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ABSTRACT: When studying quantum field theories and lattice models, it is often useful
to analytically continue the number of field or spin components from an integer to a real
number. In spite of this, the precise meaning of such analytic continuations has never been
fully clarified, and in particular the symmetry of these theories is obscure. We clarify these
issues using Deligne categories and their associated Brauer algebras, and show that these
provide logically satisfactory answers to these questions. Simple objects of the Deligne
category generalize the notion of an irreducible representations, avoiding the need for such
mathematically nonsensical notions as vector spaces of non-integer dimension. We develop
a systematic theory of categorical symmetries, applying it in both perturbative and non-
perturbative contexts. A partial list of our results is: categorical symmetries are preserved
under RG flows; continuous categorical symmetries come equipped with conserved currents;
CFTs with categorical symmetries are necessarily non-unitary.

KEYwORDS: Global Symmetries, Conformal Field Theory, Lattice Quantum Field Theory,
Renormalization Group

ARX1v EPRINT: 1911.07895

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP04(2020)117


mailto:djbinder@princeton.edu
https://arxiv.org/abs/1911.07895
https://doi.org/10.1007/JHEP04(2020)117

Contents

Introduction
What do we need from a symmetry?
The Brauer algebra

Operational definition of ‘O(n) symmetry’, n € R
4.1 First attempt
4.2 A definition which works

Translation to categories

51 Rep O(n),n e R

5.2 RepO(N), N € Z,, and its relation to R/a)O(n)
5.3 Irreducible representations

5.4 Deligne’s category /R\eg/)O(n)

5.5 Properties of ﬁeVpO(n)

Deligne categories and lattice models
6.1 Example: O(n) loop model
6.2 Wilsonian renormalization

QFTs with categorical symmetry

7.1 DBasic axioms

7.2 Example: the continuum free scalar O(n) model
7.3 Path integrals and perturbation theory

7.4 Conserved currents

7.5 Explicit symmetry breaking

7.6 Spontaneous symmetry breaking

7.7 Conformally invariant theories

7.8 Reality and unitarity

Why this story is not entirely algebraic

Other Deligne categories

9.1 RepU(n)
9.2 RepSp(n) and negative dimensions
9.3 RepS,

9.4 Other families of categories

10 Discussion and conclusions

10
11
15

17

18
20
22

24
24
25
26
28
31
33
34
39

44

45
46
47
49
50

52



A Tensor categories 54

A.1 Basic definitions 54
A.1.1 Categories %)
A.1.2 Linear categories 56
A.1.3 Monoidal categories and braidings 57
A.1.4 Symmetrizing and antisymmetrizing 58
A.1.5 Tensor functors 59

A.2 Rigidity, traces and dimensions 59
A.2.1 Dimensions and traces 59
A.2.2 Implications of semisimplicity 60
A.2.3 A note on definitions 61

A.3 Further facts about Deligne categories 61
A.3.1 Positive tensor categories 61
A.3.2 Universal properties of ﬁeva(n), @O(n), ﬁevap(n) and ﬁ;) Sn 62

A.4 Deligne’s theorem on classification of tensor categories 63

A.5 Unitarity 64
A.5.1 Another note on definitions 66

B Continuous categories 66

1 Introduction

In quantum field theory, the number of field components N should naively be an integer.
When performing calculations however, it is often fruitful to analytically continue results
to non-integer values.! These constructions are conceptually puzzling; in particular, what
remains of the symmetries of a model when we analytically continue N7 The textbook
definition of a symmetry requires a symmetry group, and groups like O(N) do not make
sense as mathematical objects when we go to non-integer N. Our purpose here will be to
give a definition which applies when the textbook definition fails. Here are some of our
punchlines:

e Some families of ‘symmetries’ allow meaningful analytic continuation in N. These
include continuous groups, such as O(N), Sp(NNV), and U(N), and also discrete groups,
such as Sy. Others families, like SO(N) or Zy, do not.

e We do not analytically continue the group, nor any specific representation of a group,
but rather the whole ‘representation theory’. The algebraic structure underlying this
analytically continued ‘representation theory’ is known in mathematics as ‘Deligne
categories’ [1].

The spacetime dimension d is also often analytically continued. In this paper we focus on the internal
symmetry, but our considerations are also relevant to spacetime symmetry; see also the discussion.



Figure 1. Left: partition function of an O(N) loop model sums up weights of loop configurations
living on a lattice. E.g. the shown configuration of three loops has weight: N3K3H10+10 where 8,
10, 10 are the loop lengths. Right: typical contribution to the defect-defect correlator in the loop
model, which corresponds to the spin-spin correlator of the spin model.

e A certain algebra of string diagrams underlies the Deligne categories (such as the
Brauer algebra for the O(N) case). It is used for practical computations, and ‘ex-
plains’ the meaning of d,; tensors with non-integer N.

To set the stage, here are a few examples why one may care about non-integer N (other
physical applications will be given in section 8, as well as sprinkled throughout):

e Even if interested one is mostly in integer N, one may wish to understand how
physical observables behave as a function of N, which will then necessarily involve
intermediate non-integer values. For instance in the theory of critical phenomena,
one might study critical exponents of O(N') models as a function of N. This is mostly
easily done in perturbation theory, where at each order N enters polynomially via
contractions of invariant tensors. However, non-perturbative analytic continuations
also exist, as the next example shows.

e Certain non-integer N models are interesting in their own right. One famous example
are loop models in statistical physics, which are probabilistic ensembles of loops living
on a lattice. Every loop contributes to the probability weight a factor N K0P length
where K is a coupling, see figure 1. This is referred to as O(NN) loop model, because
it can be obtained by analytic continuing a spin model in the O(N) universality class
(this will be reviewed below). This correspondence extends to correlation functions:
in the loop formulation we introduce point defects where lines are forced to end.
There is a vast literature on the O(N) loop models for continuous values of N and
the CFTs describing their phase transitions [2, 3]. While many quantities of physical
interest have been computed, to our knowledge the question of symmetry has never
been properly explained.

e Extensions to nearby non-integer N help to learn about aspects of models with integer
N. For instance, the fractal dimension of same-sign clusters of spins at the phase
transition of the Ising model is a non-local observable, and is difficult to compute
within the Ising model itself. It becomes more easily accessible when the model is
extended to N = 1 + €.

2A great reference about such limits, which often lead to logarithmic conformal field theories, is [4].



The rest of the paper is structured as follows. After a brief reminder of the properties
of symmetries (section 2), we introduce the Brauer algebra in section 3 and with its help
give an operational definition of non-integer O(n) symmetry in section 4. Section 5 explains
the meaning of this symmetry in the language of Deligne categories. Armed with category
theory, in section 6 we discuss how to construct the most general O(n)-symmetric lattice
model. We also discuss Wilsonian renormalization in this context and establish that the
categorical symmetry parameter n is not renormalized, just like for group symmetries. In
section 7 we consider various aspects of QFTs with categorical symmetries: free theories,
path integrals, perturbation theory, global symmetry currents, explicit and spontaneous
symmetry breaking, conformal field theories and unitarity. Highlights here include the
categorical Noether’s theorem (section 7.4), the categorical Goldstone theorem (conjectured
in section 7.6), and two theorems about CFTs with categorical symmetries: theorem 7.1
about completeness of the global symmetry spectrum (new even for group symmetries), and
theorem 7.2 about the lack of unitarity. In section 8 we emphasize how Deligne categories
lead to a non-trivial interplay of algebra and analysis in situations of physical interest. In
section 9 we define Deligne categories which interpolate U(NN), Sp(/V), and Sy. We also
report what is known about the other families of categories, and about the so far elusive
possibility of interpolating the exceptional Lie groups. Then we conclude. Appendix A is a
self-contained review of tensor categories, and appendix B outlines the theory of continuous
categories.

Reader’s gquide. This article is rather long, and depending on your interest you may take
different routes. The first five sections should be read by everyone. Section 6 is mostly
for statistical physicists interested in lattice models, while section 7 is written with a high
energy physics audience in mind, and section 8 is for mathematicians interested in how
Deligne categories give rise to interesting behaviour in physical systems.

2 What do we need from a symmetry?

It is hardly necessary to explain the central role of symmetries® as an organizing principle in
physics. Here is a partial list of their uses, relevant for quantum field theory and statistical
physics:

1. States and local operators are classified by representations of the symmetry group.

2. Symmetries restricts the form of measured quantities, such as correlation functions,
scattering matrices, and transfer matrices. These must all be invariant tensors of the
symmetry group.

3. Symmetry is preserved along the renormalization group (RG) flow. If a microscopic
theory has a certain symmetry, a CF'T describing its long-distance limit should have

3In this paper we will use the word symmetry to refer to global (i.e. internal) symmetries.



the same symmetry.? In other words, universality classes of phase transitions can be
classified by their symmetries.

4. Continuous symmetries in systems with local interactions lead to local conserved

current operators.

5. When a continuous group symmetry is spontaneously broken at long distances, this
leads to Goldstone bosons and constraints on their interactions.

A ‘non-integer N symmetry’ should be a conceptual framework with similar conse-
quences:

1’. There has to be a notion which replaces that of irreducible representation and which
is used to classify states and local operators.

2'. We would like to know what the algebraic objects are to which correlation functions
and transfer matrices belong, and which replace invariant tensors.

3’. We would like to know that symmetry is preserved along the RG flow. For exam-
ple, parameter N should not be renormalized. We should then be able to use this
‘symmetry’ to classify universality classes of phase transitions with non-integer V.
In particular, this would provide a robust explanation why phase transitions of loop
models on different lattices are described by the same CFT.

3 The Brauer algebra

Our first goal is to explain the mathematical meaning of the Kronecker delta tensor, d77,
for non-integer n.> In the usual naive approach, these tensors are manipulated using a few

simple rules:%

6rg =91, (3.1&)
01705 = 01K, (3.1b)
Orj0gr =mn. (3.1c)

From experience, these rules are consistent, i.e. give the same answer when applied in any
order. For instance we have associativity:

(0r797K )0k = 017(0sKOKL) = O1L, etc. (3.2)

For n = N € Z,, consistency is guaranteed by properties of matrix multiplication, but
what are we doing for n € R and why is this consistent?

4As is well known, there are two types of exceptional situations where this statement requires qualifi-
cations. First, symmetries may break spontaneously. Second, additional symmetries may emerge at long
distances because operators which break them are irrelevant in the renormalization group sense.

5Small n will stand for a real number, which may or may not be integer. Capital N will be reserved for
positive integers: N € Z.

SHere we do not distinguish upper and lower indices, but later we will.



The answer is: stop thinking of d;; as a tensor and I, J as indices in a vector space,
since vector spaces of non-integer dimension do not exist. Instead, view it as a notation
for a string connecting a pair of points labelled I and J:
|

. (3.3)

6[JE

Then, (3.1a) is manifest, (3.1b) becomes a rule for concatenating strings and erasing the
midpoint, while (3.1b) replaces a circle by n: (dashed line shows where the concatenation

_ Ié | I----J —n. (3.4)

Similarly, products of several d-tensors are replaced by diagrams containing several

happens)

strings, e.g.”

I JK

X | =6rmdsLdkp - (3.5)

LMP
Such string diagrams can then be multiplied by concatenation: putting them one on top
of the other and erasing middle vertices. Each loop produced in the process is erased and
replaced by a factor of n. This operation replaces contraction of J-tensors. The resulting
string diagram may then be ‘straightened up’, just to improve the visibility of the remaining
connections. Here are two examples:

D — /\ , 0 /\\ (3.6)

For a fixed integer k, consider then all string diagrams with k points in the bottom and
top rows. By taking formal linear combinations of we can construct a finite-dimensional
vector space. By the above multiplication rules this vector space turns into an algebra,
called the Brauer algebra By(n). We can state our first lesson:

Forn € R, formal manipulation rules involving §-tensors are nothing but opera-
tions in the Brauer algebra of string diagrams. The rules are consistent because
the Brauer algebra exists (and vice versa).

We can also generalize the Brauer algebra, considering (k1, k2)-diagrams with k; points
in the bottom and ko in the top row. The product of a (ki, ko)-diagram with a (kg, k3)-
diagram is defined as the concatenated (ki,ks)-diagram, times a factor p#(erased loops)
We shall call this mathematical structure the ‘category §e\p O(n)’, and it is the first step
towards the Deligne category /RTeBO(n). Using the language of category theory will assist
us in both reasoning about these algebraic structures and in simplifying notation. We will
start using it in section 5.1, but for now let us proceed thinking more pictorially by using

string diagrams.

"It does not matter which string passes above which, only who is connected to whom.



4 Operational definition of ‘O(n) symmetry’, n € R

To define something as fundamental as symmetry needs care. We will try to give a rea-
sonably general definition, making sure that it is neither circular nor tautological. We will
also separate the ‘definition’ from the ‘construction’: first we shall define our notion of
symmetry, and then we shall construct symmetric models.

Imagine someone hands us a model as a black box, an oracle which can be queried for
values of observables.® How can we determine whether the model has a symmetry?

4.1 First attempt

If it is a model of spins (N € Z; ), we might act as follows. Let us query the oracle for a
correlator of multiple spins s(x;). Probing all possible spin components I; = 1... N, we
can check that the correlator is an O(N) invariant tensor, i.e. expandable in a basis of
products of dy,7,. For instance, for a 4pt function we should find:

<S[(1’1)SJ(xQ)SK(xg)SL(CII4)> =] (a:i)51J5KL + C’g(a:i)(SIKéJL + C3(xi)51L(5]K . (4.1)

If this holds for any correlator we check, it is tempting to declare that the model has O(N)
symmetry.

Consider now a loop model and try to devise a test for whether there is a non-integer
‘O(n) symmetry’, whatever that might mean. The analogue of the above would be to query
the oracle for correlation functions of defect operators D where lines can end. Any such
correlator is a linear combination of string diagrams, e.g. 4pt function

where the numerical values of coefficients will be provided by the oracle, while the string
diagrams are just formal placeholders saying who’s connected to whom. Compared to (4.1),
we lost the external indices. In fact, it looks like eq. (4.2) contains zero information about
symmetry: it would be valid for an O(n) loop model with any n, as well as for ad hoc
loop model without any symmetry. This seeming uselessness of (4.2) compared to (4.1) is
paradoxical.

The paradox will be resolved as follows: in fact both (4.1) and (4.2) are insufficient to
determine if we have a symmetry. In addition to each observable having the expected form,
we will have to examine relations between different observables. Think of it as “looking
under the hood” of the oracle.

4.2 A definition which works

We will first give a slightly more detailed way to check for O(N) symmetry of the spin
models. Instead of correlators, let us query the oracle for ‘incomplete partition functions’:

Ly = Z|s(wi):si,i:1..k7 (4:3)

8By observable we mean any measurable quantity which has a numerical value, like a correlation function.
No relation to observable in quantum mechanics.



computed with &k spins held at some fixed values, while the rest are integrated over. We
can call this the ‘joint probability distribution’ of the k chosen spins. It is a powerful
observable which contains information about all correlators: the latter can be computed
from it performing the remaining integrals weighted by the spin components of interest.
An oracle test of O(N) symmetry, N € Z,, consists in checking two properties of Z’s:

1. (Invariance) Each Zj, must be a function of scalar products s; - s;. (4.4)

2. (Consistency) If we integrate Zj, over one of the spins, we should get Zj_1:

/d81 Zy = Zk-1, (4.5)

where in the r.h.s. the spin at x1 is no longer fixed, while the rest remain fixed to the
same values.

