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Abstract

The Almeria-Oran Front (AOF) is a recognised hotspot of genetic differentiation in

the sea, with genetic discontinuities reported in more than 50 species. The AOF is

a barrier to dispersal and an ecological boundary, and both facts can explain the

position  of  these  genetic  breaks.  However,  the  maintenance  of  genetic

differentiation  is  likely  reinforced  by  genetic  barriers.  A  general  drawback  of

previous studies is an insufficient density of sampling sites at the transition zone

with a conspicuous lack of samples from the southern coastline. We analysed the

fine-scale  genetic  structure  in  the  mussel  Mytilus  galloprovincialis with  a  few

ancestry-informative loci previously identified from genome scans. We discovered

a  600 km wide  mosaic  hybrid  zone  eastward  of  the  AOF  along  the  Algerian

coasts.  This  mosaic  zone  provides  a  new  twist  to  our  understanding  of  the

Atlantic-Mediterranean transition because it demonstrates the two lineages can

live in sympatry with ample opportunities to interbreed in a large area, but hardly

do. This implies some form of reproductive isolation must exist to maintain the

two genetic backgrounds locally cohesive. The mosaic zone ends with an abrupt

genetic  shift  at  a  barrier  to  dispersal  in  the  Gulf  of  Bejaia,  Eastern  Algeria.

Simulations of endogenous or exogenous selection in models that account for the

geography and hydrodynamic features of the region support the hypothesis that

sister  hybrid  zones  could  have  been  differentially  trapped  at  two  alternative

barriers to dispersal and/or environmental  boundaries, at Almeria in the north

and Bejaia in the south. A preponderantly unidirectional north-south gene flow

next to the AOF can also maintain a patch of an intrinsically maintained genetic

background in the south and the mosaic structure, even in the absence of local

adaptation. Our results concur with the coupling hypothesis that suggests natural

barriers mostly explain the position of genetic breaks while their maintenance

must additionally require genetic barriers.

Keywords: Barrier  to  gene  flow,  mosaic  hybrid  zone,  reproductive  isolation,

marine connectivity, Almeria-Oran Front, Mytilus galloprovincialis.
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Introduction

Natural  populations  are  often  subdivided  into  discrete  patches  within  which

apparent  panmixia  is  observed  or  where  genetic  differentiation  smoothly

increases  with  geographic  distance  (Charlesworth et  al,  2003).  These roughly

homogeneous  genetic  patches  are  bordered  by  abrupt  genetic  discontinuities

maintained  by  “barriers  to  gene  flow”  (Arnold,  2006  ;  Slatkin,  1987;  Hewitt,

1989). Barriers to gene flow allow divergence between populations and possibly

the evolution of  reproductive isolation and speciation  (Barton  and Bengtsson,

1986;  Palumbi,  1994;  Charlesworth et  al,  2003).  They  also  guarantee  the

maintenance  of  the  beta  component  (i.e.  between-populations  component)  of

genetic  and  species  diversity.  Barriers  to  gene  flow  are  therefore  crucial  in

structuring and maintaining biodiversity. The study of their origin, their location

and the processes involved in their functioning, is therefore a central issue in

evolutionary biology and ecology.

When genetic discontinuities are spatially concordant among different species, a

parsimonious explanation is that the same factors contribute to the barrier across

species. For instance, species can share a common history (e.g. shared zones of

secondary  contact  sometimes  called  suture  zones;  Remington,  1968;  Hewitt,

1996;  Avise,  2000;  Hewitt,  2000;  Swenson and Howard,  2005),  a  comparable

mode  of  dispersal  (e.g.  planktonic  dispersers  should  be  similarly  affected  by

marine  connectivity;  Pelc et  al,  2009)  or  a  similar  ecological  niche  (e.g.

adaptation  to  the  same  habitat  such  as  brackish  water  in  the  Baltic  Sea;

Johannesson  and  Andre,  2006).  In  the  marine  realm,  decades  of  research  in

population genetics have allowed researchers to identify and describe hotspots of

genetic  differentiation  (Rocha  and  Bowen,  2008;  Hellberg,  2009;  Riginos  and

Liggins, 2013; see Table 1). Probably because many marine species have large

population  sizes  and  high  dispersal  potential  via  the  larval  phase,  genetic

homogeneity  is  almost  always  the  rule  within  patches  delineated  by  these

barriers and the concentration of genetic breaks at some locations is obvious in

the sea  (Hellberg, 2009; Riginos et al, 2011; Gagnaire et al, 2015). Barriers to

gene  flow  in  the  marine  environment  are  found  at  locations  of  strong

environmental gradients or oceanographic currents which prevent dispersal along

shores  (Hellberg et al, 2002; Teske et al, 2014). Many factors can be involved:

physical (oceanic fronts, local and global oceanic currents; Patarnello et al, 2007),

ecological (temperature, salinity, tide level;  Johannesson et al, 2010;  Stanley et
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al. 2018), historical  (secondary contact;  Quesada   et al  ,  1995;  Avise, 2000), or

genetic (reproductive isolation;  Bierne et al, 2011). While barriers to gene flow

are  more  likely  to  result  from a  combination  of  factors  acting  synergistically

(Barton and Hewitt, 1985; Bierne et al, 2011; Cordero et al, 2014), a single factor

is often emphasised to explain the genetic structure in any one case. In addition,

the origin (primary divergence vs. secondary contact), localisation (ecotone vs.

natural  barrier  vs.  suture  zone)  and  maintenance  (dispersal  barrier  vs.  local

adaptation vs. reproductive isolation) of the genetic differentiation need to be

treated as different questions. For instance, the position of a genetic cline at a

barrier to dispersal does not necessarily mean that the genetic differentiation is

due  to  low  dispersal  at  this  location;  it  is  equally  likely  to  be  the  legacy  of

divergence during past vicariance and/or the additional effect of a genetic barrier

trapped by the natural barrier (Barton 1979). Demographic reconstruction can

provide insight about the origin of the differentiation that the simple description

of  the  contemporary  genetic  structure  does  not  reveal.  However,  to  better

understand the maintenance of genetic breaks, the genetic analysis of distant

samples  far  from  the  transition  zone  is  hardly  sufficient,  even  with  high-

throughput  genomic  data  (Cruickshank  and  Hahn,  2014;  Meirmans,  2015;

Harrison and Larson, 2016). Such genome-wide analyses allow reconstructing the

long  term  history  of  populations  and  identifying  highly  differentiated  loci  or

genomic islands  (Tine et al, 2014; Fraïsse et al, 2016), but tell little about how

genetic lineages have the opportunity to interbreed at the boundary.  A major

shortcoming of many genome-wide studies is that they do not undertake detailed

sampling at these points of geographic transition, though such sampling is critical

for teasing apart competing explanations. Ultimately, one also needs to conduct

experiments in the lab and in the field to obtain direct evidence of the isolation

mechanisms at play (Harrison, 1993).

