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ABSTRACT

Recent studies have demonstrated that secondary non-Gaussianity induced by gravity will be
detected with a high signal-to-noise ratio (S/N) by future and even by on-going weak lensing
surveys. One way to characterize such non-Gaussianity is through the detection of a non-zero
three-point correlation function of the lensing convergence field, or of its harmonic transform,
the bispectrum. A recent study analysed the properties of the squeezed configuration of the
bispectrum, when two wavenumbers are much larger than the third one. We extend this work
by estimating the amplitude of the (reduced) bispectrum in four generic configurations, i.e.
squeezed, equilateral, isosceles and folded, and for four different source redshifts zs = 0.5,
1.0, 1.5, 2.0, by using an ensemble of all-sky high-resolution simulations. We compare these
results against theoretical predictions. We find that, while the theoretical expectations based
on widely used fitting functions can predict the general trends of the reduced bispectra, a more
accurate theoretical modelling will be required to analyse the next generation of all-sky weak
lensing surveys. The disagreement is particularly pronounced in the squeezed limit.

Key words: methods: analytical – methods: numerical – methods: statistical.

1 IN T RO D U C T I O N

Thanks to recently completed cosmic microwave background (CMB) experiments, such as the Planck space mission1 (Planck Collaboration
XVII 2016a; Planck Collaboration 2018), we now have a standard model of cosmology. There are however many outstanding questions that
remain unanswered including, but not limited to, the nature of dark matter and dark energy; or possible modifications of general relativity
(GR) on cosmological scales (Clifton et al. 2012; Joyce et al. 2012; Planck Collaboration XIV 2016b). In addition, the sum of the neutrino
masses (Lesgourgues et al. 2006) remains unknown. Not to mention aspects of the generation of the primordial fluctuations. Fortunately, it is
expected that the weak lensing surveys in operation, including Dark Energy Survey2 (DES; Abbott et al. 2015), Dark Energy Spectroscopic
Instruments (DESI),3 Subaru Hyper-Suprime Cam,4 KiDS (Kujiken et al. 2015), and near-future CFHTLS5 as well as Stage-IV large-scale
structure (LSS) surveys such as Euclid6(Laureijs et al. 2015), the Large Synoptic Survey Telescope7(Tyson et al. 2015), and the Wide Field
InfraRed Survey Telescope (WFIRST 2015) will provide some clues or even answers to many of the questions that cosmology is facing.

Weak lensing (the minute distortions in the images of the distant galaxies by the intervening LSS) allows to extract information about
the clustering of the intervening mass distribution in the Universe (Munshi et al. 2008). The weak lensing surveys are complementary to

� E-mail: d.munshi@ucl.ac.uk
1Planck
2https://www.darkenergysurvey.org/
3http://desi.lbl.gov
4https://www.naoj.org/Observing/Instruments/HSC/index.html
5http://www.cfht.hawai.edu/Sciences/CFHLS
6http://sci.esa.int/euclid/
7http://www.lsst.org/llst home.shtml
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spectroscopic galaxy redshift surveys such as BOSS8 (Eisenstein et al. 2011) or WiggleZ9 (Drinkwater et al. 2010), as they provide an
unbiased picture of the underlying dark-matter distribution, whereas the galaxies and other biased tracers require a difficult modelling of the
light-to-mass relationship (Desjacques, Jeong & Schmidt 2018) whose uncertainty is hard to assess precisely.

One challenge for weak lensing is that much of the information lies at small scales, where clustering is non-linear and non-Gaussian
(Bernardeau et al. 2002), and theoretical predictions are challenging. Another challenge is that the statistical estimates of cosmological
parameters based on power-spectrum analysis are typically degenerate, e.g. σ 8 (the amplitude of mass density fluctuation) versus �M (matter
density parameter); to overcome these degeneracies, external data sets, e.g. CMB, and the addition of tomographic or 3D (Castro, Heavens &
Kitching 2005) information are often used. In order to address both of these challenges, an alternative procedure is to use higher order
statistics that probe the (quasi) non-linear regime (Barber, Munshi & Valageas 2004; Munshi, Valageas & Barber 2004; Valageas, Munshi &
Barber 2005; Munshi et al. 2011b,c; Munshi, Heavens & Coles 2011d; Song, Taruya & Oka 2015; Byun et al. 2017).

Previously, it has been noted that even in the absence of any primordial non-Gaussianity (Bartolo et al. 2004), gravitational clustering
induces mode couplings that results in a secondary non-Gaussianity which is more pronounced on smaller scales. Thus, a considerable
amount of effort has been invested in understanding the gravity-induced secondary non-Gaussianity from weak lensing surveys. These
statistics include the lower order cumulants (Munshi & Jain 2001) and their correlators (Munshi 2000); the multispectra including the
skew-spectrum (Munshi & Heavens 2010) and kurtosis spectra (Munshi et al. 2011a) as well as the entire PDF (Munshi & Jain 2000) and
the statistics of hot and cold spots. Future surveys such as Euclid will be particularly interesting in this regard. With its large fraction of
sky-coverage, it will be able to detect the gravity-induced non-Gaussianity with a very high signal-to-noise ratio (S/N). It is also worth
mentioning here that, in addition to breaking the degeneracy between cosmological parameters, higher order statistics are also important for
a better understanding of the covariance of lower order estimators (Barber et al. 2004). The construction of morphological estimators such as
the Minkowski Functionals are discussed in Munshi et al. (2012).

