
HAL Id: hal-02403680
https://hal.science/hal-02403680v1

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When DevOps Meets Meta-Learning: A Portfolio to
Rule them all

Benjamin Benni, Mireille Blay-Fornarino, Sébastien Mosser, Frédéric Precioso,
Günther Jungbluth

To cite this version:
Benjamin Benni, Mireille Blay-Fornarino, Sébastien Mosser, Frédéric Precioso, Günther Jungbluth.
When DevOps Meets Meta-Learning: A Portfolio to Rule them all. 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C),
Sep 2019, Munich, Germany. pp.605-612, �10.1109/MODELS-C.2019.00092�. �hal-02403680�

https://hal.science/hal-02403680v1
https://hal.archives-ouvertes.fr


When DevOps meets Meta-Learning:
A portfolio to rule them all

Benjamin Benni∗, Mireille Blay-Fornarino∗, Sébastien Mosser†, Frédéric Précioso∗, Günther Jungbluth∗
∗Université Côte d’Azur, CNRS, I3S, France
{benni, blay, precioso, jungblunth}@i3s.unice.fr
†Université du Québec à Montréal, Canada

mosser.sebastien@uqam.ca

Abstract—The Machine Learning (ML) world is in constant
evolution, as the amount of different algorithms in this context
is evolving quickly. Until now, it is the responsibility of data
scientists to create ad-hoc ML pipelines for each situation they
encounter, gaining knowledge about the adequacy between their
context and the chosen pipeline. Considering that it is not
possible at a human scale to analyze the exponential number
of potential pipelines, picking the right pipeline that combines
the proper preprocessing and algorithms is a hard task that
requires knowledge and experience. In front of the complexity
of building a right ML pipeline, algorithm portfolios aim to
drive algorithm selection, learning from the past in a continuous
process. However, building a portfolio requires that (i) data
scientists develop and test pipelines and (ii) portfolio maintainers
ensure the quality of the portfolio and enrich it. The firsts are
the developers, while the seconds are the operators. In this paper,
we present a set of criteria to be respected, and propose a
pipeline-based meta-model, to support a DevOps approach in
the context of Machine Learning Pipelines. The exploitation of
this meta-model, both as a graph and as a logical expression,
serves to ensure continuity between Dev and Ops. We depict
our proposition through the simplified study of two primary use
cases, one with developer’s point-of-view, the other with ops’.

Index Terms—Machine Learning Pipeline, portfolio, genera-
tion, composition, meta-learning

I. INTRODUCTION

Recent advances in Machine Learning (ML) have brought
new solutions for the problems of prediction, decision, and
identification. ML is impacting almost all domains of sci-
ence or industry, but determining the right ML pipeline for
a given problem remains a crucial question. Schematically,
data processing in ML consists of 6 phases [14]: (1) un-
derstanding business objectives, (2) understanding data, (3)
data preparation (e.g., feature extraction, data cleaning), (4)
modeling to train and calibrate ML algorithms, (5) evaluation
to determine the best possible choices based on criteria to
be defined, (6) deployment to operate the built pipeline. The
first 5 phases, grouped under the term development phase, are
repeated to evaluate the different possibilities and produce a
family of models from which a predictive model is chosen. The
deployment phase is also critical; it involves online evaluation,
monitoring, and possibly model maintenance.

Faced with this complexity of building a right ML Pipeline,
different complementary solutions are proposed: the DataOps
movement to help with experiments, meta-learning to predict

performances or dedicated environments such as algorithm
portfolios to learn from the past in a continuous process.

One of the benefits of a portfolio is to have short production
and feedback cycles. However, to build a portfolio, it is
necessary to build ML pipelines whose evaluation results will
be used to build a selection model, possibly by meta-learning.
The evaluation of ML pipelines drives the meta-learning
approach itself, whose input data contains the performance of
the previously tested pipelines. Thus data scientists develop
new pipelines that they test and compare on different datasets.
Portfolio managers (often data-scientists themselves) add to
the portfolio, algorithms, dataset and ML pipelines at the cost
of numerous experiments and evaluations to implement meta-
learning.

