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Large-scale spatiotemporal photonic reservoir
computer for image classification

Piotr Antonik, Nicolas Marsal, and Damien Rontani

(Invited Paper)

Abstract—We propose a scalable photonic architecture for
implementation of feedforward and recurrent neural networks
to perform the classification of handwritten digits from the
MNIST database. Our experiment exploits off-the-shelf optical
and electronic components to currently achieve a network size
of 16,384 nodes. Both network types are designed within the the
reservoir computing paradigm with randomly weighted input
and hidden layers. Using various feature extraction techniques
(e.g. histograms of oriented gradients, zoning, Gabor filters) and
a simple training procedure consisting of linear regression and
winner-takes-all decision strategy, we demonstrate numerically
and experimentally that a feedforward network allows for classi-
fication error rate of 1%, which is at the state-of-the-art for ex-
perimental implementations and remains competitive with more
advanced algorithmic approaches. We also investigate recurrent
networks in numerical simulations by explicitly activating the
temporal dynamics, and predict a performance improvement over
the feedforward configuration.

Index Terms—Photonics, neuromorphic hardware, reservoir
computing, handwritten digit recognition, image classification

I. INTRODUCTION

THE classification of static images is one of the central
problem in Computer Vision in Machine Learning [1],

[2] and has a broad range of applications such as in security
and authentication with automatic facial recognition [3], [4]
or object detection [5], in health sciences with the automatic
analysis or segmentation of medical images [6], or intelligent
character recognition for handwritten interpretation, such as
automatic zip-code identification [7].

Over the last decade, the level of accuracy of automatic
image classification techniques has undergone a dramatic
improvement coincidentally with to the breakthrough of deep-
learning and a particular class of neuro-inspired algorithms,
known as convolutional neural networks (CNNs) [8]. CNNs
are multi-hidden-layered feed-forward neural network trained
to extract hierarchical features from images and improve the
recognition procedure thanks to their robustness to variability
in viewpoint, scale, illumination conditions, and intra-class
variations intrinsically present in images.

Deep learning approaches based on CNNs have outclassed
simpler classification systems, such as support vector machines
(SVM) [9]. As a result, in 2015, a CNN comprised of over
150 layers has surpassed for the first time the accuracy of
humans in classifying images from the ImageNet dataset
[10], which is made of approximately 14 millions images
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distributed over more than 21, 000 different categories : It
reached a classification error rate of 3.57% to be compared
to 5.1% for humans. On smaller image datasets, such as the
MNIST database made of 70,000 images of handwritten digits
distributed over 10 different classes, deep-learning approaches
reaches a classification error as low as 0.21% [8]. However,
achieving high accuracy requires the training of a large number
of hidden layers (i.e. the fine tuning of millions of parame-
ters). This is only possible by leveraging (very) large pre-
labeled databases and the high-speed, massively parallelizable,
computing power from graphical processing units (GPU), thus
making the training procedure computationally demanding,
usually intractable on regular computers, and energy intensive.

An alternative approach to deep-learning for image clas-
sification uses (i) simple feature extraction techniques in
combination with (ii) a recurrent neural networks (RNN) and
(iii) a simplified training procedure with a limited number of
learnable parameters. Reservoir Computing (RC) is a Machine
Learning paradigm, which includes echo-state networks (ESN)
and liquid-state machines (LSM), to design and train artificial
recurrent neural networks [11], [12]. Reservoir Computing
exploits the transient response of a randomly-, sparsely-
interconnected RNN made of nonlinear dynamical discrete-
time nodes, which are subjected to randomly-weighted input
signals. The output layer is made of (possibly) several outputs
that realize linear combinations of the nodes’ transient states.
The training procedure for the Reservoir Computer is limited
to the optimization of the output layer weights, which is usu-
ally obtained by simple linear (or ridge) regression [13]. This
leads to a significant alleviation in the computational com-
plexity of the training, because only the final unidirectional
connections are optimized by comparison to the entire RNN
in typical training procedures for artificial neural networks.
Additionally, the reduced number of trainable parameters
makes the reservoir computer efficient for classification even
on small databases.

Because of its structural simplicity, reservoir computers
have motivated many hardware implementations ranging from
electronics [14], [15] and spintronics [16], [17], to photonics
[18], [19] with the goal of reaching ultra-fast processing
speed with an energy consumption at least two order of
magnitudes below that of a software-based RC running on
a computer. Unprecedented classification speed have been
recently achieved on the spoken-digit recognition task from the
TIMIT46 data base with real-time processing speed ranging
from 300,000 to 1,000,000 words analyzed per second using
laser with optical feedback [19] and optoelectronic oscillators
[20], respectively.
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The challenge in photonics-based implementations of reser-
voir computing stems from the experimental difficulty to
couple optically a large number (typically greater than 100)
of photonic devices together. To overcome this, the time-
delay reservoir computer was introduced first with electronics
systems [14] and then with various optical/optoelectronic
feedback configurations [18]–[23] with various applications
notably in optical communications [24]. The principle relies
on a single nonlinear dynamical node subjected to time-delay
feedback, where virtual nodes are located. This approach
allows theoretically to increase the size of the network linearly
with the length of the feedback loop but at the expense of the
processing speed decreasing because data cannot be fed to the
systems faster than the time-delay to get all the virtual nodes
subjected to the data [25].

To overcome this inherent drawback of the time-delay
approach, true spatiotemporal photonic reservoir computers
have been proposed : (i) using photonic integrated circuits
(PICs) but limited in scale to a few tens of nodes due to high
losses [26]–[28], which is inadequate for tackling complex
tasks such as image classification or (ii) using free-space optics
with a number of nodes reaching up to 2,500 in the most recent
experiments [29], thus making possible for such architecture
to solve more complex tasks.

