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We report an experimental study of a turbulent dynamo in a liquid metal flow. The semi-
synthetic dynamo is achieved thanks to an induction process generated by the turbulent
shearing motion of liquid gallium and a feedback loop with external amplification, using
coils. The external amplification allows for the excitation of the dynamo instability at
magnetic Reynolds numbers of order one. This semi-synthetic dynamo is studied here
in a regime where saturation is achieved when Lorentz forces modify significantly the
bulk flow structure. We describe the supercritical bifurcation, intermittent and saturated
regimes, the scalings of the dynamo magnetic field and we detail the power budget. We
also report self-killing dynamos for which the dynamo magnetic field cannot be sustained
when the flow is dominated by the action of Lorentz forces and subcritical regimes in
which the flow only sustains a dynamo when it is already dominated by the action of
Lorentz forces.
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1. Introduction

It is commonly accepted that magnetohydrodynamic (MHD) induction processes are
responsible for the development of self-sustained magnetic fields in astrophysical bodies
(Roberts et al., 2000); a process known as the dynamo instability, converting kinetic
energy into magnetic energy. In the context of planetary dynamo, occurring in liquid
metals, the base flow is always highly turbulent. Experimental evidence of the dynamo
instability have been obtained from model flows in the early years of the millenium
(Stieglitz et al., 2001; Gailitis et al., 2000). Since then many attempts have been made
in order to generate less constrained dynamos (Peffley et al., 2000; Nornberg et al.,
2006; Frick et al., 2010; Colgate et al. 2011). Due to the turbulent nature of the
flows, reaching the magnetic Reynolds number critical value (Rmc, for which induction
processes balance ohmic dissipation) requires considerable injected mechanical power. As
a result, experiments are often designed or engineered so that Rmc, the threshold value,
is optimized to lie within the operational limits, Rmc < Rmmax - where Rmmax is the
maximum value achievable in the considered set-up.

In the von Kármán Sodium experiment (VKS), dynamo action has been achieved by
generating the flow motions using impellers made of soft-iron (Monchaux et al., 2007,
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2009). From a similar base flow, we consider here another example, in which the dy-
namo cycle is partially synthetic. The principle, inspired by the Bullard dynamo scheme
(Bullard et al., 1955), relies on an external amplification of electrical currents in coils,
driven by a turbulent induction process. The fluid induction process is a turbulent omega
effect coupled with boundary condition effect (referred to as BC-effect as in (Bourgoin et
al. 2004; Verhille et al. 2010b)), while the external amplification mimics an alpha effect
(a mechanism which generates an induced current parallel to the magnetic field). The
second mechanism being linked to an electronic amplification of gain A, it will be referred
to as ’A’ for amplification. The dynamo mechanism is then labelled A−BC dynamo. This
experimental setup is able to generate dynamo action at Rmc ∼ 1, far below the natural
critical value of the base flow (Rmc ∼ 50 estimated in kinematic simulations (Ravelet et
al. 2005), and Rmc ∼ 40 in the VKS experiment). This Bullard-von Kármán dynamo
has been originally studied by (Bourgoin et al., 2006) who evidenced the development of
the instability, then by (Verhille et al. 2010a) who detailed the importance of large scale
flow dynamics on the development of dynamical regimes. In these previous works, the
saturation was due to current limitations in the external coils, and the magnitude of the
dynamo field remained too weak to significantly modify the flow - confining these studies
to kinematic regimes. In the work detailed in the present article, the available electrical
currents have been increased, and the self-sustained magnetic field now reaches values
such that Lorentz forces modify the bulk of the von Kármán flow. While the effect of
Lorentz forces on the momentum balance of turbulent flows has been studied in various
experiments involving applied magnetic fields (Alemany et al. 1979), (Sommeria et al.,
1982; Klein et al. 2010; Verhille et al. 2012; Sisan et al. 2002; Brito et al. 1995; Cabanes
et al. 2014), very little is known in dynamo configurations. In the Riga experiment a
slowing down of the axial flow as well as a modification of the swirling profile have been
observed (Gailitis et al., 2003). Similarly, in the Karlsruhe experiment, a slow down of
the axial motion has been recorded at saturation (Müller et al., 2004) , which also led
to an estimation of the dynamo energy budget. In the VKS experiment, the modification
of the flow at saturation has been too weak to allow significant measurements. The main
asset of the Bullard-von Kármán setup considered here is that sufficiently large mag-
netic fields can be reached in a dynamo configuration, modifying the bulk flow. We show
here that the von Kármán flow is modified in the bulk by Lorentz forces in the dynamo
regime. In addition to the supercritical bifurcation of the magnetic field, the Bullard-von
Kármán dynamo displays a bifurcation of the liquid gallium flow, from a hydrodynamic
base flow (for which the effects of the magnetic field on the flow are negligible) below
dynamo onset to a MHD saturated flow (for which the back reaction of the magnetic
field on the flow is significant) above onset.

The article is organized as follows. Details of the experimental setup and dimensionless
parameters are given in section 2. The supercritical dynamo bifurcation is then inves-
tigated in details in section 3: the magnetic field bifurcates via an on-off intermittent
scenario, and then modifies the bulk flow. The bifurcation towards an MHD saturated
state and the associated power budget is then analyzed. We discuss dynamical regimes,
namely polarity inversions, in section 4. As an illustration of the versatility of the system,
self-killing dynamo regime as well as a subcritical dynamo setup for which the dynamo
action is only observed from an MHD base flow, are demonstrated in section 5. Finally,
further implications of the dynamo power budget are discussed in section 6.
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2. Experimental setup and dimensionless parameters

The experimental system involves motions of liquid gallium and the dynamics is gov-
erned by the coupled set of the incompressible Navier-Stokes (NS) and induction equa-
tions:

∂tu + (u · ∇)u = −∇p
ρ

+ ν∇2u +
j×B

ρ
, (2.1)

∂tB + (u · ∇)B = (B · ∇)u + λ∇2B, (2.2)

∇ · u = 0 (2.3)

∇ ·B = 0 (2.4)

where u(r, t), p(r, t),B(r, t) and j(r, t) are velocity field, pressure, magnetic field and
current density respectively. The fluid density of liquid gallium is ρ = 6100 kg.m−3, the
kinematic viscosity ν = 3.1 ·10−7 m2.s−1 and the magnetic diffusivity λ = 1/(µ0σ) = 0.2
m2.s−1 (with µ0 the magnetic permeability of vacuum and σ = 3.9 · 106 S.m, the electri-
cal conductivity of liquid gallium). The nature of the problem is governed by the values
of the main dimensionless parameters expressed using the integral scale of the experi-
ment L and the characteristic velocity U (computed as the tip velocity of the impellers
- see next subsection): the kinetic Reynolds number Re = UL/ν (which compares the
amplitude of the inertial term to the viscous term in the Navier-Stokes equation (2.1)),
the magnetic Reynolds number Rm = UL/λ = µ0σLU (which compares the induction
term to the diffusion term in the induction equation (2.2)) and the interaction parameter
N = |j×B|/|ρ(u ·∇)u| which compares the amplitude of the Lorentz force to the inertial
term in the Navier-Stokes equation, see section 2.3 for details.

