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Abstract—  We deal here, in the context of a H2020 project,
with   the   design   of   evacuation   plans   in   face   of   natural
disasters:   wildfire,   flooding…   People   and   goods   have   to
been transferred from endangered places to safe places. So
we    schedule   evacuee   moves   along   pre-computed   paths
while respecting arc capacities and deadlines. We model this
scheduling   problem   as   a   kind   of   multi-mode  Resource
Constrained   Project   Scheduling problem   (RCPSP)   and
handle it through network flow techniques.

I. INTRODUCTION

HIS work has been carried on in the context of the
H2020   GEOSAFE   European   project   [4],   whose

overall   objective   is   to   develop   methods   and   tools
enabling to set up an integrated decision support system
to assist authorities in optimizing the resources during
the response phase to a natural disaster, mainly a wildfire
or a flooding.  In such a circumstance, decisions which
have   to   be   taken   are   about   fighting   the   cause   of   the
disaster,   adapting   standard   logistics   (food,   drinkable
water, health…) to the current state of infrastructures,
and   evacuating   endangered   areas   (see   [2]).   We   focus
here   on   the  late   evacuation   problem,   that   means   the
evacuation of people and eventually critical goods which
have been staying at their place as long as possible.  

T

While evaluation planning remains mostly designed by
experts,   2-step   optimization   approaches   have   been
addressed  [2]: the first step (pre-process)  involves  the
identification  of  the routes  that  evacuees  are  going  to
follow; the second step, which has to be performed in
real time, aims at scheduling the evacuation of estimated
late evacuees along those routes. As a matter of fact, this
last   step   involves   2   distinct   work   pieces,   one   about
forecasting, difficult in the case of wildfire, because of
their dependence to topography and meteorology [4], and
the second one about priority rules and evacuation rates
imposed to evacuees [3]. The model which we study here
is closed to the one proposed in [1] and called the non
preemptive  evacuation  planning  problem (NEPP).
According to it, remaining evacuees have been clustered

into   groups   with   same   original   location   and   pre-
computed route, and once a group starts moving, then it
must keep on at the same rate until reaching his target
safe  area  (Non Preemption  hypothesis,  which  matches
practical   concerns   of   the   people   who   supervise   the
evacuation process). While authors in [1] address their
model while discretizing both the time space and the rate
domains and applying constraint propagation techniques,
we   consider   it   as   an   extension   of   the  Resource
Constrained  Project  Scheduling  Problem (RCPSP:
[5,6]),  with  continuous  variables  which  identify
evacuation rates and with an objective function which
reflects the safety provided to every evacuee. We use this
RCPSP   reformulation   in   order   to   design   a   heuristic
algorithm   which   deals   with   our   problem   according   to
network   flow   like   techniques,   well-fitted   to   real-time
emergency contexts. 

The paper is structured as follows: Section 2 provides the
NEPP  model.  Section  3  describes  our  RCPSP
reformulation.   Sections   4,   5   are   about   algorithms   and
numerical tests. 

II. NON PREEMPTIVE EVACUATION PLANNING (NPEP)

We consider here a transit network  H = (N, A): N is its
node set and  A its arc set; Every arc  e   A is provided
with   the   time  TIME(e)   required   for   some   evacuee   to
move through e and with the maximum  number CAP(e)
of evacuees who may engage themselves e per time unit.
We distinguish:  
- The Evacuation node subset N+, whose nodes are la-

belled i = 1..n and related to some population P(i).

- The Safe  node subset  N-and the Relay  node subset
N=. 

Evacuees of the population P(i)  located at i   N+  move
along a pre-determined path  (i), that means a sequence
of arcs e i

1,.., ei
k(i) connecting i to some safe node S(i). We

set  L_TIME(i) =   k  = 1..k(i)   TIME(e  ik),   and, for any  k  =
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1..k(i):  L(i,  k)  =  k ≤ j  TIME(ei
k)  and  L*(i,  k)  =  k  ≥  j 

TIME(ei
k). 