The paper is organized as follows. First, in Section II we
present the basics of reservoir computing, provide a descrip-
tion of our experimental architecture for a large-scale photonic
reservoir computer implementation exceeding 10,000 neurons,
and derive the corresponding physical model used in our
numerical simulations. Then, in Section III, we introduce the
particular task of handwritten digit recognition based on the
MNIST database and how our reservoir computer is adapted
to solve it. We also describe the various feature extraction
strategies (i.e. histograms of oriented gradients, zoning, and
Gabor filters) to generate the most relevant information from
the images prior to their injection in the photonic recurrent
neural network. Finally, we devote the Section IV to the
discussion of our results, where we compare three conceptually
different modes of operation for our reservoir computer to
successfully classify handwritten digits : the feedforward mode
of operation, the recurrent mode with echo, and the recurrent
mode with data-splitting. We analyze and compare the per-
formance of these different modes of the reservoir computer
when paired with the feature extraction layer. Finally, Section
V concludes the paper and summarizes our contributions.

II. SPATIOTEMPORAL PHOTONIC RESERVOIR COMPUTER

In this section, we describe the basics principles of reservoir
computing and how we realize and model our experimental
spatiotemporal photonic reservoir computer with up to 16,384
nodes.

A. Principles of reservoir computing

A reservoir computer consists of a RNN with n ∈ N
discrete-time nonlinear randomly interconnected dynamical

systems, which is mathematically described by the following
state equation

x(k + 1) = fNL (Wresx(k) +Winu(k)) , (1)

where x(k) ∈ Rn is the state vector of the RNN at discrete
time k ∈ N; fNL is a nonlinear vector flow mapping the state
space Rn to itself. Wres ∈ Rn×n is the adjacency matrix of the
RNN describing the topology of the weighted interconnections
between various neurons. The spectral radius of the matrix
Wres is usually taken in the range 0.8− 1.1 to guarantee the
overall stability of the RNN and the fading memory property,
one of the necessary condition on the RNN to be used in the
framework of reservoir computing [11], [30]. Win ∈ Rp×n
is the input matrix representing the weighted interconnections
between the input layer and the RNN, also known as the input
mask. Similarly to Wres, its weights are randomly distributed
with zero mean. Lastly, u(n) ∈ Rp is the input vector.

When subjected to time-varying input data, the state vector
of the RNN undergoes complex transient dynamics before
returning to a stable quiescent state. These transient dynamics
are wire-tapped and weighted to form an output vector y(n)
described by the following linear relation

y(k) = Woutx(k), (2)

where Wout ∈ n×m is the output matrix representing the
unidirectional interconnections between the RNN and the
ouput layer. The elements of the output matrix, also called
readout weights, are the only learnable parameters of our
reservoir computer architecture. They are trained using a
convex optimization problem known as ridge regression (or
Tikhonov regularization) [31] that reads :

Wout,opt = arg min
Wout∈Rm×n

‖Yt −WoutX‖2 + λ‖Wout‖2, (3)

where Yt ∈ Rm×ktr is the target matrix containing the ktr
targets values for the m outputs of the reservoir computer
and X ∈ Rn×ktr is the reservoir states matrix containing the
RNN’s transient states x(k) sampled during the training, when
inputs vectors are fed to the reservoir during ktr time steps.
λ is a positive factor called ridge parameter used to control
the norm of the readout weights by penalization; it is usually
determined by cross-validation, when λ = 0 then the ridge
regression corresponds to linear regression.

The resolution of the optimization problem to obtain the
optimized readout weights in Wout,opt is performed either off-
line or online [32], i.e. either after all the training input data
are injected in the reservoir, or in the course of the injection.

B. Experimental photonic reservoir computer

The proposed photonic network is depicted in Fig. 1 and its
structure is inspired in parts from recent experiments in Refs.
[29], [33]. The setup consists of a photonic arm comprising
a collimated incoherent monochromatic light source at 532
nm (Thorlabs M530L3), a set of two polarizers oriented at a
45◦ angle with respect to the vertical axis, placed before and
after a liquid-crystal on Silicon (LCoS), phase-only, spatial-
light modulator (SLM) with a 512 × 512 pixels with a 8
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bit resolution (Meadowlark P512 − 0532). This particular
combination of polarizing optics and a SLM allows for the
phase pattern imprinted in the transverse plan of the optical
beam to be nonlinearly converted into an amplitude pattern and
hence ensures an all-optical implementation of the nonlinear
flow fNL from Eq. (1). Finally, the intensity pattern is imaged
through a lens on a 1.3-Million-pixels high-speed camera with
10-bit resolution (Allied Vision Mako U130B).

The detected patterns are digitized and processed in the
electronic arm of the setup. First, they are linearly combined
on a computer (which could potentially be replaced by a DSP
board), that effectively realizes the adjacency matrix of the
network Wres with full control over their choices. Then, input
signals are added numerically after the masking operation
with the Win matrix. Finally, these signals are fed back to
the SLM controller, that changes the liquid-crystal orientation
of each SLM’s pixel at a given discrete time step and hence
generates a new phase pattern based on the signals detected at
the previous time step. This setup forms a dynamical photonic-
based network, which we will be described mathematically as
coupled maps in Sec. II-C.

The size of the reservoir is essentially limited by the lowest
resolution between that of the SLM and the camera. In our
current setup, this means that, potentially, we could reach a
network size of 512×512 = 262, 144 nodes, where each pixel
of the SLM, imaged with a 1 : 1 ratio on the camera, could
be considered as a physical node in our photonic network.
However, we only use pixels located at the center of the
SLM matrix due to constrains stemming from (i) inhomoge-
neous intensity distribution of the optical beam and (ii) small
misalignment between the SLM and camera optical axes. To
mitigate the effects of these experimental imperfections, we
regroup neighbouring pixels together to form bigger square-
shaped pixels (see Fig. 1(b)), latter referred to as macro-pixels
in this study, and becoming our physical nodes in the photonic
network. The smallest macro-pixel effectively usable in our
experience is 3 × 3, which allows for n = 16, 384 macro-
pixels available at the center of the SLM. This is currently
our experimental upper-bound for the network size, but using
a higher-resolution camera and SLM, and possibly smaller
macro-pixel sizes with more stringent alignment conditions,
our network could easily scale to hundreds thousands nodes.