Complex mechanisms of quality validation, learning and
feedback loops support this “reflexive” approach to portfolio
construction, development, and integration. It is therefore
essential to automate as many tasks as possible without losing
knowledge in order to save not only time (experimentations
can take several days) but also computing resources.

We propose to consider pipelines as first-class models and to
use these models to build tools that facilitate a continuous and
efficient process of solving a problem specific to continuous
meta-learning. In this context:

• the devs are data scientists who focus on algorithms and
their performance characteristics. They focus on on-time
and quality delivery [6]. The challenge is to provide new
and more “efficient” pipelines;

• The ops are those who maintain the portfolio; they
are responsible for monitoring the portfolio itself. The
challenge here is to put in place the tools to manage
massive feedback from independent experiments, mainly
to acquire new knowledge.

In this article, we have chosen to focus on pipeline con-
struction and testing in a non-predefined context. “... so far
there is only little work on discovering new pipeline building
blocks. Auto-sklearn uses a predefined set of preprocessings
and classifiers in a fixed order. An efficient way to also come up
with new pipelines would be helpful”1. We show how we used
the models to support related activities in the development of

1https://www.kdnuggets.com/2017/01/current-state-automated-machine-
learning.html



the ROCKFlows [10] project, which aims to facilitate the auto-
matic selection of ML pipelines according to a given problem.
It is, of course, a question of statistics and machine learning,
but it is, even more, a problem of Software Engineering (SE)
practices including metamodelling. The contributions in this
article focus on (1) the characterization of some criteria related
to portfolio construction in this context, and (2) the use of
a portfolio meta-model, the main element of which is the
pipeline, to support these different criteria.

Section II positions this work and explains the concept of
pipelines portfolio. Section III explains the use cases chosen
to highlight the roles of Dev and Ops and to explain some of
the requirements with which the portfolio must comply. The
meta-model used as the basis for the portfolio is presented in
section IV. We show in section V how it is used to meet the
different criteria before concluding with our perspectives in
section VI.

II. RELATED WORK

A. Automating Learning

Last years have seen an increasing effort from the big
data companies (Amazon AWS, Microsoft Azure, Google
AutoML. . . ) to provide any user with simple platforms for
designing tailored ML pipelines, allowing non-experts users to
benefit from ML potential. However, none of these solutions
consider the design of ML pipeline as a generic process
intending to capture common processing patterns between
pipelines (even through pipelines targeting different appli-
cation contexts). These platforms either propose a set of
dedicated solutions for given classes of problem (i.e., AutoML
Vision, AutoML natural language, AutoML Translation. . . )
or propose a recipe to build your ML pipeline from scratch
(i.e., MS Azure Machine Learning studio, RapidMiner). How-
ever, to determine the right ML workflow for a given problem,
numerous parameters have to be taken in account: the kind
of data, expected predictions (error, accuracy, time, memory
space), the choice of the algorithms and their judicious com-
position [16], [19]. In front of the complexity of choosing the
”right” assembly, meta-learning offers an attractive solution,
learning from the problems of the past. The algorithm selection
problem is one of its applications [15]: given a dataset, identify
which learning algorithm (and which hyperparameter setting)
performs best on it.

B. Algorithm Portfolio

Figure 1, taken from [11], sketches a model for selecting
algorithms in the line of Rice’s work [15]. The selection model
S is constructed using automatic learning techniques. The data
for the model comes from the algorithms A ∈ A, and the
problems x ∈ P , characterized by meta-features. S is created
using learning data containing the performance of algorithms
on a subset of the problems in the problem space. The S
model predicts a specific algorithm A from a problem x. This
algorithm is then used to solve the problem.

Algorithm Portfolio generalizes the problem and automates
the construction of selection models [8]. The immediate goal

is the same: to predict the results of the algorithms on a given
problem without executing them. Even if, in the portfolio,
meta-learning builds some selection models [4], the purpose
is different: it is the systematic acquisition of knowledge
about the algorithms it contains that drives its construction.
The research then focuses on the quality and the return of
knowledge, the acquisition process itself, and the construction
of selection models over time.