We  must  comply  with  capacity  restrictions:  During  one 
time unit, no more than Deb(i) evacuees may start moving 
from  i   N+ and  no  more  than  CAP(e)  evacuees  may 
simultaneously engage themselves on a given arc e.  Also, 
forecast  about  the  way  the  natural  disaster  will  evolve 
imposes that for any arc e of the transit network, nobody 
may  start  moving  along  e  after  deadline  Dead(e),  while 
the  whole  evacuation  process  should  be  over  at  global 

deadline  T-Max.  Thus  all  evacuees  coming from  i  N + 

should reach related safe node S(i), before (i) = Inf (T-
Max, Inf k = 1..k(i) (Dead(ei

k) + L*(i, k)). 
Besides, authorities impose Non Preemption : once 
evacuees related to evacuation node i have started 
moving,  they  must  keep  on  at  the  same  speed  and  rate 

along  path (i),  until  they  all  reach  safe  node  S(i).  We 
denote by vi the related evacuation rate (number of 

evacuees  per  time  unit  which  enter  on (i)  at  until  i 
becomes empty. We derive an upper bound v-max(i) for 
vi by setting:  v-max(i) = Inf (Inf j CAP(ei

k)), Deb(i)). We 
also see that if we are provided with the start-date T i of i 
evacuation process and with its evacuation rate vi then we 
deduce  its  end-date  T*i  =  Ti  + L_TIME(i) +  P(i)/vi. We 

deduce  from  deadline (i)  a  minimal  evacuation  rate  v-
min(i) = P(i)/((i) – L_TIME(i)). 
Then, the Non Preemptive Evacuation Planning Problem 
(NEPP) is about the computation of an evacuation 
schedule,  which  means  of  start-times  Ti  and  evacuation 

rates vi, i  N+.  The quality of such a schedule = (T,v) 
is going to be the weighted safety margin  i P(i).((i) - 
T*i). 
 

III. A RCPSP ORIENTED REFORMULATION OF NPEP.    

  
We identify evacuation nodes i of network H and related 
evacuation  jobs.  So the key idea here is to consider the 
arcs e of the network H as resources, likely to be 
exchanged  by  evacuation  jobs  i,  j  whose  paths (i)  and 

(j)  share  arc  e.  In  order  to  formalize  it,  we  introduce 
Conditional Time Lags:    

- If (i) = {ei
1,.., e

i
k(i)} and (j) = {fj

1,.., f
j
k(j)} share arc e 

=  ei
k=  fj

l,  and  if  evacuees  from  j  come  on  e  after 

evacuees from i, then delay T j – T i will be no smaller 

than TL-Elem(i, j, e) = L(i, k-1) – L(j, l-1) + P(i)/vi. 

-  Set Arc(i,j) = {e  (i)  (j)} and TL(i,j, v i) = Sup e 

  Arc(i,j) (L(i, k-1) – L(j, l-1)  + P(i)/v i) = Conditional 

Time Lag between i and j. If Arc(i,j) ≠ Nil and 
evacuees of j enter after evacuees of i on the arcs of 

Arc(i,j),  then we must have  T j ≥ Ti + TL(i,j, v i). We 

notice  TL(i,j,  vi)  depends  in  a  convex  way  on  the 

evacuation rate vi of i.  

This notion is illustrated by following Figure 1: 

 
  P(x) = 50, vy = 10; P(y) = 40, vy = 15  => 
  L(x,2) = 7; L(y, 2) = 5; TL(x,y vx) =   7 + 4 – 5 = 6. 

Figure 1: Conditional Time Lags.  
 
We derive a RCPSP (Resource Constrained Scheduling: 
[5,6])  reformulation  of  NEPP,  which  relies  on  the  fact 

that  we  consider  every  evacuation  job  i   N+  as  a  job, 
whose  execution  requires  resources  which  are  arcs  e  

(i),  constrained  by  their  capacities  CAP(e)  and  whose 
start-dates are constrained by conditional time lags:  
 

NPEP-RCPSP Model : 
{Preliminary : We add to the set N+ two fictitious jobs 
s  (source)  and  p  (sink),  in  order  to  express  the  way 
resources are exchanged between jobs as a flow 

vector. Then we set, for any i  N+: TL(s,i, CAP(e)) = 
0 and TL(i,p, vi) = L_TIME(i) + P(i)/vi. 