The speed of the setup is defined by the time needed to
compute the next SLM matrix from the raw camera image.
This operation is deliberately performed in Matlab for greater
flexibility of the experimental scheme. The system is capable
of processing 2 images per second with a larger reservoir
(n = 16, 384) and up to 7 frames per second with a small
reservoir (n = 1, 024). The system’s speed limitation can
be alleviated by replacing the computer with a dedicated
digital signal processing (DSP) board, or a field-programmable
gate array (FPGA) chip, capable of performing the matrix-
products computations in real time (as in e.g. [32]). Matrix
multiplication can also be offloaded to fully parallel optics
[29], [34]. Furthermore, a dedicated computing unit (FPGA
or DSP board) could also take care of the feature extraction
stage, thus allowing real-time processing of the input images.

Fig. 1. Scheme of the experimental setup composed of an optical arm linked
to a computer. A collimated polarized green (532 nm) LED beam is reflected
by the surface of the spatial light modulator (SLM). The SLM is imaged onto
a camera through a polarizer (Pol. 2) and an imaging lens. Both the SLM
and the camera are driven by a computer running a Matlab script. The latter
generates the inputs from the MNIST database images, then computes the
pixel values to be loaded on the SLM. Larger macro-pixels made of groups
of individual SLM’s pixels are used to train the reservoir in such a way to
facilitate the separation on the raw camera images. The computer receives the
data containing the reservoir states from the camera, computes the outputs
and generates the output digits.

C. Physical Modelling of the photonic reservoir computer

In this section, we propose a phenomenological modelling
of the dynamics of our photonic network.

We first model the optical arm and assume, for simplicity,
that the optical field Ei(tk) and phase pattern φi(tk) are
homogeneous and constant over the surface of the i-th macro-
pixel during ∆t = tk+1 − tk, the sampling time of our
electronic feedback loop. Furthermore, using only the macro-
pixels close to the optical axis of the SLM, we also assume
homogeneity of the optical field over the entire n = 16, 384
macro-pixels and hence Ei(tk) = E(tk) and its constant value
E(tk) = E0 during our experiment.

The incoherent, unpolarized light source is filtered by a
linear polarizer oriented at 45◦ with respect to the verti-
cal axis, hence leading to the following expression E0 =
E0/
√

2[1, 1]T . Each SLM’s macro-pixel is composed of
liquid-crystal cells on top of a highly-reflective surface. The
liquid crystal cells of the i-th macropixel can be considered
as a birefringent material with its fast-optical axis along the
vertical direction and with a programmable phase-shift φi(tk).
Hence, the Jones Matrix for the SLM’s i-th macropixel is given
by

JSLM,i(tk) =

(
eiφi(tk)/2 0

0 −e−iφi(tk)/2

)
. (4)
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After reflexion on the SLM i-th macro-pixel and transmission
through the second polarizer oriented at 45◦ and described
by the Jones matrix Jp,45, the output field is given by
Eout,i(tk) = Jp,45JSLM,i(tk)E0 = i

E0√
2

sin
(
φi(tk)

2

)
[1, 1]

T .
The intensity detected by the camera and associated to the
i-th macro-pixel hence reads

Ii(tk) = ‖Eout,i(tk)‖2 = I0 sin2

(
φi(tk)

2

)
, (5)

with I0 = ‖E0‖2 the constant and uniform optical intensity
emitted by the LED.

The camera has a 10 bits resolution and detects a quantified
version of the intensity of the i-th macro-pixel on the SLM that
we will denote bIi(tn)c10. We define the n-dimensional state
vector of the photonic network from the macro-pixel intensities
detected by the camera by:

x(tk) = [bI1(tk)c10, . . . , bIn(tk)c10]
T
. (6)

The 10-bits quantified intensities detected by the camera
(corresponding to the SLM’s macro-pixels) are linearly com-
bined together and masked input data is added digitally. This
operation on the states are then quantified over 8 bits before
being fed back to the SLM controller so that phase values of
the SLM’s macro-pixels φi(tk+1) for i = 1, . . . , n are updated
and so are the intensities Ii(tk+1). The output of the reservoir
are determined by combining linearly the intensities detected
by the cameras. This leads to the following state and output
equations :

x(tk+1) =
⌊
I0 sin2 (bWresx(tk) +Winu(tk)c8)

⌋
10
,(7)

y(tk) = Woutx(tk). (8)

Equation (7) should be understood as the nonlinear func-
tion bI0 sin2 (b·c8)c10 applied to each coordinate of the n-
dimensional phase space. Equations (7)-(8) are the tailored
version of Eqs. (1)-(2) specific to our photonic implementa-
tion. This model will be later used in our numerical simulation
to assess the performance of the photonic reservoir computer.

III. RESERVOIR COMPUTING WITH FEATURE EXTRACTION
FOR IMAGE CLASSIFICATION

Feature extraction is a common approach in computer vision
to enhance the classification system, here the photonic reser-
voir computer, by providing the most relevant information in
images. In this section, we first introduce the approach adopted
with reservoir computer to solve the MNIST handwritten digit
recognition task and then present the five feature extraction
techniques that we tested in this study.

A. Resolution of the handwritten digit recognition task from
the MNIST database with reservoir computing

The principle of the handwritten digit recognition in the con-
text of reservoir computing with feature extraction is illustrated
in Fig. 2. In this work, we used the popular MNIST database
[35], publicly available online, which contains 70, 000 images
of handwritten digits from 0 to 9. All images have been
normalized to fit into a 28 × 28 pixels bounding box, anti-
aliased, and converted into gray-scale levels.

Fig. 2. Handwritten digit recognition in the context of photonic reservoir com-
puting with feature extraction. The images from the MNIST database undergo
a feature extraction stage, where different algorithms under investigations are
applied (or none, in the case of raw images). The resulting features are fed
into the photonic reservoir computer with 10 binary output nodes, one for
each digit. The nodes are trained to output 1 for the digit associated with the
node and 0 for the other digits. The final classification is obtained by selecting
the node with the maximum output, i.e. the winner-takes-all decision strategy.