However, these solutions focus on recommending a single
algorithm, while it has been widely recognized that the quality
of the results can be markedly improved by selecting the right
workflows, i.e., a complete chain of pre-processing operators
and algorithms [17]. One of the additional challenges is then
the growth of the search space. The capability of learning
a relationship between data and a suitable algorithm is the
premise of meta-learning and portfolio approaches. For this, it
is essential to learn from past experiences such as, for example,
databases of experiments (e.g., OpenML [18]). The accuracy
of the selection models depends then on the coverage of the
problem area.

However, the space of problems and solutions presents a
very great diversity even within a single class of problem
like classification [5]. Also, the resources required for ML
experiments are massive (time, memory, energy). Moreover, as
the ML domain is particularly productive, the portfolio must
be able to evolve to integrate new algorithms. To cope with the
mass of data, the transformation of experimental results into
knowledge requires the implementation of automatic analysis
procedures.

III. SELECTED USES CASES

The role of data preprocessing in ML is fundamental.
Choosing the right combination of data preprocessing and
predictive algorithms represents a significant amount of time in
the development of predictive models [12]. The concern is to
choose and apply, sequentially, different types of preprocessing
on the same data (e.g., missing value imputation, formatting
data) before applying a predictive algorithm. Because there is
no optimal solution for all problems [19], there are many dif-
ferent data preprocessing and predictive algorithms, grouped
in different libraries (e.g., scikit-learn, weka) and many ways
to arrange them in an ML pipeline.

In the context of the portfolio, we are interested in two types
of actors: (i) developers who define new Machine Learning
Pipelines (MLPs), test them, evaluate them (cf. III-A); (ii)
operational peoples who support the platform, (cf. III-B). This
section relies on three personas to reify these actors: one on
the development side (Lucas) and one on the operational side
(Fred and Günther). Based on the needs of these personas,
we identify thirteen criteria qualifying a model-based portfolio
solution dedicated to ML.

Luca is a Master Data Sciences student. He seeks to
compare several classification pipelines to analyze a dataset
and is not an expert in SE. He mainly knows Python and R
as programming languages and implements scripts.



Fig. 1. Algorithm Selection Model illustrated by L. Kotthoff [11]

Fred is Professor, interested in building the portfolio, in
facilitating access to the pipelines and in finding new prop-
erties on the pipelines. He has excellent expertise in machine
learning but very little time. He must have confidence in the
portfolio to be able to rely on it in his research results. He
regularly explores new directions based on his research and
the results obtained in the ML community. Even if he has a
proper funding basis in his lab, he does not have the resources
of a GAFA, and he is sensitive to energy problems.

Günther is an engineer, who maintains the portfolio. He
regularly receives requests from the team of researchers and
students to add new algorithms to the portfolio, new kinds of
experiments. He is far from being an expert in ML and only
works part-time on the portfolio.

A. Devs in action: as a data scientist, ...

a) Luca wants to build a pipeline to learn from a given
dataset: and only pipelines compatible with the given dataset
should be considered (c1). While the number of possible
pipelines increases exponentially with the number of ML
algorithms, Luca expects some help to eliminate inefficient
pipelines according to his dataset (c2). Moreover, from energy
consumption and time point of view, the choice of a pipeline
should not require its execution. Luca has neither the time nor
the resources to do so (c3). Finally, a pipeline might integrate
ML components implemented in different languages. However,
since Luca is not an expert in Java, he would like to avoid
manipulating this language (c4).

b) Luca wants to evaluate a pipeline on a given dataset:
The evaluation of a pipeline must include different perfor-
mance measures (e.g., predictive accuracy, the area under
the ROC curve) (c5). He is also interested in having mea-
surements on resources from a non-functional point of view
(e.g., run memory, * cpu time) (c6). Finally, experiments
must be reproducible (c7).