The  Almeria-Oran  Front  (AOF)  is  a  well-known  marine  barrier  to  gene  flow

between populations of the Atlantic Ocean and the Mediterranean Sea (Quesada

et al, 1995b; Borsa et al, 1997; Borrero-Pérez et al, 2011; Chevolot et al, 2006;

Patarnello et al, 2007; Palero et al, 2008; Schunter et al. 2011; Tine et al, 2014).

The front is generated by the convergence of Mediterranean and Atlantic waters.

Atlantic waters enter  into the Alboran Sea through the strait  of  Gibraltar and

produce  anticyclonic  gyres  westward  of  the  AOF,  the  Western  and  Eastern

Alboran Gyres, and a north-south unidirectional current at the AOF (see Figure 1).

In addition, part of the flow of the Eastern Alboran Gyre is trapped at the AOF to
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contribute to the Algerian current that flows eastward of Oran along the Algerian

coastline (Viúdez and Tintoré, 1995).

Among the examples of genetic breaks at the AOF, one of the first described was

found  in  the  marine  mussel  Mytilus  galloprovincialis (Quesada et  al,  1995a;

1995b, Sanjuan et al. 1994). Since the early reports, the origin of the genetic

break has been considered a secondary contact between two lineages isolated in

Mediterranean and Atlantic glacial refugia  (Quesada et al, 1995a), as for other

species such as sea bass (Lemaire et al, 2005; Tine et al, 2014; Duranton et al,

2018). The genetic differentiation between the two mussel lineages proved to be

highly heterogeneous among loci (Gosset and Bierne, 2013; Fraïsse et al, 2016).

Heterogeneous differentiation is expected for a semi-permeable genetic barrier

maintained by partial reproductive isolation (Barton and Hewitt, 1985; Harrison,

1993) or  because  of  heterogeneous  divergence  caused  by  linked  selection

(Cruickshank and Hahn 2014; Ravinet et al. 2017), or both (Duranton et al. 2018).

To  date  only  the  northern  coast  near  Almeria  in  Spain  has  been  intensively

sampled, and contains an abrupt shift in allele frequency on each side of a 290

km wide no-mussel zone between Almeria and Alicante (Quesada et al, 1995a).

Although  some  studies  have  identified  weak  genetic  differentiation  between

Europe and North Africa east of the AOF (Ouagajjou and Preza 2015; Lourenço et

al.  2015),  the geographic  structure  of  the transition zone along the southern

coast in Algeria was not well characterised. This is an important sampling gap to

fill,  especially  considering  that  Atlantic  waters  enter  the  Mediterranean  Sea

through the South by the Algerian current described above. The southern side of

the transition is indeed a ubiquitous sampling lacuna in the study of the Atlantic-

Mediterranean genetic divide.

In  the  present  study we aimed  to  advance  our  understanding  of  the  marine

transition  zone  at  the  AOF  by  analysing  four  ancestry-informative  loci  (one

mitochondrial and three nuclear) at a fine-grained spatial scale. These loci were

previously identified to be among the ten most differentiated loci in two genome

scans, one with 388 AFLP loci (Gosset and Bierne, 2013), and another with 1269

targeted contigs (~50,000 SNPs,  Fraïsse et al, 2016). We would like to make it

clear that our aim in the present study was not to infer the history of gene flow

between  populations  nor  the  genomic  heterogeneity  of  differentiation,  which

requires the analysis of a high number of loci and has been treated elsewhere

(Fraïsse et al, 2016). Our objective was to investigate the spatial structure of the
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transition zone and how the two genetic backgrounds meet and interact when in

contact,  which  requires  analysing  an  extensive  geographic  sample  with

informative loci (Vines et al, 2016). We accomplished this in three steps. First, as

a precaution we re-analysed the shift in allele frequency in South-Eastern Spain

that was reported twenty years ago. We observed the same position of the break

in Spain as earlier studies, confirming results from Diz and Presa (2008). Second,

we sampled a new area along the Algerian coast between Oran and Tunisia, over

a  distance  of  1330  km.  We  report  a  600  km wide  mosaic  hybrid  zone  with

populations  of  mixed  ancestry.  Third,  we  explored  simple  stepping-stone

simulation  models  which  show  that  the  mosaic  structure  observed  can  be

explained  by  the  local  geographic  and  hydrodynamic  characteristics  of  the

coastlines. We used a Y-shaped bi-unidimensional structure of the coastlines to

reflect the shape of the coastlines that allows north-south gene exchange west of

the AOF but only along coastlines to the east of the AOF because the distance

between Algerian and Spanish coasts become too large for larval dispersal. We

also included two alternative barriers  to  larval  dispersal  and/or  environmental

boundaries (one at the AOF and one in the Gulf of Bejaia), and a preponderantly

unidirectional north-south gene flow at the AOF.
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MATERIALS AND METHODS

Sampling and molecular markers

Mytilus  galloprovincialis (Lamarck,  1819)  samples  were  collected  from  13

locations  on the southern coast  of  the Alboran and Mediterranean Seas  from

Nador (Morocco) to Bizerte (Tunisia) and in 7 locations on the Northern coast from

Manilva (Spain) to Peniscola (Table S1, Figure 1). Mitochondrial DNA sequences

proved  that  all  the  samples  were  Mytilus  galloprovincialis (see  below)  as

expected in the study area. We also analysed reference samples already reported

in  previous  studies  (Gosset  and  Bierne,  2013) in  Faro  (Portugal)  and  Sète

(France). DNA was extracted from gills using the QIAGEN DNeasy Blood & Tissue

Kit  following  the  instructions  of  the  manufacturer.  DNA  concentration  was

measured for each sample using a NanoDrop8000 Spectrophotometer (Thermo

Scientific) and standardised to a DNA concentration of 100 ng µL-1.

A  350-bp  fragment  of  the  F-mtDNA  cytochrome  oxidase  subunit  III  was  PCR

amplified and sequenced with primers  FOR1 (5’-TATGTACCAGGTCCAAGTCCGTG-

3’)  and  REV1 (5’-TGCTCTTCTTGAATATAA  GCGTA-3’)  (Zouros et  al,  1994).

Sequence reactions were precipitated using a standard EDTA/ethanol protocol,

suspended in 15µl Hi-Di formamide and sequenced on an ABI 3130XL automated

sequencer.