2.1. A von Kármán gallium flow

The experimental setup is sketched in the figure 1 and described in details in (Verhille et
al. 2010a). The liquid gallium flow is created by two coaxial counter rotating impellers
(stainless steel disks with radius Rd = 82.5 mm fitted with eight straight blades of
height 10 mm). The stainless-steel cylinder enclosing the flow has a radius R0 = 97 mm
(which will be used as a characteristic length scale of the dimensionless numbers of the
problem L ∼ R0). The impellers are driven by two 10 kW AC-motors with rotation rate
F adjustable up to Fmax = 20 Hz. For each run, the motors are operated at constant
rotation speed and the motors’ electric drives deliver an analog output proportional to
the current in the motor, as a measurement of the applied mechanical torque Γ.

The integral kinetic Reynolds number computed using the velocity of the impeller and
the radius of the vessel R0 is Re ∼ 106 – therefore the flow is fully turbulent. The time-
averaged flow consists of two counter rotating toroidal cells with recirculating poloidal
cells created by the centrifugal ejection of the fluid by the rotation of the impellers.
In exact counter rotating regime, these cells form a shear layer in the mid-plane and
detailed experimental investigations of time-averaged flow topologies, fluctuation levels
and characteristics may be found in (Ravelet et al. 2008).

The magnetic Reynolds number Rm is typically of order 1, well below the critical value
of 44 obtained for a similar flow in the VKS experiment (Monchaux et al., 2009). A set
of induction coils (of total resistance R = 0.28Ω) creates a magnetic field transverse to
the axis of rotation of the von Kármán flow, homogeneous within 13% over the flow vol-
ume, as shown in figure 1. The current I in the coils is driven by a 10 kW bipolar power
supply, with analog control. The resulting transverse magnetic field Bx = κI (where κ is
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Figure 1. Sketch of the experimental Bullard - von Kármán setup. The flow, created by the
rotation of impellers at frequency F , induces a component Bz (in the axial direction) in presence
of a field Bx (in the transverse direction). The value of the induced field Bz measured by a Hall
sensor is amplified and drives the power supply which delivers the current in the transverse coils.

a constant depending on the characteristics of the coils) has a maximal intensity equal
to 1200 G (0.12 T) in the flow vessel. The interaction of a transverse magnetic field Bx

with the turbulent motions of the flow, induces an axial magnetic component Bz through
a mechanism described in (Bourgoin et al. 2004; Verhille et al. 2010b) involving the
shear layer dynamics in the mid-plane (omega-effect) and insulating boundary conditions
forcing the current to loop back in the liquid gallium volume. This induction effect will
be referred to as BC-effect. In the limit of vanishingly small interaction parameter N and
moderate Rm, the time-averaged axial magnetic field 〈Bz〉 scales linearly with Rm,

〈Bz〉 = kRm〈Bx〉, (N → 0, B < 100G) (2.5)

k being a geometric constant of order 10−2 and 〈·〉 standing for time averaging.
When the interaction parameter N is large, a non-linear correction of functional form

〈Bz〉 = kRm(1− α
√
N)〈Bx〉, (B > 100G) (2.6)

has to be taken into account, α being also a geometric constant (Verhille et al. 2012).
Magnetic fields are measured in the mid-plane using a Bell 9150 gaussmeter and Hall-

effect probes (as sketched by a vertical black tube in the figure 1). The probe measuring
the z component is located at a radius r = 0.9R0 close to the wall except in section 5
where it is located deeper. The Bx component is measured on the coils axis at r = 0.55R0

(not shown). Data are recorded using a National Instrument digitiser NI 4472 at sampling
frequency of 1 kHz and 24 bits resolution.

2.2. Semi synthetic Bullard-von Kármán dynamo

The Bullard - von Kármán (BvK) setup relies on an external feedback inspired by the
Bullard’s disk dynamo (Bullard et al., 1955).

The dynamo mechanism may be split into two induction processes. The first one is
the turbulent induction process described above, inducing an axial component Bz from a
transverse Bx component through a turbulent BC-effect. The second one stems from the
external amplification of the Hall-probe signal sampling the Bz component of the mag-
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netic field, which is used to control the power supply feeding the current in the transverse
coils. This external feedback produces a transverse component Bx of the magnetic field
proportional to the turbulent induced component Bz:

Bx = ABz (2.7)

A being proportional to the gain of the amplifier. Thus, the complete mechanism of
the present dynamo is referred to as A − BC type dynamo. The onset of the dynamo
instability may be understood in the following way: combining the induction equation
(equation 2.5) with the external feedback (equation 2.7) the magnetic energy grows
from a vanishingly small magnetic field perturbation if Rm > Rmc = (kA)−1. Since
the amplification coefficient A can be tuned, the threshold of the instability can be set
arbitrarily (typically Rmc = (kA)−1 ∼ 1) to values much lower than the expected one for
homogeneous dynamos. In the remaining of the text, several values of the amplification A
will be presented; however, for the sake of simplicity, one will only specify the associated
critical Rm value, Rmc = (kA)−1. A first set of experiments using this arrangement has
been reported in (Verhille et al. 2010a). One was then restricted to kinematic regimes
because the maximum current delivered by the power supply limited the magnetic field
amplitude to 60 G, and the interaction parameter N to typically 10−4; Lorentz forces
were not strong enough to significantly modify the flow. The magnetic field at saturation
was then set by the maximum current drawn from the power supply. However, several
features were observed, such as dynamo states connected to ”on-off” intermittency, and
field reversals. In the present setup, not only is self-generation reached at Rm ∼ 1, but
it is achieved in a fully magnetohydrodynamic (MHD) regime, so far restricted to large
sodium flows (at low magnetic Prandtl number Pm = ν/λ ∼ 10−6 in liquid metals) or
to computer simulations (at moderate to high Pm).

The dynamo magnetic mode chosen in the present configuration (a transverse dipole
relative to the axis of rotation of the impellers) should also be discussed further. Kine-
matic simulations (i.e. solving the induction equation as an eigenvalue problem from a
prescribed velocity field) predict that the most unstable magnetic eigenmode is a trans-
verse dipole when using the time-averaged von-Kármán flow (Ravelet et al. 2005). These
simulations predict an onset of dynamo for Rm of order 50. The configuration of the
Bullard-von Kármán dynamo investigated in this article allows to study regimes where
saturation is provided by Lorentz forces, at Rm of order 1 (thanks to the external am-
plification) in presence of a transverse dipole. The present study gives informations of
the full non-linear coupled problem in presence of a dynamo mode similar to the one
predicted by kinematic simulations, at leading order. This is in sharp contrast with the
experimental dynamo magnetic field observed in the VKS experiment (with soft iron
impellers), which is an axial dipole (Boisson et al., 2012). The exact mechanism is still
under investigation, but recent numerical simulations have highlighted that a small α
effect between the blades of the impellers, together with a high magnetic permeability
of the impeller, could explain the observed magnetic dynamo mode (Nore et al., (2015),
Giesecke et al., (2012)).

2.3. Interaction parameter

The focus of the current study is on the dynamo characteristics in regimes where the
bifurcated flow differs significantly from the original base flow. This occurs when Lorentz
forces are sufficient to compete with other terms in the Navier-Stokes momentum equa-
tion (2.1). Some care is needed when expressing the interaction parameter N as a function
of the observables of the system. Depending on the system and on the values of the con-
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trol parameters, several estimates of the Lorentz force can be derived in a system with
characteristic length L and characteristic velocity U – we will assume that the velocity
and magnetic field characteristic length scales have the same order of magnitude since in
our gallium flow the magnetic field diffusion length (Ld =

√
λ/2πF ∼ 5.9 cm for F = 10

Hz) is of the order of the shear layer thickness (note that since Ld is comparable to the
integral scale and to the characteristic length of the system R0, we choose to estimate
the space variations of B using L = R0).