The input images can be pre-processed in several ways to
the input layer of the reservoir computer, depending on the
type of feature extraction presented in Sub-section III-B, and
it will be shown in Section IV that this choice impacts the
classification error significantly.

The output layer is made of 10 binary outputs, introduced to
recognize the 10 different class of digits. Hence, each binary
output is trained to give a “1” for an image of the digit it is
associated to and “0” for all other digits. The winner-takes-all
decision strategy is used to classify each image based on the
binary output with the highest value.

Furthermore, the photonic reservoir computer can have
different modes of operation and processes the masked input
data differently depending on how the latter is fed into the
reservoir. In this study, we consider three different modes of
operation.

Full-image feedforward mode – In this mode, one full
MNIST image is sent to the reservoir at each timestep tk.
To avoid cross-talk between consecutive images caused by
the internal memory of the system, the reservoir should be
exploited as memoryless map with Wres = 0n×n. Therefore,
the state equation of the reservoir reduces to:

x(tk+1) =
⌊
I0 sin2 (bWinu(tk)c8)

⌋
10
. (9)

The results obtained with this approach will be presented in
Sec. IV-A.

Full-image recurrent mode – A more advanced mode of
operation is to present a full MNIST image at a given timestep
tk and let the reservoir process the information during ke
additional timesteps until the system relaxes into a quiescent
state. Then, a new image can be sent at tk+ke+1. In this mode
of operation, Wres 6= 0n×0 and the state equation of the
reservoir is given by Eq. (7). We will discuss this approach
further in Sec. IV-B.
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Column-wise recurrent mode − The third mode of operation
for the reservoir is inspired by Ref. [36] and consists of
dividing each MNIST image into 28 columns. The image is
then presented at a rate of one column per time step k, so that
it takes 28 timesteps to feed a single image to the reservoir.
In this mode of operation, the dynamics of the network is
described by Eq. (7) with Wres 6= 0n×0. The underlying idea
here is to transform the spatial correlations naturally present in
images into temporal correlations in the dynamical states of the
reservoir and thus exploit the internal memory of the system
created by the recurrence of the network. The disadvantage,
however, is a processing speed divided by 28 compared to the
first mode of operation (full-image feedforward mode). The
results for this mode of operation will be presented in Section
IV-C.

B. Feature extraction approaches

We implemented and compared five feature extraction tech-
niques, also considered in [37]. The three approaches that
gave the best results are presented in this section, and their
results will be discussed in Sec. IV. Table I summarizes these
techniques and their respective input dimensionalities (i.e. the
number of features). The two other approaches that did not
yield acceptable classification errors are only briefly discussed
in the end of this section.

Feature extraction method Input dimensionality

Raw images 784
Zoning 2 196
Zoning 4 49
Gabor filters 40 – 1152
HOG 324 – 1296

TABLE I
FEATURE EXTRACTION TECHNIQUES INVESTIGATED IN THIS WORK

1) Raw images: We used raw images – i.e. without any pre-
processing – as a benchmark for the feature extraction methods
considered below. In this particular case, grey-scale values of
the pixels are used as inputs to the reservoir computer, and
the dimensionality of the input is 28× 28 = 784. An example
of raw image is shown in Fig. Fig. 3(a).

2) Zoning: Introduced in Ref. [38], it is the simplest feature
extraction technique considered here. It is a statistical region-
based approach, where the image is divided into smaller zones
and pixel densities are computed in each one. In other terms,
this method consists of a combination between a convolution
of the image by a filter, followed by pooling a single value
from each zone of the image.

Here, we consider two variants of this approach, designed
specifically for the MNIST database: Zoning 2 with 2×2-pixel
zones, and Zoning 4 with larger 4× 4-pixel zones. The filters
are 2× 2 or 4× 4 matrices filled with 1s, thus giving a non-
normalized average pixel values for each zone. This technique
allows to reduce the input-dimensionality by “dropping” 3
out of 4, or 15 out of 16 pixels for Zoning 2 and Zoning
4, respectively. Consequently, the input dimensionality is 196

for Zoning 2, and 49 for Zoning 4. The resulting inputs to the
reservoir computer are illustrated in Figs. 3(b) and 3(c).

3) Gabor filters: They are linear filters mainly used for
texture analysis [39] and have been also used to model the
receptive field profiles of simple cells in mammalian visual
cortex [40]–[43]. Therefore, pre-processing images with Gabor
filters could be compared, to a certain extent, to perception in
the human visual system. The 2D-impulse response h(x, y) of
a Gabor filter is defined by the product of a Gaussian function
with a sine/cosine function. There are either complex-valued
Gabor filters [40] or pairs of Gabor filters with quadrature-
phase relationship [41]–[43]. In this work, we use real-valued,
even-symmetric Gabor filters [39], [44], which impulse re-
sponse is given by :

h(x, y) = exp

(
− x2θ

2σ2
x

− y2θ
2σ2

y

)
cos

(
2π

λ
xθ

)
, (10)

with

xθ = x cos(θ) + y sin(θ), (11)
yθ = y cos(θ)− x sin(θ), (12)

where λ is the wavelength of the cosine function with
orientation θ with respect to the x-axis and σx,y are the
space constants of the Gaussian envelope along the x, y axes,
respectively. A Gabor filter seeks for a specific frequency
content in a direction θ by yielding higher values in locations
visually similar to the filter itself after convolution with the
image. The dimensionality of the resulting features depends
on (i) the number of filters, differentiated by their lengths and
orientations, and (ii) the computation of the local energy, that
will be discussed in Section IV-A3.