Based on previous genome scans, three nuclear markers were chosen based on

both  their  strong  differentiation  between  the  Atlantic  and  Mediterranean

backgrounds  of  M.  galloprovincialis and  for  their  ease  of  analysis.  All  three

produced length-polymorphism of PCR products. EFbis is a widely used marker in

mussels  that  was  amplified  with  the  following  two  primers:  EFbis-F 5’-

ACAAGATGGACAATACCGAACCACC-3’  and  EFbis-R  5’-CTCAAT

CATGTTGTCTCCATGCC-3’ (Bierne et al, 2002). EF2 has been described in Gosset

and Bierne (2013) and was amplified with the following two primers:  EF2-F 5’-

GGAAATCCCATGGGTGATTTAGCGG-3’  and  EF2-R 5’-

GTCAAATAAATACTGAAACACAGTGACTTC-3’. A contig containing the Precollagen-D

gene  was  identified  from  a  genome  scan  of  1269  contigs  as  the  most

differentiated  contig  between  Atlantic  and  Mediterranean  M.  galloprovincialis

populations  (Fraïsse et al, 2016). Using publicly available sequences  (Qin et al,

1997) we designed primers to amplify the fifth intron of the gene with the 3’ end

of  each  primer  positioned  at  the  exon-intron  junction,  which  prevented
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amplification of paralogous sequences of the gene family. The primers used to

amplify  Precol-D  locus  were  Precol-D-F 5'-GACAAGGACCAGCAGGTACCATATT-3'

and  Precol-D-R 5'-GAGTGGTCCGGCTGGTCCTAAGAA-3'.  Indel  polymorphisms  in

the  intron  produced  nine  length  alleles  in  our  samples  with  strong  allele

frequency  differences  between  Atlantic  and  Mediterranean  samples.  Standard

PCR protocols were used with annealing temperatures set at 54°C for EFbis and

EF2,  and  49°C  for  Precol-D.  2µl  of  PCR  products  were  mixed  with  Hi-Di

formamide/ROX 500 size standard (12.8µl formamide and 02 µl ROX), and the

mixtures were then loaded on an ABI  3130XL capillary  automated sequencer.

GeneMapper® v4.5 software (Applied Biosystems) was used to read the resulting

chromatograms.

Data analysis

COIII sequences were aligned using the ClustalW multiple alignment algorithm in

BIOEDIT V7.1.3.0 and revised manually.  Aligned sequences were then used to

construct a Neigbour-Joining tree with MEGA software v6 (Tamura  et al., 2013).

Allelic  and  genotyping  frequencies  were  computed  using  Genetix  software

v4.0.5.2 (Belkhir et al, 2002). Number of haplotypes (h), nucleotide diversity (π),

average number of nucleotide  substitutions per site between populations (Dxy)

and net number of nucleotide  substitutions per site between populations (Da)

were calculated using DnaSP V5.10.1 (Librado and Rozas, 2009). Individuals were

assigned to the Mediterranean and Atlantic lineages with a discriminant analysis

of  principal  components  (DAPC)  implemented  in  the  adegenet  package  in  R

(Jombart  and  Ahmed,  2011).  The  individual  ancestries  were  examined  by  a

Bayesian  clustering  method  implemented  in  STRUCTURE  2.3.4  (Falush et  al,

2003). Analysis with STRUCTURE was conducted for various numbers of clusters

K under the admixture model, assuming that the allele frequencies are correlated

across populations, with a burn-in period of 50.000 steps and a run length of

100.000  iterations.  We  used  NewHybrids  software  (Anderson  and  Thompson,

2002) to determine the hybrid status of individuals in the hybrid zones. We used

a model with six categories of genotypes corresponding to two parental lineages

and  four  categories  of  hybrids:  F1  and  F2  hybrids  and  the  two  types  of

backcrosses. Note that there are many more categories of hybrid genotypes in

natural hybrid zones. However, this analysis allows investigating the frequency of

early generation hybrids (expected to be rare in natural bimodal hybrid zones).

Individual posterior probabilities of belonging to each category were obtained by
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running  NewHybrids  with  uniform  priors,  a  burn-in  period  of  50  000  steps

followed by a run length of 100 000 iterations. Because parental lineages tend to

be more introgressed locally within a mosaic hybrid zone than outside of the zone

in allopatric populations (Bierne et al, 2003) we did not use allopatric populations

as references in the analysis. In this context including allopatric samples would

have inflated the posterior probabilities of locally introgressed parental genotype

to be backcrosses, which is not desired. To depict allele frequency clines, all four

loci  were  transformed  into  bi-allelic  loci  by  pooling  alleles  according  to  their

frequencies in reference samples (sample 1 Faro Portugal for the Atlantic lineage

and sample N9 Sète France for the Mediterranean lineage, two localities often

studied in previous genetic studies of  M. galloprovincialis). Finally, the average

departure from Hardy-Weinberg equilibrium was measured by Fis and the average

pairwise  linkage  disequilibrium  across  all  loci,  D,  was  estimated  using  the

variance in the hybrid index as described in Barton and Gale (1993). Departure

from  Hardy-Weinberg and linkage equilibrium was tested by permutations with

the Genetix software combining p-values using Fisher’s method.

Simulations

We used a model of evolution in a metapopulation of 2 x 60 demes arranged in

two parallel linear stepping-stones (Bierne et al., 2011; 2013). The purpose of the

simulations was to account for the geographic and hydrodynamic characteristics

of the region and to compare intrinsic reproductive isolation with local adaptation

at  two  different  spatial  scales  (fine-  or  coarse-grained  environmental

heterogeneity).  At  generation  zero,  two  partially  reproductively  isolated

backgrounds meet and start to exchange genes. The auto-recruitment rate was 1

- 2m, and migration to adjacent demes was m. A weak barrier to dispersal was

set between demes 20 and 21 in the northern chain to simulate the AOF, and

another barrier to dispersal  in the southern chain between demes 40 and 41 to

simulate  the  Gulf  of  Bejaia  Barrier  (GBB).  The  migration  rate  at  barriers  to

dispersal  was set to a value  mbar,  with  mbar<m.  Bidirectional  migration was

possible between the northern and the southern chain for the first 20 demes (left

of the first barrier to dispersal, i.e. in the Alboran Sea) with the same rate of

migration m. For a few more demes (from 1 to 10) bidirectional or unidirectional

north-south gene flow was possible between the north and the south and then

stopped  for  the  remaining  demes.  The  aim  of  the  parameterization  was  to

account for the fact that the Spanish and Algerian coasts east of the AOF become

9

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

17
18



too distant to be connected directly by a single generation of larval dispersal,

which is thought be roughly around 50km gen-1 in mussels (McQuaid and Phillips

2000,  Gilg  and  Hilbish  2003).  Selection  acted  at  a  local  adaptation  locus

(exogenous selection) or against recombinant genotypes (intrinsic selection) at

two  freely  recombining  reproductive  isolation  loci  (Bierne et  al,  2011).  Allelic

fitnesses at the exogenous locus were W(C) = 1 and W(c) = 1 - t in habitat 1 and

W(C)  =  1  -  t and  W(c)  =  1  in  habitat  2.  The  two-locus  fitnesses  at  the

incompatible alleles were W(AB) = W(ab) = 1 and W(Ab) = W(aB) = 1 - s. We did

not consider the interaction between the two types of selection here (see Bierne

et  al.  2011)  but  consider  either  exogenous or  endogenous  selection alone.  A

neutral  marker  was  positioned at  a  recombination map distance  of  1cM to  a

selected locus.