The large fraction of sky covered with Euclid will enable us to move from a real-sky correlation function analysis to a more convenient
spectral analysis in the harmonic domain. The methods developed for analysing the CMB data will be helpful in this regard. Several such
estimators were developed and were used to analyse the CMB maps generated by the Planck satellite (Komatsu, Spergel & Wandelt 2005;
Munshi & Heavens 2010; Bucher, Racined & Tente 2016; Fergusson, Ligouri & Shellard 2016) and produced the currently best available
constraints on non-Gaussianity in inflationary models as well as resulted in the detection of secondary non-Gaussianity (Planck Collaboration
XVII 2016a).

In a recent paper, a new set of estimators that are particularly sensitive to the squeezed state of the bispectra also known as the Integrated
Bispectra (IB) were proposed (Munshi et al. 2019). These estimators are interesting because of their simplicity and ease of implementation.
Such estimators have also been used in 3D for quantifying galaxy clustering (Chiang et al. 2015) as well as in 1D to probe Ly α absorption
features (Chinag et al. 2017; Chiang & Slosar 2018). Here, we go beyond the squeezed configuration and extend the results to other shapes
that include equilateral, folded and isosceles configurations. We use the techniques developed in Namikawa et al. (2019) for CMB lensing.
Using numerical ray-tracing simulations, we check the validity of various approximations in the construction of such estimators.

This paper is organized as follows. In Section 2, we briefly summarize the theoretical results (for flat-sky as well as in all-sky limit). The
simulations are presented in Section 3. The results are presented in Section 4. Finally, the discussions are presented in Section 5.

2 W EAK LENSING CONVERGENCE, BISPECTRU M, AND ESTI MATORS

One of the first estimators developed for the study of non-Gaussianity is also known as the KSW estimator (Komatsu et al. 2005) which is a
one-point estimator and is based on separable template fitting. It is computationally fast but being an one-point estimator it cannot differentiate
independent contributions to non-Gaussianity.

The skew-spectrum estimator developed in Munshi & Heavens (2010) provides a power spectrum related to the bispectrum. It is
an extension of the one-point KSW estimator and retains more information on the bispectrum. Being an �-dependent function, it can
separate different scale-dependent contributions to the bispectrum and thus can be valuable in separating systematics from true signal. An
implementation of skew-spectrum in the context of weak-lensing analysis will be presented elsewhere (Munshi et al. 2019; in preparation).

The modal decomposition (Fergusson et al. 2016) is a generalization of KSW estimator and it relies on the expansion of the target or
theoretical bispectrum (template) as well as the bispectrum of the map in a basis function. A general basis function can be tackled in this
method and separability is not a requirement.

2.1 Angular bispectrum

In this section, we provide a brief review of the existing literature and collate the available results that will be later used in this paper. The
weak lensing convergence (Munshi et al. 2008), κα , and its harmonic coefficients, κα

�m, are related through the following forward and reverse
harmonic transformations and are expressed in terms of the spherical harmonics of degree � and order m: Y�m(�̂p) defined over a discretized

8http://www.sdss3.org/surveys/boss.php
9http://wigglez.swin.edu.au/
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sphere as

κα
�m =

∑
p

κα(�̂p)Y �
�m(�̂p) ��̂p; κα(�̂p) =

∑
�m

κα
�mY�m(�̂p). (1)

The Greek index α labels tomographic bins. Here, the unit vector �̂p describes the angular position of the pth pixel, (∗) represents complex
conjugation, and ��̂p denotes the pixel area (assumed to be the same for all pixels). The three-point correlation function of the spherical
harmonic coefficients also known as the angular bispectrum is defined through the following expression [see e.g. Bartolo et al. (2004) for a
review]:〈

κα
�1m1

κ
β

�2m2
κ

γ

�3m3

〉
= B

αβγ

�1�2�3

(
�1 �2 �3

m1 m2 m3

)
; (2a)

B
αβγ

�1�2�3
=

∑
m1m2m3

(
�1 �2 �3

m1 m2 m3

)〈
κα

�1m1
κ

β

�2m2
κ

γ

�3m3

〉
. (2b)

The angular brackets represent ensemble averaging. This form preserves the rotational invariance of the three-point correlation function in
the harmonic domain. The quantity in parentheses is the Wigner 3j-symbol, which is non-zero only for triplets (�1, �2, �3) satisfying the
triangularity condition |�1 − �2| ≤ �3 ≤ �1 + �2 and the condition that the sum �1 + �2 + �3 is even, ensuring the parity invariance of the
bispectrum (we will ignore any parity violating physics). Parity invariance imposes a selection rule that ensures underlying invariance of the
field under spatial inversion. The analysis here can be extended to directly compute the bispectrum from shear γ maps that would include
both ‘electric’ E and ‘magnetic’ B modes. The parity violating contributions to bispectrum can be obtained by constructing a bispectrum that
includes both E and B modes. This can be used to detect any possible parity violating physics as well as other systematic effects.

