k=1

pulse(itvsi, bri,k) ∀k ∈ K

rUsagek <= DRk ∀k (26)
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We must guarantee that each technician is allocated at most to one activity at the
time. For this, we use the predefined noOverlap({b1, .., bn}) constraint that states that
none of the interval variables within the set {b1, .., bn} overlap over the time. Note
that we could use this expression for establishing the no overlap constraint of Pari,v
variables (25). However, the way we declare it allows us to break some symmetries on
the model. The disjunctive constraint over the technicians is then defined as:

noOverlap(InTechj,i,v : ∀i ∈ I, ∀v ∈ Vi) ∀j ∈ J (27)

Technicians cannot be assigned during their absence periods. To model these con-
straints, we define a step function describing the present and absent periods of each
technician (PreTechj). We must also use the predefined constraint forbidExtent(a, Q).
This expression states that whenever the interval variable a is present, it cannot over-
lap a point t where the step function Q(t) = 0. We ensure that absence/presence
periods are respected as follows:

forbidExtent(InTechj,i,p, P reTechj) ∀j,∀i,∀p (28)

For ensuring the skills requirements we use the expression
alternative(a, {b1, .., bn}, c). The alternative constraint will enforce that if a is
present, then c and only c of the interval variable within {b1, .., bn} will be present,
and synchronised with a. In other words, c interval variables will be selected among
the set and those c selected intervals will have to start and end together with interval
variable a. We can use this constraint to select the technicians that will effectuate
each skill for every part of an activity. It can be defined as:

alternative(pari,v, InTechj,i,v : ∀j ∈ J : COj,s = 1, nSks,i,v)

∀i ∈ I, ∀v ∈ Vi, ∀s ∈ S
(29)

The number of selected technicians for each skill and part goes from the skill re-
quirement of the activity (bsi,s) up to the maximum between the minimal number of
required technicians (nti) and the sum of all the skill needs of the activity. Constraints
(29) and (30) ensure the respect of skill requirements.

bsi,s ≤ nSks,i,v ≤ max

{
nti,

∑
s′∈S

bsi,s′

}
∀i ∈ I, ∀v ∈ Vi,∀s ∈ S (30)

We use the alternative constraint again to assure the respect of the minimal number
of technicians:

alternative(pari,v, InTechj,i,v : ∀j ∈ J, nTechi,v) ∀i ∈ I, ∀v ∈ Vi (31)

The number of technicians allocated to each part of an activity will vary from
the maximum between Nt and the highest skill requirement, up to the maximum
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between nti and the sum of all skill requirements. Together with constraints (31),
these constraints ensure the allocation of the minimal number of technicians.

max

{
nti,max

∀s∈S
{bsi,s}

}
≤ nTechi,v ≤ max

{
nti,

∑
s∈S

bsi,s

}
∀i ∈ I, ∀v ∈ Vi (32)

The precedence relationships can be stated as:

endBeforeStart(itvsi, itvsl) ∀(i, l) ∈ E (33)

Respect the deadlines and release dates are guarantee by:

itvsi.end ≤ dli ∀i ∈ I (34)

ri ≤ itvsi.start ∀i ∈ I (35)

Since not all the technicians are available at the same time, we can add some redun-
dant constraints to improve the lower bounds as well as the constraint propagation.
Let the parameters avTect be the amount of available technicians during period t, and
avSkc,t the number of available technicians at time t mastering skill s. We define two
cumulative functions TecUsage and SkUsagec indicating the number of technicians
allocated over the time, and the number of technicians mastering skill s allocated over
the time respectively. We get the value for these functions as follows:

TecUsage =
∑
i∈I

∑
v∈Vi

pulse

(
pari,v,max

{
nti,max

∀s∈S
{bsi,s}

})

SkUsages =
∑
i∈I

∑
v∈Vi

pulse(bsi,s) ∀s ∈ S

The alwaysIn(F,B,min,max) constraint is used to confine the values of a cumu-
lative function F during an interval [u, v) inside interval [min,max]. We can then limit
the number of technician allocated at each period t as follows:

alwaysIn(TecUsage, t, t + 1, 0, avTect) ∀t ∈ H (36)

alwaysIn(SkUsages, t, t + 1, 0, avSks,t) ∀t ∈ H,∀s ∈ S (37)
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Figure 4. Flow graph for the allocation problem of the MSPSP-PP.