B. Ops in action: as a porfolio manager, ...

a) Günther wants to integrate a new algorithm in the
portfolio: His goal when adding a new algorithm is to make
it available to developers like Luca. To do this, he must
collect knowledge about the algorithm. The portfolio should
automatically launch experiments on selected data sets and

automate the collection of results (c8). For this purpose, the
system must select the data sets on which an algorithm can
be applied. Unlike approaches that freeze all pipelines to
a few known compositions, we want to be able to adapt
the pipelines tested according to prior knowledge but also
by testing new compositions (c9). The addition of a new
prediction or preprocessing algorithm must, therefore, lead to
the determination of all consistent pipelines and then to the
execution of a subset of them on all compatible datasets.

b) Fred wants to capitalize on knowledge (meta-
learning): Fred’s objective is to use the experiments conducted
by Günther and the devs to build a Selection Model (cf. Fig-
ure 1) by meta-learning and analysis of past experiment
results. The choice of meta-features used by meta-learning is a
challenge in itself: algorithms are sensitive to different meta-
features, some are linked, others are expensive to calculate.
Fred needs to be able to define new ones and exploit them eas-
ily (c10). The set of meta-features should evolve according to
the knowledge acquired [1] (c11), and the knowledge acquired
must be of high quality, based on trust in experiments (c12).
The vast number of experiments requires (1) to automate the
validation of experiments, (2) to trace experiments and their
validation. Defining the validity of an experiment (e.g., it did
not fail, the comparisons respect criteria such as working on
the same fold decompositions) is beyond the scope of this
article. However, the validation operation itself is expected to
evolve according to the knowledge acquired, and the biases
observed. Finally, to reduce search spaces, it is necessary to
automatically identify properties such as inefficient algorithm
compositions, commutativity (c13).

IV. PIPELINES MODELING

A coarse-grained description of pipeline meta-model is
depicted in Figure 2 using the class-diagram formalism.

A. Pipelines

The Pipeline part of this meta-model is directly inspired by
ADORE Meta-model [13], and by transitivity by the BPEL
language grammar expressiveness (classically used in the 00’s
to compose web services)

We define a Machine Learning Pipeline (Pipeline) as a
sequence of ML algorithm calls (Activity). The last step



Fig. 2. Extract of the Pipeline meta-model

of a Pipeline refers to a PredictiveActivity. Some
algorithms may not be directly suitable for a given dataset,
e.g., some classification algorithms cannot handle datasets
containing missing values. The role of such preprocessing
is to prepare the dataset and make it ready for the analysis
by a predictive algorithm. A pipeline usually includes data
cleaning, data imputation, and data transformation as pre-
processing activities. In a portfolio, we need to distinguish
the available MLComponents from calls to these compo-
nents (Activity), like function calls are distinguished from
function definition in classical programming languages. We
simplify the relationship by considering a bijection between
the calls and the components to lighten the formal model.

A pipeline is formally defined as: mlp = pp1; ...; ppn; a,
where a is a predictive algorithm (a function taking as input
a dataset and producing a model), ppi is a preprocessing (a
function taking as input a dataset and producing a new one as
output), and ; a sequencing operator (meaning that the input
to its right operand is the output of its left one).

B. Meta-features

To meet the criterion (c10), it is necessary to character-
ize a dataset by meta-features (e.g., the number of classes,
percentage of binary attributes). The choice of meta-features
is itself critical, (1) because they can take a long time to
calculate, and (2) pipelines are not equally sensitive to all
meta-features. The choice of meta-features themselves evolves

with our knowledge [1]. Considering a dataset denoted as d,
we denote as fd the extracted meta-features.

From the modeling perspective, a meta-feature corresponds
to a variable. By considering meta-features as logical variables,
we will show how to infer conditions on datasets to determine
those to which a pipeline can be applied (c8). A meta-feature
may be free, i.e., not bound to a specific value.

C. Preconditions

An algorithm might not be compatible with a given dataset.
For example, the NaiveBayesMultinomial algorithm
defined within the Weka library cannot handle datasets that
are not complete.

To model this notion, we rely on preconditions associated
with any MLComponent. In the metamodel, Conditions
define constraints on meta-features. The preconditions asso-
ciated with an ML component are extracted from the code
libraries (e.g., by statically analyzing the capabilities defined
in the Weka library as Java annotations) or defined by the
developer of the algorithm. In the long term, we plan to
complete preconditions based on failures on experiments. The
modelling of preconditions supports criteria (c1), (c8).

A precondition pi is defined by a set of constrained meta-
features denoted as requires(pi). A precondition pi is verified
by a set of meta-features fd if checks(pi, fd) is true. By
construction, checks(pi, requires(pi)) is verified.