The reduced bispectrum b�1�2�3 is typically defined through the following relation by introducing a geometric factor h�1�2�3 that only
depends on � and not on the convergence map κ:

b
αβγ

�1�2�3
= h−1

�1�2�3
B

αβγ

�1�2�3
; h2

l1l2l3
= 
�1
�2
�3

4π

(
�1 �2 �3

0 0 0

)2

; 
�i
= 2�i + 1. (3)

The reduced bispectrum b�1�2�3 was introduced by Komatsu & Spergel (2001), see Babich, Creminelli & Zaldarriaga (2004) for an elaborate
discussion, it is useful in establishing the all-sky and flat-sky correspondence. The factor h�1�2�3 represents the geometrical factors that depend
on the harmonics �. We will write equation (2b) using the formal expression that will be used below to define the estimator:

B
αβγ

�1�2�3
=

〈∫
d�̂Lα

�1
(�̂)Lβ

�2
(�̂)Lγ

�3
(�̂)

〉
; Lα

�i
(�̂) =

�i∑
mi=−�i

κα
�imi

Y�imi
(�̂). (4)

The fields Lα
�i

are constructed using maximally filtered convergence or κ fields by keeping only one harmonic mode. A binned version which
we will implement is defined by constructing the Lα

bi
, which uses the coarse-grained harmonics defined in a bin. Binning reduces the scatter

in the estimator; however, unbinned estimates can be used as well for parameter estimations. The binning will mix various shapes that we
will discuss later:

B
αβγ

b1b2b3
=

〈∫
d�̂Lα

b1
(�̂)Lβ

b2
(�̂)Lγ

b3
(�̂)

〉
; Lα

bi
(�̂) =

∑
�∈bi

�∑
m=−�

κα
�mY�m(�̂). (5)

The angular brackets represent ensemble averaging. In the following, we will discuss the coarse-grained estimator for the reduced bispectrum.
Notice that in addition to cross-correlating different tomographic bins, the estimator can also be used to cross-correlate external fields including
e.g. the y-parameter maps from thermal Sunyaev–Zel’dovich (tSZ) effect. A simple expression for the covariance can be constructed in the
noise-dominated regime [see e.g. Kayoa, Takada & Jain (2019) and Sato & Nishimichi (2019) for the non-Gaussian contribution to the
covariance matrix]:〈

B̂
αβγ

�1�2�3
B̂

μνη
�4�5�6

〉
= h2

�1�2�3
Cαμ

�1
Cβν

�2
Cγ η

�3
δ�1�4δ�2�5δ�3�6 + cyc.perm.; (6a)

σ 2
(
B

αβγ

�1�2�3

)
=

∑
�1∈�1

∑
�2∈�2

∑
�3∈�3

h2
�1�2�3

Cαβ

�1
Cβγ

�2
Cγα

�3
+ cyc.perm. (6b)

The expressions ‘cyc.perm.’ above represent a cyclic permutation of the superscripts (greek indices) that represents individual tomographic
bins. The angular cross-spectra of two different bins are represented by Cαβ

� = 〈κα
�mκ

β∗
�m〉. In case of a partial-sky coverage originating from an

observational mask the linear term needs to be subtracted to make the estimator unbiased (Munshi & Heavens 2010):

B
αβγ (lin)
�1�2�3

=
Npix∑
p

[
Lα

�1
(�̂p)

〈
Lβ

�2
(�̂p)Lγ

�3
(�̂p)

〉
+ Lβ

�2
(�̂p)

〈
Lα

�1
(�̂p)Lγ

�3
(�̂p)

〉
+ Lγ

�3
(�̂p)

〈
Lα

�1
(�̂p)Lβ

�2
(�̂p)

〉]
. (7)

Here, Npix is the number of pixel and the discrete summation (which replaces integrals) represents a pixelization scheme. The ensemble
averaging is computed by using many Gaussian realizations with the same power spectrum C� and the resulting unbiased estimator B̂ can
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now be constructed from the pseudo estimator B̃:

B̂
αβγ

�1�2�3
= B̃

αβγ

�1�2�3
− B

αβγ (lin)
�1�2�3

. (8)

The pseudo-estimator B̃ is constructed by restricting the integration in equations (3) and (4) to the observed region of the sky. Here, B̂
αβγ

�1�2�3

represents the all-sky estimator which is constructed from a partial sky measurement represented by B̃
αβγ

�1�2�3
and corrections due to partial sky

coverage is encoded in the term B
αβγ (lin)
�1�2�3

defined in equation (7).

2.2 Estimator

Using the definitions in the previous section, we outline the estimator here that will be used for analysing the simulations. The reduced
bispectrum b�1�2�3 can be estimated by the following expression [see Namikawa et al. (2019) for a detailed derivation]:

b�1�2�3 = 1

h2
�1�2�3

Npix∑
p

Lα
1 (�̂p)Lβ

2 (�̂p)Lγ

3 (�̂p) ≈
√

4π

∑Npix
p Lα

�1
(�̂p)Lβ

�2
(�̂p)Lγ

�3
(�̂p)∑Npix

p h�1 (�̂p)h�2 (�̂p)h�3 (�̂p)
. (9)

The first equality uses the expression of b
αβγ

�1�2�3
in terms of B

αβγ

�1�2�3
as given in equation (3) and uses the definition of Lα

�i
in equation (4) to

express B
αβγ

�1�2�3
. The individual L maps are constructed using modes estimated from maps as described in equation (5). The construction of the

denominator can be done either using the standard textbook (Edmonds 1968) expression or using similar technique used for the numerator.
We start by noticing the fact that h2

�1�2�3
defined in equation (3) can be expressed as a Gaunt Integral as follows:

h2
�1�2�3

=
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

∫
Y�10(�̂)Y�20(�̂)Y�30(�̂)d�̂. (10a)

Next, we define the functions hi(�̂p) as follows and use a discrete sum to replace the integral:

h2
�1�2�3

= 1√
4π

Npix∑
p

h1(�̂p)h2(�̂p)h3(�̂p); h�i
(�̂p) =

∑
�

√
(2� + 1)Y�i0(�̂p). (10b)