• In dynamo regimes (high Rm values and in absence of external magnetic fields),
the current density is expressed as j = ∇ × B/µ0. The interaction parameter is then
estimated as

Ndyn =
|(∇×B)×B|
|µ0ρ(u · ∇)u| ∼

B2

ρµ0U2
(2.8)

where B is the amplitude of the total magnetic field created by the flow motions. This is
the typical expression used in astrophysics, for which B depends on u through dynamo
scaling-laws.

• In induction regimes (moderate Rm values and in presence of an external magnetic
field BE), a magnetic field bI is induced by the interaction of the flow with the external,
homogeneous magnetic field BE. The current density in the fluid is expressed as j =
∇× bI/µ0, and the interaction parameter is estimated as

N ind ∼ bI(BE + bI)

µ0ρU2
(2.9)

In the linear regime bI ∼ RmBE and usually bI � BE in liquid metal flows at Rm ∼ 1.
This leads to

N ind linear ∼ B2σL

ρU
(2.10)

where B is the amplitude of the external magnetic field (or equivalently the amplitude of
the applied magnetic field). This is the typical expression used in induction experiments,
for which B and u are independent.

• In the context of the Bullard - von Kármán dynamo considered here, the induced
magnetic field (bI = Bz) actually drives the external magnetic field (BE = Bx), through
the amplification feedback Bx = ABz, so that the interaction parameter can be estimated
as

NBvK = A
B2

z

µ0ρU2
(2.11)

where Bz is the magnetic field created (induced) by the flow motions. One recovers the
dynamo expression, in which the amplification factor A shows clearly that the external
amplification is used to produce a large impact of the magnetic field on the flow. There
is an equivalent expression, valid when the magnetic induction remains linear in Rm (
〈Bz〉 ∼ Rm〈Bx〉 - i.e. for moderate values of the interaction parameter N), and thus

valid close to dynamo onset NBvK onset ∼ B2
xσL

ρU
. One recovers the induction expression,

but in a dynamo configuration, for which B is not independent of u.
These equivalent formulations of N result from the nature of the Bullard - von Kármán

setup: a dynamo setup from a semi-synthetic feedback relying on a turbulent induction
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Figure 2. (a) Bifurcation diagram of the Bullard-von Kármán dynamo as a function of
Rm/Rmc. Blue circles stand for the time averaging of the dynamo magnetic field |B| and
red diamonds for the most probable value of |B|. Black squares mark the values for which time
series are plotted in the right panel. The threshold for this run is Rmc = 1.94. (b) Time series for
Rm/Rmc = 0.9, in the intermittent regime. (c) Time series for Rm/Rmc = 1.6, in the Lorentz
force saturation regime. Red dashed lines mark the maximum value of the magnetic field Bmax,
which could be drawn if the current reached the maximum value allowed by the external power
supply.

process from an externally applied magnetic field.

3. Supercritical bifurcation and saturation

3.1. Bifurcation

In this section, we focus on the onset of the instability and on the description of dynamo
regimes. The control parameter of the dynamo bifurcation is the magnetic Reynolds
number Rm = 2πµ0σR

2
0F , and is varied by modification of the rotation rate of the

impellers F from 0 to Fmax. In the remaining of this article, we will study the behaviour
of the dynamo magnetic field through the evolution of moments of the Bx component of
the magnetic field, which, for the sake of simplicity will be denoted B. Figure (2-a) shows
a typical bifurcation diagram, i.e. the evolution of the magnetic field while increasing the
magnetic Reynolds number Rm. Following the kinematic approach presented in 2.2, the
critical value of self-excitation is expected to be Rmc = (kA)−1 = 1.94 for the chosen
amplification. For reasons that will soon be clear, the behaviour of the dynamo field is
tracked using two indicators: the time averaged value and the most probable value of the
norm of the dynamo magnetic field, respectively labelled 〈|B|〉 and Bmp.

Below Rm/Rmc ∼ 0.61, the magnetic field is vanishingly small. Slightly above, the
dynamics of the magnetic field displays irregular bursts of activity - as shown in figure (2-
b) at Rm/Rmc = 0.9. Briefs periods of non-zero magnetic field are recorded, with both
polarities being accessible due to the presence of additive noise in the loop, as noted in
(Verhille et al. 2010a). In this regime the time average value of the magnetic field grows
steadily with Rm/Rmc (blue circles in figure (2-a), but its most probable value remains
equal to zero (red diamonds in figure(2-a)). This regime extends for a range of Rm/Rmc
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Figure 3. (a) Probability distribution function of the dynamo magnetic field B for various
Rm/Rmc values (shifted for clarity). (b) Probability density function of the magnetic energy
B2.

values between 0.61 and 1.5 and is referred to as ”intermittent regime ” in figure (2-a).

A transition is observed above Rm/Rmc = 1.6: the most probable value of the mag-
netic field is no longer zero. It must be noted that this transition is associated to a steeper
increase of 〈|B|〉 with Rm/Rmc, though without any discontinuity at Rm/Rmc = 1.6.
A typical time series of the magnetic field is shown in figure (2-c) over 700 seconds at
Rm/Rmc = 1.6. In either polarity state, the magnetic field saturates to a value which is
less than the maximum value of the magnetic field Bmax (corresponding to the maximum
current – Imax – fed by the power supply, i.e. Bmax(Imax) = 1200 G). In this regime, and
in contrast with the previous studies, the saturation of the dynamo magnetic field occurs
from the action of the Lorentz forces and not from the material limitation imposed by the
power supply driving the coils. Note also that the fluctuations in the magnetic field are
of the same amplitude as its time averaged value, a feature often observed in turbulent
dynamos (Monchaux et al., 2009). This regime, for which the dynamo magnetic field
is saturated via the action of Lorentz forces acting in the bulk of the flow, extends for
1.6 < Rm/Rmc < 2.16. It is denoted as ”Lorentz force saturation” in figure (2-a).

As Rm/Rmc is increased above 2.16, instantaneous values of the dynamo magnetic
field reach the amplitude of the material limitation Bmax. At this point the dynamo field
is saturated by material limitations rather than by the action of the Lorentz forces: the
most probable value shows a concave evolution instead of the linear evolution in the
”Lorentz force saturation regime” and saturates at Bmax(since excursions of the mag-
netic field are limited to ±Bmax). This regime is denoted as ”Power supply limitation”
and its range is stripped in figure (2-a).

Since the most probable value Bmp acts as an indicator of a transition between the in-
termittent and Lorentz force saturation regimes, further informations are obtained from
the probability distribution functions (pdf ) of B as displayed in figure (3-a) (curves have
been shifted for clarity) and B2 in figure (3-b). In the intermittent regime (Rm/Rmc =
0.89, full blue curve and Rm/Rmc = 1.5, dashed green curve) the pdf is maximum at
B = 0, and displays extended lateral wings. In the saturated regime (Rm/Rmc = 1.6,
red circles and Rm/Rmc = 1.67, cyan squares) the pdf is bimodal with lobes centered
at B = ±Bmp. The probability of having B = 0 is still significant, this might be due
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to the fact that the magnetic field stays around zero for several turn over times dur-
ing polarity inversions (see section 4). The transition between the intermittent and the
saturated regime is statistically continuous as seen in the evolution of the pdf between
Rm/Rmc = 1.5 and 1.66. The value of the pdf at B = 0 slowly decreases, while the
bimodal lateral wing bumps slowly increase. Bmp bifurcates from zero to non zero values
at Rm/Rmc = 1.6. In all cases, the pdf displays local peaks at the highest amplitudes
of B ∼ Bmax, as a result of the power supply limitations.