Let a a MLComponent, preconds(a) = {p1...pn} is the set
of preconditions associated to a. Then, a is said compatible
with a meta-feature set fd if compatible(a, fd) is verified,
i.e., for all the preconditions checks(pi, fd) is true.

The function requires associated with a ML compo-
nent returns the meta-features required by the component
i.e., requires(a) =

⋃n
i=1(requires(pi)). By construction, we

assume compatible(a, requires(a)) is always verified.

D. Postconditions

The cost of executing an ML component can be high, as can
the size of the dataset. It is therefore essential not to have to
run all pipelines to determine which ones are compatible with
a given dataset (c3). At the same time, if we do not want to
freeze the possible compositions (c9), we must be able to work
on the specific effects of the components. We have introduced
the notion of postcondition in the form of “ghost condition”.
A ghost condition is a condition that can emulate the normal
execution of a program by calculating meta-features. The func-
tion predict associated with a GhostCondition returns
the meta-features that should be modified when executing the
linked component. Only one postcondition is associated with a
component. It can be statically defined (e.g., for preprocessing
that replaces all missing values with the median value, the
meta-features concerning the missing values are forced to take
the value 0). In the case where the constraints depend on the
input meta-features, the prediction function calculates the new
set of meta-features (e.g., Feature Selection Techniques induce
at least that the number of features of the output dataset is
lower than the number of features of the input dataset).

Emulating a preprocessing a on a set of meta-features fd
means to apply ghost condition prediction function and return-
ing a new set of meta-features, denoted as result(a, fd) =
predict(postcond(a), fd).

E. Pipeline compatibility with a given dataset

Based on the previous definitions, we can now establish
the compatibility of a dataset with a pipeline as follows, by
generalizing the notion of compatibility defined at the activity
level.

A pipeline mlp = pp1; ...; ppn; a is compatible with a set
of meta-features fd0 if : ∀i ∈ [1..n] result(ppi, fdi−1) = fdi ,
compatible(ppi, fdi−1) and compatible(a, fdn) are verified.

A pipeline mlp is consistent if it is compatible with
the metafeatures required by its first preprocessing step
(i.e., requires(pp1)).

F. Cross-Component Constraints

It is common knowledge that some combinations of pre-
processing activities are useless or inefficient. For instance,
the following sequence is useless: nominal->numeric;
numeric->nominal, as it brings back the pipeline to
square one at a syntactical level. At a business level, putting
the preprocessing attribute-selection at the end is
considered as bad practice by ML experts. So a pipeline must
respect cross-component constraints such as:

• A given preprocessing “is always at the beginning”;
• A given preprocessing “is always/never at the end”;
• The preprocessing ppx “is applied after” the preprocess-

ing ppy;
• The preprocessing ppx “is never used in the same

pipeline than” the preprocessing ppy .
These constraints are required to get efficient pipelines.

Machine learning experts define some of them based on
their expert knowledge. The analysis of the pipeline graph
correlated with the results of past experiments supports the
obtention of the others. The aim here is to build knowledge of
the compositions themselves. For example, we are currently
interested in identifying similarities, and cliques/stables that
correspond to algorithms that statistically should always or
never be used together. These constraints contribute to crite-
ria (c2) and (c13).

A pipeline is said efficient if it is consistent and all cross-
component constraints are respected (c2).

V. MODELLING THE PORTFOLIO

A coarse-grained description of the Portfolio meta-model is
depicted in Figure 3 using the class-diagram formalism.

A. Architecture Elements

We describe here how the proposed meta-model can sup-
ports both devs and ops based on the requirements identified
in section III.

The entry point of the portfolio is the datasets registered,
and the ML components available. A registry stores their
definitions, and an experiment database stores the result of
meta-learning experiments used to enrich the knowledge of
the portfolio contents.

1) Registries: The MLComponentRegistry stores the
algorithms (preprocessing and predictive algorithms) as turn-
key images. To support the multi-language criteria (c4), we
used the Docker container technology to encapsulate an al-
gorithm into a black-box image. These images contain the
evaluation tools necessary to evaluate the algorithm (e.g., per-
formance measurement (c6)), and their intrinsic definition
supports the reproducibility of an experiment (c7).