4.3. Greedy algorithm for the MSPSP-PP

As indicated in Section 2, we must be able to propose good solutions in short times to
answer the industrial needs. The mathematical and logic models presented in Section 4
may not answer to this requirement for industrial-size instances (more than 100 activ-
ities for the LECA-STAR). In fact, when trying to solve such instances with the MILP
model, the solver runs out of memory (15 GB of RAM). The CP model scales bet-
ter, but the solver has some issues to prove optimality, so the question arises whether
better feasible solutions could be obtained faster. In this section, we briefly describe a
greedy algorithm for finding good quality solutions in reasonably fast computational
times. A more detailed description of the heuristic can be found in Polo-Mej́ıa et al.
(2019).

The MSPSP-PP can be seen as a problem consisting of two coupled subproblems:
an activity scheduling problem combined with an allocation problem of the technicians
performing each activity. In a heuristic approach, once the order in which the activities
will be executed is defined, we still have the problem of choosing the technicians who
will perform them. To achieve this allocation in the best way, we must first allocate
the technicians with the least chances of being necessary to the activities not yet
scheduled, that is to say, the less critical technicians.

For this heuristic method, we propose to use a serial schedule generation scheme
with priority rules. At each iteration of the greedy algorithm, one chooses one activity
following a priority rule. We identify then the earliest period t where this activity can
be scheduled (according to its preemption type, and resource and technicians avail-
ability). One can model the allocation problem as a Minimum-Cost Maximum-Flow
(MCMF) problem (Ahuja 2017), as in the approach proposed by Bellenguez-Morineau
(2006) in her PhD dissertation for the (non-preemptive) MSPSP, where the cost flow
is related to technician criticality and the analysed activity. Gi,t = (X,F ), X = Si∪Pt

(Figure 4), where Si represents the set of skills required by activity i and Pt is the sub-
set of technicians available during period t (for preemptive and partially preemptive
activities) or from t up to t + Di − 1 (for non preemptive activities). F is the set of
arcs connecting the nodes. The MCMF problem aims at minimising the cost required
to deliver the maximum amount of flow possible in the network.

In this graph, we connect all vertices sc ∈ Si to the source vertex with arcs having
a maximum capacity equal to the requirement of skill c for executing activity i (bsi,s).
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To ensure the minimal number of technicians (nti), we add an additional vertex s∗
linked to the source vertex with a capacity equal to nti and connected to all vertices
pj ∈ Pt with a capacity of 1. Each sc ∈ S is linked to the all all vertices pj ∈ Pt of
technicians mastering the skill c. These arcs have a maximum capacity of 1 to ensure
that each technician responds to no more than one unit of need per skill. Finally, all
vertices in Pt are connected to the sink vertex whit arcs having the capacities of at
least the number of skills mastered by the technician j plus one (Nbj + 1, to take into
account the additional skill of “being a technician”). These are the only arcs having an
associated cost (CTi,j) related to the criticality of the technician pj and the activity i
that is being scheduled (see Definition 4.1).

Definition 4.1. The criticality cost CTi,j of a technician j is an indicator of the degree
to which a technician could be requested by the set of not yet scheduled activities (set
L). Let us define STj as the skill set that a technician j masters, and let SAi be the
skill set needed to execute the activity i. The criticality of a technician is directly
proportional to the sum of duration (Dl) of every activity l ∈ L multiplied by the
Cardinality(STj ∩ SAi). This indicator is calculated as follows:

CTi,j =

∑
∀l∈L (Dl ∗ Cardinality(STj ∩ SAl))

Cardinality(STj ∩ SAi)
(38)

In case of an equality of such a cost for different technicians, we break the ties to
ensure that the flow algorithm always minimises the number of technicians allocated
to each activity.