In order to simulate the trapping of a hybrid zone by a barrier to dispersal or an

environmental boundary, we need clines to overlap with barriers at their initial

position (Goldberg and Lande, 2007) or to move toward the barrier (Barton and

Turelli,  2011).  We could have chosen the initial  conditions and the parameter

values such that the northern cline overlapped with the AOF (between demes 20

and 21) and the southern cline overlapped with the GBB (between demes 40 and

41 of the southern chain). However, we have chosen to exemplify the arguably

more realistic situation of initially moving hybrid zones. Local adaptation clines

move to environmental boundaries driven by local selection. However, tension

zones maintained by selection against recombinant genotypes stay at their initial

contact position in a purely deterministic genetic model with equal fitnesses of

parental genotypes and isotropic migration. There are three main reasons why

tension zones could move. First, they are expected to move down gradients of

population density and to be trapped by density troughs  (Abbott et  al,  2013;

Barton, 1979; Hewitt, 1975). This demographic effect is not accounted for in our

purely genetic model, although the tension zone can be trapped by barriers to

dispersal  providing  it  moves  towards  the  barriers  for  other  reasons.  Second,

tension zones can move because one parental genotype is fitter. These moving

tension zones can nonetheless easily be halted by density troughs or barriers to

dispersal owing to their bi-stable nature (Barton and Turelli, 2011). Random drift

is expected to ultimately free such tension zones (Barton1979, Pialek and Barton

1997) but the trapping can last for very long time. Finally,  tension zones can

move  haphazardly  because  of  stochastic  processes  -  genetic  drift  within

populations  and stochastic  dispersal  between populations.  Here,  we  used the
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latter two processes to simulate tension zone movement. We used a slight fitness

advantage a (W(AB)=1+a) of the Mediterranean parental genotype starting from

a  contact  within  the  Mediterranean  Sea  (at  deme  50),  or  a  slight  fitness

advantage of the Atlantic parental genotype (W(ab)=1+a) starting from a contact

on the Atlantic side (at deme 10). Alternatively we introduced random drift by

using multinomial sampling of genotypes within each deme at each generation

(N = 500 per  deme).  This  second way of  simulating tension zone movement

results  in  various  outcomes  from  the  same  starting  position,  because  the

movement is not directional. We used this alternative only to show that results

are qualitatively similar regardless of the “engine” of the tension zone movement

and we did not intend to complete an extensive analysis of the effect of drift on

the outcomes, as this is far from the purpose of the present work.

11

319

320

321

322

323

324

325

326

327

328

329

330

331

21
22



RESULTS

Analysis of genetic diversity

The  analysis  of  568  COIII sequences  revealed  150  haplotypes  and  a  high

nucleotide  diversity  (π  =  0.023).  Average  and  net  nucleotide  divergence

measures between Atlantic and Mediterranean populations were also high (Dxy =

0.029, Da = 0.011). The NJ-tree is presented in the supplementary Figure S1. Two

clades  of  haplotypes  could  be  defined  according  to  their  phylogenetic

relationships and their frequency in Atlantic and Mediterranean samples (Figure

S1). The clade nearly fixed in Atlantic samples is known to be due to introgression

of  alleles  from  the  sister  species  M.  edulis  (Quesada  et  al,  1998).  We  used

phylogenetic  relationships  to  define  the  Mediterranean  and  the  Atlantic

haplogroups. Nine size-alleles were detected at the new locus Precol-D and allele

frequencies are presented in Table S2. EF2 was found to be bi-allelic as in Gosset

and Bierne (2013). The use of capillary electrophoresis allowed us to distinguish

EFbis size-alleles  with 1bp differences that  were not  detected previously with

acrylamide gels. We observed 22 alleles and the correspondence with previous

allele names is given in Table S2. Clustering analysis was performed with multi-

allelic data. In order to represent allele frequency clines we transformed multi-

allelic  loci  into bi-allelic  loci  by pooling alleles according to their  frequency in

reference samples, sample 1 (Faro, Portugal) for the Atlantic lineage and sample

N9 (Sète, France) for the Mediterranean lineage (see Table S2).

Spatial genetic structure

The frequencies of the Mediterranean allele at the mitochondrial COIII locus and

the three nuclear markers (Precol-D, EFbis and EF2) in each sample are presented

in Figure 2A and 2B. Clustering methods did not provide meaningful results with a

number of genetic clusters parameterized above K=2 (no improvement of the

likelihood  in  the  STRUCTURE  analysis,  low  contribution  of  secondary  axes  in

multivariate analyses, and lack of spatial structure of additional clusters) and we

provide the results with K=2.  As reported 20 years ago  (Quesada et al, 1995b,

Sanjuan  et  al.  1994) and  10  years  ago  (Diz  and  Presa  2008),  the  northern

transect  along  the  Spanish  coast  contained  an abrupt  change  in  allele

frequencies in the zone of transition between Almeria and Cartagena with all four

loci. The three samples collected in Atlantic waters (1-Faro, N2-Manilva and N3-

Almeria) have high frequencies of the Atlantic alleles (Figure 2A), uniformly high
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Atlantic cluster membership probabilities in the DAPC analysis (Figure 1, sup file

text S1), and a high proportion of Atlantic ancestry in the STRUCTURE analysis

(Figure  2E).  Conversely,  samples  from Mediterranean  waters  (N6-Tabarca,  N7-

Nules,  N8-Peñíscola  del  Pinatar,  and  N9-Sète)  have  high  frequencies  of

Mediterranean  alleles  (Figure  2B),  uniformly  high  Mediterranean  cluster

membership probabilities in the DAPC analysis (Figure 1), and a high proportion

of  Mediterranean  ancestry  in  the  STRUCTURE  analysis  (Figure  2F). Two

populations  (N4-Cartagena and N5-San Pedro)  were  obtained  from the  region

reported  to  be  devoid  of  mussels  20  years  ago.  These  samples  were

predominantly of Mediterranean ancestry, but some individuals were assigned to

the  Atlantic  genetic  cluster  with  high  confidence  and  a  few  mussels  with  a

genome of mixed ancestry were also present (Figure 1 and 2E). Departure from

Hardy-Weinberg  and  linkage  equilibrium  was  maximal  in  these  intermediate

samples (Figure 2C) as expected from hybrid zone theory (Barton and Gale, 1993)

and the departure was significantly different from zero in sample N4-Cartagena.