It is possible to associate to certain MLComponent a meta-
learning model (MLModel) that support the prediction of the
efficiency of a new pipeline for a given dataset. The selection
model described in Fig. 1 is built thanks to these models.

2) Experiments and Pipelines: The pipelines known by
the system, as well as the meta-learning experiments made
on these pipelines are stored in a service modeled by the
XPBase concept. It supports the querying of the pipeline
set, and its evolution (e.g., the addition of a new pipeline).
We attach to each experiment Justifications [7], which
assess the different artifacts that were used to reach the stored
conclusions, in order to achieve the explainability of the
results (c12).



Fig. 3. Extract of the Portfolio meta-model

B. Supporting Ops

1) Integrating a new algorithm:
Composition Step : Given a new algorithm a, the portfo-

lio will build all the efficient pipelines containing a. Cross-
Component constraints play a crucial role in reducing this
space of the composition. If this step does not result in at
least one efficient pipeline, the new algorithm is not integrated
in the portfolio as experiments are necessary to validate the
newly available pipelines.

Experiment Preparation Step: If none of the known
datasets in the portfolio are compatible with any of the
pipelines produced in the previous step, then the new algorithm
is also not integrated. It will be up to the data scientist to
evaluate if there is an error in the definition of the algorithm
in terms of pre- and post- conditions or if it is a problem with
the dataset space that is not suitable.

The cartesian product of the compatible pipelines and the
available datasets represents the space of experiments to be
made to enrich the portfolio.

Experiment Selection Step: As the portfolio runs on
limited resources, the experiments to be performed must be
selected carefully from the set of available ones. The idea here
is to select experiments to perform in priority those that are
potentially the most valuable [9]. The description of a smart
selection algorithm is a contribution by itself and is out of
the scope of this paper. Instead, we consider here that all the
experiments are required (i.e., the selection step returns the
whole space).

Experiment Execution Step : We use a controlled envi-
ronment to launch each selected experiment in isolation, and
the results are stored automatically. Tests are automatically
triggered to check the accuracy of the experiments. These

are of different natures such as the absence of errors, or the
stability of execution times. It should be noted that these
automatic tests are critical as they take place at all levels
(e.g., decomposition into folds, cleaning, learning, collection
of measurements) and ensure the trustability of the portfolio.
These different steps meet the criteria (c8), (c9) and contribute
to (c12).

2) Meta-learning: The activation of meta-learning depends
on the data collected by the experiments. For the moment
it is triggered on demand, for example, because enough
information has been collected for a new predictive algorithm,
to update an ML model if new information has been collected,
or because we have chosen a new way of learning. Meta-
features are extracted from the experiments by dedicated
programs, associated with the meta-features definitions. To
reduce the costs of these calculations and improve the quality
of predictions, the selection of meta-features is a work in
progress [1]. The use of JSON as a pivotal model gives us
confidence in our ability to evolve the tools.

These different points contribute to address the criteria (c10)
and (c11). The tests and justifications produced during the
experiments (cf. V-B1) are used to limit meta-learning to
successful experiments only, contributing to (c12). Meta-
learning is then based on meta-features extracted from valid
experiments and produces regression models.

3) Analysis: We are considering different analyses to an-
alyze the pipeline set, the regression models produced, and
the results of experimentation, including failures. In particular,
we seek to identify properties that allow cross-component con-
straints to be deduced based on the detection of commutativity,
failure, or inefficiency of specific compositions. The results are
automatically notified to the portfolio managers. This work



TABLE I
AMOUNT OF PIPELINES ACCORDING TO GIVEN DATASETS AND GIVEN

CONSTRAINTS

Dataset With pre/post conditions With all constraints
empty 3,653,644 39,694

speed-dating 4 3,419,170 36,360
texture 5 256,286 5,688

iris 6 105,892 3,190

aims to achieve criterion (c13).

C. Supporting Devs

1) Building a pipeline to learn from a given dataset: From
the dev’s point of view, given a dataset d, all pipelines that
are compatible with d will be extracted from the portfolio
(1) by looking for those that are compatible by browsing the
pipeline graph and (2) by predicting for the pipelines their
performance from models learned by meta-learning (c1). In
this way we achieve criteria (c2) and (c3).

