
HAL Id: hal-02403836
https://hal.science/hal-02403836

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models and Algorithms for Natural Disaster Evacuation
Problems

Christian Artigues, Alain Quiliot, Hélène Toussaint, Emmanuel Hébrard

To cite this version:
Christian Artigues, Alain Quiliot, Hélène Toussaint, Emmanuel Hébrard. Models and Algorithms for
Natural Disaster Evacuation Problems. 14th Federated Conference on Computer Science and Infor-
mation Systems 2019, Sep 2019, Leipzig, Germany. pp.143-146, �10.15439/2019F90�. �hal-02403836�

https://hal.science/hal-02403836
https://hal.archives-ouvertes.fr

Abstract— We deal here, in the context of a H2020 project,
with the design of evacuation plans in face of natural
disasters: wildfire, flooding… People and goods have to
been transferred from endangered places to safe places. So
we schedule evacuee moves along pre-computed paths
while respecting arc capacities and deadlines. We model this
scheduling problem as a kind of multi-mode Resource
Constrained Project Scheduling problem (RCPSP) and
handle it through network flow techniques.

I. INTRODUCTION

HIS work has been carried on in the context of the
H2020 GEOSAFE European project [4], whose

overall objective is to develop methods and tools
enabling to set up an integrated decision support system
to assist authorities in optimizing the resources during
the response phase to a natural disaster, mainly a wildfire
or a flooding. In such a circumstance, decisions which
have to be taken are about fighting the cause of the
disaster, adapting standard logistics (food, drinkable
water, health…) to the current state of infrastructures,
and evacuating endangered areas (see [2]). We focus
here on the late evacuation problem, that means the
evacuation of people and eventually critical goods which
have been staying at their place as long as possible.

T

While evaluation planning remains mostly designed by
experts, 2-step optimization approaches have been
addressed [2]: the first step (pre-process) involves the
identification of the routes that evacuees are going to
follow; the second step, which has to be performed in
real time, aims at scheduling the evacuation of estimated
late evacuees along those routes. As a matter of fact, this
last step involves 2 distinct work pieces, one about
forecasting, difficult in the case of wildfire, because of
their dependence to topography and meteorology [4], and
the second one about priority rules and evacuation rates
imposed to evacuees [3]. The model which we study here
is closed to the one proposed in [1] and called the non
preemptive evacuation planning problem (NEPP).
According to it, remaining evacuees have been clustered

into groups with same original location and pre-
computed route, and once a group starts moving, then it
must keep on at the same rate until reaching his target
safe area (Non Preemption hypothesis, which matches
practical concerns of the people who supervise the
evacuation process). While authors in [1] address their
model while discretizing both the time space and the rate
domains and applying constraint propagation techniques,
we consider it as an extension of the Resource
Constrained Project Scheduling Problem (RCPSP:
[5,6]), with continuous variables which identify
evacuation rates and with an objective function which
reflects the safety provided to every evacuee. We use this
RCPSP reformulation in order to design a heuristic
algorithm which deals with our problem according to
network flow like techniques, well-fitted to real-time
emergency contexts.

The paper is structured as follows: Section 2 provides the
NEPP model. Section 3 describes our RCPSP
reformulation. Sections 4, 5 are about algorithms and
numerical tests.

II. NON PREEMPTIVE EVACUATION PLANNING (NPEP)

We consider here a transit network H = (N, A): N is its
node set and A its arc set; Every arc e A is provided
with the time TIME(e) required for some evacuee to
move through e and with the maximum number CAP(e)
of evacuees who may engage themselves e per time unit.
We distinguish:
- The Evacuation node subset N+, whose nodes are la-

belled i = 1..n and related to some population P(i).

- The Safe node subset N-and the Relay node subset
N=.