Here [ ds is an O(N) invariant integration from the model’s path integral. For each even
m € Z>o we have:

/ds s sfm = 7, [61112 . gTm=1Im 4 other pairings], (4.6)

where all pairings are included with the same overall coefficient 7,,. For m odd there are
no pairings so the integral vanishes. One example is the integral over the unit sphere, for

which
Area(SNV1)

NIN+2)...(N+m—-2)"
We want to allow models including radial degrees of freedom, which effectively modifies
JIm-? So our general O(N) invariant integral is defined by (4.6) with some fixed but
arbitrary J,,. We require that one [ ds should work for all spin integrations and for all k’s.

Notice that it is not necessary to query the oracle directly about this integral: knowing
Zy’s, we can decide if a [ ds exists which makes (4.5) true, and so determine the Jp,’s if it
does exist.

Furthermore, this point of view generalizes to the loop model case. The loop analogue
of leaving k spins unintegrated is to allow an arbitrary number m; of lines to end at the
corresponding lattice points x;. The line ends can be interconnected in an arbitrary way in
the bulk of the lattice. These connections are the analogues of (s; - s;) in the spin model.
Then, the loop version of Zj is an infinite formal sum:

, (4.8)

®Imagine that the original field of the model is ¢ = rs’ where s’ lives on the sphere and r is the
radial direction, and the integration measure on each site includes a factor [ drf(r) with some fixed weight
f(r). Then once we integrate out the r direction, the resulting effective coefficients J,, will be modified
w.r.t. (4.7) by factors [J° drr™ f(r).



where « labels all possible pairwise interconnections of external line ends (with one example
shown), and we may query the oracle for the numerical coefficients C,. Simple defect cor-
relators are contained in Zj: they correspond to all m; = 1. Unlike its spin analogue (4.4),
eq. (4.8) is not yet a test of anything: the test will come from the consistency condition.
By analogy with (4.6), we define the loop model integral as a permutation-invariant
formal sum of string diagrams pairing m points with some numerical coefficients [J,:

m points

——f
/= Z Jm/ ; / = N --- N N+ permutations. (4.9)

m=0 even

Consistency condition says that if we take Zj in the form (4.8) and apply the integral (4.9)
at point x1, we should get Z;_1 corresponding to the remaining points xo, ..., Ty:

/ Zy = 7 1. (4.10)
at x1

Integral is applied by concatenating the r.h.s. of (4.9) with the lines in Zj ending at x;.
Only the terms with m = m; give non-zero answer and are simplified by the Brauer algebra
rules, replacing circles by factors of n € R. If we can define the integral (i.e. specify J,,’s) so
that this consistency condition holds, we say that the loop model has an ‘O(n) symmetry’,
where n is not necessarily an integer.

5 Translation to categories

Having described in some detail how O(n) models and their symmetry for n € R can be
defined, let us introduce some category theory language to describe this more succinctly.
A category is a collection of objects with connections (‘morphisms’) among them which
can be composed.' For the full picture we will need to introduce three categories:

e RepO(N), for N € Z, of finite-dimensional complex representations of the group
O(N)

. ﬁ(;) O(n), the category of string diagrams
e The Deligne category ﬁ\eB O(n) built on top of §e\pO(n).

The latter two categories are defined for n € R and provide an ‘analytic continuation’ of the
former one, in a sense which will be made precise. It is convenient to start with Rep O(n)

5.1 I@O(n), n €R

This category collects the string diagrams into a single algebraic structure. Consider the
diagrams introduced in section 3. Each diagram is a series of strings connecting kq points
at the bottom to ko points at the top. For each k € Z>p we define an object [k] in
ﬁe\pO(n). Each diagram f connecting k; points at the bottom to ks points at the top is

10See appendix A for an exposition of the necessary parts of category theory.



N\ % O\
NN ~ N M

Figure 2. An illustration of the tensor product definition. Here f : [4] — [2], g : [3] — [3], and
feg:[7— [l

an element of the set Hom([k1] — [k2]), which we call the morphisms of ﬁe\pO(n). We
will often write f : [k1] — [k2] in order to denote an element f € Hom([k1] — [k2]). We
can also consider linear combinations of string diagrams, turning each set of morphisms
Hom([k1] — [k2]) into a vector space. In particular the combination with zero coefficients
is the zero morphism 0 : [k1] — [k2], which satisfies 0f = 0 and f + 0 = f for any other
morphism f.

To define a category we must have a way to compose morphisms. In R/e\pO(n) we
compose any two diagrams f : [k1] — [k2] and ¢ : [ke] — [ks] by stacking g on top of f,
and simplifying them using the rules of section 3 (in particular every loop gives a factor
of n). This gives us a new morphism, which we denote as g o f. This composition rule is

clearly associative:
folgoh)=(feog)oh. (5.1)

Composition (and the tensor product defined below) extends by linearity to arbitrary linear
combinations of diagrams. Because the morphisms Hom([k1] — [k2]) are now vectors and
the morphism composition is linear, we call R/e\p O(n) a linear category.

We would like to warn the reader that [k] are just names of inequivalent objects, and
we do not think of [k] as sets of anything (which means that our category is ‘abstract’ as
opposed to ‘concrete’).!! Also morphisms are not thought as maps from one set to another,
but just as abstract elements of vector spaces Hom([k;] — [k2]) on which the associative
composition operation is defined. In this sense f : [k1] — [ko] is just a convenient notation.

For every object [k], there is an identity morphism id) : [k] — [k] which is the diagram:

idyy = ‘ ‘ ‘ . (5.2)
This diagram acts trivially when composed with other diagrams

The objects, morphisms, composition law o and identities id, together form the data we
need to define the category §e\pO(n).

In the category §e\p O(n) there is another way we can combine two diagrams f and g:
we can place them next to each other, to define f ® g, see figure 2. We call ® a “tensor
product”, for reasons that will become apparent later. For any two objects, we define
[k1] ® [k2] = [k1 + ko]. This means that for morphisms f : [ki1] — [ko] and g : [l1] — [l2],
their tensor product is a morphism from f® g : [k1] ® [l1] — [k2] ® [l2]. The tensor product
® turns Rep O(n) into a ‘monoidal category’ (see appendix A).

1186 although we may pictorially imagine [k] by drawing k points, it would be inappropriate to think of
[k] as a ‘set consisting of these points’.



We can now translate correlation functions in loop models into this new language. If
we take the correlator of k defect operators D(z), as for instance in (4.2), the answer will be
a linear combination of string diagrams. This is simply a morphism from [k] — [0]. We can
think of each defect operator D(z) as being associated with a single dot [1], and that when
we have multiple operators D(x1)...D(z)) we should associated these with the tensor
product [1] ® ... ® [1] = [k]. The correlation function is then a morphism from [k] — [0].

This may seem all well and good, but how do we connect this to physical observables,
which are numbers? Any morphism can be expanded in the basis of string diagrams, and
the expansion coefficients are numbers which one can physically measure or compute in
(say) a Monte Carlo simulation. Equivalently, we can think as follows. Let us consider
morphisms from [0] — [0]. Because in the Brauer algebra closed loops give us factors of n,
all morphisms from [0] — [0] are proportional to id[g], which is the empty diagram. For this
reason, if we have any morphism f : [0] — [k], then we can compose it with our correlator
to find

(D(z1) ... D(xy)) o f = Aidg (5.3)

for some number A, which is physically measurable. Choosing different f’s we can determine
all the expansion coefficients of the correlator when n is not integer.!?

Now let us consider the ‘incomplete partition functions’ Z; defined in the previous
section. As we can see in (4.8), for each set of values my,...my it gives rise to a morphism

= Fonnvoamy, € Hom ([0] = [ma] ® [ma] ... @ [my]) .

(5.4)
In time, we shall see how to define a notion @ analogous to a direct sum, and we will then
see that Zj, itself can be thought of as a morphism.
Finally, let us consider the loop model integration we define in (4.9). For every even
m, that equation defines a morphism [ :[0] — [m] as a sum of diagrams from [0] — [m)].
Like Zj,, @ will allow us to think of the morphisms [ = as part of a single morphism |.

5.2 RepO(N), N € Z4, and its relation to @)O(n)

Representation theory of O(INV) studies representations, and the O(N) covariant maps be-
tween them. There is a standard way to package all of this information into a single
algebraic structure: category Rep O(N). The objects a, b, ... of Rep O(V) are representa-
tions of Rep O(N), and the morphisms Hom(a — b) are O(N) covariant tensors between
the representations a and b. We will denote the identity tensor mapping a representation
a to itself by idj,.

As a category, RepO(N) has a lot of additional structure. For instance we have a
tensor product ®, which we can use to combine any two representations a and b into a

12This follows from the semisimplicity of the Brauer algebra [5]. A similar statement holds in any
semisimple category, see proposition A.5 for more details. In the next section we shall see that for integer
n certain structures become “null” and vanish when composed with any morphism [0] — [m].

~10 -



new representation a®@b. We can also tensor together any two covariant tensors f :a — b
and g : ¢ — d to produce a new covariant tensor f ® g : a ® ¢ — b ® d. We also have the
trivial representation 1, which acts trivially on any other representation.

Because we have a tensor product, Rep O(N) is what is known as a monoidal category.
We give a detailed description of what this means in appendix A.1.3, but in practise the
rules for manipulating ® in a monoidal category generalize the usual tensor product rules.

We can also consider category §e\pO(n). That category was defined in section 5.1
for any n € R, but now we would like to consider it for n = N € Z, and determine its
relationship to the category Rep O(N). To do so we need the notion of a functor, that
is, a map between two categories. A functor F' between categories C and D associates to
every object a € C an object F'(a) € D and to every morphism f : a — b a morphism
F(f): F(a) — F(b), such that function composition is preserved:

F(fog)=F(f)oF(9), F(ida)=idp(). (5.5)

If we have a functor between two monoidal categories, we also want it to preserve the tensor
product: 3

Fla®b)=F() @ F(b), F(fewg) =F(f)®F(g), F(c)=1p. (5.6)

In this language, the relation between §e\p0(n) and Rep O(N) is expressed by saying
that for N € Z, we can construct a functor S : §e\pO(N) — Rep O(N) from the former
to the latter. This functor takes string diagrams and relates them to invariant tensors in
Rep O(N). Under S, we map the objects [k] to N®¥ where N is the N-dimensional vector
representation of O(N). The morphisms from [ki;] — [kz] are translated into invariant
tensors from N®F1 — N®*2 by attaching indices ai, as, . .. to each dot and then associating
to each string a tensor dq,q,. The function S : Hom([k1] — [k2]) to Hom(N®kt — N®k2) i
surjective; in category theoretic parlance, we say that S is a full functor.

Because S is a functor, if we compose invariant diagrams using the diagrammatic rules
and then apply S, we will get the same result as if we first apply S and then compose
the tensors. In this sense, the category R/e\pO(n) captures the essential rules of tensor
composition in Rep O(N). There are however some very important differences between the
two categories.

The only objects in §e\p0(n) are of the form [k], and under S these map to S([k]) =
N®* in Rep O(N). But we know that there are many other representations in Rep O(N),
such as symmetric and antisymmetric tensors. Furthermore, in R/e\p O(n) we have no notion
of direct sum @, while this notion is very important in Rep O(NN), as it allows us to decom-
pose tensor products into sums of irreducible representations. This leads us to ask: what
is the @O(n) analogue of the decomposition of N®¥ into irreducible representations?

5.3 Irreducible representations

To answer this question, let us first consider how to recover irreducible representations in
Rep O(N) from a more categorical point of view. In a semisimple'* category, an object a

13In mathematical parlance this is a strict monoidal functor.
14See appendix A.1.2 for a precise definition of seimisimplicity.
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is called simple if every morphism Hom(a — a) is proportional to the identity id,. Thus,
by Schur’s lemma, irreps are precisely the simple objects a € Rep O(N).
We know that N®*¥ € Rep O(N) will be decomposable into the direct sum of irreducible
representations:
N —a,@ay®... (5.7)

We know what this equation means in the language of the usual representation theory,
but now let us translate it into category theory. For each representation a; appearing
in (5.7) there is a pair of morphisms; 7, : N®* — a; which projects down onto a;, and
la, : a; — N®F which embeds a; into N®*. These satisfy the relationship

Ta; O la; = ida, . (5.8)

T

Composing these maps in the reverse order, we define a ‘projector’ morphism:
Pa, = ta, 0 Ta, € Hom(N®* — N®F) (5.9)

It follows from (5.8) that these morphisms are idempotent: PaQi = P,,, justifying the name
“projector”. Furthermore, we demand that for any two terms in (5.7), the projectors are
‘orthogonal’:

PaiOPaj:[,aioﬂ'aio[,ajoﬂ'ajzo (1’#]) (510)

If a; and a; are two different irreps, then orthogonality is automatic, because the middle
piece Ta, OLa; : &; — a; is then a morphism between two distinct irreducible representations,
and such morphisms are trivial by Schur’s lemma. If the direct sum contains several copies
of the same irrep, then we can achieve orthogonality of the corresponding projectors by a
change of basis.

The decomposition (5.7) of N®* into irreducible representations thus corresponds to
a decomposition of the identity morphism

idner = Y Pa, (5.11)

as a sum of mutually orthogonal projectors. Furthermore, because each a; is irreducible
this decomposition is maximal, that is, P,, cannot be further decomposed.

Although in ﬁe\pO(n) we cannot decompose [k] as the sum of simpler objects, we can
still generalize (5.7) by decomposing id[) as the sum of morphisms which are idempotent
and mutually orthogonal, since these concepts make sense even in an abstract category
setting. Taking the example of £k = 2, the three string diagrams forming the basis of

Hom([2] — [2]) are , Y
Ty = ‘ ‘ T = X ng/_\ . (5.12)

From these we can define the three idempotent morphisms

1 1 1 1
Py = -T: Pqg = —(T: T5) — —T: Pa = =(Ty) = T¢ 5.13
1= 15, Ps 2(1+ b) T3, Pa 2(1 5), (5.13)
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which are mutually orthogonal and satisfy
Py +Ps+ Py =T = id[g] . (5.14)

By analogy to Rep O(N), it is tempting to say that [2] “splits into three irreducible repre-
sentations 1, S and A”. For the moment we are not allowed to use this language, but the
Deligne category Rep O(n) will allow us to do so.

This analogy with Rep O(IN) can be further extended by defining a ‘trace’ on Rep O(n).
Recall that in Rep O(N) we can for any morphism f : N®¥ — N®* take the trace tr(f) € C
by summing over all diagonal components of f. For a projector Py,

tr(Py,) = dim(a;) (5.15)

where dim(a;) is the dimension of a;.
Likewise, in Rep O(n) we define the trace of a diagram f : [k] — [k] as

: (5.16)

which is just a number: n to the power of number of closed loops in the r.h.s. We extend
this definition by linearity to any morphism in Hom([k] — [k]). Now let us compute

(n+2)(n—1)

n(n—1)
5 , _

tr(Pp) =1, tr(Ps)= 5

tr(Pa) = (5.17)
For n € Z; these numbers are precisely the dimensions of the trivial representation, the
traceless symmetric tensor, and the antisymmetric tensor; indeed, the functor S maps these
three idempotents onto the relevant projectors in N®2 — N®2. Furthermore S preserves
the trace, which is why the “dimensions” in Rep O(n) match those of Rep O(n). So Rep O(n)
gives a precise algebraic meaning to, and hence allows us to extend, the usual dimension
formulae and fusion rules for any value of n.