These samples are crucial for our understanding of the functioning of the AOF

barrier  to  gene  flow  as  they  show  Atlantic  mussels  are  found  in  observable

numbers east of the AOF within the Mediterranean Sea.

The southern transect along the Algerian coast revealed a complex structure on a

much  wider  geographic  scale,  consisting  of  a  mosaic  pattern  of  alternation

between  mostly  Atlantic,  mostly  Mediterranean,  and  intermediate  samples

(Figure 1 and 2). Individuals assigned to the Atlantic cluster predominated in the

sample from S2-Nador (Morocco) situated in the Alboran Sea (Figure 1 and 2).

The Mediterranean cluster predominated in three samples from eastern Algeria

(S11-Zaima  Mansouriah,  S12-Collo  and  S13-Skikda)  and  Tunisia  (S14-Bizerta)

(Figure 1 and 2). From S3-Oran to S10-Bejaia, a mosaic hybrid zone was observed

with a tendency for the Mediterranean ancestry to decrease eastward along the

zone. The zone ends with an abrupt genetic shift in the Gulf of Bejaia (Gulf of

Bejaia Barrier, GBB), west of which are preponderantly Atlantic samples and east

of  which  is  populated  by  Mediterranean  mussels.  Within  the  mosaic  zone,

samples were found to be a mixture of individuals belonging to both clusters and

with  mixed  ancestry  (Figure  1  and  2F).  Again  strong  departures  from Hardy-

Weinberg and linkage equilibrium (Figure 2D) attest to a strong deficit of hybrids

relative to random mating. The departure was strongly significant in S3-Oran and

S5-Sidi Lakdher and significant in S8-Tipaza and S9-Algiers  (Figure 2D). We did

not  obtain  support  for  the  existence  of  early  generation  hybrids  in  Algerian
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populations as none of the 183 individuals sampled in the hybrid zone obtained a

cumulative  posterior  probability  above  0.8  to  be  F1,  F2  or  backcross  in

NewHybrids (Supplementary Table S3). This is not surprising as early generation

hybrids must be extremely rare in nature for the genetic differentiation to be so

efficiently  maintained  between  two  backgrounds.  Evidence  for  hybridization

nonetheless  comes  from  allele  frequencies  and  the  comparison  of  ancestry

values which show Atlantic mussels from the hybrid zone have a higher fraction

of  Mediterranean  ancestry  and  Mediterranean  mussels  a  higher  fraction  of

Atlantic ancestry than mussels from peripheral allopatric populations (Figure 2F).

This local introgression of parental backgrounds within the mosaic hybrid zone

also explains the lack of power to characterise hybrid genotypes despite the fact

that  our  markers  are  strongly  differentiated  between  reference  samples  well

outside of the hybrid zone.

Modeling a Y-shape bi-unidirectional stepping stone that accounts for

the seascape features of the AOF transition zone

Our simple model in a Y-shape bi-unidimensional stepping stone allowed us to

obtain useful indications about how the principal features of the seascape around

the AOF area could produce the mosaic structure observed.

Endogenous selection- Let us begin with endogenous selection. It is important

to remember that in the tension zone model, selection against hybrids maintains

the clinal structure but, in contrast to exogenous selection, the position of the

cline is not stabilized by selection. Theory predicts that tension zones should be

trapped  by  and  coincide  with  natural  barriers  to  dispersal,  i.e.  zones  of  low

population density such as mountains, rivers or oceanic fronts  (Barton, 1979).

First,  we  describe  the  results  observed  with  deterministic  simulations  at  a

selected locus in the case of a tension zone moving as a consequence of a fitness

advantage  of  one  parental  genotype.  The  objective  is  not  to  explore  the

conditions in which the trapping process occurs, which are well known  (Barton

and Turelli, 2011; Barton, 1979), but to illustrate how tension zone trapping can

occur in an unusual spatial and connectivity context such as the one in the AOF

area.  Second,  we  will  provide  an  example  with  a  neutral  locus  introgressing

through the barrier and incorporating genetic drift.  Again, we do not treat the

effect of linkage and random drift that are known (Barton, 1986; Polechová and
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Barton  2011);  our  aim is  simply  to  exemplify  that  the  model  can  retrieve  a

pattern which resembles the true data.

Figure  3  presents  the  results  of  the  deterministic  model:  movement  of

endogenous  clines  along  the  northern  coast,  characterized  by  a  barrier  to

dispersal  between demes 20 and 21 (called AOF in Figure 3), and the southern

coast,  characterized by a barrier to dispersal  between demes 40 and 41 (called

GBB in  Figure  3).  We obtained  qualitatively  similar  results  when we added a

barrier to dispersal between demes 20 and 21 of the southern chain (i.e. Oran)

and provide the results with no barrier to exemplify the trapping of the cline even

when  the  barrier  is  restricted  to  the  northern  coast  (i.e.  Almeria).  The  most

interesting result is a contact within the Mediterranean Sea (between demes 50

and  51)  and  a  westward  propagation  of  the  cline  owing  to  a  slight  fitness

advantage of the Mediterranean parental genotype. The clines propagate along

the southern and northern coasts and a barrier to dispersal is first met by the

southern cline between demes 40 and 41 (GBB), where it is trapped while the

northern cline continues to propagate westward (Figure 3A). The northern cline is

subsequently  trapped by the AOF barrier between demes 20 and 21 when it

comes to overlap with it (blue cline). When migration is symmetrical between the

north and the south, we end with a pair of shifted clines, one trapped by the AOF

in the North and one trapped by the GBB in the south (see inset in Figure 3A). In

this case the Algerian coast is inhabited by the Atlantic lineage. However, when

migration  is  asymmetrical  from  the  north  to  the  south,  the  Mediterranean

genotype can establish and be maintained in the south, generating a zone of

coexistence  around  the  AOF  in  the  south  (Figure  3A  bottom  panel).  This

simulation shows that a mosaic hybrid zone can be produced in the South with

purely  intrinsic  reproductive  isolation  when  the  major  hydrodynamic

characteristics  of  the  region  are  taken  into  account.  We  also  considered  the

situation of a contact on the Atlantic side and an eastward propagation of clines

owing to a slight fitness advantage of the Atlantic parental genotype. The clines

propagate and meet the AOF barrier between demes 20 and 21 where they are

trapped (Figure 3B). The southern cline remains trapped at the AOF, even when

the barrier is simulated only in the northern chain (migration between demes 20

and 21  is  fixed at  mbar in  the  northern  chain,  at  Almeria,  and  at  m in  the

southern chain, at Oran). The southern cline  does not have the opportunity to

meet the barrier to dispersal at the GBB. It is well established that tension zones

are expected to be trapped by the first minor barrier encountered (Barton 1979,
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Barton  and  Turelli  2011).  Despite  this  prediction,  it  is  usually  not  well

acknowledged that hotspots for hybrid zones (i.e. suture zones) are more likely to

be localised at  the barrier  to  dispersal  that  is  closest  to  an  area of  frequent

contact  rather  than  at  the  strongest  barrier  to  dispersal  across  the  overall

distribution area.