This factor does not depend on the source-redshift or convergence power spectrum and has a purely geometric origin. To reduce the
computational cost as well as the scatter we provide the bin estimates instead of the mode-by-mode result. Notice that binning mixes different
types of bispectrum as all possible modes in a given bin contribute. However, this effect can be modelled theoretically before comparing with
data. Reducing the size of the bins can effectively control such contamination. Previous study by Namikawa et al. (2019) has found the effect
of binning to be significant for all shapes but comparatively less significant for the equilateral case. The binning can be introduced through
the following expression:

b
αβγ

b1b2b3
=

∑
�i∈bi

h2
�1�2�3

b
αβγ

�1�2�3∑
�i∈bi

h2
�1�2�3

. (11)

As we mentioned before, the above estimator can also be generalized to analyse directly the shear maps by decomposing them into electric
E and magnetic B modes. The linear terms appearing due to partial sky coverage will be introduced later in this section.

Typically two different methods are pursued in the detection of non-Gaussianity. The first method uses a template for the detection
relying on a matched-filter technique. In this case, the spherical harmonic coefficients are convolved with weights to make them near optimal.
Such methods work in the weakly non-Gaussian case. In case of lensing, non-Gaussianity is more dominant and optimality is less of an issue
as S/N is rather high. We choose a non-parametric estimator (also called a binned estimator) which is sub-optimal but that does not rely on a
theoretical model.

2.3 Convergence bispectrum and matter bispectrum

In this section, we express the weak lensing bispectrum B as a line-of-sight integration of bispectrum Bδ associated with the density contrast
δ. The gravitational deflection potential φ, which is related to the convergence κ , can be expressed as a line-of-sight integration of Weyl
potential � as follows:

φ(�̂) = −2
∫ χs

0
dχW (χ, χs)�(χ, �̂); W (χ, χs) = χs − χ

χχs

�(χs − χ ); κ�m = 1

2
�(� + 1)φ�m. (12)

Here, W(χ , χ�) represents the lensing kernel and χ is the radial comoving distance and � is the unit step function. The comoving radial
distance to the source plane is denoted as χ s. Using the flat-sky approximation the convergence bispectrum B�1�2�3 can be related to the
underlying matter bispectrum Bδ through the following line-of-sight integration:

B�1�2�3 =
∫ χs

0
dχ

[
3�MH 2

0

2a(χ )

]3

χ2W 3(χ, χs)Bδ

(
�1

χ
,
�2

χ
,
�3

χ
, χ

)
; ki = �i

χ
. (13)
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The flat-sky bispectrum is defined in terms of the 2D Fourier coefficients κ(l):

〈κ(l1)κ(l2)κ(l3)〉 = (2π)2δ2D(l1 + l2 + l3)b(l1, l2, l3). (14)

The reduced bispectrum satisfies the relationship b�1�2�3 ≈ b(l1, l2, l3) (Bartolo et al. 2004). Our analytical predictions are derived using the
flat-sky approximation; though, the numerical results are derived using all-sky simulation we expect that for � > 100 these two results should
match [see e.g. Kitching et al. (2017) for related discussions in the context of power spectrum]. The gravity-induced matter bispectrum Bδ(k1,
k2, k3, χ ) is often modelled using standard tree-level perturbation theory in the quasi-linear regime. We use a fitting function for Bδ in our
computation of B using equation (13) which is described in Appendix A. A generalization to 3D bispectrum is presented in Appendix B.

2.4 Shapes of weak lensing convergence bispectrum

The bispectrum represents three-way interaction of three different wave vectors in 3D or harmonic multipoles in spherical sky. To guarantee
translational invariance in the case of 3D and rotational invariance on the sphere the vectors should form a closed triangle. Various triangular
configurations have been studied in great detail in the context of inflationary models and they can be related to a specific inflationary
mechanism, e.g. the squeezed model is related to the local form of non-Gaussianity (Salopek & Bond 1990, 1991; Gangui et al. 1994),
and the equilateral form of primordial non-Gaussianity appears in the inflationary models with a non-canonical kinetic term (Alishahiha,
Silverstein & Tong 2004; Creminelli et al. 2006; Chen, Easther & Lim 2007; Cheung et al. 2008).

Concerning the input of large-scale structure formation scenarios, the various shapes can also give clues on the gravitational dynamics
at work to create the resulting convergence maps. For the equilateral case, the length of three sides of the triangle are equal and in real space
this bispectrum can represent possibilities as dictated by the signature of the bispectrum. A positive amplitude for the reduced bispectrum
will correspond to compact collapsed overdense regions surrounded by underdense regions, whereas the negative amplitude corresponds to
underdense regions surrounded by overdense objects. The positive bispectrum will correspond to positive skewness (representing long tail of
positive κ values) and similarly a negative bispectrum will represent negative skewness that correspond to long tail of negative κ values in
probability distribution function of κ . The formation of large-scale structure formation is known to induce a positive skewness and hence a
positive amplitude for the reduced bispectrum.

Exact equilateral configurations are less likely just as numerical simulations in real space do not often produce exact spherically collapsed
overdense regions. The elliptical or elongated overdense regions are represented by folded configuration of bispectrum. In the limiting case,
these can take the shape of filaments.