We can repeat this procedure for each [k], searching for idempotents in Hom([k] — [k]).
For integer N these idempotents correspond to subrepresentations of N®*. The sum of two
orthogonal idempotents is also an idempotent, just as the direct sum of any two represen-
tations is itself a representation. We are most interested in the simple idempotents, which
cannot themselves be decomposed as the sum of non-trivial idempotents. Under the action
of § they correspond to projectors onto simple objects (irreps) in RepO(N). By com-
puting the trace of the idempotents, we can compute the dimension of the corresponding
representations.

Let us now consider (5.17) for n = 1. In this case we find that

tr(Pg) = tr(Pa) = 0. (5.18)

As we know from linear algebra, the only idempotent matrix with null trace is the null
matrix, and so both these idempotents belong to the kernel of S.
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More generally we will define a null idempotent to be a simple idempotent with zero
trace. They can be found for any N € Z,. Consider for instance the morphism in
Hom([k] — [k]) given by the antisymmetrized linear combination of diagrams:

Pac= (I ] ) 619

This is clearly a simple idempotent, and it is easy to compute the trace:

tr(Pyr) = n(n—l)..l;:!(n—k—i-l)' (5.20)

If n = N € Z4, this trace vanishes for k > N. So Ppx is null, hence it belongs in the
kernel of §. In Rep O(V) the morphism S(Py«) is the projection onto fully antisymmetric
tensors, and indeed such tensors can only exist for k£ < N.

For n ¢ Z4, null idempotents do not exist (Wenzl [5]). For instance, in this case
the trace (5.20) does not vanish for any k. (Although notice that it may be negative for
k > n+ 1, so in this abstract setting non-integer ‘dimensions’ may also become negative.)
This is one manifestation of an important difference between integer and non-integer n:
the Brauer algebra Hom([k] — [k]) is always semisimple!'® for n € Z, but this is not true
for integer N. If, however, for integer N we take the quotient of the Brauer algebra by null
idempotents N, the result is a semisimple algebra [5]. As we have already seen, the functor
S naturally implements such a quotient. Conversely, one can show that the kernel of S is
precisely generated by the null idempotents, and hence Hom([k] — [k])/N is isomorphic
to Hom(N®F — N®Fk),

We have seen that the decomposition

idy =Y P, (5.21)
=1

of idp; as the sum of mutually orthogonal simple idempotents is closely related to the
decomposition of N®* into the direct sum of irreps. Can we always decompose id[g) in this
way, and is such a decomposition unique? Wenzl [5] showed that the answer is yes, the de-

composition (5.21) always exists, and is unique up to conjugation by invertible morphisms'6

U € Hom([k] — [k]).

Indeed, note that for any invertible U € Hom([k] — [k]), the morphisms U~!P,U are
also simple idempotents summing to idj). Note as well that the trace on ﬁe\pO(n) is, like
the usual trace, cyclic:

tr(AB) = tr(BA), (5.22)

and so the two decompositions have the same dimensions

tr(U'PU) = tr(P). (5.23)

'5This means that the algebra is isomorphic to a direct sum of finite-dimensional matrix algebras.

'A morphism U is invertible if another morphism U~" exists such that U™ o U = idy. E.g., a single
diagram in Hom[k] — [k] is invertible if and only if each point at the bottom is connected to a point at
the top.
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To summarize, we have found that §e\p0(n) contains all the information needed to
construct the various representations in Rep O(N). The functor S relates idempotents
to the projections onto various representations in Rep O(N), while null idempotents are
mapped to 0. Unlike Rep O(NN) however, we can define @O(n) for any value of n € R,
and give precise algebraic meanings to the dimensions of “analytically continued” O(N)
representations.

5.4 Deligne’s category I/??pO(n)

While ﬁe\pO(n) goes a long way towards generalizing Rep O(N) to non-integer n, it does
not have all of the usual properties of Rep O(IN). We would like to be able to use rigorously
the usual language of representation theory. In particular we would like to have objects
corresponding to irreducible representations, and to be able to decompose other represen-
tations as the direct sum of these irreducible representations. Within §e\p0(n)7 this is
impossible. We have idempotent morphisms which should somehow correspond to identity
morphisms acting on simple objects analogous to ‘irreducible representations’, but these
simple objects are not part of the category R/e\pO(n). Also, similar-looking idempotent
morphisms will be found for some value of k£ and for all larger k’s, and they need to be
identified somehow. Finally, Rep O(n) does not even have a notion of direct sum.

Fortunately, there exists a standard (and essentially unique) method to build from
§e\p O(n) a new category with the properties we desire: the Deligne category /R\eB O(n). Our
construction proceed in two standard steps: ‘Karoubi envelope’ and ‘additive completion’.
These names may sound scary, but as you will see it is primarily a matter of introducing
an appropriate language.

The Karoubi envelope construction (first described by Freyd [6]) can be applied to any
category and allows to associate objects with idempotents. Here we describe the Karoubi
envelope of ﬁe\pO(n), which we call Kar O(n). The objects of this new category are pairs
([k], P) where [k] € R/e\pO(n) and P : [k] — [k] is idempotent (though not necessarily
simple). We then define Hom(([k1], P1) — ([k2], P2)) to be the subspace of morphisms
f € Hom([k1] — [k2]) such that

foPi=f=Pof. (5.24)

With this definition, P becomes the identity morphism idp on ([k], P).
We compose and tensor morphisms together using the usual morphism composition
and tensor product in Rep O(n), while for objects we define the tensor product as:

([k1], P1) @ ([ka], P2) = ([k1 + ko), PL @ P2). (5.25)

It is straightforward to verify that if (5.24) is satisfied by f and g, the it is also satisfied
by fogand f®g.

We can naturally embed §e\pO(n) into Kar O(n) via a functor which sends [k] to the
object ([k],idf). Intuitively, we think of the object ([k], P) as a “sub-object” in ([k],id).
Categorically, this statement is made precise as follows. We can define 7p : ([k],idp) —
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([k], P) and ¢p : ([K], P) — ([k],idp)) to be the morphism P, which trivially satisfies (5.24).
It then follows that:
P:[,POT(P’ idP:T['POLP. (526)

These equations are analogous to egs. (5.8), (5.9) from the previous section, so that 7p
and ¢p are completely analogous to the projection and embedding morphisms there.

So, by considering idempotents from [k] — [k] in §e\p0(n), we construct objects in
Kar O(n). When n # Z, the simple idempotents give rise to simple objects. By repeating
this construction for all k, we get all objects of Kar O(n). It’s important to realize however
that some of the so constructed objects will be isomorphic. This should not come as a great
surprise. We can consider for analogy what happens in Rep O(N). In this category, if a is
a subrepresentation of N®* then we also can embed a within N®(*+2)  Also, in Rep O(NN)
the same representation a may occur several times inside N®* for a given k.

Indeed, in Rep O(N), we think of two representations a and b as being “the same” if
there is an isomorphism between them; that is, there is an O(N) covariant map f:a — b
which has an inverse. Likewise, in Kar O(n) we should consider objects to be “the same”
if there is an isomorphism (i.e., an invertible morphism) between them. This avoids a
proliferation of redundant objects.

Let us consider an example. For an idempotent P : [k] — [k] and any of the three
idempotents P, : [2] — [2] from eq. (5.13) we can construct a new idempotent P ® P, from
[k + 2] — [k+2]. This gives us distinct objects ([k], P) and ([k+2],(P ® Pa)) in Kar O(n).
Let us see however that for a = 1 these two objects are isomorphic (in full analogy with
the tensor product with the trivial representation). The isomorphism is

1
f=Pon, fl=-Pow. (5.27)
It’s easy to check that
foft=P=idp, flof=P®P=idpgp (5.28)

the morphisms in the r.h.s. being the identity morphisms on the considered objects of
Kar O(n).

For a pair of objects a and b in Kar O(n) (or more generally, in any linear category)
the direct sum a @ b, if it exists is defined to be the unique (up to unique isomorphism)
object satisfying:

1. There exists embedding morphisms ¢ :a—a®band is:b—a®b
2. There exist projection morphisms 7 :a®b —>aandm:a®b —b

3. These maps satisfy the equations

Mot =idy, mo oty =idp, L107T1+L207T2=ida@b. (529)

As can example, given two objects ([k], P1) and ([k], P») such that PyP, = 0, the direct
sum ([k], P1) @ ([k], P2) does exist and is isomorphic to ([k], P; + P»). If we can decompose
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id[y as the sum of mutually orthogonal idempotents P;, we then find that in Kar O(n) (~
means isomorphic)

([k],idp) ~ ([k], P1) © ... @ ([k], P)- (5.30)

Any Hom([k] — [k]) contains the zero morphism, which is very trivially idempotent.
In Kar O(n) the objects ([k],0) are all isomorphic, and the isomorphisms between them are
also zero morphisms. For this reason, we will use 0 to denote any object isomorphic to
([k],0). For any other object ([k], P) in Kar O(n), we see that there is a unique morphism
([k], P) — 0 and 0 — ([k], P), both of which are themselves also zero morphisms. In
category theory language, 0 is called the zero object. We can think of it as a “zero-
dimensional representation”.

It is not hard to check that 0 is the additive identity, so that for any other a € Kar O(n),

Odba~ar~ad0. (5.31)

The existence of 0 is also useful for various technical reasons, as it allows us to define
notions of kernels, cokernel, and quotients.

Although we have defined the direct sum in Kar O(n), it does not always exist. Indeed,
denote by n the object in Kar O(n) corresponding to [1] in ﬁe\pO(n). It is not hard to see
that n@®1 does not exist in Kar O(n), because 1 can only be embedded into n®* for even k,
while n can only be embedded for odd k. To fix this we define Rep O(n) to be the additive
completion of KarO(n) to construct ﬁ\e?)O(n). This consists of formally defining for any
series of objects aj,...,a, € KarO(n) an object a; @ ... ® a,, along with projection and
embedding morphisms

Ta, a1 @D ...0a, >a;, la:a—a d...0a, (5.32)
which satisfy
n
la; O Ta;, = 1da, , Z Ta; O la;, = ida,@..aa, - (5.33)
i=1

The reader may again be concerned that ﬁevp O(n) will have many duplicate objects.
But because the direct sum is unique up to unique isomorphism, if two objects a,b €
KarO(n) already have a direct sum ¢ € KarO(n), then in ﬁéBO(n) we will find that
c ~a®b. The additive completion merely makes sure that all objects have direct sums,
and it is a construction that can be uniquely applied to any linear category. If we take the
additive completion of a category that is already additive, then we construct a category
which is equivalent to the old category.

5.5 Properties of ﬁ(\aT)O(n)

Having constructed RAeBO(n), let us describe some of its properties and see how these
generalize those of Rep O(N). For n € Z it is a semisimple category, which means that any
object a € ﬁgf) O(n) can be written as the direct sum of a finite number of simple objects.
This is a consequence of Wenzl’s result that the Brauer algebra is semisimple.
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Finding all simple objects in ﬁ\eBO(n) and computing their dimensions is an exercise
in combinatorics. As shown in [1], simple objects x(y,x,..5,) are labelled by a series of
non-increasing numbers \; € Z, which we can think of as a sort of “generalized Dynkin
index”. The dimension of these objects is given by the interpolation of the Weyl dimension
formula:

(n—i—r) H N+ XNj+n—i—g)(N—A+j—1)

o= 1L, (n=i-)G—9)

zw

dim( (A A2... (5'34)

This function is a polynomial in n, and is never zero for n ¢ Z, although for sufficiently
large k it may become negative. A particularly simple case are the objects x(;, 1) which
correspond to the antisymmetric projectors (5.19) and whose dimension is given by (5.20).

For integer N the category @O(N ) is no longer semisimple because of the presence
of null idempotents. Under the Karoubi construction a null idempotent P, : [k] — [k]
gives rise to an object ([k], P,) which is simple and has dimension 0. As we show in
proposition A.3, this is not possible in a semisimple category. So we can think /R_(;) O(N) as
a bigger version of Rep O(N), containing additional null idempotents and zero dimensional
objects. More precisely, there is a full functor F : /R;BO(N ) — Rep O(N) which maps
all of the null idempotents to 0 and the zero dimensional objects to the 0 dimensional
representation.

6 Deligne categories and lattice models

Having introduced Deligne’s categories mathematically, we come back to their physical
applications. We will refer to the integer n symmetry as a ‘group symmetry’, while non-
integer n symmetry as a ‘categorical symmetry’.

States and local operators of a theory with categorical symmetry will be classified
by the simple objects of the associated category, while correlation functions and transfer
matrices will be morphisms of this category.

Let us describe how to construct the most general lattice model with a categorical
symmetry, generalizing considerations of section 4. For a group symmetry, one puts on
every lattice site a “spin”: a variable transforming in a certain representation, the simplest
case being when this representations is irreducible and the same for all lattice sites. For
categorical symmetry, we place on every lattice site z a “spin” s(z), which is an object of
Deligne’s category. We will write s(x) or s, interchangeably. For simplicity, we consider
the case where all these objects are isomorphic to a fixed simple object: s(z) ~ a. The
setup of section 4 can be seen as corresponding to a = [1]. For a group symmetry, we could
also write s’ (x) where I is an index in the representation in which s(x) transforms. For a
categorical symmetry, only the index-free way of writing makes sense.

We next introduce interactions. For a group symmetry, interaction between two sites
H,, is constructed contracting products of s! and sg, with invariant tensors of the group.
E.g., for spins s, in the fundamental of O(IV), we can take any function of s - 5, 5, - 54,
5y - 5y. We are not imposing here the constraint 3, - 5, = 1.
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For a categorical symmetry, this is generalized by saying that H,, is a morphism

Hyy €Hom 1= @ 9™ (s:) @ S™(sy) | (6.1)

m1,mz=0

where S™ is the symmetrized product (see section A.1.4), appropriate here if we are defining
a theory with bosonic lattice variables.
We can then consider the total interaction, which is naturally a member of a Hom
space:
HeHom(1—A), A=PRS5™(s), (6.2)
) T

(me

where @(mz) is over all sequences (m;) of non-negative integers, one for each lattice point
x. We can restrict to sequences with only two non-zero elements if H = Zzy H,, is a sum
of pairwise interactions. Sequences with more non-zero elements would arise if H contains
interactions between three, four etc. sites at a time.

In physics, we often consider the exponentiated interaction e. To understand the
precise meaning of this in the categorical world, we first define the morphism y : A ®
A — A which projects each term (®x sz(sx)> ® <®x S (sx)> in A® A down to

(®x St (sx)) in A. We can then define H" : 1 — A recursively as
H":=po(H®H" ), with ~ H?:=n, (6.3)

where n : 1 — A is the trivial embedding!” of 1 into @, S%(s;) ~ 1 € A. Leaving

convergence issues aside, we can now define e as formal power series expansion in tensor
products:
1
e =3 —H" (6.4)
n!
n=0

The so defined e is also a morphism from 1 — A (although in general it will not be given
as a sum of pairwise interactions even if H had this form).
Finally we would like to define a path integral

2] [ asee )

H is a linear combination of morphisms from 1 — b,, ®S™(s,),

Viewed from lattice site x, e
with some by,. The integral [ ds, must produce out of such a term a morphism 1 — by,

1"The object A, together with the morphisms p and 7, is an example of an algebra internal to a category.
The morphism pu satisfies a form of associativity, and n acts as the identity on u:

po(p®ida) =po(ida®p),  po(ida®n)=ida.