The  deterministic  model  shows that  sister  tension  zones  can be differentially

trapped at two alternative barriers to larval dispersal, at Almeria in the North and

Bejaia  in  the  South  and  that  a  preponderantly  asymmetrical  north-south

migration  rate  at  the  AOF  can  maintain  a  “pocket”  of  the  Mediterranean

background east of  Oran in the South. In  order to model the true data more

closely, we considered a neutral locus linked to a selected locus, which allowed

us to account for introgression, and introduced genetic drift. A simulation output

is presented in Figure 4A, with the two coastlines superposed in the same figure

and compared  to  true  data  in  Figure  4B.  In  this  simulation  the  two  parental

genotypes have the same fitness, which shows that the pocket of Mediterranean

background in the South is not due to a fitness advantage but to the balance

between migration from the North and selection against hybrids. A comparison

with Figure 3 shows that introgression of Mediterranean alleles onto the Atlantic

background and of Atlantic alleles onto the Mediterranean background is stronger

in the mosaic zone between the two barriers (AOF and GBB) than in peripheral

populations.  This  is  expected in  mosaic  hybrid  zones as already explained in

another  mussel  hybrid  zone  (Bierne  et  al,  2003).  Small  patches  of  parental

populations  enclosed within  a  mosaic  hybrid  zone and flanked by patches of

populations  of  the  alternative  genetic  background  are  expected  to  introgress

faster than large and broadly distributed peripheral populations.

Exogenous selection- We now consider exogenous selection. We explored two

kinds of seascape, a fine-grained mosaic structure in the hybrid zone, or coarse-

grained environmental variation. In the first model we have a mosaic of habitat 1

(Atlantic-like) that alternates randomly with habitat 2 (Mediterranean-like) in the

central area of the southern stepping stone (corresponding to the area between

the AOF and the GBB in Algeria). This model corresponds to a fine-grained mosaic

of habitats. As expected, notwithstanding that genotypes adapted to habitat 1

and genotypes adapted to habitat 2 flow from peripheral populations, this kind of

selection generates a mosaic structure at the selected locus that correlates with

habitat variation (Figure 4A). Despite the strong selection coefficient (s=0.2) and
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with the recombination rate we used (1 cM) introgression proceeds quickly at the

neutral locus in the mosaic zone (Figure 4A presents the results at generation

1000) and the neutral marker loses the association with both the selected locus

and the habitat. We can of course increase selection and decrease recombination

to maintain the association for longer periods, but the parameters we used are

already strong selection and tight linkage. Our objective here was to briefly verify

the well-established result  that  micro-geographic  adaptation generates a very

weak  barrier  to  neutral  gene  flow  (Flaxman  et  al.  2012;  Thiebert-Plante  and

Hendry 2015).  Secondly,  we simulated coarse-grained environmental  variation

(Figre  3B).  As  for  endogenous  selection,  we  observed  two  clines  at  the  two

environmental boundaries we simulated, the AOF in the North and the GBB in the

south,  when  north-south  migration  was  symmetrical.  In  order  to  obtain  the

maintenance of genotypes adapted to habitat 2 (i.e. Mediterranean-like) in the

south, asymmetrical north-south migration at the AOF was required. The result

obtained is very similar to that obtained with endogenous selection. Introgression

proceeds  much more  slowly  than in  the fine-grained  habitat  model,  although

faster than with endogenous selection (with the same recombination rate of 1

cM). Another difference between the exogenous and endogenous models is that

under exogenous selection,  the habitat  2 genetic  background (Mediterranean-

like)  cannot  be  maintained  without  migration  from  the  north,  because  it  is

counter-selected  in  the  south.  In  the  endogenous  model  however,  we  can

imagine that a sufficiently big patch of Mediterranean background can persist in

the south, at least transiently, as soon as it has been established by an episode

of north-south migration.
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DISCUSSION

The Almeria-Oran Front (AOF) is arguably one of the most famous hotspots of

genetic  differentiation  in  the  sea  (Patarnello et  al,  2007),  and  Mytilus

galloprovincialis one of the iconic species exhibiting a pronounced genetic break

at the AOF (Quesada et al, 1995a,b, Sanjuan et al. 1994). We already had indirect

evidence that reproductive isolation might have evolved between Mediterranean

and Atlantic refugia (i) in order to maintain genetic differentiation upon contact

(Quesada et al, 1995a), (ii) in order to maintain a sharp genetic break (Quesada

et al, 1995b), and (iii) in order to explain the semi-permeability of the barrier to

gene  flow (Fraisse  et  al.  2016).  However,  the  story  could  not  be  definitively

settled without more direct evidence that interbreeding opportunities exist at the

transition zone, even if such opportunities are rare. Maybe due to this lack of

evidence of reproductive isolation, the idea that the Atlantic-Mediterranean divide

could simply be explained either by the AOF itself acting as a barrier to larval

dispersal  or by the ecological  differences between Atlantic and Mediterranean

waters remains strongly anchored in the marine literature. In addition, knowing

Atlantic waters enter the Mediterranean Sea through the South by the Algerian

current,  the  description  of  the  southern  side  of  the  transition  zone  was  a

sampling lacuna that needed to be filled. Sampling that coast revealed far more

than  one  could  have  expected.  The  unexplored  side  of  the  biogeographic

boundary was hiding a 600 km wide mosaic hybrid zone. We will argue here that

the existence of this large mosaic hybrid zone provides evidence-based support

for the existence of partial reproductive isolation, which prevents gene flow when

the two lineages live in sympatry/syntopy with the opportunity to interbreed and

exchange genes in the absence of such reproductive isolation. We believe that

the  existence  of  partial  reproductive  isolation  between  heterogeneously-

differentiated  genetic  backgrounds  should  supplement  the  disruption  of

population connectivity and selection against maladaptive migrants to provide a

fuller explanation of genetic subdivision in marine (Bierne et al, 2011, Gagnaire

et al. 2015, Riginos et al. 2016) as well as terrestrial species (Barton and Hewitt

1985, Hewitt 1989).