The squeezed configuration corresponds to the situation when one wave vector is much smaller compared to the other two. In the extreme
squeezed limit when one of the wave vectors approaches zero, the other two wave vectors are equal and opposite to each other. The squeezed
configuration thus can be understood as a response to a long wavelength modulation of the local power spectrum. This response function
approach (Berreira & Schmidt 2017) have recently been studied and investigated in detail by many authors in a scenario also known as the
separate universe formalism (Li, Hu & Takada 2014; Baldauf et al. 2016). This method was recently studied in the context of weak lensing
convergence maps using a different approach that we use here by Munshi et al. (2019). For a Gaussian random field, the coupling of local
fluctuations to long wavelength modulation is zero. For a positive bispectrum, long-term fluctuations enhance the small-scale collapse. The
squeezed limit has also been studied in diverse cosmological context, e.g. in the case of CMB lensing, galaxy clustering as well as Ly α

absorption studies (see e.g. Chiang et al. 2015; Chinag et al. 2017; Chiang & Slosar 2018; Munshi et al. 2019; and references therein). The
study of squeezed limits are important from another aspect. In recent studies, consistency relations were obtained in the squeezed limit that
can be used as a diagnostics to test any violation from Gaussian initial conditions or modification of gravity. The test of such consistency
relations can be performed using weak lensing observations that can give a rare glimpse of non-perturbative regime of gravitational clustering
(Kehagias & Riotto 2001).

Clearly, the one-to-one correspondence of 3D shapes and their 2D counterparts is lost due to projection. The numerical results for these
configurations will be presented in Section 5.

3 SI M U L AT I O N S

We use the all-sky weak-lensing maps generated by Takahashi et al. (2017).10 These maps were generated using ray-tracing through N-body
simulations using multiple lens planes and to generate convergence κ as well as shear γ maps. The source redshifts used were in the range
zs = 0.05–5.30 at an interval �χ = 150h−1 Mpc (corresponding to �zs = 0.05 at the nearby universe). The simulations also include maps
generated for sources placed at last scattering surface for CMB lensing studies. The simulations do not assume the Born approximations and
do include post-Born corrections and its higher order analogues to an arbitrary order. However, such corrections are expected to be negligible
for the low source redshift that we are interested here (Namikawa et al. 2019; Pratten & Lewis 2019). Many checks were conducted using
these maps and were found to be in good agreement with theoretical predictions. For a given redshift, sets of maps were generated using
different resolution in HEALPix11 format (Gorski et al. 2016) that uses equal area pixelization scheme. The number of pixels Npix = 12N2

side

10http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky raytracing/
11https://healpix.jpl.nasa.gov/
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Figure 1. Examples of simulated κ maps used in our study. The left-hand panel corresponds to zs = 0.5, while the right-hand panel corresponds to zs = 2.0.
The maps were generated at a resolution of Nside = 4096. See Section 3 for more detail discussion about construction of maps used in our study.

is defined in terms of the resolution parameter Nside. Detail test of electric/magnetic (E/B) decomposition of shear maps and construction
of κ maps can be found in Takahashi et al. (2017). For our purpose, we use the κ maps generated at Nside = 4096. These maps have been
cross-checked using higher resolution maps constructed at Nside = 8192, 16384 and were found to be in good agreement with theoretical
predictions up to the angular harmonics � ≤ 3600. The corresponding angular resolutions are 0.86, 0.43, and 0.21 arcmin for Nside = 4096,
8192, and 16384, respectively. In our study, we will be restricting us to � ≤ 2048. Beyond this limit, it is expected that baryonic feedback
may play increasingly dominant role (Weiss et al. 2019). These maps were recently used to analyse the bispectrum in a recent publication but
in the context of CMB lensing (Namikawa et al. 2019). In Fig. 1, we show examples of maps used in our study.

These simulations assume a �CDM background cosmology with the following set of cosmological parameters �CDM = 0.233, �b =
0.046, and �M = �CDM + �b = 0.279. The Hubble parameter was assumed to be h = 0.7, the amplitude of density fluctuation σ 8 = 0.82,
and the spectral index ns = 0.97.

4 R ESULTS

Bispectrum and other higher order multispectra will be detected in ongoing and future weak lensing surveys with a high S/N ratio. In
this paper, we compare the theoretical modelling of bispectrum with high-resolution all-sky numerical simulations. In principle, all possible
configurations of the bispectrum should be considered. This is computationally demanding so, we have concentrated on specific configurations
of the bispectrum. In our numerical investigation, we have considered the following representative shapes for the bispectrum: (a) squeezed:
�1 = 50, �2 = �3 = �; (b) equilateral: �1 = �2 = �3 = �; (c) isoceles: �1 = �, �2 = �3 = 1000; and (d) folded: �1 = 2�2 = 2�3 = �. We have
restricted our comparison to � < 2048 modes, as it is expected that the higher order multipoles will be affected by baryonic feedback that are
difficult to model accurately. For each model, we have considered four tomographic bins zs = 0.5, 1.0, 1.5, and 2.0. The source redshift zs

increases from bottom to top in each panel for various curves shown in Fig. 2.
The results for equilateral configurations are shown in the upper left-hand panel of Fig. 2. The numerical results agree reasonably well

with the theoretical predictions based on commonly used fitting functions for � > 200, at least for � < 2048. This is consistent with the general
trend of results reported in Namikawa et al. (2019). This deviation of numerical results at lower �s from theoretical predictions is visible in
all of the models we have studied and is likely to be related to the use of flat-sky approximation in our theoretical derivations. Corrections, to
flat-sky results can be included in a systematic manner (Kitching et al. 2017). The results of comparison for the squeezed model is presented
in the upper right-hand panel. We see maximum departure from theoretical predictions in case of squeezed configuration where the theoretical
predictions can be higher by a factor of 2 compared to the results obtained from simulations. The Fig. 2 depicts the folded (lower left-hand
panel) and the isosceles (lower right-hand panel) case. In case of the folded model, we find significant departure from theoretical predictions
at � < 500. The theoretical model can predict the results from simulations reasonably well. However, the small � discrepancy is far more
pronounced than other models. The isosceles case only matches with theoretical predictions for � = 1024, where the configuration is actually
close to the equilateral case.