This is an example of a very general idea known as internalization, whereby algebraic structures can
be extended from sets to more general objects in a category. A general discussion can be found at
https://ncatlab.org/nlab/show/internalization.
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acting in a linear fashion. This can be codified by declaring that the ‘categorical integral’
is a morphism (independent of x if the model is translationally invariant):

/da € Hom (@ S™(a) — 1> , (6.6)

m=0
and integration in s, consists in replacing a with s, and composing with e’. This gener-
alizes eq. (4.9).
Now suppose we integrated over all the lattice apart from k sites, obtaining the in-
complete ‘incomplete partition function’ Zj (see section 4). Generalizing eq. (5.4), these
objects are naturally elements of

Hom (1 — @ ST (Sg,) @ ... @ 8™ (sxk)> : (6.7)

mi..mg

They will by construction satisfy consistency conditions like eq. (4.5), relating Zj, to Zx_1.

With these definitions, the fully integrated partition function is just a number. We will
now define correlation functions (s, ... sz, ). Take any morphism f from 1 — s, ®...®s5y,.
With the above definition we can compute the correlation function (f), a number, defined

(=2 ] [ dsa (). (63)

This operation being linear in f, there exists a morphism C' from s,;, ®...®s;, — 1 so that

(fy=Cof. (6.9)

Thinking of (f) as a ‘contracted correlation function’, we declare this morphism C' as the

as an integral:

correlation function of spin objects themselves:
C =:(Sgy---Sap)- (6.10)

Notice that for a group symmetry we can compute both the correlation function and
contracted correlation function by doing the usual integral. The above equations in com-
ponents would take the form:

Clte= (st () = (frnesth oo sih) = fr.p, Ok (6.11)

1 CCTg Tl

For a categorical symmetry this rewriting of course does not make sense, since we cannot
access the indices. The correlation function (s, ... sz, ) has to be defined via the dual one
given above: it would not make sense to stick the symbol s;, ...s;, under the categorical
integral sign, since only morphisms can be integrated.

6.1 Example: O(n) loop model

The simplest example is the 2d O(n) loop model, with the following textbook definition
(e.g. [7], section 7.4.6). On the honeycomb 2d lattice, put a unit N-component spin §, on
every lattice site x, and consider the partition function

Z:H/dng(1+K§m-§y). (6.12)
z (zy)
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So far N is integer and the integrals over the unit sphere are understood in the usual
sense. The integrand can be written as e with H = > (oy) Hays Hay = log(1+ K5, - 5).
This unusual form of H,, which leads to a simple efl | is chosen so that Z has a very
simple expansion in powers of K (that the lattice has coordination number 3 helps as
well). Namely, we have

7 - Z N#(loops) Ktotal length 7 (613)

loop ensembles

where the sum is over ‘loop ensembles’ — collections of non-self-intersecting loops on the
lattice, weighted by the shown factor depending on the number of loops and the total
length. In this form partition function can be analytically continued to a non-integer
value N — n.

Correlation functions (s’ (x1) ... s (z))) themselves cannot be analytically continued,
but expanding them in the basis of invariant tensors 771!k expansions coefficients can be
analytically continued. In terms of loops, these analytic continuations can be understood
as probabilities of configurations containing, in addition to loops, fluctuating lines pairing
points ...z, as prescribed by the decomposition of the chosen invariant tensors 7711k
in a product of Kronecker ¢’s. These are sometimes called ‘defect correlation functions’, as
in eq. (4.2). All this is standard [2, 3].

The O(n) loop models have been studied for many years, however their symmetry
has never been clarified. Physicists speak of O(n) group symmetry even for non-integer n
when the group does not exist, and understand it as a recipe to extract from a generally
nonsensical equation a part which continues to make sense when analytically continued to
non-integer n. Results obtained by this recipe often can be checked independently, e.g.
by direct Monte Carlo simulations of loop ensembles. This hints that there must be some
truth to the recipe. But it is still mysterious why using nonsensical basic building blocks
(like tensors in vector spaces of non-integer dimensions, or irreducible representations of a
group which does not exist) leads to a sensible final result.

We can now for the first time explain this basic mystery: the O(n) loop model is
an example of a model with a categorical symmetry. We can write its partition function
in a way which makes no reference to the integer N case and the subsequent analytic
continuation, but directly for non-integer n. For this we put on every lattice point an
object of Deligne’s category /REBO(n). We call this object s, and choose all of them
isomorphic: s, ~ [1]. Recall that [1] is a ‘single point’ object of the category ﬁe\pO(n),
which is inherited by the category ﬁe/p O(n). This simple object is the categorical analogue
of the fundamental representation. The partition function is defined as an integral

7= H/dsz [T+ KH,,), (6.14)
* (zy)

where Hy, is the morphism from 1 — s, ® s, given by the string diagram ‘. (In (6.1)
we have m; = mg = 1). The integral over s, is a linear combination of morphisms from
S™([1]) — 1, as in (4.9). Because the hexagonal lattice has coordination number 3, and
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the interaction has a particularly simple form, the only terms in the integral which enter
are m = 0 and m = 2. Let us choose Jy = Jy =1, i.e.

/d[l] A (6.15)

When we evaluate the partition function using the rules of morphism compositions, we get
an expression identical to (6.13) analytically continued N — n.

We can also consider correlation functions, e.g. (s;5y5.5¢). Let f be a general morphism
from 1 — s, ® sy ® s, ® 54, which is a linear combination

f=fiv ot faosoer + fasae—, (6.16)

With the above definitions we can compute the “average” (f) as
(fy=2z71 H/dsxf [[a+KH,,). (6.17)
f” (zy)

Correlation function C' = (sgsys.s;) is defined as a morphism from s, ® s, ® s, ® 5y — 1
so that (f) = f o C. Let us expand C as

C=01~""+0Cy ——<~+C3 ——~~. (6.18)

A moment’s thought shows that C; can be identified as probabilities of configurations
containing lines joining points x;. So the new definition is identical to the old definition of
the defect correlation function.

As a final remark, we note that the O(n) loop model can be studied in any number of
dimensions, not just in d = 2. Categorical symmetry is valid in any d. In d = 3, the O(n)
loop model should have a critical point for any real n, and not just for —2 < n < 2 as in
2d. The 3d case remains rather poorly studied compared to 2d, and it would be interesting
to perform Monte Carlo simulations of d = 3 models with non-integer n to detect these
critical points.'®

6.2 Wilsonian renormalization

The presence of symmetries in theories is particularly powerful when combined with the
renormalization group (RG). Since group symmetries are preserved under RG, we can
consider effective descriptions at long distances which realize the same symmetry as the
microscopic Hamiltonian. This effective description may be a CF'T if the theory is critical,
or a theory of Goldstone bosons if one is in the phase of spontaneously broken continuous
global symmetry.

We will now explain that categorical symmetries are, like group symmetries, preserved
under RG flows. One application of this result is that the parameter n characterizing
the categorical symmetry does not renormalize: nig = nyy. For group symmetries, one
could argue by saying that N cannot perform a discrete jump under a continuous RG

18Gee [8] for interesting work about different 3d loop models.
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transformation, when integrating out an infinitesimal momentum shell. Although this
argument breaks down for categorical symmetries, we will show that nevertheless n remains
invariant under RG flows. This excludes a scenario where n gets renormalized with integer
values of n being fixed points.

Consider first RG-invariance of a group symmetry, for a system of spins s sitting at sites
of a lattice, with a Hamiltonian H(s). A Wilson-Kadanoff RG transformation consists in
splitting the lattice into cells and associating with each cell a spin s’, subject to a condition

Y P(ss)=1, (6.19)
{s'}

where P(s,s) is a weight factor, depending on site and cell spin configurations {s} and
{s'}. Different choices of the weight factor P(s, s) produce different RG transformations.
For some RG transformation the cell configuration {s'} may be uniquely determined by the
site configuration {s} (as for the majority rule on the triangular lattice, or the decimation
rule), in which case P(s',s) is 1 for this configuration and zero otherwise. In more general
situations cell configurations {s'} are chosen with some probability depending on {s}, and
P(s',s) gives this probability distribution. We then define the renormalized Hamiltonian
H(s'") for the cell spin system by [10]

exp H'(s') = Z P(s',s)exp H(s). (6.20)
{s}

By (6.19), the partition function remains invariant: .y exp H'(s") = 32,y exp H(s).

Suppose now we have a group symmetry: a global symmetry group G acting on spins
s such that the Hamiltonian H(s) is invariant. We then impose an additional requirement
that the weight factor P(s’, s) be invariant when G acts simultaneously on s and s’. Under
this requirement, the renormalized Hamiltonian H(s") will be invariant. This is what we
mean by RG-invariance of a group symmetry.%’

Let us now adapt the above argument to categorical symmetries. The spin configu-
rations {s} and {s'} now consist of objects of Deligne category. The sum (s} has to
be replaced by the categorical integral [], [ ds,, and similarly for s’. The weight factor
P(s', s) has to be a morphism from 1 to tensor products of s and s’: this condition replaces
the G-invariance of P(s,s) in the group symmetry case. The RG transformed Hamilto-
nian H'(s') is, then, a morphism of the same Deligne category as the original one H(s).
Categorical symmetry is thus preserved under RG in exactly the same fashion as regular
group syminetry.

19While so far we are focussing on the O(n) symmetry, the non-renormalization conclusion equally holds
for other categorical symmetries defined below (section 9), e.g. to the symmetry S, relevant for the Potts
model. We are aware of one seemingly conflicting statement in the literature: eq. (10) of ref. [9] states that
the parameter g of the random-bond Potts model gets renormalized. It would be interesting to understand
how this apparent contradiction gets resolved.

2°0ne sometimes asks: what if we choose the weight factor P(s’,s) which is not G-invariant? Well,
then H'(s") will not be G-invariant either. Thus, a silly choice of RG transformation may hide manifest
G-invariance of the lattice model. This is not surprising since any symmetry may be obscured by a bad
choice of variables.
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7 QFTs with categorical symmetry

7.1 Basic axioms

In the previous section we have focused intentionally on lattice models, to make the point
that the categorical symmetry is a non-perturbatively meaningful concept. We will now
discuss categorical symmetry in the context of continuum limit quantum field theories
(QFTs). One way to obtain such QFTs would be to consider the aforementioned lattice
models at or close to their critical points.

Let C be a braided tensor category (see appendix A). We will say that a (Euclidean)
QFT has symmetry C if:

1. Local operators ¢(x) are classified by objects a € C. We will abuse group symmetry
terminology and say that ‘¢(x) transform as a’. We denote this by object isomorphism
¢(x) =~ a, or more verbosely as ¢(a, ). Some operators, such as the identity operator
and the stress-tensor, may transform trivially, in which case they are associated with
the object 1.

2. Correlation functions are morphisms in C. More specifically, we have

(p1(az, x1)d2(ag, 22) ... ¢p(an, r,)) € Hom(a; ® az ® ... @ a, — 1). (7.1)

3. Different orderings of operators in a correlator are related to each other through
braiding. For instance,

(p2(az, x2)01(ar, x1)p3(as, x3) ...) = (p1(ar, x1)P2(az, x2)d3(az, x3) ... ) © faya,
where fa, a, is the braiding which maps a; ® a; — a; ® a».

Some comments are in order for the third axiom. If we swap the order of operators
twice, we return to the original correlator:

(¢1(a1, m1)d2(az, x2)¢3(as, x3) .. .) = (d1(a1, x1)P2(az, x2)P3(as, x3) . . . ) © Pa;a; © Pag,ar-

(7.2)
For this reason it is natural to restrict our attention to symmetric tensor categories, for
which braiding twice always gives the identity:

531,32 © 5212781 = ida1 & idag- (73)

Other branches of physics allow categories with more general braidings, such as when
describing anyonic statistics and also in 2d CFTs. We will however restrict our discussion
here to the symmetric case.

Although our axioms so far allow operators to transform as any object a € C, given
any object ¢(a,z) and morphism ¢ : b — a embedding a simple object b in a, we can
consider the operator

¢(b,x) = ¢(a,x) o, (7.4)
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whose correlation functions are defined as

(d(b,x)¢1(a1,71) ... dn(an, za)) = ($(a,2)d1(a1,71) ... Pn(@n, 2n)) 0 (t ® iday e @an)-
(7.5)
So without loss of generality we can restrict to operators transforming as simple objects, just
as for group symmetries operators transform in irreducible representations of the symmetry
group.
Many notions in quantum field theory naturally extend to this more general setting.
A simple example is the operator product expansion. Given operators ¢1(ai,z1) and
¢2(az, z2) we expand

$1(a1,2)p2(a2,0) — Y > Ok(b,0)0 C, (x) (7.6)

bca;®as k

where Cfl’jbz (x) € Hom(a; ® ag — b). This is interpreted to mean that

<¢1(a1,z1)¢2(a2,x2) ---d’n(anaxn» m} Z Z<Ok(bax2)~--¢n(an7xn)>ocg%2(x1*$2) .
bca;®as k

(7.7)

Although so far we have described correlation functions, we can also think of states as

being associated with objects of C. Given a bra (A, a| and a ket |B,b) the inner product
is a morphism

(A,a|B,b) € Hom(a® b — 1). (7.8)

Correlation functions for a theory with categorical symmetry are morphisms in a cat-
egory. To extract actually numbers from the model, quantities that could be measured or
computed in a Monte Carlo simulation, we can contract correlators with morphisms, just
as we did in (5.3) for the O(n) case. For instance, given

(p1(a1, z1)p2(az, x2) ... op(an, x,)) € Hom(a; ® az ® ... ® an — 1), (7.9)

we can compute for any f:1 — a; ® as ® ... ® a, the quantity

(p1(ar, z1)p2(az, z2) ... ¢p(an,zy)) o f € C. (7.10)

As a consequence of proposition A.5, if we compute this quantity for every such f, this
suffices to reconstruct (¢1(ag, z1)p2(az, x2) ... don(an, x,)).

7.2 Example: the continuum free scalar O(n) model

The theory of N free scalars ¢', ..., ¢~ is O(N) symmetric, with the field ¢! transforming
in the fundamental representation of O(NN). We can generalize this to a free theory with a
categorical symmetry Rep O(n) for any value of n. To do so we begin with a scalar operator
¢(z) ~ n.?! We take the two-point function to be

o d—2

= —x A=—— 7.11
‘xl —I'QPA ) 9 ) ( )

(p(z1)p(22))

21This is the object we so far denoted by [1], the analogue of the fundamental representation.
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where d is the spacetime dimension. Here §™" is the analogue of the delta-tensor, the

22

morphism from n ® n — 1 represented by the string diagram ~.** We then compute

higher-point functions through Wick contractions. For example, the four-point function is

5n,n®5n,n (5n,n®5n,n)oa(14) (6n,n®6n,n)oa(13)
(p(x1)p(22)(23)P(24)) = |w1 — 20|22 |w3—24 |22 |21 —23]22 | 10—4 |22 |21 —24|2B|T0 23|22
(7.12)

where o(;;) is the morphism n®* — n®?* which interchanges the i and j*™ copy of n. Below
we will see how to obtain these correlation functions from the properly defined categorical
path integral.

