Christian Artigues

Alain Quiliot

Hélène Toussaint

Emmanuel Hébrard

Models and Algorithms for Natural Disaster Evacuation Problems

 L'archive ouverte pluridisciplinaire

I. INTRODUCTION

HIS work has been carried on in the context of the H2020 GEOSAFE European project [START_REF]Geo-Safe[END_REF], whose overall objective is to develop methods and tools enabling to set up an integrated decision support system to assist authorities in optimizing the resources during the response phase to a natural disaster, mainly a wildfire or a flooding. In such a circumstance, decisions which have to be taken are about fighting the cause of the disaster, adapting standard logistics (food, drinkable water, health…) to the current state of infrastructures, and evacuating endangered areas (see [START_REF] Bayram | Optimization models for large scale network evacuation planning and management : a review[END_REF]). We focus here on the late evacuation problem, that means the evacuation of people and eventually critical goods which have been staying at their place as long as possible.

T

While evaluation planning remains mostly designed by experts, 2-step optimization approaches have been addressed [START_REF] Bayram | Optimization models for large scale network evacuation planning and management : a review[END_REF]: the first step (pre-process) involves the identification of the routes that evacuees are going to follow; the second step, which has to be performed in real time, aims at scheduling the evacuation of estimated late evacuees along those routes. As a matter of fact, this last step involves 2 distinct work pieces, one about forecasting, difficult in the case of wildfire, because of their dependence to topography and meteorology [START_REF]Geo-Safe[END_REF], and the second one about priority rules and evacuation rates imposed to evacuees [START_REF] Even | Convergent plans for large scale evacuation[END_REF]. The model which we study here is closed to the one proposed in [START_REF] Artigues | A study of evacuation planning for wildfires[END_REF] and called the non preemptive evacuation planning problem (NEPP). According to it, remaining evacuees have been clustered into groups with same original location and precomputed route, and once a group starts moving, then it must keep on at the same rate until reaching his target safe area (Non Preemption hypothesis, which matches practical concerns of the people who supervise the evacuation process). While authors in [START_REF] Artigues | A study of evacuation planning for wildfires[END_REF] address their model while discretizing both the time space and the rate domains and applying constraint propagation techniques, we consider it as an extension of the Resource Constrained Project Scheduling Problem (RCPSP: [START_REF] Orji | Project Scheduling Under Resource Constraints: A Recent Survey[END_REF][START_REF] Quilliot | Flow Polyedra and RCPSP[END_REF]), with continuous variables which identify evacuation rates and with an objective function which reflects the safety provided to every evacuee. We use this RCPSP reformulation in order to design a heuristic algorithm which deals with our problem according to network flow like techniques, well-fitted to real-time emergency contexts.

The paper is structured as follows: Section 2 provides the NEPP model. Section 3 describes our RCPSP reformulation. Sections 4, 5 are about algorithms and numerical tests.

II. NON PREEMPTIVE EVACUATION PLANNING (NPEP)

We consider here a transit network H = (N, A): N is its node set and A its arc set; Every arc e  A is provided with the time TIME(e) required for some evacuee to move through e and with the maximum number CAP(e) of evacuees who may engage themselves e per time unit. We distinguish:

-The Evacuation node subset N + , whose nodes are labelled i = 1..n and related to some population P(i).

-The Safe node subset N -and the Relay node subset N = . Evacuees of the population P(i) located at i  N + move along a pre-determined path (i), that means a sequence of arcs e i 1,.., e i k(i) connecting i to some safe node S(i). We set

L_TIME(i) =  k = 1..k(i) TIME(e i k)
..k(i): L(i, k) =  k ≤ j TIME(e i k) and L*(i, k) =  k ≥ j TIME(e i k
). We must comply with capacity restrictions: During one time unit, no more than Deb(i) evacuees may start moving from i  N + and no more than CAP(e) evacuees may simultaneously engage themselves on a given arc e. Also, forecast about the way the natural disaster will evolve imposes that for any arc e of the transit network, nobody may start moving along e after deadline Dead(e), while the whole evacuation process should be over at global deadline T-Max. Thus all evacuees coming from i  N + should reach related safe node S(i), before

(i) = Inf (T- Max, Inf k = 1..k(i) (Dead(e i k) + L*(i, k)).
Besides, authorities impose Non Preemption : once evacuees related to evacuation node i have started moving, they must keep on at the same speed and rate along path (i), until they all reach safe node S(i). We denote by v i the related evacuation rate (number of evacuees per time unit which enter on (i) at until i becomes empty. We derive an upper bound v-max(i) for v i by setting: v-max(i) = Inf (Inf j CAP(e i k)), Deb(i)). We also see that if we are provided with the start-date T i of i evacuation process and with its evacuation rate v i then we deduce its end-date T* i = T i + L_TIME(i) + P(i)/v i . We deduce from deadline (i) a minimal evacuation rate vmin(i) = P(i)/((i) -L_TIME(i)). Then, the Non Preemptive Evacuation Planning Problem (NEPP) is about the computation of an evacuation schedule, which means of start-times T i and evacuation rates v i , i  N+. The quality of such a schedule = (T,v) is going to be the weighted safety margin

 i P(i).((i) - T* i).
III. A RCPSP ORIENTED REFORMULATION OF NPEP.