While corrections to the flat-sky approximation may explain suppression of the low � results in case of equilateral model, the finite
volume corrections cannot be ignored for other cases. The bispectrum is a non-linear statistic. The effect of finite volume is well studied in
the real space at the level of one point statistics, e.g. cumulants and their correlators. These effects are also well documented for estimation of
power spectrum also known as the integral constraint (see e.g. Bernardeau et al. 2002). However, similar studies are lacking for the bispectrum
that is proportional to the product of two power spectra probing different scales and hence are expected to be more affected by such an effect.
This is also true in real space where e.g. skewness and other higher order moments are more affected by the finite-volume effect than the
variance. The finite-volume effect is more pronounced in the highly non-linear regime. In equilateral case, only one scale is involved making
its interpretation comparatively simpler. For other three cases, different levels of non-linearities are probed by the different wave numbers of
the bispectrum. In any case, the fact that finite-volume correction is a factor in our results can easily be seen in Fig. 2. The CMB lensing, on

MNRAS 493, 3985–3995 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/3/3985/5741727 by guest on 28 M
ay 2024
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Figure 2. The reduced bispectrum b�1�2�3 measured in simulations for four different shapes are compared against theoretical predictions. The upper left-hand
panel corresponds to the equilateral configuration �1 = �2 = �3 = � and depicts �2b��� as a function of �. The sources are placed at different redshifts; from
bottom to top, they correspond, respectively, to zs = 0.5, 1.0, 1.5, and 2.0. The theoretical predictions are computed using the fitting function given in Gil-Marin
et al. (2012). The maps used for this analysis were constructed at Nside = 4096. No noise or mask were included. For the squeezed case (upper right-hand
panel), the bispectrum b�′�′� is shown for �1 = �

′ = 50 and �2 = �3 = �. The error bars were computed using 10 realizations for each redshift. We use a total
of 20 bins to cover the range of multipoles. The solid lines in each panel correspond to theoretical predictions computed using the fit in equations (A1–A3c).
The dashed lines include the effect of binning. The expressions for the binned bispectrum are presented in equation (11). The lower left-hand panel shows the
folded configuration, while the lower right-hand panel depicts the isosceles configuration. For the isosceles case, we take �1 = � and �2 = �3 = 1000. For the
folded case, we have �1 = 2�2 = 2�3 = � and we plot �b�′�′� as a function of �. Our results are derived using flat-sky approximations.

the other hand, where the source is at a rather high redshift zs ≈ 1100, probes the quasi-linear regime thus reducing the effect of finite-volume
corrections. The corrections to the flat-sky expressions are also less prominent for a high source redshift. A broader binning can reduce the
discrepancy between theory and simulations that we have noted but at the cost of degrading the cosmological information content of the
spectrum.

In a recent paper (Takahashi et al. 2019), an improved fitting function was presented. In this new study, simulation results with various
box-sizes (L = 0.2, 1, 2, 4 Gpc h−1) were combined to cover a wider range of scales. The spatial resolution of these simulations is better
than the previous studies employed to obtain a fitting function. At large scales (k < 0.3 h Mpc−1), new results were also calibrated using
one-loop perturbation theory. A higher number of fitting parameters (=52) were used compared to the previous models. This finding supports
our claim that the existing fitting functions are inadequate and need to be improved.

Other approaches to model the bispectrum have also been tried. A Gaussian process used to interpolate between various cosmologies
was developed in Coulton et al. (2019). Such methods can bypass the need for a fitting function. However, such emulator based approaches
can be computationally expensive, whereas the fitting function based parallel methods used here are relatively cheaper.

A few comments about our estimator are in order. The estimator presented here depends on reconstituted maps that are constructed from
the individual harmonic components of the original map. This procedure is only limited by the speed and memory usage of the map2alm and
alm2map routines of the HEALPY12 software. The determination of the reduced bispectrum for individual triangular combinations of {�1�2�3}
in general requires one inverse harmonic transform and three forward transforms. The speed scales as �2

max with �max being the maximum
harmonic multipole probed or as Npix, where Npix is the number of pixels in the map. The computation of the 3j symbols also uses a map-based

12https://healpy.readthedocs.io/en/latest/
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approach. We have also incorporated the linear-terms in the estimators to take into account an arbitrary partial sky-coverage. In contrast, the
maps and estimator used in Coulton et al. (2019) cover a flat patch of the sky.

The estimator can be generalized to directly use shear maps. Thus avoiding the need of reconstructing a convergence map. It can be
extended to probe the shapes of higher order multispectra e.g. trispectrum. In addition, it can be extended to take into account photo-z
information and study shapes of bispectrum or tripsectrum in 3D. The estimator can also handle external data sets to probe shapes of mixed
bispectra. We plan to address these issues separately in future publications.

5 D ISCUSSION

The gravity induced bispectrum, arising from non-Gaussianity in weak lensing maps, can help to tighten the constraints on cosmological
parameters. We have tested available theoretical fitting functions accuracy to reproduce numerical results. The lensing bispectrum as a possible
probe for modified gravity theories as well as neutrino masses will be a natural future step.