We can construct fields isomorphic to other objects in Rep O(n) as composites of ¢(z).
For instance, the singlet ¢?(z) ~ 1 is defined as the composite operator

.1 1
¢*(x) = lim (62 +y)d(x)) © dnn — S (7.13)
and the symmetric tensor T'(z) as
7(0) = ( 1y ole+)o(e) ) 0 P57, (7.14)

where PE}n : S — n®n is the morphisms embedding the symmetric traceless representation
S into n®2.

7.3 Path integrals and perturbation theory

In section 6 we have seen that lattice models with categorical symmetries can be described
by a formal integration procedure. Given some interaction between objects living on the
lattice, we could then integrate over the lattice variables to compute physical observables.
By taking an increasingly fine lattice, we can define a continuum path-integral.

Recall that for lattice models there was considerable freedom in defining the categorical
integral, parametrized by arbitrary coefficients 7, in (4.9). Physically, this freedom comes
from the fact that the radial distribution of lattice variables may be arbitrary. As an
example in the usual O(NN) model we can impose the condition that spins are confined to
the unit sphere s, - s, = 1, or any other condition.

When defining the continuum limit Gaussian path integral, this ambiguity will be fixed
by imposing the constraints that the basic integral [ d¢ should be translationally invariant:

/ a6 f(¢) = / 46 (6 + ), (7.15)

and also scale invariant

/ a6 f(Ap) = A~ / a6 £(9). (7.16)

Constructing such an integral is the same problem as the one considered in dimensional
regularization. As established there [11, 12], requirements (7.15), (7.16) and linearity fix
the integral uniquely up to normalization.

22More abstractly, for any object a one can define a dual object @ and two morphisms sz, 6> with
some natural properties, making Rep O(n) a rigid category, appendix A.2. The object n is self-dual.
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Along with this similarity, we would like to stress a difference of principle: in dimen-
sional regularization studies, one sometimes [11, 12] thinks of a vector with non-integer
number of components as one with infinitely many components. This is not the point of
view we are developing here. For us a vector with a non-integer number of components
is an object in Deligne category. So, f(¢) in (7.15) should not be thought as a function
but as a morphism in Hom (1 — @,, S™(¢)). When we substitute ¢ — ¢ + ¢ we produce
by algebraic rules another morphism in Hom (1 = D 5" () @ Sm(go)>. The integral
in (7.15) is a linear operation which maps morphisms to morphisms.

We will use the usual normalization

[aoexo |56 0)| = @nr, (.17)

which when n is integer reduces to the standard integral formula. Here ¢ - ¢ is a notation
for the morphism from 1 — ¢ ® ¢ corresponding to the string diagram .
Then by the usual manipulations one derives the more general Gaussian integral

)k n/2
/d¢1 .. d¢k exp I:—; ZA”((ZSZ(ZSJ)"‘FZ Jz(bz = (d(jt(lD) exp (; Z(A_l)szzJj> )

2,7
(7.18)

where ¢;, J; are objects isomorphic to n, and A is a numerical matrix.??

Taking the continuum limit, we are led to define the free O(n) model by a Gaussian
path integral:

20 = [Doesp |- [ s (50%0(a) 0,000) + I(a) - 0(2)

= Z|[0] exp <; /ddx ddy |x_C;|d2 J(x) - J(y)> , Cy= F(Ci/ﬂi/;l) . (7.19)

Formally taking derivatives with respect to the source J(z) allows us to compute ¢ corre-
lators, and these match the ones given in the previous section (up to rescaling of ¢).

Having defined a free O(n) path-integral, we can now introduce interaction terms, for
instance a (¢ - ¢)? interaction

ZyJ) = / D¢ exp [— / Az (0"¢(z) - Dud(z) + N$- ¢)° + J(x) - d(2))| . (7.20)

We can compute correlation functions order by order in A using the usual Feynman diagram
expansion. Any Feynman diagram is a product of a spacetime dependent, n independent
quantity, and of an internal index dependence. The spacetime dependence is evaluated as
usual, while the internal index dependence can be encoded by an ﬁ;) O(n) string diagram,
by making the replacement of each quartic vertex as

X (%)

ZThe reader may notice that eq. (7.18) reduces to the Grassmann integration formula for n = —1. We

Wl =

will return to this relationship in section 9.2.
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One can then discuss renormalization, IR fixed points (such as Wilson-Fisher), etc., uni-
formly for non-integer and integer n.

Simplifying string diagrams, polynomial n-dependent factors will arise, which will be
of course the same as in the usual intuitive approach to perturbation theory at non-integer
n. The added value of the categorical construction comes mostly from the enhanced un-
derstanding of what exactly is being computed via formal manipulations at non-integer n.
It also provides the appropriate language for describing non-perturbative completions of
the perturbative calculations.

7.4 Conserved currents

In a quantum field theory with a continuous global symmetry G, we typically expect there
to exist a conserved current J' transforming in the adjoint representation g € Rep G. When
the theory can be described by a local Lagrangian this statement is known as Noether’s
theorem. In this section we shall generalize Noether’s theorem to theories with categorical
symmetries.

To begin we must consider what distinguishes representation categories of Lie groups
from those of more general groups. An important feature of Lie representation theory is the
existence of an adjoint representation g € Rep G. For any other representation a € Rep G
we have a (potentially trivial) action of g on a, Concretely, we could describe this action
using the group generators (7;)%, where i is an adjoint index and a and b are a indices.
More abstractly, we can describe the group generators as a morphism 7, : g ® a — a.

The morphisms 7, have a number of special properties. The first is naturality, which
states that for every morphism f :a — b in Rep G, the following diagram commutes:

id
g®aﬂ>g®b

fa yb (7.22)

a—7 b

In plain language this can be stated as the fact that morphisms f : a — b commute with
the action of Lie algebra generators, i.e. they are invariant tensors.

The second special property is that the generators in a ® b are essentially the sum of
the generators in a and b. In the abstract language this condition becomes

(The second factor in the second term just reorders the tensor product from g ® b ® ¢ to
b ® g ® ¢ so that g stands next to ¢ and can act on it.) The final special property is that
Ty IS antisymmetric:

Tg © Bgg = —Tg - (7.24)

Although these conditions may look abstract, they have a simple diagrammatic descrip-
tion. We will denote the adjoint g by a dashed line, and the morphism 7, as a trivalent
vertex:

(7.25)
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The conditions (7.22) and (7.23) translate to:

R B
L= and A=l + 11 (7.26)
g"la 3 ta g ab g ab g ab
In particular, if we apply these to 74 : g ® g — g we find that
O S (7.27)

which is the Jacobi identity. Combining this with (7.24) we see that 7, satisfies the usual

axioms of a Lie bracket.?4

By analogy to the group theoretic case, we shall define an adjoint®® in a symmetric
tensor category C to be an object g € C along with a morphisms 7, : g ® a — a for
each a € C such that the conditions (7.22), (7.23) and (7.24) are satisfied, along with the

technical condition:
if a morphism f : g — g satisfies 7, o (f ® ida) = 0 for every a € C, then f=0. (7.28)

This condition rules out such trivial cases as allowing 7, = 0 for every a, or starting with an
adjoint (g, 7) and constructing for any object a a new adjoint (g ® a,7 @ 0). A categorical
symmetry with an adjoint is called continuous,® otherwise it is discrete.

We should note that there may be many adjoint objects in a continuous tensor category.
In appendix B however we show under some broad finiteness conditions that there are only
a finite number of adjoint objects in a tensor category. In this case we prove there is a
unique (up to unique isomorphism) mazimal adjoint (m,T). This has the property that
for any other adjoint (g, 7) there exists a unique morphism

tg:g—m with 75 =Ts0 (g ®ida). (7.29)

As an example, consider a semisimple Lie group G ~ G X --- X G,, where each G; is a
simple group. There is then an adjoint object g; € Rep G for each subgroup Gj;, while the
maximal adjoint object is their direct sum: g~ g; d--- D gn.

In the category Rep O(NN) the antisymmetric tensor A in N ® N is an adjoint object.
This extends to @O(n). We can diagrammatically represent 7, as

n n
e { = LAh , (7.30)
Al lm Ailn

24n category theory parlance g is a Lie algebra internal to the category C. This is another example of

internalization, as discussed in footnote 17. A discussion specific to the Lie algebraic case can be found on
page 292 of [13].

Z5This concept has no relation to the notion of an adjoint functor.

260ur terminology is natural from a physicists perspective. It is not related to a previously existing
notion of a continuous category as the categorification of the notion of a continuous poset.
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where ¢4 is the morphism embedding A into n ® n. For any simple object a € n®* we can
compute T, using:

TTa

Ta= Y : : (7.31)

where ¢4, T, are the embedding and projection morphism into/from n®* (this follows from
properties (7.22) and (7.23)). This objects is actually the only adjoint object, and hence
the maximal adjoint object, in /REBO(n), as we show in appendix B.

An example of a discrete categorical symmetry is /RET)Sn, relevant for the analytic
continuation of the Potts model (see section 9).

We will find it useful to define the family of morphisms 7, : a — g ® a by:

q: a

Ta='t 4n = (idg @ 7a) 0 (O, @ ida) (7.32)
A
It is then not hard to check that g and 7, satisfy (7.22), (7.23) and (7.24), but with all
of the arrows and function compositions reversed. For this reason we can term g to be a
coadjoint object. For simple Lie algebras g and g are isomorphic, but this is not true in
general.

We can now extend the Noether argument to theories with a continuous categorical
symmetry C. Consider a quantum field theory described by a Lagrangian L[¢;], where
the fields ¢;(z) ~ a; for simple objects a; € C. Recall that in the categorical setting the
Lagrangian is not a functional of the fields, but a morphism from 1 to some tensor product
of ¢;’s. That this morphism originates in 1 is the categorical version of the usual condition
that Lagrangian must be a global symmetry singlet. Now consider varying each ¢;(x) by

¢i(x) = ¢i(x) + ((z)Pi(x)) © Ta, (7.33)

for some arbitrary infinitesimal field o(z) ~ g, where (g, 7) is an adjoint in C. Using (7.22)
and (7.23) we find that for constant « the variation of the Lagrangian vanishes:

L{pi(z) + (a di(x)) o Ta,] = Lldi(x)] - (7.34)
Because of this only terms proportional to d,« can exist when we compute a more general
variation:2”
_ oL
L(pi] = L[] + |(Oua(x) ¢i(x)) 0 Ta,) @ 52— | ©0aa; - (7.35)
a(8u¢i)

Using standard path-integral manipulations, we conclude that

oL
3((‘%@)

2TFor simplicity we assume that the Lagrangian involves only up to first order derivatives of oi(x).

JH(x) = ¢i(z) 0 (Ta; ®idg,;) o (idg ® 0a, a,) (7.36)
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is a conserved current transforming in the adjoint g. The operator d,,J#(x) acts on a local
operator ¢(x) ~ a as

OpJ" () P(y) = —id(z = y)(y) © Ta - (7.37)
For N > 1 the free O(N) model has a conserved current
Tij(x) = ¢i(2)0"dj(x) — ¢(x)0" (). (7.38)

Extending this operator to ﬁ?a?) O(n) is straightforward:
7w) = (1 o+ 9)0"6(a) ~ 6(@)0" 6z + 1)) o PR (7.39)
y

where Py : A — n ® n is the morphisms embedding the antisymmetric representation
into n®2. Noether’s theorem allows us to conclude that this current remains conserved in
interacting O(n) models.

We have proved categorical Noether’s theorem for Lagrangian theories, but it should
remain true also for continuum limits of lattice models. For example continuous phase
transitions of the loop O(n) models should possess a conserved current operator of canonical
scaling dimension d — 1, transforming in the adjoint. This can be tested for the 2d O(n)
models with n € [—2,2], whose spectrum and multiplicity of states are exactly known from
the Coulomb gas techniques [14]. From there one can indeed see the presence of a spin 1,
dimension 1 state of multiplicity n(n—1)/2 equal to the dimension of the adjoint, which can
be identified with the conserved current. We will discuss this model further in section 8.

7.5 Explicit symmetry breaking

In the previous section we described how to construct perturbative O(n) models, by de-
forming the path-integral by O(n) singlets. We often however wish to study models with
less symmetry. For integer N we can construct such models by perturbing with an oper-
ator which is not an O(N) singlet. We wish to generalize this construction to categorical
symmetries.

Consider a group G with a subgroup H embedded into G via the group homomorphism
f+ H — G. We can use this to define a functor 7; : RepG — Rep H between the
representation categories. Under this functor a representation p : G — GL(C*) of G is
mapped to the restricted representation of H, given by Fy(p) =po f: H — GL(CF).

Given a QFT with symmetry group G, we can use the functor F; to rewrite irreducible
G-invariant operators as the sum of irreducible H-invariant operators. Some operators,
while transforming non-trivially under G, will contain H singlets. Perturbing by these
singlets will then break the group G down to the subgroup H.

Let us now generalize this to QFTs with categorical symmetries. Given a theory
with a symmetry C, the analogue of a “subgroup” is a category D along with a functor
F : C — D. We can use the functor to rewrite our QFT as a theory with categorical
symmetry D. Operators ¢;(z) in the QFT are translated to F(¢;)(z), with correlation
functions given by:

(Flo1)(@1) .. F(dn)(wn)) = F ({(91(21) - - dn(2n))) - (7.40)
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In general D will have a larger space of morphisms F(¢1) ® ... ® F(¢,) — 1 than C,
but since we began with a C-symmetric theory these additional morphisms cannot appear
in (7.40).

A simple object a € C does not necessarily remain simple in D, but will instead split
into a direct sum of simple objects:

Fla)~b & ...®b,. (7.41)

We can then represent any operator ¢ =~ a as the sum of operators which are simple under
D (see eq. (7.4))
vi(x) = F(@)(z) o ts, (7.42)

where ¢; : b; — F(a) are morphisms embedding b; in F(a). Suppose one of these objects,
say by, is isomorphic to the 1 € D, i.e. 11(z) is a D-singlet. Consider then the following
deformation of our theory:

S — S+ / ddzpy (z) . (7.43)

This perturbation breaks C symmetry, while preserving D. Morphisms which were previ-
ously forbidden by C can now appear in correlators.

As an example, let us break O(n) model down to the O(n—1) model. Within O(XNV), the
subgroup of matrices which preserves a vector E! is O(N — 1). Without loss of generality
we can take E1 = (1,0,...0), and can think of it as new invariant tensor mapping N — 1,
which takes a vector V! and returns the first component V - E = V. Diagrammatically
we can write this as:

E'=1, EB=1=]. (7.44)

Although E! cannot be extended to non-integer N, these diagrams can be. We therefore
define for any n a new category @ Og(n) where the morphisms are the string diagrams
which can built from ﬁe\pO(n) string diagrams supplemented by the new diagram (7.44).
The inclusion functor 7 : @O(n) — ﬁe\pOE(n) takes any object [k] € @O(n) to the
object [k] € @OE(TL), and any string diagram [k1] — [ke] in @O(n) to the identical
string diagram in §e\p Og(n).