The following subsections discuss in detail the different regimes introduced here.

3.2. Intermittent regime

Previous studies on the kinematic regime of BvK dynamo have characterized the ob-
served intermittent regime close to dynamo onset as ”on - off” intermittency (Bourgoin
et al., 2006; Verhille et al. 2010a). On-off intermittency close to an instability onset
is expected for fluctuating dynamical systems presenting an unstable invariant manifold
in the phase space (Ott et al., 1994). The presence of a multiplicative noise (turbulent
fluctuations) in a dynamical system creates fluctuations in such a way that the instan-
taneous growth rate of the magnetic field can be non zero. Since in our system, there
is always an additive noise contribution (from the electronic noise and from turbulent
induction arising from the ambient field), the intermittent signal close to dynamo onset
displays both polarities. This intermittent regime is characterized by the statistics of the
magnetic energy – typical time series of B2 are plotted in figure (4-a) and (b). Bursts
of dynamo activity occur with durations, amplitude and intervals covering a wide range
of scales. Their occurrence increases as Rm/Rmc increases. ”On-off” intermittency is
usually characterized by the statistics of the moments of the intermittent field and of
the duration of the laminar phases (Heagy et al. 1994). The pdf of the magnetic energy
are displayed in figure (3-b) for two values of Rm/Rmc. In the intermittent regime, it
exhibits a power law scaling of exponent −0.8 ± 0.05 with an exponential cut-off (dark
blue curve for Rm/Rmc = 0.9) – a feature characteristic of on-off intermittency. As
Rm/Rmc increases, the exponent of the power law increases, as expected from low di-
mensional models of on-off intermittency (Aumâıtre et al. 2005). In the Lorentz force
saturation regime, the most probable value of the magnetic energy is non zero and the
pdf of the magnetic energy does not display a power law scaling anymore (light blue
curve for Rm/Rmc = 1.66).

”On-off” intermittent signals also display a universal behaviour of inter-burst time
intervals, which will be denoted as Toff in the remaining of the paragraph - for ’off’
phases or laminar phases. These phases are defined as follows: one computes the time
Toff for which the magnetic energy is below an arbitrary threshold small compared to
the amplitude of the bursts (49 G2 for the example given in figure (4-a-b)). The pdf
of the duration of ’off’ phases is shown in figure (4-c). Over almost two decades its
functional form is algebraic, with an exponent equal to −3/2 and an exponential cut-off.

A functional distribution of the form P (Toff) ∝ T
−3/2
off exp−(Toff/τi) is plotted in red in

figure (4-c), with a least-square fitting procedure giving τi = 5 s. The −3/2 power-law
evolution is in agreement with modeling (Heagy et al. 1994) for perfect systems with
infinite response time. While similar on-off intermittent behaviours have been observed
in numerical simulations of dynamo models close to onset (Peffley et al., 2000; Sweet et
al. 2001; Alexakis et al. 2008; Raynaud et al. 2013), it has never been observed in other
dynamo experiments. It should also be emphasized, that the ”on-off” intermittent regime
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Figure 4. (a) Time series of B2 in the intermittent regime, for Rm/Rmc = 0.9 and over 100 s.
(b) zoom over a 30 s window. (c) Probability distribution function of the duration of off phases.

Red solid lines: fit of the form T
−3/2
off e−Toff/τi with best fit for τi = 5 s.

is observed over an extended range of control parameter, i.e. from Rm/Rmc = 0.61 to
1.5. This is in sharp contrast with numerical models, for which on-off intermittent regimes
have only been observed close to onset. Another interesting feature of the high value of
the magnetic field of this arrangement is that the range of control parameter over which
intermittent regimes are observed is narrowed as the interaction parameter at saturation
increases. For instance, in the previous kinematic studies (Verhille et al. 2010a), it was
observed up to Rm/Rmc = 5. This corroborates similar observations in numerical models
of the ABC dynamo (Alexakis et al. 2008).

3.3. Lorentz force saturation regime

An interesting feature of this regime is that the bulk von-Kármán flow has been mod-
ified by Lorentz forces: Verhille et al. (2012) have shown that the non-linearity of the
induction law was linked to a transition from an hydrodynamic regime (where the mag-
netic field has no influence on the force balance) to a MHD regime (where the Lorentz
force becomes a dominant player). The present configuration of the Bullard-von Kármán
dynamo is associated to a transition from an hydrodynamic flow below dynamo onset to
an MHD flow above onset.
We focus in this paragraph on the Lorentz force saturated regime extended fromRm/Rmc =
1.6 to Rm/Rmc ∼ 2.16 in figure (2-a). As already described in paragraph 3.1, the most
probable value of the magnetic field Bmp is non-zero and the pdf of the magnetic field
amplitude and of the magnetic energy display a wide distribution around their mode.
This regime is investigated by varying both the rotation rate of the impeller F and
the amplification factor A of the electronic loop (or equivalently the critical magnetic
Reynolds number Rmc = (kA)−1). Figure (5-a) shows bifurcation diagrams for three
critical values, namely Rmc = 1.94, 1.11 and 0.65. In each case there is a significant
range of Rm values over which the time averaged magnetic field grows linearly with the
distance to threshold:

〈B〉 ∝ (Rm−Rmc) (3.1)
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– the linear fit gives a slope of 6.6 · 10−2 G in agreement with eq (3.2).

for which the prefactor depends on the amplification factor A. We will now show that this
scaling can be recovered from the induction equation (2.6) and the feedback constitutive
equation (2.7). Let us first discuss the induction equation (2.6) which was expressed
in (Verhille et al. 2012) as 〈Bz〉 = kRm(1 − α

√
N)〈Bx〉. In the original expression,

the authors used N ind = (B2
xσR0)/(ρU); in our work, we will use the more accurate

expression NBvKonset = (kB2
xσR0)/(ρU), which takes into account the k geometrical

factor for a more accurate estimate of the induced current – it is then required to replace
α by α/

√
k in the induction law. We showed in section 2 that, close to dynamo onset,

NBvKonset is equivalent to NBvK = B2
x/(Aµ0ρU

2) . The strength of the Lorentz force
is equivalently taken into account when using both expressions, but more accurately
estimated using the relation Bx = ABz ascribed by the amplification feedback loop than
assuming any functional form for the induction law. Close to dynamo onset, we combine
the induction law (equation 2.6) and the feedback law (equation 2.7), using the expression
of NBvK for the interaction parameter, which gives:

〈B〉 =

√
ρ

µ0

1

ασR0

(
Rm−Rmc√

Rmc

)
. (3.2)

This formula brings out that this scaling is independent of the amplification factor when
choosing the control parameter (Rm − Rmc)/

√
Rmc as the relevant control parameter

of the saturated regime. The prefactor only depends on the fluid physical characteristics
and on geometric parameters determined empirically; this gives a value of 6.2 · 10−2 G
±10% with α = 2.73± 0.23.