Using one of the existing polynomial algorithms, the Edmonds-Karp algorithm (Ed-
monds and Karp 1972), for example, one can solve the problem of maximum flow at
minimum cost for the proposed graph. To determine the technicians to allocate, we
look at the vertices pj ∈ Pt through which the flow passes.

Algorithm 1: Greedy Serial Scheme Generation

(1) Select an activity from the list
(2) Find the earliest periods when this activity can be scheduled according to: its

preemption type, and resources and technicians availability
(3) Allocate the technicians solving the MCMF problem:

• For non-preemptive activities the flow problem is solved only once (same
technicians must execute the whole activity)
• For preemptive and partially preemptive activities, we must solve the flow

problem for each unit of duration of the activity
(4) Return to Step 1 if there are still activities to be scheduled. Stop otherwise

The process for determining if an activity can be scheduled at time t varies ac-
cording to its preemption type. For non-preemptive activities, we identify first the
set of technicians that are available for all periods from t up to t + Di − 1. If the
sum of selected technicians mastering each skill is larger or equal than the skill need,
and the number of selected technicians is larger or equal than Nti, and all the re-
quired cumulative resources are available, we say that the activity can start at period
t, and we solve the MCMF problem. For partially preemptive activity, we will first
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determine the minimum end date for the activity, starting from the analysed t period,
depending on the availability of preemptive resources and technicians at each period.
We will then check the continuous availability of non-preemptive resources from t to
end date. If non-preemptive resources are available without interruption, we allocate
them to the activity from t until end date. We solve the MCMF problem for periods
t ≤ t′ ≤ end date where all preemptive resources are available. For non-preemptive
activities, we allocate each unit of duration independently, so we solve the MCMF
problem if all resources requirement can be satisfied during the period t.

The presence of deadlines is one of the critical constraints for generating feasible
solutions using heuristic methods. In order to maximise the chance of finding feasible
solutions, we propose to use a 2-step approach to generate the schedule. As a first
step, activities with a deadline and its predecessor (to ensure the respect of precedence
relationships) are scheduled following a slack time-based (Definition 4.2) priority list.
Activities with a lower margin are scheduled first.

Definition 4.2. “Slack time” (Slacki) refers to the margin that an activity i has in its
planning window. It is a function of the deadline (dli), the earliest start time (rmini),
and the activity duration (Di). We calculate it as follows:

Slacki = dli − rmini −Di (39)

Once planned activities with a deadline and its predecessors, we must perform the
scheduling of the remaining activities (L). To choose the order in which activities will
be scheduled, we propose to use the most common priority rules in the scheduling
literature:

• Longest Duration (LD): prioritises the activity i with the greatest duration (Di).
• Most Successors (MS): prioritises the activity i with the highest number of suc-

cessors.
• Earliest Start Time (EST): prioritises the activity i with the lowest earliest start

date (rmini).
• Earliest Finish Time (EFT): prioritises the activity i with the smallest “earliest

finish time”. This date is calculated by adding the duration of the activity (Di)
to the earliest start date (rmini), ie: rmini + Di.
• Greatest Rank (GR): prioritises the activity Ai for which the sum of the duration

of its successors is the largest.
• Greatest Resource Demand (GRD): prioritises the activity i with the highest

resource consumption.

An additional priority rule can be generated by solving the continuous relaxation
of the MILP model proposed in Section 4.1. Activities with the lowest start date in
the relaxed problem will be scheduled first. We can also generate priority rules using
the continuous relaxation of the MILP for the MSPSP with penalty for preemption
(MSPSP-wP) presented in Section 4.1. For this, we transform each MSPSP-PP in-
stance into a MSPSP-wP instance, where the partially preemptive activities become
preemptive activities with penalties. This transformation can be seen as a Lagrangian
relaxation of the partial preemption constraint (we use different values of Mi during
the computational test).
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In order to increase the chances of finding a feasible solution from the beginning,
and even improve the solution, we propose to build the set of activities to schedule
L as follows: L = {N,PP, P} where N is the subset of non-preemptive activities,
PP is the subset of partially preemptive activities and P is the subset of preemptive
activities. N , PP and P are sorted according to the priority rule. With this approach,
we exploit the ability of preemptive and partially preemptive activities to fill the
unused spaces left after scheduling the non-preemptive activities.