Output  Vectors :  For  any  i  in  N+   {s,p}  compute 
start-date T i and evacuation rate v i; In order to do it 
we involve, for any pair (i,j) and any arc e in Arc(i,j) 
the part wi,j,e of access rate to e which is given by i to j 

 
Constraints :  

o For  any  i   p,  Ti +  L_TIME(i)  +  P(i)/  vi ≤ (i) ;

 (*Deadline Constraints*)       (E1) 

o for any pair (i,j) and any e in Arc(i,j),  w i,j,e ≠ 0 ->  

Tj ≥ Ti + TL(i,j, vi); (*Conditional Time Lag 

Constraints*)            (E2) 

o Ts = 0 ;                (E3) 

o For any i in N +, N + and any arc e in (i), (*Flow 

Constraints*):    j such that  e   Arc(x,y)  wi,j,e = vi  

 =  j such that  e   Arc(j,i)  wj,i,e;        (E4) 

o For any arc e of the transit network H : (*Flow 

Constraints*):CAP(e) =  i such that e   (i) ws,i,e  

  =   i such that e   (i) wi,p,e;       (E5) 

o For any i dans N+, v-Min(i) ≤ vi ≤ v-Max(i). (E6) 

Maximize:  i P(i).((i) – Ti – L_TIME(i) - P(i)/vi) 

  

Explanation: (E1) tells that every evacuation job i must 

be achieved before deadline (i). (E2) means that if job i 
provides j with some access to arc e, then the conditional 
time lag inequality holds. (E4, E5) express Flow Kirshoff 
laws: arcs e are resources that evacuation jobs exchange 
between them; so job i receives v i resource  (evacuation 
rate)  for  any  e  (i)  and  no  more  than  CAP(e)  such 
resource may be simultaneously distributed between 
evacuation jobs  . 
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IV. ALGORITHMS 

 

 NMEP  model  contains  both  NP-Hard  RCPSP  and  TSP 
problems.  We  have  to  choose  between  assigning  high 
rates  vi  to  jobs  i  or  let  them  monopolize  the  access  to 
transit arcs, or conversely restricting v i in order to make i 
share its arcs. In order to do it, we implement a two-step 
approach: MNEP-First-Step searches a feasible schedule 
satisfying (E1,..,E6), while MNEP-Second-Step increases 
rates vi in order to improve the weighted safety margin.  
 

A. The Greedy-NPEP Process. 

 

Greedy-NPEP starts from some linear ordering  defined 

on    N+   {s,p},  and  considers  at  any  time  some  job  i0 

such  that  for  any  j  prior  to  i0  according  to ,  vj,  Tj  and 
values (j,e) = access level to arc e that job j can transmit 
to  i0  are  available.Then  it  applies  a  3  stage  function 
Assign(i0)  which  computes (see  Fig.  1)  vi0,  Ti0 and  flow 
values w j,i0,e, j s.t j  i 0, and e  Arc(j,i 0), or, in case of 

failure,  a job j-fail  i0 considered as cause of the failure.   
 

- (1) :  Assign  scans  path (i0),  and  for  any  e  in (i0), 

provides i0 with access rate to e in such a way 

resulting end-date T*i0 ≤ (i0).  (see Fig. 2): 

 
Assign1 
For e in (i0) do 

Let L-Job = {j s.t (j  i0) AND (e  Arc(j, i0) AND 

((j, e)  0), ordered according to increasing T j + 
TL(j, i0, vj) values};  v <- 0 ; Not Stop ; 
While L-Job ≠ Nil AND Not Stop do  

If Tj+ TL(j, i0, vj) + L_TIME(x0) + 

P(i0)/(v+(j, e)) ≤ (i0)  then 
Compute  w  such  that  Tj +  TL(j,  i0,  v(j))  + 
L_TIME(x0) + P(i0)/(v+w) = (i0);  
Stop ; v <- v + w ;  wj,i0,e <- w ; 

Else v <- (j,e) + v; wj,i0,e <- (x,e) ; 
If Not Stop then Fail : Choose j-Fail in L-Job   
Else v-aux(e) <- v ;  

 If Not Fail then Vi0 <- Sup e v-aux(e); e0 <- Arg Sup. 
 