Evacuees of the population P(i) located at i N+ move
along a pre-determined path (i), that means a sequence
of arcs e i

1,.., ei
k(i) connecting i to some safe node S(i). We

set L_TIME(i) = k = 1..k(i) TIME(e ik), and, for any k =

Models and Algorithms for Natural Disaster Evacuation Problems

Christian Artigues
LAAS CNRS

TOULOUSE, France
Email: artigues@laas.fr

Emmanuel Hebrard
LAAS CNRS

TOULOUSE, France
Email: hebrard@laas.fr

Alain Quilliot
LIMOS CNRS UMR 6158

LABEX IMOBS3, Université
Clermont-Auvergne

Bat. ISIMA, BP 10125
Campus des Cézaux,

63173 Aubière, France
Email: quilliot@isima.fr

Hélène Toussaint
LIMOS CNRS UMR 6158
LABEX IMOBS3, CNRS

Bat. ISIMA, BP 10125
Campus des Cézaux,

63173 Aubière, France
Email: toussain@isima.fr

1

1..k(i): L(i, k) = k ≤ j TIME(ei
k) and L*(i, k) = k ≥ j

TIME(ei
k).

We must comply with capacity restrictions: During one
time unit, no more than Deb(i) evacuees may start moving
from i N+ and no more than CAP(e) evacuees may
simultaneously engage themselves on a given arc e. Also,
forecast about the way the natural disaster will evolve
imposes that for any arc e of the transit network, nobody
may start moving along e after deadline Dead(e), while
the whole evacuation process should be over at global

deadline T-Max. Thus all evacuees coming from i N +

should reach related safe node S(i), before (i) = Inf (T-
Max, Inf k = 1..k(i) (Dead(ei

k) + L*(i, k)).
Besides, authorities impose Non Preemption : once
evacuees related to evacuation node i have started
moving, they must keep on at the same speed and rate

along path (i), until they all reach safe node S(i). We
denote by vi the related evacuation rate (number of

evacuees per time unit which enter on (i) at until i
becomes empty. We derive an upper bound v-max(i) for
vi by setting: v-max(i) = Inf (Inf j CAP(ei

k)), Deb(i)). We
also see that if we are provided with the start-date T i of i
evacuation process and with its evacuation rate vi then we
deduce its end-date T*i = Ti + L_TIME(i) + P(i)/vi. We

deduce from deadline (i) a minimal evacuation rate v-
min(i) = P(i)/((i) – L_TIME(i)).
Then, the Non Preemptive Evacuation Planning Problem
(NEPP) is about the computation of an evacuation
schedule, which means of start-times Ti and evacuation

rates vi, i N+. The quality of such a schedule = (T,v)
is going to be the weighted safety margin i P(i).((i) -
T*i).

III. A RCPSP ORIENTED REFORMULATION OF NPEP.

We identify evacuation nodes i of network H and related
evacuation jobs. So the key idea here is to consider the
arcs e of the network H as resources, likely to be
exchanged by evacuation jobs i, j whose paths (i) and

(j) share arc e. In order to formalize it, we introduce
Conditional Time Lags:

- If (i) = {ei
1,.., e

i
k(i)} and (j) = {fj

1,.., f
j
k(j)} share arc e

= ei
k= fj

l, and if evacuees from j come on e after

evacuees from i, then delay T j – T i will be no smaller

than TL-Elem(i, j, e) = L(i, k-1) – L(j, l-1) + P(i)/vi.

- Set Arc(i,j) = {e (i) (j)} and TL(i,j, v i) = Sup e

 Arc(i,j) (L(i, k-1) – L(j, l-1) + P(i)/v i) = Conditional

Time Lag between i and j. If Arc(i,j) ≠ Nil and
evacuees of j enter after evacuees of i on the arcs of

Arc(i,j), then we must have T j ≥ Ti + TL(i,j, v i). We

notice TL(i,j, vi) depends in a convex way on the

evacuation rate vi of i.

This notion is illustrated by following Figure 1:

 P(x) = 50, vy = 10; P(y) = 40, vy = 15 =>
 L(x,2) = 7; L(y, 2) = 5; TL(x,y vx) = 7 + 4 – 5 = 6.

Figure 1: Conditional Time Lags.

We derive a RCPSP (Resource Constrained Scheduling:
[5,6]) reformulation of NEPP, which relies on the fact

that we consider every evacuation job i N+ as a job,
whose execution requires resources which are arcs e

(i), constrained by their capacities CAP(e) and whose
start-dates are constrained by conditional time lags:

NPEP-RCPSP Model :
{Preliminary : We add to the set N+ two fictitious jobs
s (source) and p (sink), in order to express the way
resources are exchanged between jobs as a flow

vector. Then we set, for any i N+: TL(s,i, CAP(e)) =
0 and TL(i,p, vi) = L_TIME(i) + P(i)/vi.