As dedicated docker components encapsulate
MLComponent, pipelines can be composed of algorithms
implemented in different languages (cf. criteria (c4)). The
developer has then the choice of selecting the pipelines that
suit him or her, taking into account the predictions obtained
according to different criteria, which may be the performance
or resources required.

2) Evaluating a pipeline on a given dataset: The evaluation
of a pipeline is then carried out based on the containers. It
can be done either in the platform itself, which it automati-
cally feeds, or outside. Containers support pipeline evaluation
(choice of evaluation method), performance reporting, and re-
source monitoring. To support the replication of an experiment,
we define a composite container that contains the pipeline as
a turn-key artifact. In this way, the criteria (c5), (c6), and (c7)
are all verified.

D. First Results

We automatically extracted the pre-conditions of the Weka
ML algorithms by using the provided capabilities2. We chose
ten preprocessing algorithms from the Weka library and set
their post-conditions according to their semantics. We ex-
tracted 94 algorithms with different enhancers3 for a total
of 483 algorithms. Enhancers are strategies to set hyper-
parameters according to the input dataset.

The amount of potential pipelines for our extracted algo-
rithms is 670,758,800. This number does not take in consid-
eration pre/post conditions.

We observe a high variation of compatible pipelines for
given datasets. The differences between the datasets partially
explain this. For example, the iris dataset has no missing

2http://weka.sourceforge.net/doc.dev/weka/core/Capabilities.html
3http://weka.sourceforge.net/doc.dev/weka/classifiers/

SingleClassifierEnhancer.html
4https://www.openml.org/d/40536
5https://www.openml.org/d/40499
6https://www.openml.org/d/61

values, and the speed-dating has missing values, reducing by
a factor the amount of pipelines.

VI. CONCLUSION AND PERSPECTIVES

We focused this contribution on the application of the
DevOps paradigms to meta-learning, where devs are data sci-
entists and ops algorithms portfolio maintainers. We proposed
to generate Machine Learning Pipelines based on a set of
preprocessing and learning algorithms without executing them
when possible, saving time and resources. In order to limit
this generation to pipelines that are consistent, we defined
pre- and post-conditions as constraints on meta-features. We
also defined cross-constraints to limit the amount of consistent
pipelines. We verified the consistency of our approach on a set
of algorithms extracted from the Weka library. Considering
the identified use cases, we described how a model-driven
approach that relies on the definition of carefully chosen
abstractions can support both devs and ops in this domain. The
approach is implemented, and a prototype is available [10].

More generally, we think that models are crucial elements in
the DevOps paradigm, which are often neglected or hidden.
In the context of machine learning, contrarily to the black-
box approaches that only exposes a result, relying on models
supports the explainability of the decisions to the user, sup-
porting devs (who know why a given pipeline was chosen)
and ops (who knows why an experiment is more valuable
than another and should be prioritized). This approach brings
to the meta-learning ecosystem the benefits of the DevOps
paradigm, such as change reactivity (new algorithms produced
by devs as well as experiments performed by the ops are
enriching themselves), reliability (thanks to the reproducibility
of the experiments and the shipment of the pipelines as turn-
key containers), automation (the quality of the knowledge is
ensured by automated measurement process).

At a software engineering level, one of our long-term
objectives is to explore how models can be used in the context
of DevOps to support the justification of decisions taken. In
the context of machine learning, we showed that pre- and
post-conditions highly reduce the space of consistent pipelines
and are crucial to support the scalability of the approach.
These conditions depend on the number of meta-features
and can be improved by adding more meta-feature types
and extending constraints expressiveness. In particular, one of
our short-term objective is to look at how dataset generation
strategies might allow improving the pre- and post-conditions
of preprocessings [3] and extending them to automatically take
new algorithms into account generating their pre and post-
conditions. Cross-constraints also highly reduce the number
of pipelines. We are currently working on machine learning
environments such as OpenML [18] to automatically extract
cross-constraints (e.g., dominated algorithms [2]). To facilitate
the addition of such cross-constraints by humans, we aim to
build a Domain Specific Language dedicated to ML experts.