We identify evacuation nodes i of network H and related evacuation jobs. So the key idea here is to consider the arcs e of the network H as resources, likely to be exchanged by evacuation jobs i, j whose paths (i) and (j) share arc e. In order to formalize it, we introduce Conditional Time Lags:

-If (i) = {e i 1 ,.
., e i k(i) } and (j) = {f j 1 ,.., f j k(j) } share arc e = e i k = f j l , and if evacuees from j come on e after evacuees from i, then delay T j -T i will be no smaller than TL-Elem(i, j, e) = L(i, k-1) -L(j, l-1) + P(i)/v i.

-Set Arc(i,j) = {e  (i)  (j)} and TL(i,j, v i) = Sup e  Arc(i,j) (L(i, k-1) -L(j, l-1) + P(i)/v i) = Conditional Time Lag between i and j. If Arc(i,j) ≠ Nil and evacuees of j enter after evacuees of i on the arcs of Arc(i,j), then we must have T j ≥ T i + TL(i,j, v i). We notice TL(i,j, v i) depends in a convex way on the evacuation rate v i of i. This notion is illustrated by following Figure 1: We derive a RCPSP (Resource Constrained Scheduling: [START_REF] Orji | Project Scheduling Under Resource Constraints: A Recent Survey[END_REF][START_REF] Quilliot | Flow Polyedra and RCPSP[END_REF]) reformulation of NEPP, which relies on the fact that we consider every evacuation job i  N + as a job, whose execution requires resources which are arcs e  (i), constrained by their capacities CAP(e)

i dans N + , v-Min(i) ≤ v i ≤ v-Max(i). (E6) Maximize:  i P(i).((i) -T i -L_TIME(i) -P(i)/v i)
Explanation: (E1) tells that every evacuation job i must be achieved before deadline (i). (E2) means that if job i provides j with some access to arc e, then the conditional time lag inequality holds. (E4, E5) express Flow Kirshoff laws: arcs e are resources that evacuation jobs exchange between them; so job i receives v i resource (evacuation rate) for any e  (i) and no more than CAP(e) such resource may be simultaneously distributed between evacuation jobs .

C. NPEP-Second-Step

In case NPEP-First-Step yields a feasible solution (T, v, w) NPEP-Second-Step improves it, by acting on rates v i in such a way time lags L_TIME(i) + P(i)/v i decrease in an ad hoc way. Let us denote by U-Active, the set of pairs (i,j) which are allowed to support non null w i,j,e flow values. We notice that if U-Active is fixed, then resulting restriction of NPEP is a convex optimization problem defined on the (v,w) polyhedron defined by (E4, E5, E6). So we fix U-Active according to the end of NPEP-First-Step, and deal with induced convex program: -We derive from current v, w, values T* i , related critical paths, and values

 = i), i  N + ≥ 0, such that  i P(i). T* i =  i (i)/v i + Constant: Vector Grad = (Grad i = -(i)/v 2 i , i  N +
) is a sub-gradient vector; -Then we modify v and w according to (I1): v <-v + V ; w <-w + W, with V and W s.t V.Grad < 0 and v + V and w + W comply with (E4, E5, E6) and computed by solving Project-Grad following linear program:

Project-Grad(U-Active, v, w, , Grad) LP : {Compute V= (V i , i  N +), and W = (W i,j,e , (i, j)  U-Active, e Arc(i,j)) such that; o  (i,j, e), w i,j,e + W i,j,e ≥ 0 ;

o  i  s,p, e  (i),  j W i,j,e =  j W j,I,e = V i ;

o  e,  j W s, j, e = j W j,p, e = 0 ;

o i ≠ s,p, v-Min(i) ≤ v i + V i ≤ v-Max(i) ; o 2. ≥  i ≠ s,p V i .Grad(i) ≥ }
Then NPEP-Second-Step comes as follows:

Procedure , where n = Car(N +) , m = number of arc e, and  is as above. We both created our own instances and used an instance generator of [START_REF] Artigues | A study of evacuation planning for wildfires[END_REF].In order to get benchmarks, we generated ad hoc schedules (T, v) and derived deadlines (i) which made us be provided with almost optimal solutions. Outputs: For every 10 instance package, we compute:

- Comment: Tighting deadlines (i) improve solutions.

VI. CONCLUSION

We described here a two-step RCPSP oriented algorithm for the NPEP Problem. Remains now to deal with the design of an exact method for small instances and with an integrated computation of routes (i).

1

 1

P

 (x) = 50, v y = 10; P(y) = 40, v y = 15 => L(x,2) = 7; L(y, 2) = 5; TL(x,y v x) = 7 + 4 -5 = 6.