4) Histograms of oriented gradients (HOG): This algo-
rithm is widely used in computer vision for object detection
and locati on [37] in static images. It was originally proposed
in Ref. [45] and is based on scale-invariant features transform
(SIFT) descriptors [46]. The HOG descriptors are obtained
by creating histograms on the magnitude of images gradient
m(i, j) = (Dx(i, j)2 + Dy(i, j)2)1/2 depending on their
orientation θ(i, j) = arctan(Dy(i, j)/Dx(i, j)) with Dx(i, j)
and Dy(i, j) the horizontal and vertical approximate gradients
evaluated at pixel (i, j). These gradients are computed using
the two spatial filters Gx = [−1, 0, 1] and Gy = [−1, 0, 1]

T .
A typical histogram consists of 9 bins in the [0◦, 180◦] inter-

val. It is calculated on 8×8-pixel cells within the image. This
ensures a dimensional reduction from 64 gray-scale intensity
values to 9 cumulative frequencies values corresponding to the
so-called HOG descriptors. To make them robust to lighting
inhomogeneities, the histograms are block-normalized over
larger regions of pixels within the image. Similarly to Zoning,
the number of features depends on the size of the image and
the cell, the number of bins, and the block-normalisation. In
the case of the MNIST database, the total number typically
ranges between 234 and 1296. This will be further discussed
in Sec. IV-A4. Figure 3(e) illustrates the resulting gradients
superimposed on top of an example image from the MNIST
dataset.
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(a) (b) (c)

(d) (e)

Fig. 3. Illustration of (a) raw MNIST image, and the feature extraction
methods, applied to it: (b) Zoning 2, (c) Zoning 4, (d) Gabor with λ = 3 and
θ = 22.5◦ orientation capturing the middle stroke of the digit, and (e) HOG
features (red) computed with 7×7 cells and 9 orientation bins, superimposed
on top of the source image.

C. Other methods

The following two feature extraction methods were inves-
tigated in preliminary simulations, but were not included in
the results (Sec. IV) since they performed worse than the
raw images. Moreover, both methods require the distinction
between foreground and background pixels, and are thus more
complex to implement on real-life images.

1) Projection histograms: Projection histograms (vertical
and horizontal) were considered in [37]. This approach con-
sists in counting the number of white foreground pixels in
each column or row, respectively. We used both histograms
simultaneously – that is, 56 features for each image – and
obtained classification errors of order of 12%.

2) Distance profiles: This descriptor calculates the pixel-
distance between the border of the image and the first pixel of
the foreground (i.e. the digit) [47]. Based on the four borders
of the image, four profiles can be considered: left, right, top,
and bottom. In this study, we investigated the combination
of all four profiles, since it yields a descriptor with the most
information on the image, encoded into 112 features. This
approach works better than the projection histograms above,
but we could not reduce the classification error below circa
10%.

IV. RESULTS

The results of this study are divided into three sections,
based on how the MNIST images are processed by the
reservoir computer (see Sec. III).

A. Full-image feedforward mode

Presenting one full MNIST image per time step k is the
simplest approach considered here. Besides the simplicity,
it has the advantage of (1) being compatible with feature
extraction techniques, presented in Sec. III-B, and (2) not
increasing the number of processing time steps, since it is

equal to the size of the MNIST database. The downside, how-
ever, is that it does not exploit the temporal dynamics of the
reservoir computer. In fact, since the individual MNIST images
are independent from each other, the inputs to the reservoir
lack the temporal dependence required to make use of the
recurrence of the network. Intuitively, one expects the system
to perform better without memory, so that the classification of
the current image would not be influenced by the previous
input. This assumption was confirmed in both experiments
and numerical simulations. Therefore, the recurrent reservoir
computer is reduced to a simple feedforward network in this
case.

Figure 4 presents a summary of the numerical results
obtained with the different feature extraction techniques in-
troduced in Sec. III-B. We simulated reservoir sizes from
1,024 up to 16,384 nodes. In all cases, the classification error
decreases with the number of neurons. At first glance, the
HOG features produces the lowest classification errors, while
raw images and Zoning 4 perform the worst. We will further
discuss each feature extraction methods in the following
sections and present the experimental results for comparison.

1) Raw images: Figure 5 presents the numerical (green)
and experimental (black) results obtained with raw images.
That is, unprocessed pixels were used as inputs to the reservoir
computer. We used these results as benchmark for other feature
extraction techniques. In simulations, raw images were classi-
fied with a 6.4% error with the smallest reservoir (n = 1, 024
nodes) and 2.1% with the largest reservoir (n = 16, 384
nodes). In experiments, we obtained a 8.31% and 2.85% error
with the smallest and the largest reservoir, respectively.

2) Zoning: Figure 4 presents the numerical results obtained
with both zoning methods – Zoning 2 with 2×2 windows and
Zoning 4 with 4× 4 windows.
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Fig. 4. Numerical results obtained with different feature extraction methods
and various reservoir sizes. Raw images (unprocessed pixels) are shown
for comparison. Zoning 2 technique performs slightly better, while Zoning
4 yields higher classification errors with larger reservoirs. Gabor filters
significantly improve performance in comparison to other techniques, but fall
short of the HOG algorithm that produced the best results in this study: 0.80%
with the largest reservoir of n = 16, 384 nodes.
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Fig. 5. Numerical (green curve) and experimental (black markers) results ob-
tained with the raw images, without any pre-processing or feature extraction.
While the experimental results do not match the simulations exactly, they
present a similar trend.

This technique, as presented in section III-B, is the simplest
approach considered here, that consists in averaging pixel
values over windows of fixed size. The Zoning 2 technique
allows to slightly improve the results in comparison with the
raw images. Since its effect can be seen as dimensionality
reduction, this result indicates that the default 28×28 MNIST
images contain some undesirable information that can be
removed to improve performance. Zoning 4 technique, on
the other hand, performs worse than the raw images, which
indicates that too much information is lost when averaging
over 4× 4 windows.