A good agreement between the experimental data and the proposed scaling is observed
in figure (5-b), when the dynamo field is plotted as a function of (Rm−Rmc)/

√
Rmc

- in the saturated regime, curves collapse on a single master-curve. The black line in
figure (5-b) is a least square fit of the data in the saturated regime for three values of
the amplification, with slope 6.6 · 10−2 G, within the error bar given above.
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3.4. Power budget

3.4.1. Channels for power dissipation in homogeneous and semi-synthetic dynamos.

Precise estimates of the power budget in dynamo regimes is a long-standing issue in
dynamo theory. In homogeneous dynamo regimes, dissipation occurs via two channels:
viscous dissipation in the fluid flow (denoted as PF in the remainder) and Joule dissi-
pation from electrical currents generating the dynamo magnetic field (denoted as PJ).
For natural and experimental dynamos, these two dissipation terms should be estimated
from sources of kinetic energy (convection, mechanical stirring,...) which are coupled to
the magnetic energy.

For instance, for experimental homogeneous dynamo driven by mechanical stirring, the
total dissipated power PT is equal to the power delivered by the stirring system, denoted
as PM and the power balance reads

PT = PM = PF + PJ (homogeneous dynamo)

In these homogeneous systems (which can be seen as isolated systems), the only directly
measurable power is PM .
On the other hand, semi-synthetic dynamos, such as the Bullard-von Kármán setup are
more complex: they can be analyzed as open or isolated system depending on which en-
ergy sources are considered. they can be seen as open systems when taking into account
only the mechanical power PM or as isolated systems when considering both the mechan-
ical power PM and the contribution of the power supply feeding the coils PPS = RI2. A
global power budget of the isolated system is then

PT = PM + PPS = PF + PJ + PPS (semi-synthetic dynamo)

One asset of the Bullard von Kármán setup, when considering only the mechanical power
(and thus an open system), is that the dynamo may be switched off (on) at will by open-
ing (closing) the feedback loop, giving access to the mechanical power for two distinct
flow regimes driven by the same rotation rate F of the impellers (one being an hydrody-
namic regime, the other being an MHD regime). In the following paragraph, we will first
investigate the modification of mechanical power between hydrodynamic regimes (in the
open-loop, dynamo free, configuration) and MHD (or dynamo) regimes, then focus on
the global power budget.

3.4.2. Mechanical power dissipation

Let us first focus on the injected mechanical power PM required to sustain a given
rotation of the impellers F = Rm/(µσ2πR2

0). Due to the two dissipation channels from
mechanical power PM = PF + PJ , the natural variables for the power dissipation terms
are Rm (accounting for the intensity of turbulence) and B (accounting for the intensity
of the Joule dissipation at a given value of Rm). The mechanical power is computed as
PM = 2πFΓ with the mechanical torque Γ = KΓImot computed from the measurement
of current consumption of the motor drives Imot, with KΓ a motor-specific factor.
In absence of external feedback - which will be referred to as the ’open-loop’ configuration
- the only channel is viscous dissipation (hydrodynamic flow), and PM (Rm,B = 0) =
PF (Rm, 0) – this is also valid below dynamo onset. In dynamo regimes (MHD flow),
PM (Rm,B) = PF (Rm,B) + PJ(Rm,B), where B depends on Rm through the dynamo
scaling law (note that PF (Rm,B) is the power required to sustain the flow modified
by the Lorentz forces – not taking into account the Joule dissipation – and that Rm is
based on the tip velocity of the impellers and not the actual flow velocity in the MHD
regime). As previously pointed out, we have access to the difference of mechanical power
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in the BvK dynamo configuration and in the ’open-loop’ configuration ∆PM (Rm) =
PM (Rm,B) − PM (Rm, 0), for a given value of Rm. The normalized mechanical power
difference ∆PM (Rm)/PM (Rm, 0) is displayed in figure (6-a). A clear increase of the
mechanical power consumption of a few percents is observed in regimes where saturation
of the BvK dynamo occurs through Lorentz force modification of the bulk flow. This
increase can be understood following the previous study in Verhille et al. (2012), which
showed, in induction regimes, that the mechanical power in the MHD case – PM (Rm,B)
– is related to the mechanical power in the hydrodynamic regime – PM (Rm, 0) – as :

PM (Rm,B) = (1 + γN ind)PM (Rm, 0) (3.3)

with γ = 140 an empirical constant. We previously showed that close to dynamo onset,
the scaling laws determined from induction measurements remain valid using NBvK.
Accordingly, ∆PM (Rm)/PM (Rm, 0) = γN , and N can be recast using the dynamo
scaling law eq. (3.2). The expected evolution

∆PM (Rm)/PM (Rm, 0) =
γk

α2

(Rm−Rmc)
2

Rm2
(3.4)

is displayed in figure (6-a) as a dashed (red) line and shows good agreement with ex-
perimental data. The (blue) open circles symbols in figure (6-b) display the evolution
of the time average injected mechanical power as a function of Rm, for Rmc = 1.94.
These points can be compared to the scaling of equation (3.3), using both the dy-
namo scaling law equation (3.2) and the turbulent scaling of the hydrodynamic regime
PM (Rm, 0) = 2Kpρ/(µ

3σ3R0)Rm3, following the notations of Ravelet et al. (2005)
which gives

PM (Rm,B) =
2Kpρ

µ3σ3R0

(
1 +

γk

α2

(Rm−Rmc)
2

Rm2

)
Rm3 (3.5)

where the power expressed in kW and γ = 140 and Kp = 5.03 10−2 (a value similar to
the value 6.1 10−2 reported by (Ravelet et al. 2005) in a similar water flow). The good
agreement between experimental data and equation 3.5 shows once again the consistency
of our results and that the features of the BvK dynamo are fully understood from the
effect of Lorentz forces in the MHD regime. ∆PM (Rm) is linked to modifications of
viscous dissipation between the hydrodynamic regime and the MHD regime (∆PF ) and
to the occurrence of Joule dissipation PJ . While Joule dissipation obviously increases
the mechanical power, the sign of ∆PF = PF (Rm, 0) − PF (Rm,B) cannot be easily
estimated. The modifications of viscous dissipation could thus lead to both an increase
or a decrease of the mechanical power (depending on the details of the flow modifications
at saturation). A precise estimate of the ratio of the two dissipation channels is thus out
of the scope of the present study and would require precise measurements of the velocity
field and current density. We emphasize here that, investigating only the modification
of the injected mechanical power, one considers the Bullard-von Kármán dynamo as an
open system. Extrapolations to homogeneous dynamos, seen as isolated systems, should
thus be taken with care.