The heuristic presented before is a single-pass heuristic because only one priority
rule is used to select the activities to be scheduled. In order to improve the results
we get, we can execute the procedure using all the priority rules presented before
and keeping the minimum makespan. This process originates a so-called multi-pass
heuristic.

5. Experimental results for the MSPSP-PP

For computational tests, we use a computer equipped with an Intel Xeon E5-2695
processor at 2.3 GHz. We use CPLEX 12.7 and CP Optimizer 12.7 for solving the
MILP models and the CP model respectively (using the default configuration and
limiting the number of threads used by the solvers at 8). We generated sets of instances
using a generation algorithm to obtain realistic data w.r.t. the case-study and that
allows fixing aspects such as proportions of preemption type, percentage of activities
with time windows, density of precedence relationships, skill number per technician,
etc.

5.1. Performance of the MILP and CP models

To test the behaviour of our models regarding the proportion of each activity type
(preemptive, partially preemptive and non-preemptive) present in an instance, we
generated four sets (A1, B1, C1 and D1) of 50 instances. Table 4 presents the specific
distribution of the preemption type for each set. All instances have 30 activities with
a duration between 5 to 10 time units, up to 15 skills (following a uniform distribution
between 3 and 15) , up to 8 cumulative resources, 20% of activities with time windows.
8 technicians (multi-skilled resources) are available in 2 teams (4 technicians by team)
doing work-shift of 12 hours each. The number of skill master for each technician
follows a uniform distribution between 5 and 10 skill. Only 10% of the activities in each
instances has precedence constraints and the maximal number of predecessor is 3. The
remainder characteristics are randomly generated. Since time-indexed formulations
require an initial estimation of the scheduling horizon, we initially tested the two
models using the sum of activities duration as the scheduling horizon.

Table 4. Distribution of preemption types per set of instances.
Set A1 Set B1 Set C1 Set D1

Non-preemptive 10% 10% 80% 33.3%
Partially preemptive 10% 80% 10% 33.3%

Preemptive 80% 10% 10% 33.3%

Table 5 presents, for a computation time limited to 10 minutes, the number of
instances for which each model found at least one feasible solution, the number of
instances whom optimality was proven, the average time required to prove the opti-
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mality, and the average gap, percentage difference between the Cmax value of the best
found solution and the optimal Cmax (the optimal solution was obtained by running
the MILP solver over a computing platform until proving the optimality). One can
see that the CP model outperforms the MILP formulation, being able to found fea-
sible solutions for all the instances, and proving the optimality of a larger number of
instances. If we analyse the individual results of each model regarding the preemption
type, one sees that the presence of a high percentage of non-preemptive activities de-
creases, even more, the performance of the MILP model (the model only get 4 out of
50 feasible solutions for the Set C1). This can be explained by the fact that more aux-
iliary variables and constraints are needed for this kind of activities. The CP model,
on the other hand, seems to perform better when this portion is high. This is because
a lower number of interval variables (pari,v and InTechj,i,v) are needed, thus a lower
number of decisions are to be made.