Comparing the different curves in Fig. 4, one notes that
both Zoning techniques provide the lowest classification error
improvement in comparison with the other feature extraction
techniques. Therefore, we conclude that those two techniques
are not suitable for handwritten digit recognition task with
reservoir computing. However, they remain of interest as they
bring out characteristic spatial scales of the MNIST images.

3) Gabor filters: The case of the Gabor filters perfectly
illustrates the main difficulty of the feature extraction approach
to classification – the user has to find the best set of filters for
the task at hand, which often requires good understanding of
the task under investigation.

At first, we tried the simpliest approach that consists in
computing the energy of the convolution of the filter with
the image. In this way, one obtain a single number for each
filter. Preliminary simulations with 40 Gabor filters of 8
different orientations and 5 differents lengths have shown a
classification error of circa 19%, which is significantly worse
than with raw images (see Fig. 4). This result suggests that
global features extracted from MNIST images do not contain
enough information to distinguish the digits. An intuitive
example illustrating the inefficiency of global features is the
particular case of separating the digits “6” and “9”. Since the
former is very similar to the latter after a rotation by π, the
energy computed from the Gabor filters is approximately the

same for both digits, making them indistinguishable from the
global features point of view. Others digits, such as “8” and
“0”, with comparable curves, also yield energies confusing for
the classifier. In order to distinguish these digits, the classifiers
needs to know where exactly a particular direction is present
in the image, and this is where one needs to use the local
features.

At the next stage, we computed local energies by dividing
images into smaller windows. This adds another variable
parameter to the feature extraction technique : the size of
the windows. A sensible choice requires the knowledge of
characteristic scales of the MNIST images, and a reasonable
first guess can be based on the insights obtained with the
zoning techniques, presented in Sec. IV-A2. Therefore, we
computed the energy locally on a 7 × 7 grid, that is, within
4× 4 windows. We fixed 8 directions θ – from 0◦ to 157.5◦

by 22.5◦ steps – and tried different lengths of the filter – from
2 to 8. The lowest classification error of 3.19% was obtained
with the filter length λ = 7 pixels, and the smallest reservoir
(n = 1024 nodes). Local energy computation increases the
number of features by a factor of 49 in this case: that is, with
8 Gabor filters, one obtains 392 features.

At this point, the performance of the reservoir computer
is significantly better than with raw images, but the HOG
approach remains unmatched (see Fig. 4). Therefore, we tried
to improve the features obtained with the Gabor filters by
taking inspiration from the HOG algorithm. Dalal and Triggs
emphasize the importance of block-normalization: without it
performance drop by 27% in comparison [45]. In the next
series of numerical simulations, we added 2 × 2 L2-norm
block-normalization. The immediate effect of this operation
is the increase of the number of features by a factor of
4 – from 392 to 1152. Remarkably, we obtain a 26.5%-
improvement with 8 Gabor filters of length λ = 3. Simulating
the system with filters of different lengths, we obtain the
lowest classification error of 2.67% with filters of length
λ = 5, and the smallest reservoir (n = 1024 nodes). This
corresponds to a 22.1% improvement gained by adding the
block-normalization.

In summary, Gabor filters could only achieve a circa 19%
classification error in the preliminary tests. However, hand-
tailoring the filters to the MNIST database (i.e. adding local-
energy computation, block-normalization, and setting the filter
length to 5), we managed to reduce the error down to 2.67%
with the smallest reservoir (n = 1024) and 1.21% with
the largest reservoir (n = 16384). We did not manage to
outperform the HOG algorithm with Gabor filters in this study,
but gained additional insights on the MNIST database and
how the components of the HOG algorithm contribute to its
performance (in particular, the block-normalisation).

4) Histograms of oriented gradients: The histograms of
oriented gradients is a powerful feature descriptor in computer
designed for the purpose of object detection [45]. Similarly to
the Gabor filters, the algorithm requires the tuning of a few
parameters for better performance. As described in Sec. III-B4,
the key parameters are the cell size, the number of bins, and
the size of the normalisation blocks. In the case of the MNIST
classification task, the generally recommended values for the
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Authors Method Performance

Wan et al. [48] CNN 0.21%
Wang et al. [49] K-Means 0.35%
Keysers et al. [50] K-NN 0.52%
Decoste et al. [51] SVM 0.56%
This work (simulations) Photonic RC 0.8%
Kégl et al. [52] Boosted Stumps 0.87%
Schaetti et al. [36] RC 0.93%
Salakhutdinov et al. [53] DBM 0.95%
This work (experiment) Photonic RC 1.03%
LeCun et al. [35] LeNet-4 1.1%
LeCun et al. [35] Non-linear classifier 3.3%
LeCun et al. [35] Linear classifier 7.6%

TABLE II
PERFORMANCE OF VARIOUS STATE-OF-THE-ART DIGITAL APPROACHES
COMPARED TO OUR BEST RESULTS ON THE MNIST DATABASE (WITH

n = 16, 384).

last two parameters – 9 bins and 2 × 2 block-normalisation
– produce the best results. As for the cell size, the intuitive
guess that smaller cells capture a better representation of the
image does not hold here. In fact, the Zoning approach (see
Sec. IV-A2) demonstrated that more information does not
always result in better classification. Preliminary numerical
simulations with 4 × 4-pixel cells produced a classification
error of 2.1% with the smallest reservoir (n = 1024). Upon
increasing the cell size up to 7×7 pixels, we reduced the error
down to 1.59% with the same reservoir size. Furthermore, the
number of features was cut from 1296 down to 324. Further
decrease of the number of features by limiting the number of
bins down to 4 (instead of 9) did not improve performance.

Figure 6 presents the numerical (red) and experimental
(black) results obtained with the HOG features and different
reservoir sizes. In simulations, the MNIST digits were classi-
fied with a 1.59% error with the smallest reservoir (n = 1, 024
nodes) and 0.8% with the largest reservoir (n = 16, 384
nodes). In experiments, we obtained a 2.53% and 1.03% error
with the smallest and the largest reservoir, respectively.