The  previously-reported  absence  of  mussels  between  Almeria  and  Alicante

(Quesada et al, 1995b) on the Spanish coast suggested that there was no strong

opportunity  for  sympatry  and  interbreeding  between  the  Atlantic  and  the

Mediterranean  linages,  in  accordance  with  the  AOF  as  an  efficient  barrier  to
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dispersal. However, two populations were sampled south of Alicante in Cartagena

and San Pedro (N4 and N5 in Figure 1) with a low but non-negligible proportion of

these  individuals  assigned  to  the  Atlantic  genetic  cluster.  This  is  a  sufficient

proportion of migrant mussels to refute the barrier to dispersal as strong enough

to explain the maintenance of the genetic structure. Along with the results from

the southern coast presented here, there remains no ambiguity that the Atlantic

lineage  not  only  enters  the  Mediterranean  Sea,  but  co-exists  with  the

Mediterranean lineage, sometimes in balanced proportions, across a widespread

area  where  mussels  are  numerous.  Described  as  a  strong  barrier  to  larval

dispersal, the AOF is in fact rather a mix of Atlantic waters and Alboran surface

waters called ‘Modified Atlantic water’  (MAW, Font et al,  1998) in the Eastern

Alboran anticyclone and along the Algerian coast thanks to the Algerian current.

There are several species without a genetic break at the AOF -e.g. the European

flat oyster Ostrea edulis (Launey et al, 2002), the Mediterranean rainbow wrasse

Coris  julis (Aurelle et  al,  2003),  or  the  saddled  seabream Oblada  melanura

(Galarza et  al,  2009).  These  species  share  similar  biological  and  ecological

characteristics  with  species  that  do exhibit  a  break and this  observation  was

already  a  strong  argument  against  the  hypothesis  of  a  sufficiently  reduced

dispersal rate at the AOF to explain the genetic differentiation observed in many

species.

We now turn to the more complex issue of  the nature of  the genetic  barrier

(extrinsic, intrinsic, or both). Given the contrasting environments inhabited by the

two lineages  in the Mediterranean Sea and the Atlantic  Ocean,  there is  little

doubt that differential adaptation must exist between the two lineages (including

phenotypic plasticity and epigenetic responses). However, the large zone of co-

existence in Algeria modifies our view of how the genetic barrier operates. We no

longer have to explain adaptation in the two seas but have to explain that the

two lineages are maintained genetically cohesive in sympatry along 600 km of

Algerian coasts. Without being able to refute exogenous selection, we argue here

that intrinsic pre- or post-zygotic isolation is equally likely, if not more likely. We

have shown with simple simulations that the mosaic genetic structure observed

in  Algeria  can  indeed  be  obtained  with  intrinsic  reproductive  isolation  alone

(Figure 3 and 4). It only requires asymmetric north-south dispersal at the AOF,

which  seems a  reasonable  assumption.  In  addition,  simulations  of  exogenous

selection  to  a  coarse-grained  environment  also  require  the  assumption  of

asymmetric  north-south  dispersal  at  the  AOF  (Figure  5B),  or  a  patch  of
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maladapted  Mediterranean  mussels  cannot  be  maintained  in  the  south.

Adaptation to a patchy fine-grained environment might better explain the mosaic

structure but does not generate a strong barrier to gene flow if neutral markers

are not tightly linked to adaptive loci. We probably have not sampled the genome

sufficiently  densely  during  our  previous  genome  scans  to  argue  for  strong

physical  linkage between our markers and local  adaption genes (Hoban et al.

2016), and we therefore need a process able to generate a barrier to gene flow

on  a  large  proportion  of  the  genome  (Bierne  et  al.  2011).  Selection  against

migrants that are maladapted to the local environment is often proposed as a

process able to generate  a genome-wide barrier to gene flow  (Marshall et al,

2010; Nosil et al, 2005). However, it is not well appreciated that local selection

needs to be extremely strong to generate a sufficiently effective barrier to gene

flow  (Barton  and  Bengtsson,  1986;  Feder  and  Nosil,  2010;  Slatkin,  1973),

producing a strong segregation of each ecotype in its own favoured habitat. As

soon as lineages coexist in balanced proportions somewhere, as observed here in

Algeria,  some  sort  of  selection  against  hybrids  must  exist.  It  can  still  be

exogenous selection (Kruuk et al. 1999), but hybrids must perform poorly in both

habitats. Hybrids are the bridges used by neutral genes to flow across the barrier

and they either need to be produced in low proportion or to be all unfit for a

barrier to gene flow to have broad genomic effects (Barton and Bengtsson 1986).

Here, in the Algerian hybrid zone, this is indeed the case as we observed a strong

deficit  of  intermediate  genotypes and strong departures from Hardy-Weinberg

and linkage equilibrium among physically  unlinked loci  (Figure 2).  Finally,  the

coarse-grained  environment  we simulated is  not  very  likely.  Although Atlantic

waters enter the Algerian current, Algerian waters are much more similar to other

Mediterranean waters than to Atlantic waters. Fine-grained habitat heterogeneity

was also far from evident between our sampling sites in Algeria as we sampled

very similar microsites: high-shore rocks protected from wave action by artificial

port  breakwaters  and  with  no  evident  influence  of  freshwater  from  nearby

estuaries.  Taken  altogether,  we  believe  these  arguments  suggest  intrinsic

reproductive  isolation,  maybe  pre-zygotic  given  the  apparent  paucity  of  F1

hybrids, is a parsimonious evidence-based hypothesis that should be considered.

Overall our results provide additional support for the coupling hypothesis, which

suggests  that  genetic  breaks  are  often  secondary  contact  semi-permeable

tension  zones  between  heterogeneously  differentiated  genomes  trapped  by

physical barriers to dispersal or environmental boundaries  (Bierne et al, 2011).
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Physical  and environmental  factors  mostly  explain  the position of  the genetic

breaks  but  the  maintenance  of  genome-wide  genetic  differentiation  is  best

explained by reproductive isolation. Our model implies the differential coupling of

sister tension zones at two different geographic positions, at the AOF in the North

and at  the  GBB in  the  south.  The  abrupt  genetic  shift  at  the  GBB is  a  new

observation in an understudied area. However, it fits well with the position of a

barrier  to  dispersal  identified  with  oceanographic  modelling  in  three  recent

analyses  (Andrello et al,  2015; Berline et al,  2014; Rossi et al,  2014). Note in

addition that these three hydrodynamic studies identified much more efficient

barriers to larval dispersal than the AOF within the Mediterranean Sea that are

not  hotspots  of  genetic  differentiation.  Differential  coupling  of  sister  tension

zones can occur in coastal or river species living in linear landscapes with tree-

like reticulation that are not well-described by standard 1D or 2D stepping stone

models  (Fourcade  et  al.  2013).  For  instance,  some  hybrid  zones  secondarily

trapped at the entrance of the Baltic Sea are likely to have produced sister hybrid

zones which have moved further north along the Norwegian coast to be trapped

somewhere in northern Scandinavia (e.g. in  Mytilus trossulus,  Macoma balthica,

Gadus morhua, Platichthys flesus and Gammarus zaddachi; reviewed in Bierne et

al,  2011).  Recently  the Baltic  -  North  Sea contact  zone between the strongly

divergent mussel species Mytilus trossulus and M. edulis has been investigated in

the southern coast area and was identified to be positioned well inside the Baltic

Sea in Germany (Stuckas et al. 2017) while it is localised in the Oresund in the

North (Väinölä and Hvilsom 1991).