= s,…, x1, …, x2, ….x3, …., x0,…. 
(x0) = {e1, e2}; CAP(e1) = 20, CAP(e2) = 25; 

(x0); P(x 0) =  50;  L_TIME(x0  ) =  10; Arc(x2, x 0) = 
{e1}; Arc(x1, x0) = {e 1, e2}; Arc(x3, x0) = {e 2}; TL(s, 
x0) = 0; TL(x1, x0) = 6; TL(x2, x0) = 3; TL(x3, x0) = 4; 
             

 

=> 
Assign-1 -> ws,x0,e1 = 2; ws,x0,e2 = 3; wx1,x0,e1 = 8; vx0 
= 10; Success; Assign- 2 -> wx2,x0,e2 = 7; Success;  
Assign-3 -> wx1,x0,e1 = 0; wx2,x0,e1 = 8; Tx0 = 21. 

 
Figure 2: Assign Process.  
 

- (2) : Assign1 computes vi0 and, for any e ≠ e0 in (i0) 

a  value  v-aux(e)  which  may  be  less  than  vi0;  So 

Assign2  increases  the  wj,i0,e  for  e   e0 in  order  to 

make  job  i0  run  at  the  same  rate  for  all  arcs  e  of 

(i0). This part of the Assign process may induce a 

failure which Assign2 assign to some job j-Fail.   

- (3):  Assign3  makes  decrease  the  number  of  arcs 

provided with non null wj,i0,e values by shifting 

values  wj,i0,e  which  involve, for a given  j, only one 

arc  e,    to  another  job  j’  such  that e   Arc(j’,  i0),  

wj’,i0,e ≠ 0 and (j’, e) ≥ wj,i0,e + wj’,i0,e. 

 
Then Greedy-NPEP comes as follows: 
 

Greedy-RCPSP-TL() :  

Ts <- 0 ; For any arc e do (s, e) <- CAP(e); Not Stop; 
While (Not Stop) and  no fully scanned do 

Apply Assign to current i0 and partial schedule;   
If Success(Assign) then  

For e in (i0) and j s.t (j  i0)  (e  Arc(j,i0)) 

do (i0, e) <- vi0; (j,e) <- (j,e) - wj,i0,e;  
Else Stop ; Return the pair (j-Fail, i0). 
  

B. NPEP-First-Step 

 

 Greedy-NPEP may fail even in the case when a solution 
(T, v, w) exists. It raises the question of the way we deal 

with linear ordering . 

 Initialization of : For any i, we set SME(i) = (i) – 
L_TIME(i) – 2.P(i)/(v-max(i) + v-min(i)), and 

compute  by randomly sorting N + in such a way that 
if P(i) < P(j) and SME(i) < SME(j), then i  j. 

 Making evolve. In case of  failure, Greedy-NPEP 
returns a pair (j-Fail, i 0), and this pair is inserted into 
a Tabu like set FORBID whose meaning is:  If (j, i) is 

FORBID, then we should have (i  j).    
 So, global process NPEP-First-Step comes as follows:    

 
Procedure NPEP-First-Step(Max-Iter: Threshold) 

Initialize  as described above ;  FORBID <- Nil ; 
Iter <- 0 ; Not Stop ; Success <- 0 ;  
While (Iter ≤ Iter-Max) AND (Not Success) do  

Generate   consistent  with  FORBID  and  Apply 
Greedy-NPEP;  If  Failure  then  Search  a  failure 
responsible (j-Fail, i0) pair and put into FORBID.   
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C. NPEP-Second-Step 

 