These results are of the same order of magnitude as
the best performance found in the literature, summarized
in Tab. II. At the moment of writing this article, the best
performance on the MNIST task was obtained with CNNs
[48] with numerous approaches reporting classification errors
below 1% (they will not be exhaustively presented here).
We selected and listed several alternative methods to CNN,
not relying on neural networks, such as SVM, k-means, k-
nearest neighbours (KNN), and boosted stumps. Table II shows
that our photonic RC outperforms, in numerical simulation,
several deep approaches, such as deep Boltzman machines
(DBM). Furthermore, the experiment produces lower error
than the earlier versions of CNNs, such as LeNet-4 [35]. One
should keep in mind the difference between a shallow neural
network, implemented in photonic hardware, and a complex
convolutional neural network, implemented on ideal noiseless
digital processor. Finally, the reservoir computer significantly
improves the performance compared to non-linear and linear
classifiers.
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Fig. 6. Numerical (red curve) and experimental (black markers) results
obtained with the histograms of oriented gradients. Similarly to the raw
images, one observes a certain offset with the small and the midsize reservoir.
The numerical and experimental performances obtained with the largest
reservoir are fairly close, on the other hand.

B. Full-image recurrent network

This second approach is similar to the first one (see Sec.
IV-A) in the way that the reservoir computer is presented
with the full MNIST image and the features extracted from
it. The difference lies in the fact that each subsequent image
is input with a fixed delay, so that the temporal dynamics of
the reservoir can be exploited to process the information. The
transients, i.e. the states of the nodes induced by the input,
are recorded and concatenated together into a single reservoir
state, used for training. This approach effectively increases the
number of trainable parameters, since the size of Wout is now
proportional to the duration of the transients. Consequently, it
also lengthens the overall processing and makes the training
process more computationally expensive, especially the matrix
inversion operation.

The main downside of this technique is the increased
number of hyper-parameters of the reservoir. That is, on top
of the input gain, the properties of the Wres matrix (such as
the spectral radius, the amplitude of the diagonal elements,
and others) have to be optimized to improve the results. As
experimental optimization of the hyper-parameters requires
long runs in practice, we only investigated this method in
numerical simulations.

Figure 7 presents the numerical results obtained with this
approach. The classification error is plotted against the number
of transients recorded for training using the same feature
extraction techniques as in Sec. IV-A. All results were obtained
with the smallest reservoir (n = 1024) and optimized hyper-
parameters. The left-most point of each curve corresponds
to the feedforward network approach, that is, no transient is
recorded and the images are input at each time step k. The
graph reflects the two major observations produced by this
study: (1) the additional transients improve the classification
performance for all feature extraction techniques (including
raw images), and (2) two transients is the optimal setting for
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Fig. 7. Numerical results obtained with the recurrent network (N = 1024)
approach and various feature extraction methods. Different lengths of tran-
sients have been investigated: zero transients corresponds to the feedforward
network case, discussed in Sec. IV-A. All curves decrease until two transients
and then remain constant.

Feature extraction method Feedforward Recurrent Gain

Raw images 0.0643 0.0539 16.2%
Zoning 2 0.0500 0.0417 16.6%
Zoning 4 0.0547 0.0455 16.8%
Gabor filters 0.0264 0.0198 25.0%
HOG 0.0159 0.0133 16.4%

TABLE III
PERFORMANCE IMPROVEMENT OFFERED BY THE RECURRENT APPROACH

WITH THE SMALLEST RESERVOIR (N = 1024).

all cases. Table III contains the performance improvements
obtained with 2 transients as compared to the feedforward
network.

Since the additional transients improve the classification
error for the smallest reservoir (N = 1024), we investigated its
effects on larger reservoirs. For simplicity, we only considered
the HOG features, since they yield the lowest error rate with
the feedforward network (see Sec. IV-A4). At this stage, we
could perceive the increased complexity of training a reservoir
with transients, and could only perform numerical simulations
up to N = 6400 nodes on our desktop computers with 32 Gb
of RAM. Figure 8 compares the classification errors obtained
with feedforward and recurrent networks. The optimal number
of transients was found to be 2, similarly to the previous
observations. Table IV lists the performance gains for different
reservoir sizes.

In summary, although the recurrent approach increases the
number of trainable parameters, lengthens the training process
and makes it more computationally expensive, it offers inter-
esting results that have to be taken into account for improving
the performance of our reservoir.
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Fig. 8. Numerical results obtained with the histograms of oriented gradients,
processed by a feedforward network (blue) and a recurrent network (green)
with 2 transients. Due to computational complexity, we could only train
reservoirs up to N = 6400 nodes.

Reservoir size (N ) Feedforward Recurrent Gain

1024 0.0159 0.0133 16.4%
2304 0.0127 0.0113 11.0%
4096 0.0112 0.0096 14.3%
6400 0.0089 0.0085 4.5%

TABLE IV
PERFORMANCE IMPROVEMENT OFFERED BY THE RECURRENT APPROACH

WITH THE HISTOGRAMS OF ORIENTED GRADIENTS AND DIFFERENT
RESERVOIR SIZES.

C. Column-wise recurrent mode

The third approach, inspired by [36], uses an explicit
temporal encoding of the spatial visual information from the
MNIST images in order to activate the recurrent dynamics
of the reservoir computer. The idea here is to split the full
image into smaller portions and feed them sequentially into
the classifier. The separation can be done in various ways:
columns or rows (overlapping or adjacent), sliding windows,
sub-images, among others. Similarly to [36], we consider non-
overlapping columns, which transforms each image into 28
inputs of 28 dimensions. Therefore, such temporal encoding
reduces the input dimensionality, but increases the processing
time proportionally.

After defining the encoding procedure, the specifics of the
reservoir training have to be considered. That is, as each
image corresponds to 28 inputs, which in turn give birth to
28 reservoir states, one needs to define how to use those
states to train the output weights. We chose to investigate two
approaches here:
• The first training procedure consists in considering each

column as an individual input and train the reservoir
computer to output the target digit on every input column
forming the corresponding image. Intuitively, one does
not expect the system to produce the correct class at the
first input column, but assumes the output to converge
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to the target digit with the last columns of the image.
Therefore, while all 28 reservoir states are used for
training for each image, the evaluation should only be
performed on the basis of the last columns. In this work,
we chose to select the last 7 columns and assign the final
decision to the most frequent class among the 7 outputs.