3.4.3. Global power budget

Let us now consider the Bullard-von Kármán dynamo as an isolated system and in-
vestigate the total injected power PT = PM + PPS . While for homogeneous dynamo PJ

accounts for the power required to sustain the dynamo magnetic field, in semi-synthetic
dynamos the power required to sustain the dynamo magnetic field is provided by an
external power supply and PPS = RI2 (where R is the resistance of the coils). Note that
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Figure 6. (a) Normalised power difference ∆PM (Rm)/PM (Rm, 0) as a function of Rm/Rmc

– see text for details. (b) Evolution of the time average mechanical power (〈PM (Rm,B)〉, blue
circles), electric power injected through the coils (R〈I〉2, green squares) and the total power
(〈PT〉, red stars) as a function of Rm/Rmc for Rmc = 1.94. The lines corresponds to the
scalings given by equations (3.5) (solid blue) and (3.6) (dashed green) and a combination of the
two (red dash-dotted).

the feedback of the induced magnetic field by the the flow in the coils is neglected since
Rmeff = Bz/Bx remains small and the power supply is current-controlled. In these cases,
PPS is not universal and is system-dependent through its dependence with R (and thus
the way the system is being built). However, since the electrical current in the coils is
proportional to the dynamo magnetic field B, PPS is proportional to the Joule dissipated
power. A precise estimate of PJ would require the measurement of the current in each
location in space, which is out of the scope of the present work. However, an estimation of
the Joule power dissipation P e

J can be made from the measurement of the magnetic field

in one location using |j| = |∇ ×Bz/µ0| ∼
Bx

µ0AR0
. Consequently, P e

J ∼
B2R0

µ2
0σA

2
(recall

that B = Bx).
It thus follows that PPS = χA2P e

J with χ a non-universal constant (depending on
geometrical factors and the resistivity of the external coils). The A2 is reminiscent of
the external amplification loop: for a given value of induced magnetic field in the fluid
volume, the dynamo magnetic field is A-fold larger; the power needed to sustain the
dynamo is thus a factor A2 larger than the estimated Joule dissipated power in the flow
volume. The experimental evolution of the power delivered by the external power supply
PPS as a function of Rm, for Rmc = 1.94, is displayed as (green) square symbols in
figure (6-b). The experimental points are correctly described in the regime of Lorentz
force saturation using the dynamo scaling law (3.2) for the estimate of PPS :

PPS = CI
(Rm−Rmc)

2

Rmc
(3.6)

with CI = Rκ2 ρ

µ0

1

σ2α2R0
= 1.52 (with R = 0.28Ω) and PPS expressed in kW, which

is displayed as a dashed (green) line in figure 6-b. It should be noted that departure
from the expected scaling is observed for Rm/Rmc values above 2.16, due to power limit
saturation, as already discussed in the previous section. Finally, the experimental data
for the total injected power PT = PM + PPS are also displayed in figure (6-b) as (red)
stars. These points are described to a very good accuracy by the scaling law given by the
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Figure 7. Distribution of waiting time between two successive polarity inversions at
Rm/Rmc = 1.67. inset: same plot in lin-log scale. The red solid line is a fit of the form
1/τwt exp (−Twt/τwt) with best fit given for τwt = 67 s.

sum of equations (3.5) and (3.6) and displayed as a (red) dash-dotted line in figure (6-b).
Finally, the A2 factor in PPS can be understood as a way to control the ratio of PM/PPS

in the Lorentz force saturation regime. For Rmc = (kA)−1 = 1.94, the electrical power
required to sustain the dynamo is roughly equal to the injected mechanical power in the
saturated regime. As the critical magnetic Reynolds is reduced, PPS is 2.3 times larger
than PM for Rmc = 1.11 and 9 times larger for Rmc = 0.65. We emphasize that these
numbers should be taken with care since they depend on the value of χ and thus on the
design of the system (using superconductive coils would for instance strongly decrease
PPS for the same value of the dynamo magnetic field).

4. Dynamics of dynamo polarity inversions

Polarity inversions of the dynamo magnetic field are expected because the system is
invariant under the (B → −B) symmetry. Reversals of the dynamo field have been ob-
served in paleomagnetic recording of the Earth dynamo field (Valet et al. 2005) as well
as in experimental VKS dynamos (Berhanu et al. 2007) – in this last case, dynamical
regimes are controlled by the coupling between turbulent flows and magnetic modes. In
the BvK experiment, two polarities are accessible since the power supply feeding the coils
is bipolar. Polarity inversions are not associated to hydrodynamic transitions, and have
already been observed in the kinematic BvK configuration detailed in (Verhille et al.
2010a) (In the previous kinematic studies, inversions were much harder to observe due
to the presence of ferromagnetic pieces close to each motors: their remanent magnetic
field of about 0.1 G in the bulk of the gallium flow was sufficient to break the (B → −B)
symmetry of the system). They require the presence of additive noise (such as magnetic
field of the Earth and/or electronic noise), such that, when the dynamo field decreases
close to zero amplitude due to multiplicative noise, the system can be pushed towards
the fixed point with other polarity.

In the case considered here, where the field saturates due to the action of Lorentz
forces, polarity inversions have been shown in figure (2-c). The frequency of the inversions
drops rapidly as Rm/Rmc increases: excursions to B ∼ 0 become less frequent, and
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Figure 8. (a)Time series of a single inversion (dashed lines) and ensemble average over 123
events (thick red line) for Rm/Rmc = 1.66. t = 0 corresponds to the time when the ensemble
average is crossing B = 0 and t = 0.8 s to the start of the growth in the other polarity. (b)
Ensemble average of the mechanical power PM during polarity inversions at total injected power
at Rm/Rmc = 1.66 (and Rmc = 2.4). Inset: Ensemble average of the total power PT = PM+PPS
during polarity inversions.

consequently inversions occur less frequently. Consequently, statistical analysis of theses
inversions are limited to moderate values of Rm/Rmc. Figure (7) shows the probability
distribution function of the time interval between two inversions for Rm/Rmc = 1.66.
These time intervals obey a Poisson process, with mean interval time τwt = 67 s, as given
by the best fit of the experimental data with the functional form 1/τwt exp (−Twt/τwt)
shown in figure (7). Note that, due to slow variations of the additive noise, the time
recordings of regimes displaying inversions is limited to 18000 seconds. This limits the
number of recorded events to 350 samples, and the accuracy of the pdf for the longer
and less frequent events.

We will now investigate in greater details the dynamics of individual inversions. Figure
(8-a) shows individual time series of magnetic field inversions, as well as the time-averaged
behaviour of 123 independent events displayed by the full red line (each inversion has
been shifted such that t = 0 s corresponds to the time when the ensemble average is
crossing B = 0 and t = 0.8 s is the beginning of the growth of the dynamo field from
zero). Although individual events display turbulent fluctuations, the average behaviour
has a well defined pattern. For t < 0, the field decreases slowly from its saturated value
to B = 0. The magnetic field remain null during a time interval varying from 0.1 s to
5 s depending on the considered event. A growing phase where B increases much faster
that its decay (the growth phase is in fact limited by the slew rate of the power supply
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– 150 A/s or equivalently 1200 G/s) then follows. The dynamo field displays a short
overshoot before reaching its saturated value in the positive polarity. This typical be-
haviour, also observed in the VKS dynamo (Berhanu et al. 2007), has been detected for
all Rm/Rmc values in the range [0.74; 1.66]. Let us now focus on the time averaged total
power consumption during inversions. Figure (8-b) shows an ensemble average of PM over
123 inversions for Rm/Rmc. In the Lorentz force saturated regimes (in both polarities)
, the mechanical injected power PM is of the order of 1.53 kW at Rm/Rmc = 1.66 (see
figure (8-b)). Following the dynamics of the reversal, the mechanical power first decreases
to 1.44 kW which represents the turbulent dissipation to sustain the hydrodynamic flow
(when B = 0) and then increase again to its initial value after a slight overshoot. The 60
W decrease of PM can only be observed in the ensemble average over several realizations
due to turbulent fluctuations (incoherent turbulent fluctuations are of the order of 200
W). It is interesting to look at the ensemble average of the total power consumption PT

during polarity inversions (see inset of the figure (8-b)). The overshoot observed on the
dynamo field is also present on the total injected power, which reaches 6.5 kW, i.e. a
75% increase of the magnetic power as compared to the saturated regimes. The magnetic
field growth is maintained by favourable velocity gradients in the flow, which are then
lowered due to the action of the Lorentz forces in the saturated regime. The presence of
the overshoot demonstrates the delay required for the Lorentz forces to re-organise the
velocity gradients from the hydrodynamic regime to the MHD (or Lorentz force satura-
tion) regime.