Output Vectors : For any i in N+ {s,p} compute
start-date T i and evacuation rate v i; In order to do it
we involve, for any pair (i,j) and any arc e in Arc(i,j)
the part wi,j,e of access rate to e which is given by i to j

Constraints :

o For any i p, Ti + L_TIME(i) + P(i)/ vi ≤ (i) ;

 (*Deadline Constraints*) (E1)

o for any pair (i,j) and any e in Arc(i,j), w i,j,e ≠ 0 ->

Tj ≥ Ti + TL(i,j, vi); (*Conditional Time Lag

Constraints*) (E2)

o Ts = 0 ; (E3)

o For any i in N +, N + and any arc e in (i), (*Flow

Constraints*): j such that e Arc(x,y) wi,j,e = vi

 = j such that e Arc(j,i) wj,i,e; (E4)

o For any arc e of the transit network H : (*Flow

Constraints*):CAP(e) = i such that e (i) ws,i,e

 = i such that e (i) wi,p,e; (E5)

o For any i dans N+, v-Min(i) ≤ vi ≤ v-Max(i). (E6)

Maximize: i P(i).((i) – Ti – L_TIME(i) - P(i)/vi)

Explanation: (E1) tells that every evacuation job i must

be achieved before deadline (i). (E2) means that if job i
provides j with some access to arc e, then the conditional
time lag inequality holds. (E4, E5) express Flow Kirshoff
laws: arcs e are resources that evacuation jobs exchange
between them; so job i receives v i resource (evacuation
rate) for any e (i) and no more than CAP(e) such
resource may be simultaneously distributed between
evacuation jobs .

2

IV. ALGORITHMS

 NMEP model contains both NP-Hard RCPSP and TSP
problems. We have to choose between assigning high
rates vi to jobs i or let them monopolize the access to
transit arcs, or conversely restricting v i in order to make i
share its arcs. In order to do it, we implement a two-step
approach: MNEP-First-Step searches a feasible schedule
satisfying (E1,..,E6), while MNEP-Second-Step increases
rates vi in order to improve the weighted safety margin.

A. The Greedy-NPEP Process.

Greedy-NPEP starts from some linear ordering defined

on N+ {s,p}, and considers at any time some job i0

such that for any j prior to i0 according to , vj, Tj and
values (j,e) = access level to arc e that job j can transmit
to i0 are available.Then it applies a 3 stage function
Assign(i0) which computes (see Fig. 1) vi0, Ti0 and flow
values w j,i0,e, j s.t j i 0, and e Arc(j,i 0), or, in case of

failure, a job j-fail i0 considered as cause of the failure.

- (1) : Assign scans path (i0), and for any e in (i0),

provides i0 with access rate to e in such a way

resulting end-date T*i0 ≤ (i0). (see Fig. 2):

Assign1
For e in (i0) do

Let L-Job = {j s.t (j i0) AND (e Arc(j, i0) AND

((j, e) 0), ordered according to increasing T j +
TL(j, i0, vj) values}; v <- 0 ; Not Stop ;
While L-Job ≠ Nil AND Not Stop do

If Tj+ TL(j, i0, vj) + L_TIME(x0) +

P(i0)/(v+(j, e)) ≤ (i0) then
Compute w such that Tj + TL(j, i0, v(j)) +
L_TIME(x0) + P(i0)/(v+w) = (i0);
Stop ; v <- v + w ; wj,i0,e <- w ;

Else v <- (j,e) + v; wj,i0,e <- (x,e) ;
If Not Stop then Fail : Choose j-Fail in L-Job
Else v-aux(e) <- v ;

 If Not Fail then Vi0 <- Sup e v-aux(e); e0 <- Arg Sup.