In case NPEP-First-Step yields a feasible solution (T, v, 
w)  NPEP-Second-Step improves it, by acting on rates v i 

in such a way time lags L_TIME(i) + P(i)/v i decrease in 
an ad hoc way. Let us denote by U-Active, the set of pairs 
(i,j)  which  are  allowed  to  support  non  null    wi,j,e  flow 
values. We notice that if U-Active is fixed, then resulting 
restriction  of  NPEP  is  a  convex  optimization  problem 
defined on the (v,w) polyhedron defined by (E4, E5, E6). 
So we fix U-Active according to the end of NPEP-First-
Step, and deal with induced convex program:    
- We derive from current v, w, values T*i, related 

critical  paths,  and  values   = i),  i   N+ ≥  0,  such 

that  i P(i). T* i =  i (i)/vi + Constant: Vector Grad 

= (Gradi =  - (i)/v2
i, i  N+)  is a sub-gradient vector;  

- Then we modify v and w according to (I1): v  <-  v  + 

V ; w <- w + W, with V and W s.t V.Grad < 0 and v + 

V and w + W comply with (E4, E5, E6) and computed 

by solving Project-Grad following linear program: 

  
Project-Grad(U-Active, v, w, , Grad) LP :  

{Compute V= (V i, i  N+), and W = (W i,j,e, (i, j)  

U-Active, e Arc(i,j)) such that;  

o  (i,j, e), wi,j,e + Wi,j,e ≥ 0 ; 

o  i  s,p, e  (i),  j Wi,j,e =  j Wj,I,e = Vi ; 

o  e,  j Ws, j, e =  j Wj,p, e = 0 ; 

o i ≠ s,p, v-Min(i) ≤ vi + Vi ≤ v-Max(i) ; 

o 2. ≥  i ≠ s,p Vi.Grad(i) ≥ }  

 
Then NPEP-Second-Step comes as follows:     
 

Procedure NPEP-Second-Step: 
Let  (T,  v,  w)  be  the  feasible  solution  computed  by 
NPEP-First-Step and T* related end-date vector;  
Derive U-Active; Not Stop ; Val <-  i P(i). T*i; 

While Not Stop do 

Compute and coefficients (i), i  N ; 
Solve Project-Grad(U-Active, v, w, , Grad); 
If no solution then Stop Else 

Apply (I1), update Ti, T*i and related 

critical  paths;  If  Val-Aux  =    i  P(i).Ti;  If 
Val-Aux ≥ Val then Stop. 

 

V. NUMERICAL EXPERIMENTS. 

 

Purpose: Algorithms were implemented on AMD 
Opteron 2.1GHz. Our goal was to evaluate the ability of 
NPEP-First-Step to  deal  with  tight  deadlines  and  the 
ability of NPEP-Second-Step to improve this solution.  
 

Instances/outputs: An instance is a path collection { (i), 
i  N+}, given together with values P(i), (i) and 

TIME(ei
k). It is summarized by a 3-uple: (n, m, ), where 

n = Car(N +), m = number of arc e, and  is as above. We 
both  created  our  own  instances  and  used  an  instance 
generator of [1].In order to get benchmarks, we generated 
ad hoc schedules (T, v) and derived deadlines (i) which 
made us be provided with almost optimal solutions.   
 
Outputs: For every 10 instance package, we compute:  

- The number Trial of iterations on necessary to get 
a feasible solution through NPEP-First-Step; 

- The  improvement  margin  (%)  IMPROVE  induced 

by NPEP-Second-Step;  

- The gap between NPEP .and optimal value VAL 

 

Table below provides results for   [1,2].  
 
Inst.  1:  n  = 
20, m = 10 

Trial IMPROVE 
(%) 

GAP 
(%) 

CPU-
NPEP 

 = 1.2 22.30 13.8 4.7 40.4 

 = 1.5 2.50 29.5 13.0 12.3 

 = 1.7 1.39 40.8 17.7 8.1 

 = 2.0 1.08 61.7 19.3 5.2 

Inst.  1:  n  = 
30, m = 15 

    

 = 1.2 40.6 14.6 5.6 70.5 

 = 1.5 6.60 30.2 14.5 19.5 

 = 1.7 2.05 42.3 19.1 12.0 

 = 2.0 1.19 65.5 22.5 7.9 

 

Comment: Tighting deadlines (i) improve solutions.  
 

VI. CONCLUSION 

 
We described here a two-step RCPSP oriented algorithm 
for  the  NPEP  Problem.  Remains  now  to  deal  with  the 
design of an exact method for small instances and with an 
integrated computation of routes (i).   
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