Following our procedure for constructing /R—éT) O(n) case, we can take the Karoubi enve-
lope and additive completion of Rep O £(n) to define a new semisimple category RepO g(n).
The functor 7 lifts to a functor Z : Rep O(n) — Rep Og(n). Unlike in Rep O(n), the object
ne /R\eB Og(n) is not simple, because there are two linearly independent morphism n — n.
These can be used to define two indecomposable, mutually orthogonal projectors:

Pl = %, tI‘(Pl) = 1, Pn,1 = ldn - Pl 5 tI‘(Pnfl) =n — 1, (745)

and so we can decompose n~ 1@ (n—1).
It is now not hard to check that Rep Og(n) and RepO(n — 1) are equivalent tensor
categories, with an invertible functor J : Rep Og(n) — Rep O(n — 1) which takes then — 1
in RepOp(n) to the n—1 in RepO(n — 1). We have thus constructed a functor J o Z
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mapping @O(n) to ﬁ\e?)O(n — 1), and can use this to rewrite the O(n) model in terms
of O(n — 1) invariants.

As another example, consider the subgroup O(N — k) x O(k) C O(N). In order to
generalize this to non-integer N and k, we must define the categorical analogue of the direct
product of two groups. Given any two categories C and D, we define the product category
C x D to be the category where the objects are pairs (a,b) of objects a € C and b € D,
and where the morphisms (f,g) : (a,b) — (c,d) are pairs of morphisms f : a — ¢ and
g :b — din C and D respectively. Given two groups GG1 and Go, any simple representations
of G1 X (G5 is the tensor product of a simple representation of G; and G2, and hence we find
that the categories Rep (G1 x G2) and (Rep G1) x (Rep G2) are equivalent. We therefore
define Rep (O(n — k) x O(k)) to be the product category ﬁ\eBO(n — k) x ﬁe?)O(k‘).

Let us now define the functor 7 : Rep O(n) — Rep O(n—k) x Rep O(k) which takes the
object [k] € @O(n) to the object ([k], [k]) € @O(n — k) x @O(k), and takes string
diagram f : [k1] — [ke] to the pair of string diagrams (f, f) : ([k1], [k1]) — ([k2], [k2]). By
taking the Karoubi envelope and additive completion of each category, it is not hard to
verify that F lifts to a functor F : RAeT)O(n) — RAeTJO(n —k) x /R;T)O(k).

7.6 Spontaneous symmetry breaking

Symmetries in physics are often spontaneously broken. The textbook example of such a
theory is the O(N) vector model

1 . 1 ) 1 )
L= 5(00) = Sp*(8'i)" + J A (6'60)" (7.46)
For ;1 > 0 the vector field ¢*(z) develops a vacuum expectation value:

(¢'(x)) =o' (7.47)

for some vector v’. In this phase only an O(N — 1) subgroup is linearly realized, and
the spectrum contains N — 1 massless Goldstone bosons transforming in the fundamental
of O(N —1).

At first glance it seems impossible to describe spontaneous symmetry breaking using
the categorical language. After all, correlation functions are always morphisms in the
category ﬁg;/)O(n), but in this seems to contradict what happens in the integer N case,
where only O(N — 1) symmetry is manifest. The key to this puzzle is to recall that the
vacuum itself transforms non-trivially when a symmetry is spontaneously broken, and so
we must compute expectation values with respect to a specific vacuum.

To understand this in more detail, let us consider the O(n) loop model on a finite
lattice but with boundary conditions which are not /R;T)O(n) invariant. We can achieve
this by first using the functor I : /R\e/pO(n) — /R\eg/)O(n — 1), so that the boundary points
now transform in the 1 & (n—1) of /REBO(n — 1). Rather than integrating over each
boundary site using the @O(n) invariant, we instead fix the boundary points to be in
the 1. To describe this graphically we can use @Og(n) from the previous section.

Let us now compute the expectation value of some spin s ~ n in the bulk. Under

@O(n — 1) this splits into two representations, the 5}; ~ n —1 and the 5 ~ 1. The
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expectation value of the former always vanishes due to ﬁ\eBO(n — 1) invariance, but (3};)
will be in general non-zero.

Now we can take the continuum limit while keep [; far away from the boundary. Then
there are two possibilities, depending on whether we are in the broken or unbroken phase.
If we are in the unbroken phase then (3j;)) will go to zero in the continuum limit, and
we find that full @O(n) invariance is restored. In the broken phase however, (5;)) will
limit to some constant but non-zero value. More generally, correlation functions will be
Rep O(n — 1) invariant (and also invariant under the Euclidean group), but not Rep O(n)
invariant. The sole purpose of the non-invariant boundary condition is to pick out the
correct vacuum for the theory.

We can also calculate correlators directly in the continuum using the path integral
over (7.46). To do so we again rewrite the @O(n) variables in terms of @O(n - 1)
variables using the functor I, under which ¢(z) splits into a singlet ¢(z) ~ 1 and a vector
Rep O(n — 1) vector m(z) ~ n — 1. The potential will be minimized when ¢(z) takes some
constant value ¢g. Introducing the field o(z) = p(x) — ¢o and perturbing around o(z) = 0,
we can compute correlators in the broken phase. Here the choice of vacuum to perturb
around determines the boundary conditions at infinity.

It is natural to define the dimension of a continuous categorical symmetry dim(C) as the
dimension of its maximal adjoint object dim(g¢). The dimension of a discrete categorical
symmetry is defined to be zero. We wish to conjecture the categorical Goldstone theorem,
which should go along these lines: if a theory with a continuous categorical symmetry C is
spontaneously broken to a category D, then long distance physics is described by a “theory
of a non-integer number of free massless Goldstone bosons”. In the categorical setting, the
massless Goldstone fields should transform in a D object of dimension dim(C) — dim(D).

A beautiful example of this phenomenon can be found in ref. [15], which discussed
the low-temperature dense phase of O(n) model and argued that the presence of self-
intersections drives the conformal fixed point to a Goldstone phase of spontaneously broken
O(n) symmetry. (Ref. [15] did not use the categorical language and treated non-integer n
symmetry at an intuitive level.)

7.7 Conformally invariant theories

In this section we shall consider conformal field theories (CFTs) with categorical symme-
tries. Since these categorical symmetries are generalizations of global symmetries, we will
see that the usual OPE expansions and crossing equations still hold in this more general
context.

We will restrict ourselves to CF'Ts satisfying the following technical assumptions:
All scaling dimensions are real.
For any A there are a finite number of states with scaling dimension up to A.

The vacuum, with A = 0, is the state of lowest conformal dimension and is unique.

The dilatation operator can be diagonalized.

AN RS

The OPE expansion converges.
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Two-dimensional CFTs satisfying assumptions 1,2,3 are usually called ‘compact’. Here we
consider general d.

Assumption 5 is usually argued from unitarity/reflection positivity [16], but may be
reasonably expected to hold more generally (e.g. it holds for the 2d non-unitary minimal
models). In the next section we will see that theories with categorical symmetries are in
general non-unitary.

Assumptions 2,3 are likely satisfied for all models of interest to statistical physics in
d > 2 and for most models in 2d.?® For example, in 2d, the O(n) loop models and the
Sy, symmetric n-state ferromagnetic Potts models are known to have discrete (and real)
spectrum for any n, integer or not [14]. We expect the spectrum to remain discrete also
in 3d.

Assumption 1 is a consequence of unitarity although it is satisfied for many non-
unitary models as well. In general, non-unitary models may have complex spectrum (which
will consist of complex-conjugate pairs if the model has an underlying real structure).
Assumption 1 would then have to be relaxed, which is a rather trivial modification.

Assumption 4 is arguably the trickiest one. It is violated in logarithmic CFTs whose
dilatation operator has Jordan blocks — a possibility for non-unitary theories. Logarithmic
CFTs are more complicated than the usual ones and we will not consider them here (see
e.g. [19]). The 2d n-state Potts models are logarithmic when n belongs to a discrete
sequences of Beraha numbers [20], and these arguments may also extend to the O(n) loop
models [21].2 In 3d, the O(n) loop models and the n-state Potts models are logarithmic in
the limit when n approaches an integer [4], and seemingly only in this case. For non-integer
n, they could therefore be examples of models to which all our assumptions apply (except,
perhaps, assumption 1 which as we said would be easy to relax).

In the subsequent discussion we will stick to the above minimal set of assumptions.

Conformal primaries will transform as simple objects in C. Consider the space Va a of
local operators ¢(x) ~ a which have conformal dimension A. Using both conformal and
C symmetries, operators in Va o have non-zero two-point functions only with operators in

Vaa. Given any basis ¢1(z),...,dn(z) of Vaa we can choose a basis of ¢(z),...,d,(z)
of Vaa so that3?
— 5a’5(5ij
(pi(x)0;(y)) = EETES (7.48)

28In 2d, there do exist some statistical models with a continuous spectrum, see e.g. [17] for an antifer-
romagnetic Potts model or [18] for a model of polymers, both of which are described by non-compact 2d
CFTs. We thank Jesper Jacobsen for a discussion.

29We thank Victor Gorbenko and Bernardo Zan for a discussion and for communicating to us further
arguments suggesting that the 2d Potts and O(n) model are in fact logarithmic for generic n.

30To show that such a nice basis exists, we can start from the more general equation (¢;(a, z)w; (@, y)) =

% for some finite matrix of coefficients M;;. If M;; is degenerate then this means that there are fields

|z—

for which all two-point correlators are zero, but due to our assumptions of OPE convergence this implies all
of their correlators vanish. So without loss of generality we can take M;; to be non-degenerate, and then
by applying M ™! to our basis 11 (), . . ., % (z) would recover our nice basis. Furthermore, if a ~ @ one can

use Takagi’s decomposition to find a basis such that ¢; = ¢,, but we will not need this.
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In what follows we shall assume that such a basis has been chosen for each space of operators
Va,a and Vaa.
Three-point functions are also fixed up to a finite number of coefficients, e.g. for scalars:

_ Fp1os
(¢1(ar, 1) p2(az, v2)¢3(as, v3)) = ’xm’Aﬁ'A?_Ai"‘xlg‘A1+Ai3_A2|$23|A2+A3_A1 (7.49)

for some morphism Fy, 4,4, € Hom(a; ® a; ® az — 1), where we define z;; = z; — ;. We
can also write a conformally invariant OPE

¢1(a1, z1)¢2(az, r2) D ¢1¢20123($12, B2) (a3, 22) , (7.50)

Fqﬁ@ (F¢>1¢2¢3 ® 1da3) (idal®a2 ® 5a3,53) ) (7'51)

where Clo3(x12,02) is the usual differential operator appearing in OPEs of scalars in CFTs.

When computing higher-point correlators we can use the OPE expansion multiple
times, which will require us to compose morphisms of the form ngzﬁ] together many times.
We will find it convenient to use string diagrams to keep track of these compositions. To
this end, let us introduce the diagrams:

_ \ ?3
5= N Bbe = / . P, = 7& . (7.52)
b c

b b
d1 P

We can now consider taking the OPE expansion in the simplest possible four-point function:

(p(x1)d(z2)(23)P(74)),

all four operators being identical scalars ¢(x) ~ a. Using the OPE expansion as 1 — 2
we find that

(B()0(@2)0(w3) (1)) = o O O g0, (w0) [ o (F © FOF)

T12734 "5 0, ~b

_ FOr
= xmxm Z Z 9oy (u, ) 7(<>\¢¢ :
12734 b Opxb

where Y, is over such b that both b and b are contained in a x a, and go, (u,v) are the

(7.53)

conformal blocks depending on the usual cross-ratios.
But we can instead exchange x1 <> x3 and then take the OPE as 9 — x3 to find that:

(p(z1)9(w2)d(73)P(24)) = <¢($3)¢($2)¢($1)¢($4)> 0013
= oA 2Azzgokvu [5bb (Fok )0013

23711 "5 Oreb (7.54)

— Fok F6k
= mmxm Z Z goy. (v, u) W}Q\W :
23714 b Oyeb (N
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Here 013 = (faa ® ida ® ida) 0 (ida ® ida ® faa) © (faa ® ida ® ida) is the morphism
interchanging the first and the third factors in a®%.
Equating these two expressions gives us the crossing equation:

A0 Y gou(uv) [P o (Fk @ FY)| (7.55)
b Op~b

—UAZ Z go, (v,u) [(5 b (FO’“ Fg)oalg . (7.56)
b Ox~b

This form of the crossing equation may look rather abstract as an equality between two
abstract morphisms in a tensor category. By picking a basis of morphisms fi,..., f,, for
the space Hom(a®* — 1) we can rewrite (7.55) as a series of m equations. Alternatively,
we can choose a basis of morphisms A1, ..., hy, for the space Hom(1 — a®4) and impose

the conditions

v D 90, (u0) [5'[”5 o (Fk @ Fyk)o hl:| (7.57)
b Ok%b
=ut Z Z 9oy (v, u) [5b’b ° (FfJ ® F;?;f) 00130 hz] . (7.58)
b Ok%b

for each h; € Hom(1 — a®). These two methods are equivalent, as Hom(1 — a®*) is
isomorphic to the space of linear functionals on Hom(a®* — 1), see proposition A.5.

As an illustration of the introduced language, we will now prove the following result.
We state it in the general setting of categorical symmetries, but it might be a new result

even for ordinary, group symmetries.

Theorem 7.1 (“Completeness of the global symmetry spectrum”). If a CFT
contains operators ¢1 ~ ai and ¢o ~ ao, then there must be operators transforming in
every B €a; ®as.

Proof. We will restrict ourselves to the case where both ¢; and ¢ are scalars, as the
generalization to spinning operators is straightforward. Consider the four-point function

(d1(21) 1 (w2)p2(w3) Po(4)) - (7.59)

Performing the OPE in the limit x1 — x5, the leading singular term is proportional to the
morphism 62131 ®© §22:32  If we instead perform the OPE expansion between the first and
third points, we find an infinite sum of terms of the form

b

3 o) LN a0
bea;®az Opxb N

a; a; az az

where the shown morphism diagrams can be written formally as 6* o (Fala(2 '® Fg ,;(210))
(ida, ® fa,,a0 ® ida,). The coordinate-dependent coefficients ap, can be expressed via

conformal blocks but this is unimportant for the present argument.
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Since (7.60) must somehow reproduce the OPE expansion in the limit z; — x2, we
conclude that there must exist a representation

b

R RN A YA TN M 3L O N
ar & az a bea;®as Op~b NN
a; a; az Az
for some numerical coefficients So,. The theorem now reduces to a category theoretic
statement, that for any b € a; ® a, Sp, must be non-zero for some O ~ b for this
representation to hold.
To prove this last claim, consider any particular simple B which appears in a; ® as.
This means that there are projection and embedding morphism 7 : a; ® a3 — B and
t: B — a; ® ag, written diagrammatically as:

B a; az
= 7;& , L= \Yf . (7.62)
a; ag B

Let us now define the morphism hg : 1 — a®%:
al 51 ao 52
/

(7.63)

Composing both sides of (7.61) with hg, we find on the Lh.s.

al& = a2 = =dimB , (7.64)

where we used among other things that w o+ = idg. By proposition A.3, all simple objects
have non-zero dimensions, and thus the L.h.s. is non-zero.
On the r.h.s. we instead find a sum of terms like:

(7.65)

weighted with the numerical Bp, coefficients. Now note that the sub-diagram in the r.h.s.
surrounded by a dotted box is a morphism F(fl’é)2 o ¢t between the simple objects b and B.
This morphism vanishes unless b ~ B. We conclude that to match the non-zero lLh.s.,
the r.h.s. must contain at least one non-zero term corresponding to some Oy ~ B. This
completes the proof.
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We say that an object g generates C if any simple object in C appears in g®* for
sufficiently large k. Decompose such a g into simple objects: g ~a; @ ... P a,. If a CFT
with symmetry C has operators ¢; ~ a; for every a; then, by theorem 7.1, it contains a
local operator ¢(x) ~ a for every simple object a € C. We then say that the categorical
symmetry is faithful. E.g. since both the free and interacting O(n) models contain operators
isomorphic to n, and since n generates R—E) O(n), we conclude that R_éToO(n) is a faithful
symmetry of these theories.