Table 5. Results of MILP and CP models after 10 min of computation

MILP model CP model
Instances with
initial solution

Instances solved
to optimality

Average time
to optimality

Average
gap

Instances with
initial solution

Instances solved
to optimality

Average time
to optimality

Average
gap

Set A1 48 16 335.2 s 40.63% 50 37 180.32 s 0.16%
Set B1 25 0 - 30.97% 50 33 141.92 s 0.43%
Set C1 4 0 - 195% 50 37 107.58 s 0.72%
Set D1 29 0 - 97.9% 50 33 161.43 s 0.44%

All 106 16 335.2 s 57.92% 200 140 147.59 0.44%

One can initialise the solver with an initial solution (warm start) obtained by a
heuristic method. We test both formulations using an initial solution generated using
the greedy algorithm presented in Section 4.3. The use of warm start improves the
performance of both models significantly (see Table 6). For the CP model, the average
gap and the average time required to prove the optimality are reduced in almost a
half, compared with the results without warm start. For instances within the set A1,
the average gap was not reduced, but the time required to prove the optimality of the
instances was reduced. For instances in set C1, on the other hand, the average time to
optimality did not change, while the average gap was reduced to a half. For sets B1 and
D1, both the average time to optimality and the average gap were reduced. Analysing
results from Table 6, one can see that MILP outperforms CP when the percentage of
preemptive activities is high (set A1). CP, on the other hand, gives better results when
this percentage is low. One could then say that the two methods are complementary.
Future research should be done in order to develop a hybrid method that better exploit
the characteristics of each instance.

Table 6. Results of MILP and CP models after 10 min of computation using warm start
MILP CP

Number of instances Average time Average Number of instances Average time Average
solved to optimality to optimality gap solved to optimality to optimality gap

Set A1 46 87.39 s 0.05% 39 67.17 s 0.18%
Set B1 15 154.12 s 2.69% 40 88.01 s 0.15%
Set C1 0 - 9.45% 41 108.73 s 0.39%
Set D1 19 216.12 s 1.99% 40 76.14 s 0.21%

All 80 130.48 s 3.55% 160 85;27 s 0.23%

5.2. Greedy algorithm

For testing the performance of the heuristic method, we generated new sets of instances
(A2, B2, C2, D2). For each instance on a set, there is an instance on the other sets
having the same characteristics, except for the distribution of preemption type for
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the activities (see Table 4). Each of the four sets has a total of 50 instances, each of
them with 50 activities to be scheduled, and an expected Cmax going from 130 to 170
time units. The average duration of the activities goes from 5 up to 15 time units.
All other characteristics are similar to the ones presented before for set 1. We decide
to use instances with only 50 activities, instead of 100 activities that are in average
the number of activities scheduled at the LECA-STAR every week, to have better
lower bounds for evaluating the optimality gap of the proposed heuristics. Indeed
the solvers (MILP and CP) may have some issues for finding good lower bounds for
larger instances. The proposed heuristics has been coded in C++. To solve the flow
problems, we used the adapted C++ version of the Edmonds-Karp algorithm proposed
by Ababei (2009). To obtain the lower bound or, in some cases, the optimal solutions,
we use the MILP and CP models proposed in Section 4.

Table 7 shows the average gap values (percentage difference between the obtained
solution an the best known lower bound obtained by the CP or MILP solver after
2 hours of computing) for the greedy algorithm using the priority rules presented
in Section 4.3. It also shows the average gap for the CP model after 5 minutes of
computation using CP Optimizer with only one thread. Results obtained with the
MILP model are not given since the solver run out of memory before giving any initial
solution. For the priority rule based on the continuous relaxation of the MILP for
the MSPSP-wP, in a matter of simplification, we decided that the value of penalty
will be the same for all activities (Mi = M). We tested the heuristics using different
values of M : 0, 0.5, 1, and 1.5. We observe that the heuristic using Greatest Resource
Demand (GRD) as priority rule seems to give the lower average gap, followed by the
priority rules Longest Duration (LD) and Most Successors (MS). The worst results
are obtained using the Earliest Start Time (EST) and Earliest Finish Time (EFT).