Impact of modified gravity theories on CMB lensing induced bispectrum was studied in Namikawa et al. (2019) to some extent.
Theoretical modelling of bispectrum in modified gravity scenarios is more challenging. Extensions of the perturbative approach were
considered in Bose & Taruya (2018) and Namikawa, Bouchet & Taruya (2018) by introducing more freedom to the kernels and validating
them using numerical simulations. Such approaches and others including halo model predictions have already been proposed with varying
degree of success for two main type of modified gravity theories, i.e. (a) models with Vainshtein-screening mechanism that includes the
DGP model as well as the Hordenski (Hordenski 1974) and beyond Hordenski theories (Gleyzes et al. 2015a,b; Langois & Noui 2016)
and (b) the models with Chameleon screening that includes the Hu-Sawicki f(R) model (Hu & Sawicki 2016). In the DGP model (Dvali,
Gabadadze & Porati 2000), the bispectrum from simulations can be reproduced using the GR expression by suitably modifying the power
spectrum. The situation is somewhat more complicated for f(R) theories. However, the fitting used for �CDM needs first to be standardized
more accurately. Only then can the deviations from them can be studied meaningfully (Gallagher, Clifton & Clarkson 2019; Maartens et al.
2019). The numerical modelling is more important at small scales where analytical results start to fail. In future, it will also be interesting to
consider the effect of neutrino mass on bispectrum when simulated all-sky lensing maps for such cosmologies will be available (Liu et al.
2018; Coulton et al. 2019).

In addition to studying various shapes of weak lensing bispectrum, we have extended the framework in several directions. We have
computed the covariance of our estimator in the noise dominated regime in the weakly non-Gaussian limit. We have shown how the estimator
can include tomographic bins. Using spherical Fourier–Bessel (sFB) decomposition, we have extended the estimator to 3D. Inclusion of
weights to make the estimator near-optimal is described in the limit of vanishing non-Gaussianity, i.e. in the noise dominated regime. We also
provide a simplistic estimate of the covariance. The extension to next higher order namely to the level of the reduced trispectrum is outlined
in Appendix C.
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APPENDIX A : FITTING FUNCTIONS TO T HE MATTER BI SPECTRU M

The fitting functions were provided by Scoccimaro & Couchman (2001) and Gil-Marin et al. (2012). They have been tested in many different
contexts. In a recent paper (Namikawa et al. 2019), they were used to model CMB lensing. Following earlier studies by various authors
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(Takada & Jain 2004; Kilbinger & Schneider 2005; Coulton et al. 2019), we use these functions to model weak lensing at low source
redshifts. This is important given that the ongoing and future mission will be able to measure the lensing-induced bispectrum with high level
of significance. This requires not only a (near) optimal data analysis pipeline but also an accurate theoretical modelling.

The perturbative matter bispectrum has the following form in terms of the perturbative kernels F2 (Bernardeau et al. 2002):

Bδ(k1, k2, k3; χ ) = 2F2(k1, k2, z)Pδ(k1, z)Pδ(k2, z) + cyc.perm., (A1)

where Pδ(k, z) is the matter power spectrum at a redshift z. The second-order kernel F2 can be computed using Eulerian perturbation theory
that has the following form with a = b = c = 1. However, comparison against numerical simulation shows that phenomenological extension
is possible by making the parameters a, b, and c scale and redshift dependent (Scoccimaro & Couchman 2001; Gil-Marin et al. 2012):

F2(k1, k2, z) = 5

7
a(k1, z)a(k2, z) + 1

2

k2
1 + k2

2

k1k2
b(k1, z)b(k2, z) cos θ + 2

7
c(k1, z)c(k2, z). (A2)

We list the functions that appear in the fitting function for completeness:

a(k, z) = 1 + σ8(z)a6
√

0.7Q(neff )(qa1)neff+a2

1 + (qa1)neff+a2
, (A3a)

b(k, z) = 1 + 0.2a3(neff + 3)(qa7)neff+3+a8

1 + (qa1)neff+3.5+a8
, (A3b)

c(k, z) = 1 + [4.5a4/(1.5 + (neff + 3)4)](qa5)neff+3+a9

1 + (qa5)neff+3.5+a9
. (A3c)

The amplitude of the bispectrum is fixed by the amplitude Q(x) = (4 − 2x)/(1 + 2x + 1) and q = k/kNL with kNL defined through the following
equation 4πk3

NLP lin(kNL) = 1 and neff = dln Plin(k)/dln k. Two different fitting functions are available in the literature. An initial fitting function
was suggested by Scoccimaro & Couchman (2001). An improved fitting function was given by the following parameters in Gil-Marin et al.
(2012) which we have used:

a1 = 0.484, a2 = 3.74, a3 = −0.849, a4 = 0.392, a5 = 1.01, a6 = −0.575, a7 = 0.128, a8 = −0.722, a9 = −0.926. (A4)

It is expected that some modified gravity theories would also leave a detectable signature in convergence or κ maps. However, the theoretical
modelling requires an accurate framework. At present, there are no fitting functions for modified gravity theories. Various heuristics schemes
from perturbative calculations to phenomenological modification of equation (A1) have been developed recently (Bose & Taruya 2018;
Namikawa et al. 2019).