For any faithful (in the usual sense) representation a of a compact group G, a and a
together generate the category RepG. (See [22] for a simple analytic proof and [23] for
a more advanced discussion.) Combining this with theorem 7.1, we conclude that given
a CFT with a group symmetry G, if there is a local operator which transforms faithfully
under G, then operators transforming under arbitrary representations of G must occur in
the spectrum, and Rep G is faithful.

Let us now consider the case where C is not faithful. We can then define a set D which
contains the simple objects which are isomorphic to local operators. By theorem 7.1 the
tensor product of any two objects in D will be the direct sum of objects in D, and so we see
that the objects in D and their direct sums form a subcategory D C C. By construction,
D is a faithful symmetry of our theory. For this reason we can always restrict to theories
with faithful symmetries with no loss of generality.

7.8 Reality and unitarity

Before defining unitarity, or rather its Euclidean counterpart reflection positivity, let us
consider the simpler notion of complex conjugation. Given any representation p : G —
GL(CF) we can define a conjugate representation by simply taking the complex conjugate of
p- In more abstract language, this associates to each representation a € Rep G a conjugate
representation a* ~ a. Furthermore for any invariant tensor f : a — b we can complex
conjugate it to construct a tensor f* :a* — b*. The braiding is trivially preserved by this:

B;,b = Ba* b (7.66)

We would like to extend this definition to any symmetric tensor category C. Let us
define a conjugation * as a anti-linear braided monoidal functor * : C — C which satisfies
#% = ide, and for which a* is dual to a.?! As we show in proposition A.9, for every simple
object a € C there exist cap and cocap maps satisfying

*

(62 =62 | ((aar)" =Jara- (7.67)

As in [24], we will say that a quantum field theory is real if there exists a map * acting
on local operators:

(¢(a, z))" = ¢*(a", )

31'While a* is isomorphic to @, it is not necessarily equal to @, and for this reason we shall use a* rather

than a when referring to the dual of an object in a category with conjugation. Indeed a for simple objects
is defined up to a rescaling by a complex number, and a* is a representative in the isomorphism class for
which (7.67) is true. This may seem overly pedantic, but it helps us avoid confusion between 522" (which
we require to satisfy (7.67)), and 62 (which we do not).
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which is involutive
9" (z) = (), (7.68)
and such that
(P1(21) -+ Pn(n)))" = (D1(21) - .- by (2n)). (7.69)

Let us first consider the implications of reality for two-point functions. As in the
previous section can we consider the space Va a of local operators ¢(z) ~ a with conformal

dimension A. Given any basis ¢1,..., ¢, of VA o we can then compute:
* M, a,a*

for some matrix M;;. By conjugating both sides of this equation we find that

* M;; a,a*
(¢ (z)¢;(y)) = SO0, (7.71)
|z =yl
while by interchanging the two operators we find that:
* * M’L *
(61(2)6,(0)) = (6501 (@) P = = dgs™ 2, (7.72)

and so we can conclude that M;; is Hermitian. We can therefore always choose a basis of
VA,a such that

(Bi(@)gi(y)) = e

e —y?A

From now on we shall assume that such a basis has been chosen for each VA a.

6" with Ny, = +1. (7.73)

We should note that despite superficial similarities, (7.73) is quite distinct from the
basis (7.48) used in the previous section. In a general CFT there is no relationship between
correlators involving ¢;(z) and those of ¢,(z). Furthermore the linear map we constructed
between Va o and Va z depended on our choice of basis for Va 4. By contrast, in real CFT
conjugation gives us a natural mapping between Va o and Va z and this turns Va , into an
indefinite Hilbert space. Conjugation also relates correlators of ¢(z) and ¢*(z) with any
number of operators.

Let us now consider the constraints imposed by reality on three-point functions. Con-
sider a C singlet ®;(x) with spin [. We have

(6" (2)p(y)Di(2)) = 62 fye g0 Si(x,y, 2) (7.74)

where Sj(z,y, z) is a real function of z,y, z which is completely fixed by conformal invari-
ance. In particular, it satisfies the crossing property

Sl(y,l',z) = (—1)ZSZ($,y,Z). (775)
Then, by the same logic we used to constrain Ny, we find a relation:

(foro2)* = (=)' fsrga (7.76)
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Suppose further that &7 = ®; (such fields are called real). Then the previous equation
implies that fy«se is real if [ is even and imaginary if / is odd.

Having defined what it means for a theory to be real, let us move on to unitarity.
In Euclidean signature this manifests as reflection positivity, which for a regular quantum
field theory states that

(D (=T, Zp) - .. @1 (—T1, Z1)01(T1, %1) - - . I (T, Tn)) = 0. (7.77)

for any positive 7; and any ;.2

For fields with non-trivial spin, the SO(d) indices of fields in the Lh.s. of (7.77) have
to be contracted with external polarization tensors in the conjugation-reflection-symmetric
way. E.g. a certain (¢;), is contracted with £* then the corresponding (¢}), has to be
contracted with (0£*)* where 6§ = diag(—1,1,...,1) is the reflection. Positivity should
then hold for all possible such contractions.

If some fields in the Lh.s. of (7.77) transform in non-trivial global symmetry represen-
tations, those indices should also be contracted with external global symmetry tensors, in
a conjugation-symmetric way.

When generalizing reflection positivity to quantum field theory with a categorical sym-
metry, we have to think how to implement the latter property. We do this by requiring the
positivity condition

<¢7*1(*7—na fn) cee QZ)){(*TL jl)ﬁbl (Tla fl) s ¢n(7—nv jn» oU =20 (778)

where U € Hom(l — a) ® ...a] ® a1 ® ...ay,) is any conjugation-reflection-symmetric
morphism, i.e. one satisfying U* = RU where R is the morphism from a,,®...a;®aj®...a},
to the same tensor product in the opposite order (a)®...aj®a;®...a,) which just connects
reflection-symmetrically the tensor product factors by identities (a; to a;, aj to af). One
example of such U can be constructed using the cocap maps:

U= w ; (7.79)

many others can be constructed by decomposing the tensor product a; ®. .. a,, into simple
objects.

Restricting our attention to singlets, we can use the simplest definition of reflection
positivity (7.77), which in particular requires that, for any primary scalar ¢ ~ 1:

(¢*(x)9(y)) = Mi\/;'m with N > 0. (7.80)

This generalizes for non-scalar singlets, whose two-point function includes a conformally
invariant tensor structure. Imposing reflection positivity for descendants, we obtain the
usual unitarity bounds on scaling dimensions.

32In fact, full reflection positivity is a stronger condition, which involves integrating eq. (7.77) with
reflection-symmetric test functions, and also considering linear combinations of (m +n)-point functions [25,
26]. Here we will just consider the partial case (7.77) for simplicity.
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With these natural definitions, it turns out that none of the CFTs with tensor cat-
egorical symmetries can be reflection positive, unless it’s an ordinary group symmetry.
Moreover, the lack of reflection positivity manifests itself even in the singlet sector. More
precisely we have the following theorem:

Theorem 7.2 (“Lack of unitarity”). If a real CFT has a faithful tensor categorical
symmetry C, has a reflection-positive singlet sector, and satisfies the technical conditions
listed at the beginning of the previous section, then C is equivalent to RepG for some
group G.

This follows by combining theorem 7.1 with the following two results:

Proposition 7.3. Let ¢(a, z) be an operator in a real CFT such that dim(a) < 0. Then the
o x¢* OPE contains an operator ®(z) which transforms trivially under C and which violates

reflection positivity (either because No < 0 or because Ag violates unitarity bounds).

Proposition 7.4. If a symmetric tensor category C contains no negative dimensional ob-
jects, then it is equivalent to Rep G for some group G.

Proof. Proposition 7.4 is a consequence of a theorem by Deligne, which classifies all sym-
metric tensor categories satisfying a certain finiteness condition, see appendix A.4.

Let us prove proposition 7.3 for ¢ a primary scalar; see below for the changes needed
otherwise. Consider the correlator (¢(z1)¢*(x2)p(x3)p*(x4)). Like in our proof of theo-
rem 7.1, the short-distance limit of the OPE expansion in the 2 — 1 channel is dominated
by the unit operator contribution

Nj\azlz\_m‘?|x34|_2A¢5a’a* ® 622 (7.81)

This must be reproduced by an infinite sum of terms from the 2 — 3 channel, of the form

FO,‘.
Pp*
E E No, @ x (conformal blocks) , (7.82)
bea®a* Opxb a g F?*@a 9t

where the diagram represents the morphism §PP" o (ngi ® Ff’j;) We then contract both
parts of the crossing equation with the morphism

N eHom(l s awa’ @a®a’). (7.83)

In the Lh.s. we get the leading o — z1 singularity times ./\/’(g dim(a) < 0. In the r.h.s. the
contraction projects on the b ~ 1 part since otherwise Fd(fz)’i 00aa* = 0. The b~ 1 terms
contribute Np, dim(a)?|fss0,|* times conformal blocks. Consider a reflection positive
kinematic configuration (e.g. all 4 points along a line at —1,—z,2,1). As is well known,
conformal blocks in such configurations are positive provided that the primary Oy is above
the unitary bounds. If we assume in addition that Np, > 0 then all terms in the r.h.s. are
positive, in manifest disagreement with the negative sign of the l.h.s. Thus there must be

a singlet Oy, for which either Np, < 0, or the dimension is below the unitarity bounds.
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The argument still works if ¢ is not a scalar, nor does it have to be a primary. We
consider the same correlator, but now we have to choose polarizations. We pick some
arbitrary identical polarization for both ¢’s. We then assign the reflected polarization to
both ¢*’s. With this choice, the sign of the leading singularity in the xo — 21 channel will
be as for scalars, controlled by dim(a), hence negative. In the x9 — x3 channel, instead
of thinking in terms of conformal blocks, we observe that the contribution of any positive-
norm state is positive. Hence a negative-norm state must exist, which can be either a
primary Np, < 0, or a descendant (if the primary is below unitarity).

Theorem 7.2 allows us to disprove unitarity for many theories. For instance any O(n)
model for non-integer n is necessarily non-unitary (clearly, the corresponding category,
having objects of non-integer and negative dimensions, cannot be equivalent to Rep G).
Unfortunately, this implies that we cannot use the most robust numerical bootstrap tech-
niques to rigorously study phase transitions in these models, as these require positivity
conditions on squared OPE coefficients and operator norms. For sufficiently large n, the
unitary violations need only occur for operators with large conformal dimensions, and
so standard numerical methods could potentially give reasonable, albeit non-rigorous, re-
sults.®® Alternatively, the truncation method of Gliozzi [28] does not rely on positivity but
is less systematic. See [29], section VIII, for a detailed discussion.

A particularly simple case to consider is the free O(n) model. Unitary violations in
this theory have previously been argued for in [30], section 5.5. They considered the norm
of, in their language, the operator:

Op =010y -+ - 01,5, 01 (2)0p"2 (z) ... O™ (1)1 ()92 (z) ... OF @Kl (z) . (7.84)

To make sense of this operator they simply analytically continue the integer n computation,
finding that
N (k)

(Ok(x1)Ok(z2))y =n(n—1)...(n —k + 1)m )

(7.85)

where N (k) is some positive function of k and Ay = k(k+d —3). If k= [n] + 1 and n is
not an integer then the state has negative norm.

Using our categorical language, we can make the arguments of [30] more precise. This
allows us to eliminate some potential doubts in its validity. E.g., one could wonder whether
the operator (7.84) is really well defined, or required by the theory, or whether other analytic
continuations could be possible. To properly define the operator Oy we can first construct

Ai(z) = §(2)06(x) ... 9 d(x) 0 Ppx | (7.86)
where Py is the projector defined in (5.19), projecting onto the simple object A* with

nn—1)...(n—k+1)

dim(A%) = o

. (7.87)

33Such attempts were made in [27] to study the non-integer O(n) models, but it is unclear whether the
non-unitarity was sufficiently small to allow this.
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We now define
O = Ag(x)Ap(z) oy, 7=\, (7.88)

which gives us a precise definition of (7.84) without the need for analytic continuation.
One can then check (7.85) using string diagram manipulations. For k = [n] + 1 the object
AF has negative dimension. So by proposition 7.3 we find that the OPE of Arp)41 with
itself contains a singlet of negative norm, and Of,) is precisely such an operator.

8 Why this story is not entirely algebraic

Much of what we have written above about Deligne categories may create an impression
that the whole theory is about taking some polynomials and interpolating them from
integers to reals. Since Deligne categories are algebraic objects, one may ask if there is an
interesting interplay between them and structures of an analytic nature.®* The answer to
this question is yes. This may be rather obvious to physicists, so this sketchy and by no
means exhaustive section is mainly intended for mathematicians. Many more examples of
non-trivial interplay can be given.

This interesting interplay is bound to appear when one considers lattice models or
quantum field theories with categorical symmetries and computes observables in these
theories. As a first example, consider a lattice model with O(n) categorical symmetry, of
the type discussed in section 6. Assuming for simplicity we are on a 2d square lattice, we can
e.g. consider the transfer matrix of this model on a cylinder of circumference £ and of a unit
height, which is a particular endomorphism 7" of the object [k]: T € End([k]) = Hom([k] —
[k]). The exact form of T depends on the lattice model we are considering. Endomorphisms
of [k] act by composition on Hom(a — [k]) for any simple object a and we can ask what
are the eigenvalues \; of the transfer matrix T acting in this way. These eigenvalues
are analogues of energy levels. Categorical symmetry tells us that the eigenvalues are
classified by simple objects of the associated Deligne category, but the numerical values
of the eigenvalues depend on the model. Using the Brauer algebra, we find that matrix
elements of T" will be polynomials in n, and so the eigenvalues will be algebraic functions
of n. The transfer matrix of the same model on a cylinder of height L will be 7", the L-th
power of T, with eigenvalues )\iL . We can also consider the trace of 7% which will be a
linear combination of these eigenvalues times the dimensions of the corresponding simple
objects a, and is known as the torus partition function of the lattice model.

Physically, the most interesting lattice quantities are those which appear in the ther-
modynamic limit, i.e. on an infinite lattice (also known as the continuum limit, if we send
the lattice spacing to zero keeping the volume fixed). If the parameters of the lattice models
are tuned to a second-order phase transition, this limit will be described by a conformal
field theory. Scaling dimensions of CF'T operators are related to logarithms of the transfer
matrix eigenvalues. A classic example is the continuum limits of O(n) models, which exist
for n € [—2,2] on two dimensional lattices, while in 3d it should exist for arbitrarily large n.
The torus partition function of the O(n) model CFTs in 2d was computed many years ago

34We are grateful to Pavel Etingof for this question which prompted us to write this section.