= s,…, x1, …, x2, ….x3, …., x0,….
(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25;

(x0); P(x 0) = 50; L_TIME(x0) = 10; Arc(x2, x 0) =
{e1}; Arc(x1, x0) = {e 1, e2}; Arc(x3, x0) = {e 2}; TL(s,
x0) = 0; TL(x1, x0) = 6; TL(x2, x0) = 3; TL(x3, x0) = 4;

=>
Assign-1 -> ws,x0,e1 = 2; ws,x0,e2 = 3; wx1,x0,e1 = 8; vx0
= 10; Success; Assign- 2 -> wx2,x0,e2 = 7; Success;
Assign-3 -> wx1,x0,e1 = 0; wx2,x0,e1 = 8; Tx0 = 21.

Figure 2: Assign Process.

- (2) : Assign1 computes vi0 and, for any e ≠ e0 in (i0)

a value v-aux(e) which may be less than vi0; So

Assign2 increases the wj,i0,e for e e0 in order to

make job i0 run at the same rate for all arcs e of

(i0). This part of the Assign process may induce a

failure which Assign2 assign to some job j-Fail.

- (3): Assign3 makes decrease the number of arcs

provided with non null wj,i0,e values by shifting

values wj,i0,e which involve, for a given j, only one

arc e, to another job j’ such that e Arc(j’, i0),

wj’,i0,e ≠ 0 and (j’, e) ≥ wj,i0,e + wj’,i0,e.

Then Greedy-NPEP comes as follows:

Greedy-RCPSP-TL() :

Ts <- 0 ; For any arc e do (s, e) <- CAP(e); Not Stop;
While (Not Stop) and no fully scanned do

Apply Assign to current i0 and partial schedule;
If Success(Assign) then

For e in (i0) and j s.t (j i0) (e Arc(j,i0))

do (i0, e) <- vi0; (j,e) <- (j,e) - wj,i0,e;
Else Stop ; Return the pair (j-Fail, i0).

B. NPEP-First-Step

 Greedy-NPEP may fail even in the case when a solution
(T, v, w) exists. It raises the question of the way we deal

with linear ordering .

 Initialization of : For any i, we set SME(i) = (i) –
L_TIME(i) – 2.P(i)/(v-max(i) + v-min(i)), and

compute by randomly sorting N + in such a way that
if P(i) < P(j) and SME(i) < SME(j), then i j.

 Making evolve. In case of failure, Greedy-NPEP
returns a pair (j-Fail, i 0), and this pair is inserted into
a Tabu like set FORBID whose meaning is: If (j, i) is

FORBID, then we should have (i j).
 So, global process NPEP-First-Step comes as follows:

Procedure NPEP-First-Step(Max-Iter: Threshold)

Initialize as described above ; FORBID <- Nil ;
Iter <- 0 ; Not Stop ; Success <- 0 ;
While (Iter ≤ Iter-Max) AND (Not Success) do

Generate consistent with FORBID and Apply
Greedy-NPEP; If Failure then Search a failure
responsible (j-Fail, i0) pair and put into FORBID.

3

C. NPEP-Second-Step

In case NPEP-First-Step yields a feasible solution (T, v,
w) NPEP-Second-Step improves it, by acting on rates v i

in such a way time lags L_TIME(i) + P(i)/v i decrease in
an ad hoc way. Let us denote by U-Active, the set of pairs
(i,j) which are allowed to support non null wi,j,e flow
values. We notice that if U-Active is fixed, then resulting
restriction of NPEP is a convex optimization problem
defined on the (v,w) polyhedron defined by (E4, E5, E6).
So we fix U-Active according to the end of NPEP-First-
Step, and deal with induced convex program:
- We derive from current v, w, values T*i, related

critical paths, and values = i), i N+ ≥ 0, such

that i P(i). T* i = i (i)/vi + Constant: Vector Grad

= (Gradi = - (i)/v2
i, i N+) is a sub-gradient vector;

- Then we modify v and w according to (I1): v <- v +

V ; w <- w + W, with V and W s.t V.Grad < 0 and v +

V and w + W comply with (E4, E5, E6) and computed

by solving Project-Grad following linear program:

Project-Grad(U-Active, v, w, , Grad) LP :

{Compute V= (V i, i N+), and W = (W i,j,e, (i, j)