To conclude, the mosaic hybrid zone between Oran and Bejaia observed in  M.

galloprovincialis mussels contributes to definitively refute the hypothesis that the

AOF itself generates a sufficiently strong barrier to dispersal to maintain genetic

differentiation in this species. It also opens the debate about the nature of the

genetic  barrier,  which  is  not  necessarily  related  to  differential  adaptation  to

Atlantic and Mediterranean waters but could imply intrinsic pre- or post-zygotic

reproductive isolation. The next step will be to conduct lab experiments (hybrid

crosses) and field studies (settlement and reproduction) to put the alternatives to

the test. Our results also call for new genetic studies along Algerian coasts in

other marine species. A few samples of sea bass from eastern Algeria proved to

be  admixed between the Atlantic  and  Mediterranean lineages  (Duraton  et  al.

2018),  although  we  do  not  yet  know  the  spatial  variation  of  admixture

proportions in this system. Finally our study reveals how complex the interplay
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between  connectivity  (hydrography),  environmental  variation  (seascape)  and

reproductive isolation (including both extrinsic and intrinsic mechanisms) can be.

Without  minimising  the  importance  of  hydrography  and  local  selection,  we

believe the excessive emphasis on oceanographic features in the interpretation

of  the  genetic  structure  in  the  sea  sometimes  results  in  an  incomplete

understanding of the underlying processes explaining its origin and maintenance.
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Titles and legends to figures

Table 1. Examples of marine hotspots of genetic differentiation.

Figure  1.  Sampling  localities  of  Mytilus  galloprovincialis in  the  north-eastern

Atlantic  and  the Mediterranean Sea.  Proportion of  individuals  assigned to  the

Atlantic cluster (in red), the Mediterranean cluster (in green) and unassigned (in

black), based on a DAPC analysis with the four loci (COIII,  Precol-D,  EFbis and

EF2).  Sample names and their  GPS positions  are  given in  the supplementary

Table S1.

Figure 2.  Mytilus  galloprovincialis Mediterranean allele frequencies at  the four

semi-diagnostic  loci  analysed  (COIII,  Precol-D,  EFbis and  EF2)  for  (A)  the  9

samples  of  the  northern  coastline  and  (B)  the  14  samples  of  the  southern

coastline.  AOF:  Almeria  Oran  Front,  GBB:  Gulf  of  Bejaïa  Barrier.  (C)  Average

multilocus  linkage  disequilibrium (D,  bold  line,  left  axis)  and  Hardy-Weinberg

disequilibrium (Fis, dashed line, right axis) in samples of the northern coastline

and (D) samples of the southern coastline. Bar plot of the estimated ancestry

proportions (Q-values) estimated by STRUCTURE with the three nuclear markers

(Precol-D, EFbis and EF2) for (E) the samples of the northern coastline and (F) the

southern coastline.

Figure 3. (A) Simulation output obtained with a bi-locus deterministic model with

selection against recombinant genotypes (s=0.1) and a slight advantage of the

Mediterranean background (a=0.01) in a 60 demes Y-shape stepping stone model

(m=0.3), including two weak barriers to gene flow (mbar=0.1) between demes

20 and 21 (AOF) in the northern chain and between demes 40 and 41 (GBB) in
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the  southern  chain  of  demes,  a  contact  between  demes  50  and  51,  and

unidirectional migration right to the AOF. Above: northern chain, below: southern

chain. The insert shows an output when migration was bidirectional between the

two chains. Clines are represented every 500 generations with a rainbow colour

code from orange to dark blue.  Blue clines superimposed green clines in the

southern  chain  because  they  remain  at  the  same  position  (trapping).  (B)

Simulation with a contact between demes 10 and 11 and an advantage of the

Atlantic background (a=0.01). Clines are represented every 500 generations with

a rainbow colour code from orange to dark blue. Dark blue clines superimposed

light blue and green clines because they remain at the same position (trapping).

Figure 4. (A) A simulation output obtained at a neutral locus at a genetic map

length of 1cM to one intrinsic incompatibility after 1000 generations, with the Y-

shape bi-unidimensional  stepping stone model,  including two weak barriers to

gene flow between demes 25 and 26 (AOF) in the northern chain and between

demes  40  and  41  (GBB)  in  the  southern  chain  of  demes  and  unidirectional

migration right to the AOF. (B) Proportion of Mediterranean ancestry under an

admixture model (STRUCTURE Q-values).  Geographic positions are rescaled so

that Almeria superposes to Oran.

Figure  5.  (A)  Simulation  output  obtained  with  a  deterministic  model  with

exogenous selection in a fine-grained environment between AOF and GBB in the

southern  coasts  (in  which  habitat  type  was  assigned  randomly).  Other

parameters  the same as  previous  figure.  Thick  line:  selected  locus,  thin  line:

neutral locus after 1000 generations (r=1cM) (B) Simulation output obtained with
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a deterministic model with exogenous selection in a coarse-grained environment.

Thick line: selected locus, thin line: neutral locus after 1000 generations (r=1cM).
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Barrier to gene flow

Potential processes 
involved
Vicariance (V)
Temperature (T)
Salinity (S)
Hydrography (H)

References

Øresund and Danish Belts S Johannesson and Andre (2006)

Almeria Oran Front V, H, S, T
Paternello et al (2007), Galarza et al 
(2009)

Balearic Front H Galarza et al (2009)

Siculo - Tunisian Strait V, H, S, T
Bahri Sfar et al (2000), Mejri et al 
(2009)

Cape Cod 
(Massachusetts)

V, H
McGovern & Hellberg (2003), Kelly et al.
(2006), 
(Haney et al. 2007)

Cape Canaveral (Florida) V, H, T
Reeb and Avise (1990), Avise et al 
(1992), 
Pelc et al. (2009)

Nova Scotia 44-45°N T Stanley et al. (2018)
Cape Mendocino 

(California)
C, H

Blanchette et al. 2008, Sivasundar & 
Palumbi (2010)

Point Conception 
(California)

V, H
Burton (1998), Cassone & Boulding 
(2006), 
Dawson (2001), Pelc et al. (2009).

Cape Agulhas (South 
Africa)

H Evans et al. 2004, Teske et al (2014)

30°S Chilean 
biogeographic break

H Brante et al (2012)
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