APPENDIX B: W EAK LENSING BISPECTRU M IN 3 D

With the advent of accurate photometric redshift information a full 3D analysis beyond tomographic binning has become possible. A 3D
decomposition of the convergence maps can be accomplished using a spherical Fourier–Bessel transform following basis function. The
forward and reverse transforms have the following form (Castro et al. 2005; Munshi et al. 2011):

κ�m(k) =
√

2

π

∫
d3r κ(r) j�(kr) Y ∗

�m(�̂); κ(r) =
√

2

π

∫
dk

∑
�

�∑
m=−�

κ�m(k) j�(kr) Y�m(�̂). (B1)

The 3D basis functions are constructed using the eigenfunctions of the Laplacian operator taking advantage of the radial symmetry j� above
corresponds to the spherical Bessel function and k corresponds to the radial wavenumber and r = |r| is the radial co-moving distance. The
corresponding 2D bispectrum defined in equations (B2a) and (B2b) now gets generalized to〈
κ�1m1 (k1)κ�2m2 (k2)κ�3m3 (k3)

〉 =
(

�1 �2 �3

m1 m2 m3

)
B�1�2�3 (k1, k2, k3), (B2a)

B�1�2�3 (k1, k2, k3) =
∑

m1m2m3

(
�1 �2 �3

m1 m2 m3

)〈
κ�1m1 (k1)κ�2m2 (k2)κ�3m3 (k3)

〉
. (B2b)

Following the same series of arguments, the estimator presented in equation (5) now gets generalized to

B�1�2�3
(k1, k2, k3) =

〈∫
d�L1(�̂)L2(�̂)L3(�̂)

〉
; Li(�̂) =

�i∑
mi=−�i

κ�imi
(ki)Y�imi

(�̂). (B3)

A binning in k can be included to reduce the scatter as we have done for the multipoles �.

APPENDIX C : BEYOND BISPECTRU M: SH APES OF WEAK LENSI NG TRI SPECTRU M

The near all-sky weak lensing maps from surveys such as Euclid will also allow determination of non-Gaussianity statistics beyond the
lowest order, e.g. the fourth-order correlator or the trispectrum. The trispectrum can be useful not only to construct the covariance of the
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power-spectrum estimator but also as a consistency check for the lower order estimators. In this section, we will extend the estimator presented
above for the bispectrum to the case of trispectrum.

The trispectrum T
�1�2
�3�4

(L) is defined through the following expression (Hu 2001):

〈
κ�1m1κ�2mκ�3m3κ�4m4

〉 =
∑
mi

∑
M

(−1)M
(

�1 �2 L

m1 m2 M

)(
�3 �4 L

m3 m4 −M

)
T

�1�2
�3�4

(L); (C1a)

T
�1�2
�3�4

(L) = (2L + 1)
∑
mi

∑
M

(
�1 �2 L

m1 m2 M

)(
�3 �4 L

m3 m4 −M

)〈
κ�1m1κ�2mκ�3m3κ�4m4

〉
. (C1b)

The Wigner 3j-symbols above ensure that the triangle inequalities imposed by statistical isotropy and homogeneity of the trispectrum in the
harmonic space is represented by a quadrilateral. The indices (harmonics) �1, �2, �3, �4 represents the sides of the quadrilateral and the index
L represents one of the diagonal of the quadrilateral.

Using notations introduced before an estimator for the trispectrum can be expressed in the following form:

T̂
�1�2
�3�4

(L) = 2L + 1

4π

1

h�1�2L

1

h�3�4L

Npix∑
p1

Npix∑
p2

L1(�p1 )L2(�p1 )L3(�p1 )L4(�p2 )PL(�p1 · �p2 ). (C1c)

Here, PL represents Legendre polynomial of order L and �̂p1 · �̂p2 = cos θ12, where θ12 is the angle between the two unit vectors �̂p1 and �̂p2

representing the pixels p1 and p2. The presence of a double sum in equation (C1c) makes it computationally demanding. However, estimates
from degraded low-resolution maps can be performed at a reasonable cost. The disconnected part of the trispectrum can be subtracted by
using Gaussian maps that are generated using the same power spectrum even in the absence of noise. The contribution from (Gaussian) noise
can be subtracted in an analogous manner.

Among various configurations that are typically pursued in the literature for the trispectrum are one-leg squeezed trispectrum, two-leg
squeezed trispectrum and collapsed and flattened trispectrum. The positive trispectrum represents positive kurtosis and negative trispectra
represent a negative kurtosis. Gravitational collapse generates a positive trispectrum.

Few comments are in order. The trapezium configuration represented by �1 = �2 = �3 = �4/2 and the kite configurations represented
by 2�1 = 2�2 = �3 = �4 generalize the bispectrum configurations for a positive amplitude they correspond to elongated overdense collapsed
filament-like structure surrounded by underdense regions. For the squeezed configurations, the diagonally squeezed configurations correspond
to L < �1, �2, �3, �4 and correspond to modulation of small-scale power spectrum by large-scale fluctuations. The one-legged squeezed
configuration represents large-scale modulation of local or small-scale bispectrum and the two-legged squeezed configuration correspond to
the case when bispectrum is zero and trispectrum is the leading order non-Gaussianity. In addition, flattened configurations of trispectrum
that correspond to �1 = �2 = �3 = �4/3 provide signature that correspond to symmetric perturbations along a line in the real space very
similar to a cosmic string. These configurations of the lensing induced CMB trispectrum has been studied in some detail (Lewis 2011). The
corresponding investigation in the context of weak lensing at low redshift requires a numerical fitting function for the trispectrum beyond
what can be achieved by perturbative approach. However, at present there is no suitable fitting formula to derive analytical expressions
beyond the perturbative regime or its extensions using effective field theory (EFT), so we lack the corresponding formula for the weak lensing
trispectrum.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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