U-Active, e Arc(i,j)) such that;

o (i,j, e), wi,j,e + Wi,j,e ≥ 0 ;

o i s,p, e (i), j Wi,j,e = j Wj,I,e = Vi ;

o e, j Ws, j, e = j Wj,p, e = 0 ;

o i ≠ s,p, v-Min(i) ≤ vi + Vi ≤ v-Max(i) ;

o 2. ≥ i ≠ s,p Vi.Grad(i) ≥ }

Then NPEP-Second-Step comes as follows:

Procedure NPEP-Second-Step:
Let (T, v, w) be the feasible solution computed by
NPEP-First-Step and T* related end-date vector;
Derive U-Active; Not Stop ; Val <- i P(i). T*i;

While Not Stop do

Compute and coefficients (i), i N ;
Solve Project-Grad(U-Active, v, w, , Grad);
If no solution then Stop Else

Apply (I1), update Ti, T*i and related

critical paths; If Val-Aux = i P(i).Ti; If
Val-Aux ≥ Val then Stop.

V. NUMERICAL EXPERIMENTS.

Purpose: Algorithms were implemented on AMD
Opteron 2.1GHz. Our goal was to evaluate the ability of
NPEP-First-Step to deal with tight deadlines and the
ability of NPEP-Second-Step to improve this solution.

Instances/outputs: An instance is a path collection { (i),
i N+}, given together with values P(i), (i) and

TIME(ei
k). It is summarized by a 3-uple: (n, m,), where

n = Car(N +), m = number of arc e, and is as above. We
both created our own instances and used an instance
generator of [1].In order to get benchmarks, we generated
ad hoc schedules (T, v) and derived deadlines (i) which
made us be provided with almost optimal solutions.

Outputs: For every 10 instance package, we compute:

- The number Trial of iterations on necessary to get
a feasible solution through NPEP-First-Step;

- The improvement margin (%) IMPROVE induced

by NPEP-Second-Step;

- The gap between NPEP .and optimal value VAL

Table below provides results for [1,2].

Inst. 1: n =
20, m = 10

Trial IMPROVE
(%)

GAP
(%)

CPU-
NPEP

 = 1.2 22.30 13.8 4.7 40.4

 = 1.5 2.50 29.5 13.0 12.3

 = 1.7 1.39 40.8 17.7 8.1

 = 2.0 1.08 61.7 19.3 5.2

Inst. 1: n =
30, m = 15

 = 1.2 40.6 14.6 5.6 70.5

 = 1.5 6.60 30.2 14.5 19.5

 = 1.7 2.05 42.3 19.1 12.0

 = 2.0 1.19 65.5 22.5 7.9

Comment: Tighting deadlines (i) improve solutions.

VI. CONCLUSION

We described here a two-step RCPSP oriented algorithm
for the NPEP Problem. Remains now to deal with the
design of an exact method for small instances and with an
integrated computation of routes (i).

REFERENCES

[1] C.Artigues, E.Hebrard, Y.Pencolé, A.Schutt, P.Stuckey: A study
of evacuation planning for wildfires; 17 th Int. Workshop on
Constraint Modelling/Reformulation, Lille, France, (2018).

[2] V.Bayram : Optimization models for large scale network
evacuation planning and management : a review ; Surveys in O.R
and Management, (2016), DOI : 10.1016/j.sorms.2016.11.001.

[3] C.Even, V.Pillac, P.Van Hentenryk: Convergent plans for large
scale evacuation; In Proc. 29 th AAAI Conf. On Artificial
Intelligence, Austin, Texas, p 1121-1127, (2015).

[4] Geo-Safe-; MSCA-RISE 2015 European Project –id 691161.
http://fseg.gre.ac.uk/fire/geo-safe.html. Accessed Jue 12, (2018).

[5] M.J. Orji, S. Wei. Project Scheduling Under Resource
Constraints: A Recent Survey. Inter. Journal of Engineering
Research & Technology (IJERT) Vol. 2 Issue 2, (2013)

[6] A.Quilliot, H.Toussaint: Flow Polyedra and RCPSP, RAIRO-
RO, 46-04, p 379-409, (2012)

4

	Page 1
	Page 2
	Page 3
	Page 4