Figure 1 :

 1 Conditional Time Lags.

 , and, for any k = Models and Algorithms for Natural Disaster Evacuation Problems

	Christian Artigues	Alain Quilliot	Hélène Toussaint
	LAAS CNRS	LIMOS CNRS UMR 6158	LIMOS CNRS UMR 6158
	TOULOUSE, France	LABEX IMOBS3, Université	LABEX IMOBS3, CNRS
	Email: artigues@laas.fr	Clermont-Auvergne	
		Bat. ISIMA, BP 10125	Bat. ISIMA, BP 10125
	Emmanuel Hebrard LAAS CNRS TOULOUSE, France	Campus des Cézaux, 63173 Aubière, France Email: quilliot@isima.fr	Campus des Cézaux, 63173 Aubière, France Email: toussain@isima.fr
	Email: hebrard@laas.fr		

 The number Trial of iterations on necessary to get a feasible solution through NPEP-First-Step; -The improvement margin (%) IMPROVE induced by NPEP-Second-Step; -The gap between NPEP .and optimal value VAL Table below provides results for   [1,2].

	Inst. 1: n =	Trial	IMPROVE	GAP	CPU-
	20, m = 10		(%)	(%)	NPEP
	 = 1.2	22.30 13.8	4.7	40.4
	 = 1.5	2.50	29.5	13.0	12.3
	 = 1.7	1.39	40.8	17.7	8.1
	 = 2.0	1.08	61.7	19.3	5.2
	Inst. 1: n =				
	30, m = 15				
	 = 1.2	40.6	14.6	5.6	70.5
	 = 1.5	6.60	30.2	14.5	19.5
	 = 1.7	2.05	42.3	19.1	12.0
	 = 2.0	1.19	65.5	22.5	7.9

IV. ALGORITHMS NMEP model contains both NP-Hard RCPSP and TSP problems. We have to choose between assigning high rates v i to jobs i or let them monopolize the access to transit arcs, or conversely restricting v i in order to make i share its arcs. In order to do it, we implement a two-step approach: MNEP-First-Step searches a feasible schedule satisfying (E1,..,E6), while MNEP-Second-Step increases rates v i in order to improve the weighted safety margin.

A. The Greedy-NPEP Process.

Greedy-NPEP starts from some linear ordering  defined on N +  {s,p}, and considers at any time some job i 0 such that for any j prior to i 0 according to , v j , T j and values (j,e) = access level to arc e that job j can transmit to i 0 are available.Then it applies a 3 stage function Assign(i 0) which computes (see Fig. 1) v i0, T i0 and flow values w j,i0,e , j s.t j  i 0 , and e  Arc(j,i 0), or, in case of failure, a job j-fail  i 0 considered as cause of the failure.

-(1) : Assign scans path (i 0), and for any e in (i 0), provides i 0 with access rate to e in such a way resulting end-date T* i0 ≤ (i 0). (see Fig. 2):

Assign1

For e in (i 0) do Let L-Job = {j s.t (j  i 0) AND (e  Arc(j, i 0) AND ((j, e)  0), ordered according to increasing T j + TL(j, i 0 , v j) values}; v <-0 ; Not Stop ; While L-Job ≠ Nil AND Not Stop do If T j + TL(j, i 0 , v j) + L_TIME(x 0) + P(i 0)/(v+(j, e)) ≤ (i 0) then Compute w such that T j + TL(j, i 0 , v(j)) + L_TIME(x 0) + P(i 0)/(v+w) = (i 0); Stop ; v <-v + w ; w j,i0,e <-w ; Else v <-(j,e) + v; w j,i0,e <-(x,e) ; If Not Stop then Fail : Choose j-Fail in L-Job Else v-aux(e) <-v ; If Not Fail then V i0 <-Sup e v-aux(e); e 0 <-Arg Sup. a value v-aux(e) which may be less than v i0 ; So Assign2 increases the w j,i0,e for e  e 0 in order to make job i 0 run at the same rate for all arcs e of (i 0). This part of the Assign process may induce a failure which Assign2 assign to some job j-Fail. -

(3): Assign3 makes decrease the number of arcs provided with non null w j,i0,e values by shifting values w j,i0,e which involve, for a given j, only one arc e, to another job j ' such that e  Arc(j', i 0), w j',i0,e ≠ 0 and (j', e) ≥ w j,i0,e + w j',i0,e .

Then Greedy-NPEP comes as follows:

Greedy-RCPSP-TL() :

T s <-0 ; For any arc e do (s, e) <-CAP(e); Not Stop; While (Not Stop) and  no fully scanned do Apply Assign to current i 0 and partial schedule; If Success(Assign) then For e in (i 0) and j s.t (j  i 0)  (e  Arc(j,i 0)) do (i 0 , e) <-v i0 ; (j,e) <-(j,e) -w j,i0,e ; Else Stop ; Return the pair (j-Fail, i 0).

B. NPEP-First-Step

Greedy-NPEP may fail even in the case when a solution (T, v, w) exists. It raises the question of the way we deal with linear ordering .

 Initialization of : For any i, we set SME(i) = (i) - L_TIME(i) -2.P(i)/(v-max(i) + v-min(i)), and compute  by randomly sorting N + in such a way that if P(i) < P(j) and SME(i) < SME(j), then i  j.

 Making  evolve. In case of failure, Greedy-NPEP returns a pair (j-Fail, i 0), and this pair is inserted into a Tabu like set FORBID whose meaning is: If (j, i) is FORBID, then we should have (i  j).