5. From self-killing to subcritical dynamos

In previous sections, we investigated the features and the dynamics of supercritical
dynamo regimes of the semi-synthetic BvK dynamo. In particular, we showed a transi-
tion from an hydrodynamic base flow below dynamo onset (i.e. a solution of the Navier
Stokes equation without the Lorentz force term) to an MHD flow (for which the Lorentz
force term becomes a dominant player in the Navier Stokes equation). The versatile na-
ture of the semi-synthetic setup also allows to explore other dynamo regimes: (i) self
killing dynamos for which the hydrodynamic base flow sustains the growth of a dynamo,
but the MHD flow (reached when the dynamo field is strong enough) do not sustain a
dynamo, (ii) subcritical dynamos for which the dynamo instability can only be reached
from an MHD base flow (i.e. in presence of an initial strong magnetic field). In this sec-
tion, we will explore experimentally these regimes, focusing on the subcritical regime.
Although somewhat preliminary, these results are included here, because subcriticality
of the dynamo instability is a feature often conjectured for astrophysical bodies. It has
been proposed for the Martian dynamo (Kuang et al. 2008), Keplerian flows (Rincon et
al., 2007), spherical rotating convective states (Sreenivasan et al. 2011), in numerical
simulations of Taylor-Green flows (Ponty et al. 2007), or of von-Kármán flows (Reuter
et al. 2009), but also in experiments (Miralles et al., 2014). Subcritical behaviours in
numerical simulations can be observed from a saturated self-excited regime (Rm > Rmc)
and suddenly decreasing Rm as in (Ponty et al. 2007; Sreenivasan et al. 2011). They can
also be obtained when applying an external magnetic field at Rm < Rmc and suddenly
switching it off as reported in (Reuter et al. 2009) for a spherical von Kármán flow. We
will follow a similar idea here: the experimental arrangement is set such that the dynamo
instability is observed from an initial MHD base flow, while no dynamo excitation is
possible from an initial hydrodynamic base flow. Note that, since the MHD flow is the
saturated velocity field of the supercritical dynamos, this experimental strategy is very
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Figure 9. (a) Time averaged induction profile (open loop configuration) with constant applied
filed BApp

x up to 1000 G for two depths of the magnetic sensor at Rm = 3.7. The sign of
the induced field changes at r = 0.6R0 for large applied field whereas it remains positive for
r = 0.9R0 for every amplitude of the applied field. (b) Bifurcation diagram for the two locations.
Blue symbols: supercritical bifurcation already described is section 3. Red symbols: Self-killing
dynamo. (c,d) Time series of the BvK fields for the two types of dynamos.

similar to the one implemented numerically in (Cattaneo et al. 2009). In this study,
the authors, using kinematic computations, found positive dynamo growth rates for the
velocity field of a saturated dynamo configuration (when solving the coupled problem).
Here, this arrangement is made possible since the semi-synthetic dynamo features depend
on (i) the characteristics of the external loop, (ii) the details of the turbulent induction
process measured by the internal magnetic sensor.

Measurements reported so far have been performed with the magnetic probe located
in the midplane of the cylinder at r = 0.9R0. At this location, for all amplitudes of an
imposed external magnetic field Bx, the induced field Bz is always positive as shown in
figure (9-a) (in the open-loop configuration). The supercritical dynamo regimes described
in the previous sections are observed from an initial hydrodynamic base flow when the
amplification factor A is positive (when the the feed-back loop is closed) – as reproduced
in figure 9-b (bullets) and with a typical time series displayed in figure 9-c. The situation
drastically changes if the magnetic probe is located at r = 0.6R0: in the open-loop config-
uration the amplitude of the axial induced magnetic field changes sign for Bx > 600 G. If
the amplification factor A of the feedback loop is positive, dynamo action will be excited
from the initial hydrodynamic base flow (for Rm > Rmc). But as the amplitude of the
dynamo field Bx grows, the MHD flow does not favour dynamo any longer. The resulting
behaviour is that of a ”self-killing” dynamo (Fuchs et al., 1999), where the action of the
Lorentz force from the dynamo magnetic field kills the dynamo as shown in figure 9(d).
The corresponding bifurcation is shown as red symbols in the figure (9-b).

For a negative amplification factor A, subcritical dynamo regimes can be observed.
In this configuration while the hydrodynamic base flow is always stable (i.e. no dynamo
can be excited), the MHD base flow may be able to sustain a dynamo if Rm is above a
critical value. The MHD base flow being obtained in presence of a strong Bx field, we
thus excite a subcritical dynamo regime. The experimental protocol is the following: (i)
we apply a large constant magnetic field B0 to reach the MHD base flow in the open-loop
configuration (ii) then, simultaneously, and at time t=0 the applied field is switched off
and the BvK feedback-loop is turned on. Figure (10-a) displays a schematic 3D plot of
the evolution of the subcritical dynamo magnetic field as a function of Rm and of the
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Figure 10. (a)Schematic bifurcations for a negative amplification factor A < 0 and a magnetic
sensor located at r = 0.6R0 as a function of the amplitude of the applied field B0 (which is
switched off at t = 0). The blue line stands for B0 < 600 G, too weak to modify significantly
the flow. The red line represents a sub-critical bifurcation, obtained when the applied magnetic
field at t < 0 is large enough to achieve a MHD flow. The time series (Rm = 3) correspond to
the two cases. (b) Averaged life-time of the subcritical dynamo as a function of Rm. Error bars
represent standard deviations.

amplitude of the initial external field B0 (applied at t < 0). When B0 is lower than 600
G (blue solid line), the base flow is hydrodynamic and B = 0 is the stable fixed point of
the BvK loop with A < 0. As a consequence, the magnetic field decays rapidly to B = 0
for t > 0 (as shown in the time series of the upper panel of the figure (10-a). For B0

and Rm sufficiently large, a dynamo field can be maintained for some time. Time series
of two independent realisations are shown in the bottom panel of figure (10-a). The dy-
namo field is observed for ∼ 20 s and ∼ 40 s for these two realisations. We note that the
value of the subcritical dynamo field is around the maximum achievable magnetic field
value (1200 G) – and does not depend on the magnitude of the initial applied constant
magnetic field imposed. The dynamo field may be larger than the initial applied mag-
netic field as observed in numerical studies (Tilgner et al. 2008). Due to the limitation
of available coils current, the subcritical dynamo regimes observed here are limited to
the ’kinematic phase’, since no modification of the initial MHD base flow is currently
achievable with our power supply. These subcritical dynamo regimes thus have a finite
life-time since, eventually, turbulent fluctuations may be large enough to decrease the
dynamo field such that the flow will bifurcate to a hydrodynamic flow, for which B = 0
is a stable fixed point. The dynamo life-time is observed to vary from 0 to 100 s. The
evolution of the average life-time of the dynamo state with Rm is shown in figure (10-b)
– where the error bars represent the standard deviation. The average dynamo life-time
increases when Rm increases from 0 to 3.5 and decreases above 3.5 due to the increase
of turbulent fluctuations driving back the system to B = 0. This complex configuration
and its associated dynamics are still under investigation.