REFERENCES

[1] Besim Bilalli, Alberto Abelló, and Tomàs Aluja-Banet. On the predictive
power of meta-features in OpenML. International Journal of Applied
Mathematics and Computer Science, 27(4), 2017.

[2] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Thomas Lindauer,
Yuri Malitsky, Alexandre Fréchette, Holger H Hoos, Frank Hutter, Kevin
Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. ASlib: {A}
benchmark library for algorithm selection. Artif. Intell., 237:41–58,
2016.

[3] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le
Traon. Metamodel-based test generation for model transformations: An
algorithm and a tool. In Proceedings - International Symposium on
Software Reliability Engineering, ISSRE, 2006.

[4] Cécile Camillieri, Luca Parisi, Mireille Blay-Fornarino, Frédéric Pre-
cioso, Michel Riveill, and Joël Cancela Vaz. Towards a software product
line for machine learning workflows: Focus on supporting evolution. In
Tanja Mayerhofer, Alfonso Pierantonio, Bernhard Schätz, and Dalila
Tamzalit, editors, Proceedings of the 10th Workshop on Models and
Evolution co-located with ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2016),
Saint-Malo, France, October 2, 2016., volume 1706 of CEUR Workshop
Proceedings, pages 65–70. CEUR-WS.org, 2016.

[5] Manuel Fernández Delgado, Eva Cernadas, Senén Barro, and Di-
nani Gomes Amorim. Do we need hundreds of classifiers to solve real
world classification problems? Journal of Machine Learning Research,
15(1):3133–3181, 2014.

[6] Erik Dornenburg. The Path to DevOps. IEEE Software, 2018.
[7] C. Duffau, C. Camillieri, and M. Blay-Fornarino. Improving confidence

in experimental systems through automated construction of argumenta-
tion diagrams. In ICEIS 2017 - Proceedings of the 19th International
Conference on Enterprise Information Systems, volume 2, 2017.

[8] Carla P Gomes and Bart Selman. Algorithm portfolios. Artif. Intell.,
126(1-2):43–62, 2001.

[9] Hans Degroote, Bernd Bischl, Lars Kotthoff and Patrick De Caus-
maecker. Reinforcement Learning for Automatic Online Algorithm

Selection - an Empirical Study. In ITAT 2016 Proceedings, CEUR
Workshop Proceedings Vol. 1649, pages 93–101, 2016.

[10] I3S. The ROCKFlows platform. http://rockflows.i3s.unice.fr, 2017.
[11] Lars Kotthoff. Algorithm Selection for Combinatorial Search Prob-

lems: {A} Survey. In Christian Bessiere, Luc De Raedt, Lars Kot-
thoff, Siegfried Nijssen, Barry O’Sullivan, and Dino Pedreschi, editors,
Data Mining and Constraint Programming - Foundations of a Cross-
Disciplinary Approach, volume 10101 of Lecture Notes in Computer
Science, pages 149–190. Springer, 2016.

[12] Manuel Martin Salvador, Marcin Budka, and Bogdan Gabrys. Towards
automatic composition of multicomponent predictive systems. In Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2016.

[13] S. Mosser and M. Blay-Fornarino. ”Adore”, a logical meta-model sup-
porting business process evolution. Science of Computer Programming,
78(8):1035–1054, 2013.

[14] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro
López Garcı́a, Ignacio Heredia, Peter Malı́k, and Ladislav Hluchý.
Machine Learning and Deep Learning frameworks and libraries for
large-scale data mining: a survey. Artificial Intelligence Review, jan
2019.

[15] John R. Rice. The Algorithm Selection Problem. Advances in
Computers, 15(C):65–118, 1976.

[16] Floarea Serban, Joaquin Vanschoren, Jörg-Uwe Kietz, and Abraham
Bernstein. A survey of intelligent assistants for data analysis. ACM
Computing Surveys, 2013.

[17] Jan N. Van Rijn and Joaquin Vanschoren. Sharing RapidMiner work-
flows and experiments with OpenML. In CEUR Workshop Proceedings,
volume 1455, pages 93–103. CEUR-WS, 2015.

[18] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
OpenML: Networked science in machine learning. ACM SIGKDD
Explorations Newsletter, 2013.

[19] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1997.