Table 7. Average gap for the greedy algorithm per priority rule
Gap for the greedy algorithm

Set A2 Set B2 Set C2 Set D2 All
LD 7.33% 7.78% 15.65% 9.28% 10.01%
MS 8.44% 8.26% 16.85% 9.27% 10.70%
EST 9.61% 9.99% 18.98% 10.00% 12.14%
EFT 10.68% 10.79% 22.72% 10.48% 13.67%
GR 8.69% 8.49% 16.66% 9.28% 10.78%

GRD 7.33% 7.88% 15.90% 8.02% 9.78%
Relax MSPSP-PP 8.90% 8.95% 17.27% 9.70% 11.20%

Relax MSPSP-wP Mi = 0 8.90% 9.88% 17.95% 9.77% 11.63%
Relax MSPSP-wP Mi = 0.5 9.23% 9.15% 19.40% 10.02% 11.95%
Relax MSPSP-wP Mi = 1 9.05% 9.14% 19.08% 9.79% 11.77%

Relax MSPSP-wP Mi = 1.5 9.39% 9.23% 19.45% 9.87% 11.99%
Multi-pass 5.30% 5.90% 12.26% 6.21% 7.42%

CP (after 5 min) 6.01% 6.65% 7.65% 5.56% 6.47%

If we compare the results of the multi-pass version of the greedy algorithm against
the results obtained after 5 minutes of computing of the CP model, we see that the
average gap obtained by CP is slightly lower than the one obtained by the greedy
algorithm. However, if we analyse the results for each set of instances, we observe that
the greedy algorithm gets a lower average gap for instances with a low proportion
of non-preemptive activities (Sets A2 and B2). Statistical tests indicate that the CP
model (after 5 min) statistically outperforms the greedy algorithm only when the
proportion of non-preemptive activity is high (Set C2). Note that the computation
time for obtaining the greedy solution is lower than one second (15 seconds for the
priority rule derived from the linear relaxation), which proves the interest of the greedy
algorithm.
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6. Conclusions and future research

The primary objective of this paper was to propose a way to apply operations research
techniques to schedule research activity within a nuclear facility. Since we are working
over a short scheduling horizon, we can decompose each research activities into a series
of elementary tasks, and use traditional models to schedule them. The use of scheduling
models represent an improvement of the facility safety and also allows researchers to
save time, that before was used to planning activities, and devote it to research.

We showed the need to modify classical scheduling models to adapt them to a real-
life problem. We also showed how these adapted or extended versions might need to
be improved even more to represent the same industrial problem better. In our specific
case, an initial analysis of the characteristics of the research facility, led us to propose
a Multi-Skill Project Scheduling Problem with penalty for preemption (for which we
have proposed a MILP formulation) in the first instance. However, a more in-depth
analysis showed us that this approach only fulfilled the operational and technical re-
quirements of the research facility partially. We then propose a more accurate model:
the MSPSP with partial preemption. The concept of partial preemption leads to a lim-
ited release of the resources during the preemption periods. We modelled this problem
using two different techniques: Mixed-Integer/Linear Programming and Constraint
Programming.

The MILP formulation showed an outstanding performance in the presence of a high
proportion of preemptive or partially preemptive activities. However, it starts having
troubles to find initial solutions and prove the optimality when the proportion of non-
preemptive activities increases. The CP formulation, on the other hand, presented the
opposite behaviour; it performs better when the instances are highly non-preemptive.
This behaviour leads us to think that the two modelling techniques could be comple-
mentary. As future research, we must then study better ways to combine and exploit
the advantages of both techniques.

The MILP and CP models presented in this paper could be not fast enough to
generate good quality solutions in short time for large instances. Having good solutions
in reduced time is essential for the industrial application of this problem. That is why
we also present a greedy algorithm aiming to answer the industrial need. This heuristic
allowed us to obtain average optimality gap of 7.42% within a few seconds.

As future work, we should focus our efforts on identifying ways to improve the
models proposed in this article such as: reformulation to get a better quality of the
linear relaxation for the MILP models and breaking symmetries in the space search for
the CP model. A theoretical study of the polyhedral characteristics of the MILP models
should also be done. Due to the industrial application aspect of our research project,
we must also develop new problem dependant (meta)heuristics or matheuristics to
ensure we can get good solutions faster.
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