• The second training method is inspired by [36] and
consists in combining a selection of reservoir states at
specific time steps into one, and computing the output
weights based on the aggregate reservoir state. This idea
is fairly similar to the recurrent network approach (see
Sec. IV-B), as it effectively increases the network size
by combining several reservoir states into one, and thus
expanding the number of trainable parameters.

The results of these two approaches are presented in Secs.
IV-C1 and IV-C2, respectively. We used a small reservoir
computer (n = 1024) in all simulation for practical reasons.

1) Training with individual reservoir states: The first train-
ing option appears more challenging for the reservoir com-
puter, since it requires a system with memory long enough
to keep all relevant columns of the image. In fact, we ob-
tained a relatively high classification error of 21.2%. Upon
investigation of the reservoir signals we noticed that while the
outputs converge, as expected, they often converge to a wrong
class. This observation suggests that individual columns do
not contain enough relevant information to allow the classifier
to make the correct decision.

2) Training with aggregation of reservoir states: The sec-
ond training option alleviates the issue encountered with single
columns, as the reservoir computer is trained on an aggregation
of several reservoir states activated by their corresponding
input columns. This methods also relaxes the memory require-
ments, as the explicit aggregation of reservoir states no longer
forces the network to keep the input information in memory.

The choice of the reservoir states to aggregate for the
training is crucial in this approach. That is, training the system
on the combination of the first three columns, for instance, is
unlikely to produce low classification errors. For this reasons,
we started by fixing the hyperparameters of the reservoir
computer to reasonably good values (yet not the most optimal),
and tested, in numerical simulations, all possible combinations
of training with two reservoir states (that is, 378 trials). We
found that the combination of the 17-th and 24-th reservoir
states yielded the lowest error. Furthermore, we observed that
no states below 10-th were chosen in the top ten results. We
thus conclude that the earlier reservoir states (from the first
to circa the 10-th) do not contain enough information on the
digit to allow precise classification, and the later states (from
11-th to the last) should be privileged. Then, we performed the
same series of trials with 3 reservoir states. In order to reduce
the number of trials from 3276 down to 969, we ignored the
reservoir states from 1 to 10, based on the observation above.
We found the best combination of states to be the 14-th, the
18-th, and the 26-th. Finally, we tried the combinations of 4
states, and found the optimal one to be the 14-th, the 16-th,
the 20-st, and the 24-th.

After defining the optimal combinations of reservoir states
to aggregate for the training, we kept them fixed, and per-
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Fig. 9. Numerical results obtained with column-wise input data encoding
and aggregation of several reservoir states for the training process, with n =
1024. In particular, training with n corresponds to optimising the readouts
weights on the basis of the sole reservoir state, produced after the processing
of the 17th column of the image. Conversely, training with 4n consists of
aggregating four reservoir states, obtained by processing the columns 14, 16,
20, and 24 of the image, for the training process.

formed the optimisation of the hyperparameters. Figure 9
presents the classification errors with optimal training and
reservoir settings. For completeness, we also evaluated the
scenario with one column, and obtained a 11.7% error with the
17-th column. The best performance of 4.42% was produced
with the combination of 4 reservoir states. Compared to the
results obtained with raw images, discussed in Secs. IV-A1
and IV-B, this method yields lower errors and thus presents
the best approach on raw images among those considered in
this study. Nevertheless, the 4.42% classification error is no
match for the HOG technique (see Sec. IV-A4) or the state-
of-the-art.

V. CONCLUSION

In summary, we report two major results in this paper.
First, we present a large-scale experimental photonic reser-
voir computer, based on off-the-shelf components, capable of
implementing neural networks up to 16, 384 nodes. Second,
the computational power offered by our large dynamical
system allows us to tackle an important task in computer
vision: the recognition of handwritten digits. To this end,
we study three conceptually different approaches of applying
our reservoir computer to this task. First, we exploit the
reservoir in a memoryless, feedforward mode of operation
paired with popular handcrafted feature-extraction techniques
(Zoning, Gabor filters, and HOG) prior to feeding the input
layer of the photonic reservoir. The second mode of operation
consisted in using the temporal dynamics of the network and
hence benefit from its internal memory enabled by recurrent
connections, still paired to feature extraction. Third, we used
the temporal dynamics of our reservoir computer with a time-
dependent signal, created by splitting the raw MNIST images
into individual columns, thus creating temporal dependence
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and stimulating the recurrence of the system. We report a
0.8% classification error in numerical simulations and 1.03%
error in experiments, obtained with the feedforward mode of
operation using the HOG feature extraction technique. We
also demonstrated in numerical simulations the benefit of
the recurrence mode of operation allowing for relative gain
improvement ranging from 4.5% to 16.4% for the smallest
reservoir in our study and the superiority of preserving spatial
correlation and feature extraction compared to transforming
the 2D MNIST images into multiple 1D signals. In this paper,
we have shown that large-scale photonic reservoir computer
can perform with level of performance comparable to the
best digitally-implemented neuro-inspired currently available
and hence represent a meaningful alternative to these meth-
ods, hence opening more in-depth research endeavours on
exploiting photonic reservoir computer for advanced image
processing.

In perspective, our work opens several directions for fu-
ture research. The handcrafted features could be replaced by
transfer learning, i.e. by automatically synthesised features
from the first layers of a convolutional neural network trained
on the MNIST dataset [54]. Furthermore, since the reser-
voir computer yields competitive results on handwritten digit
recognition, one could increase the complexity of the task and
apply the system to visual object recognition using e.g. the
CIFAR-10 dataset [55]. The present work is thus the first step
in what we hope should be a very fruitful line of investigations.
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