6. Discussion and conclusion

We have reported several features from a versatile semi-synthetic dynamo setup built
combining a turbulent induction process (from a von-Kármán liquid gallium flow) and
an electronic feedback: the Bullard-von Kármán (BvK ) dynamo. This semi-synthetic
turbulent dynamo has a critical magnetic Reynolds number of order unity and we have
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focused on regimes where saturation occurs via a modification of the bulk flow by the
action of Lorentz forces. Following the results given by kinematic studies showing that
the most unstable magnetic mode of a von Kármán flow is an equatorial dipole (Ravelet
et al. 2005; Stefani et al. 2006), this article focused on regimes of the BvK dynamo with
an equatorial dipole dynamo mode which is imposed by the configuration of the external
coils.
The simplest configuration consists of a supercritical dynamo instability. Its main fea-
ture is that below dynamo onset, the base flow is purely hydrodynamic (i.e. solution of
the Navier Stokes equation without the Lorentz force term), while above onset the flow
becomes MHD (i.e. strongly affected by the back reaction of Lorentz forces). The critical
value of the magnetic Reynolds number of the instability is set arbitrarily by tuning
the amplification factor of the electronic loop. Increasing this value decreases Rmc and
increases the interaction parameter N , a proxy of the effect of the magnetic field on
the flow. The bifurcation occurs through bursts of magnetic field characteristic of on-off
intermittency. We report for the first time the scaling law of the BvK dynamo in the
Lorentz force bulk saturation regime, where the magnetic field is observed to scale as
Rm−Rmc. The polarity inversions, for which the statistics of waiting time between two
events follows a Poisson’s law, is a good way to probe the modification of the flow by
the Lorentz forces. During these inversions, the system alternates between MHD flow
regimes and hydrodynamic regimes (B = 0). We showed that, during these inversions,
drastic changes in injected power are recorded, contrary to other experimental dynamo
displaying similar magnetic reversals.
We also reported the existence of self killing and subcritical regimes when modifying
either the details of the turbulent induction process or the properties of the amplification
feedback.

One of the asset of the BvK dynamo is that a global effect of Lorentz forces on the
flow is observed at saturation. In the regimes studied previously, the injected mechani-
cal power increases by 5 to 8% in the dynamo state as compared to the hydrodynamic
state and that this increase scales as ∆PM/PM ∝ (Rm − Rmc)

2/Rm2. We infer that
this amount depends on the configuration of the flow and of the geometry of the mag-
netic field. Previous work with constant applied transverse field (Verhille et al. 2012)
showed that we could expect a 50% increase for other flow configurations (for instance
by rotating only one impeller or driving both impellers in the same direction). Following
these results, we suggest that similar semi-synthetic dynamos configurations could dis-
play ∆PM = 0 or even ∆PM < 0 for specific base flow; meaning that driving the dynamo
saturated flow may require less mechanical power than driving the hydrodynamic base
flow. In the present configuration, ∆PM is of a few percent of the turbulent dissipation, a
level easily measured. When taking into account the electrical power required to sustain
the dynamo magnetic field, the increase of total injected power exceeds 50%. This is
an important feature of the Bullard-von Kármán dynamo, in particular no measurable
changes in injected mechanical power were observed in the VKS experiment. Regarding
the results detailed in this article, this is a very peculiar feature of the VKS experiment.
It should be noted that the scalings reported for the BvK dynamo are difficult to extrap-
olate to homogeneous dynamos since they depend on the amplification factor A. Precise
comparison would require detailed velocity measurements. So far, in the BvK setup we
have been able to measure mean velocity profiles with ultrasound Doppler velocimetry
(Takeda 1995; Aubert et al. 2001) for very low rotation rate of the disks. It has been
observed that the shape of the profile vx (align with the dynamo field) does not evolve
when the dynamo is present, while the sign of vy (transverse to the main direction of
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the magnetic field) is reversed for large magnetic fields. On the contrary, in the VKS
experiment no modifications of the velocity signal measured using potential probe in the
mid plane where observed above dynamo onset.
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Daviaud, F., Dubrulle, B., Marié, L., Ravelet, F., Bourgoin, M., Odier, P., Pin-
ton, J-F., & Volk, R., Magnetic field reversals in an experimental turbulent dynamo,
Euro. Phys. Lett., 77, 59001, (2007)
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mental Bullard-von Kármán dynamo, New J. Phys., 8(12), 329, (2006)

Brito, D., Cardin, P., Nataf, H-C. & Marolleau, G., Experimental study of a geostrophic
vortex of gallium in a transverse magnetic field, Phys. Earth Plan. Int., 91, 77-98, (1995)

Bullard, E. C., The Stability of a homopolar dynamo, Proc. Camb. Phil. Soc., 51, 744, (1955)
Cabanes, S., Schaeffer, N., & Nataf, H.C., Turbulence Reduces Magnetic Diffusivity in a

Liquid Sodium Experiment, Phys. Rev. Lett., 113, 184501, (2014)
Cattaneo F. & Tobias, S., Dynamo properties of the turbulent velocity field of a saturated

dynamo, J. Fluid Mech., 621, 205-214, (2009)
Colgate, S.A., Beckley, H., Si, J., Martinic, J., Westpfahl, D., Slutz, J., Westrom,

C., Klein, B., Schendel, P., Scharle, C., McKinney T., Ginanni, R., Bentley, I.,
Mickey, T., Ferrel, R., Li, H., Pariev, V., & Finn, J., High Magnetic shear Gain in
a liquid sodium stable Couette flow experiment: a prelude to an α−ω dynamo, Phys. Rev.
Lett., 106, 175003, (2011)

Frick, P., Noskov, V., Denisov, S., & Stepanov, R., Direct measurement of effective mag-
netic diffusivity in turbulent flow of liquid sodium, Phys. Rev. Lett., 105, 184502, (2010)
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J., Ambivalent effects of added layers on steady kinematic dynamos in cylindrical geometry
: application to the VKS experiment, Euro. J. Mech. B, 25, 894–908, (2006)



Lorentz force effects in the BvK dynamo 23

Sweet, D., Ott, E., Antonsen, M., Lathrop, D. P. & Finn, J. M., Blowout bifurcations
and the onset of magnetic dynamo action, Phys. Plasmas, 8, 1944, (2001)

Takeda, Y., Velocity Profile Measurement by Ultrasonic Doppler Method, Exp. Therm. Fluid
Sci., 94, 444-453, (1995)

Tilgner, A. & Brandenburg, A., A growing dynamo from a saturated Roberts flow dynamo
Mon. Not. R. Astron. Soc., 391, 1477-1481, (2008)

Valet, J., Meynadier, L., & Guyodo, Y. Geomagnetic dipole strength and reversal rate over
the past two million years, Nature, 435(June), 5-8, (2005)

Verhille, G., Plihon, N., Fanjat, G., Volk, R., Bourgoin, M. & Pinton, J-F., Large
scale fluctuations and dynamics of the Bullard - von Kármán dynamo., Geo. Astro. Fluid
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