— 44 —



using Coulomb gas methods [14]. This is a non-trivial modular-invariant analytic function
of the torus parameter, which depends continuously on n, which has the schematic form:

Z(n7qvq) = ZMz(n)X(hz(n)aQ)X(Bl(n)a(j) : (81)
i=0

Here ¢, g are the torus modular parameters, x(h, q) are the Virasoro characters, h;(n) and
h;i(n) are the holomorphic and antiholomorphic weights of the Virasoro primary fields, and
M;(n) are their ‘multiplicities’. By consistency with the categorical O(n) symmetry, multi-
plicities M;(n) are linear combinations of dimensions of simple O(n) objects with positive
integer coefficients.?> On the other hand, the Virasoro weights and the central charge of
the theory are more complicated, non-algebraic functions of n (they are rational functions
of the Coulomb gas coupling g which depends non-algebraically on n). An analogous story
holds for the g-state Potts models, which have a second-order phase transition for ¢ < ¢,
where g. = 4 in 2d, while in 3d it is believed that ¢. &~ 2.45 although it is not known exactly
(see [24]). Scaling dimensions have a branch point at g, as another sign of non-trivial ana-
lytic structure, and interesting physics can be described by analytically continuing beyond
this branch point [32].

In three dimensions, scaling dimensions and OPE coefficients of the critical O(N)
model have been studied by conformal bootstrap methods [33] (see [29] for review). That
these data can be analytically continued in N in a way which correspond to categori-
cally symmetric CFTs is a highly non-trivial fact. Little is known about these analytic
continuations in 3d, and they are bound to exhibit a highly non-trivial dependence on N.

9 Other Deligne categories

So far we have considered the category ﬁ&) O(n), which extends the representation of the
group O(N) to non-integer values. We will now discuss analogous U(N), Sp(N) and Sy
constructions, also due to Deligne.

Fach construction begins by considering invariants in the category Rep G for some
family of groups Gy depending on a discrete parameter N. The task is to find “fundamental
invariants” from which all other invariants can be built through the braiding and tensor
product. For instance, in Rep O(N) all invariants can be constructed from the tensor /7.
We then represent these invariants using string diagrams. To compose these diagrams we
stack them horizontally, and simplify the diagrams using rules which are dependent on a
parameter N. These diagrams form a category R/e\pG ~, with a functor F : R/e\pG N —
Rep G translating the string diagrams back to invariant tensors.

Unlike Rep G, the category @Gn makes sense even for non-integer values n. We
can compute idempotent morphisms, dimensions, and other representation theoretic data
in ﬁe\pGn for any value of n.

35There was some uncertainty in [14] whether this property holds for their partition function, but a more
careful check [31] shows that it does, see also note 19 in [32]. This property is related to the semisimplicity
of the Deligne property, i.e. that every object is a direct sum of an integer number of simple objects.
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Unlike in Rep Gy, in ﬁe\pGn we cannot in general take direct sums of objects, and
we cannot decompose objects into simple objects. We can fix this by taking the Karoubi
envelope and additive completion of @Gn, constructing a new category REBG”. At
integer values ﬁe\pG ~ will differ from Rep G due to the presence of null objects, and by
quotienting these we can recover the original category Rep G .

9.1 RepU(n)

We will begin by describing the category §§p U(n).>5 The objects in this category are
finite strings [s] of the characters + and —, which we can think of diagrammatically as
labeled points, e.g. [s] = [+ — + — —].

The morphisms in ﬁgp U(n) are linear combinations of string diagrams. Each string
diagram from [s1] — [s2] consists of arrows connecting characters from [s;] and [s2] pairwise,
which have to start/end at 4+/— in [s;] or at —/+ in [s2]. We do not show pluses and
minuses in the diagram as they can be reconstructed from the arrow directions. E.g., the
following string diagram is a morphism from [+ + —+4] — [++]:

M o
AN

We compose diagrams in the same way as for the Brauer algebra, by deleting the midpoints

Q:Q:n. (9.2)

The algebra defined by these rules is called the walled Brauer algebra.

and replacing circles by n:

To relate the Brauer algebra to Rep U(N), we note that for integer IV there is a functor
F :Rep U(N) — Rep U(N). This maps objects [s] into tensor products of the fundamental
N and N of U(N), and string diagrams to U(N) invariants. For instance:

FH-++-])~N@N@N®?gN. (9.3)

Much like in @O(n), in ﬁe\p U(n) we can decompose id[, as the sum of mutually
orthogonal idempotents. For instance, in Hom([+4] — [++]) there are two such idempo-
tents, one symmetric and one antisymmetric:

R0 me b0 o3

Likewise, in Hom([+—] — [+—]) there are also two idempotents:

P1:%>/\, PazH—%f\. (9.5)

36While physicists work with representations of U(V), mathematicians instead usually consider holomor-
phic representations of GL(N,C). Since GL(NV,C) is the complexification of U(N), these are equivalent
notions.
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We can define the trace of a diagram f : [s] — [s] by the analogue of eq. (5.16):

(connecting outgoing to the corresponding incoming arrow on the other side) and we then
find that

n+1)

tr(Ps):n( . 7 n(n —1)

Tr(Pa) = 5 ,

tr(Py) =1, tr(Pa)=n*-1, (9.7
reproducing for integer n the dimensions of the corresponding representations in Rep U(n).
After taking the Karoubi envelope and additive completion, we find that each of these
idempotents corresponds to a simple object in /R\e/pU(n).

Finding the simple objects in ﬁeBU(n) and computing their dimensions is now just
an exercise in combinatorics. Many examples of diagrammatic computations for U(N) can
be found in chapter 9 of [34], and these extend to the non-integer case without change.
More generally, the simple objects in IEQ—E[/)U(n) can be labeled by pairs of partitions \ =
(Ay...y M) and g = (p1,...,us). The dimensions of this simple object, which we can
denote by x,,, is given by the interpolation of the Weyl dimension formula:

)

' . S . T S . .
) (1 —i—s+n)y, (1—i—r+mn), n+l+XN+pj—i—j
dim(x,,) = dad || : :
(Au) Aui_l (1 —i+7)y, H (1_i+5)m Eg n+l—1—3

VD P
| Ae
L4 J—1

1<i<y<r

(9.8)
9.2 Rep Sp(n) and negative dimensions

The group O(N) is defined as the group of matrices preserving the unit matrix 6% which
is symmetric. The group Sp(IV) is the group that preserves the antisymmetric symplectic
matrix Q%. At the level of string diagrams this means that:

O(N):\é:U, Sp(N):\éz—U. (9.9)

Indeed the Lh.s. diagrams are interpreted as the invariant tensor 4, resp. 24, contracted
with the braiding 3 = 62'5‘5/ and the sign on the right reflects symmetry/antisymmetry
of the invariant tensor.

A minus sign of the same origin then affects the value of the circle, because in Sp(N)

QupQ® = —N . (9.10)
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In terms of string diagrams we have:

O(N):O_g_N, Sp(N):O——g——N. (9.11)

More generally, one can show that the algebra of string diagrams of Sp(/V) can be obtained
from that of O(N) by flipping the signs of N and of the braiding: N — —N, { — —>4.
We now extend this construction to non-integer n to construct ﬁé?) Sp(n). For this we can
start with @ O(—n) and then flip the sign of the braiding. More formally, we can write
this as a functor G : Rep O(—n) — Rep Sp(n) which takes:

FCA) ==X, (9.12)

but otherwise leaves the diagrams unchanged. The inverse functor Fl. ﬁe\p Sp(n) —
@O(—n) acts in exactly the same way, and we conclude that §e\p O(—n) and ﬁe\p Sp(n)
are equivalent tensor categories.

To define the trace on ﬁeTa Sp(n) we will require that

tr(idm) =n. (9.13)

Because of the additional minus sign in (9.11), the trace of a general morphism f : [k] — [k]
is defined as

= (—1)ktr (ﬁ—l(f)) . (9.14)

We can now find all the idempotents in §e\p Sp(n) and compute their dimensions. Taking
the Karoubi envelope and additive completion gives us ﬁgp/) Sp(n).

The Karoubi envelope and additive completion do not make use of the trace, and
so we can lift F to a functor F : ﬁe/pO(—n) — /RET)Sp(n). Therefore /R;BO(—n) and
/REB Sp(n) are equivalent tensor categories, differing only in some minus signs appearing in
the braiding and the trace.

To keep track of these minus signs, let us define for any simple object a € /R\eBO(n)
the Zsy grading:

(9.15)

g _ 0 if a € n®F for some even k,
2 1 if a € n®* for some odd k.

In RepO(N) this Zg grading corresponds to the action of the Zy center of O(N) on the
representation. We can then compute

F(Baw) = (~1) % Br0) iy, tr(F(F) = (~1)Ztx(f),  dim (F(a) = (~1)%dim(a)

(9.16)
where Bap : a®b — b ® a denotes the braiding, and where in each of these equations
the left-hand side is computed in Rep Sp(n) and the right-hand side in Rep O(—n). More
concretely, (9.16) means that for any @ O(—n) morphism there is an equivalent @ Sp(n)
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morphism where the symmetrizations and antisymmetrizations are swapped. A similar
relationship holds between /R\e?)U(n) and /R?pU(—n).

Relationships between representations of Sp(N) and analytic continuations of O(N)
have been noticed many times in the literature, e.g. [35-38|. In particular theories of
N scalars with O(N) symmetry are known to analytically continue at negative values of
N to theories of Grassmannian scalars with Sp(/N) symmetry, as studied by [39, 40] in
a condensed matter setting and by [41] in the context of dS/CFT. The match between
the O(—1) and Grassmann path-integral in (7.18) is a simple case of this more general
relationship.

The categorical perspective makes it clear that any QFT with /RET) O(—n) symmetry is
equivalent to a /R\e;/) Sp(n) theory. The functor F translate operators and morphisms from
one language to the other. A bosonic operator ¢ with Z, = 1 becomes a fermionic operator
in the @ Sp(n) theory, to compensate for the flipped braiding in (9.16).

9.3 RepS,

As a final task we shall construct Deligne categories ﬁevan interpolating representations
of the symmetric group Sy. These categories describe the symmetry of the n-state Potts
model for non-integer values of n. They also describe the symmetry of replicated theories.
In particular, the replica trick relates the n — 0 limit of a deformed replicated theory
to disorder averaging. While all the other categorical symmetries discussed so far are
continuous, this one is discrete (see section 7.4).

We can think of Sy as the subgroup of O(N) preserving the tensors

1 L =Dh=.. =1,
In.1, = { P (9.17)

0 otherwise.

for £ > 1. (In particular the k£ = 1 tensor 77 = 1 for any index I.) These tensors are fully
symmetric and satisfy the composition rules:

nJ 5o
Trodidyr o i Lr gy dg g, 0 O =T Ly - (9.18)

To describe them diagrammatically, we start with the Brauer algebra, and introduce addi-
tional vertices:

Tia = N\ (klegs). (9.19)

Symmetry translates to the equation:

4\:%\ (for any pair of legs) , (9.20)

ﬁ\:%\ : (9.21)

i J it+j

The final rule we need is that T/ = 6!/ which is encoded as

-1 (9.22)

while (9.18) becomes
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With these rules we perform any manipulations involving the 77, ., tensors diagram-
matically, with N entering only as the value of the circle. As a simple example,

D-O-O-~

We can then extend the algebra to continuous values of n, defining the category R/a)Sn
to be the category of such string diagrams. The strings diagrams from [k] — [k] form an
algebra known as the partition algebra Py (n), which has been studied in [42-45]. Much like
how R/e\p O(n) packages all of the Brauer algebras into a single algebraic structure, R/e\p Sn
packages all of the partition algebras together.

As is usual, we can now compute any idempotents and their dimensions. Because
any string diagram in @ O(n) is also a string diagram in §e\p Sn, we see that there is a
faithful3” functor ﬁe\p O(n) — §e\p Syn. This is the categorical analogue of the fact that Sy
is a subgroup of O(N), so that any O(INV) invariant tensors is automatically Sy invariant.
Due to the additional diagrams, indecomposable idempotents in ﬁe\pO(n) will become
decomposable in §e\p Sp. For instance, the identity id;) now splits

L p- idpy — Pr. (9.24)

I

iy =P+ P, P =

SHE

9.4 Other families of categories

We constructed R/e\p Sy, from ﬁe\p O(n) by introducing new vertices into the string diagrams,
along with new rules which allow us to eliminate any loops in the diagrams. This proce-
dure can be performed very generally. Beginning with R/e\pO(n) (or more generally with
ﬁé\p U(n)), we can introduce new vertices into our string diagrams. We must then give
rules telling us how to compose these diagrams, and in particular these tell us how to turn
any closed diagram into a number. There are many possible diagrammatic rules one could
consider, opening up a vast and largely unexplored world of possible categories. Here we
will note some families which may be of interest in physical applications.

If we start with a theory with a symmetry G and replicate it N times, then each copy
of the theory individually has a G symmetry. The full symmetry of the replicated theory
is then Sy x GY. A construction due to Knop [46, 47] allows us to define a family of
categories RepS x G", generalizing Deligne’s construction of Rep G". These categories
describe the symmetries of theories such as the cubic fixed point, where G = Zo, and more
generally the M N models where G = O(M). They are also relevant for the replicated
theories arising when applying the replica trick to disordered systems, when the original
theory has symmetry G.

All above-mentioned continuous families of categories interpolate infinite series of
groups.

Notice however that not every infinite family of groups admits a corresponding interpo-
lating continuous family of Deligne categories. A necessary condition is that the invariant

371.e. one which does not map any morphism to zero.
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tensors have the same number of legs for all groups in the family. E.g. SO(N), compared
to O(N), has an additional invariant N-leg e-tensor, and this makes interpolation impos-
sible.® A similar reason precludes interpolation for SU(N) and Zy. So it does not make
sense to speak about SO(NV), SU(N), and Zy symmetries for non-integer N.

On the other hand, one may also be wondering if there exist continuous families which
interpolate finite families of groups. There does not seem to be a fundamental reason
precluding this, and attempts have been made to place the exceptional groups into a con-
tinuous family of categories. Many authors have noticed relationships between exceptional
groups and other Lie group of low rank, the “magic square” construction of Freudenthal
and Tits, and the “magic triangle” constructions of Cvitanovic. A detailed review can
be found in [34]. These relationships led Deligne to conjecture a number of families of
categories interpolating exceptional group [48, 49], known as the Fy, Eg, E7 and Eg series.
The Fg series in particular contains all of the exceptional Lie algebras in series

a; Cag C0g4 Cfg Ceg Cey Ceg. (9.25)

We note in passing that this series has appeared in a number of physical contexts, the
g-state Potts model [50], in the theory of 2d chiral algebras associated to 4d N = 2
theories [51, 52], in F-theory [53, 54], and in the study of 2d RCFTs [55]. The Eg series,
along with Deligne series for the classical groups, have been further conjectured to combine
into a two parameter family of tensor categories called the Vogel plane, introduced by Vogel
in unpublished work [56]. The Vogel plane can be used to derive universal formulas for the
representations of any simple Lie algebras, see e.g. [57] and references therein.

The difficulty with verifying these conjectures arises due to two possible issues:

1. Are the rules complete, that is, do they allow us to reduce any closed diagram to
numerical value?

2. Are the rules consistent, so that evaluating the same diagram in different ways gives
the same answer?

Unpublished work by Thurston [58] shows that the consistency of the Fy and FEj series
requires a certain polynomial equation to be satisfied, and so these series can only exist at
discrete values of the parameter. It is an open question whether or not similar issues occur
for the F7 and Fg series or the Vogel plane.

Finally, we note that the representation theory of more general algebraic objects can
be generalized to the categorical setting, including certain Lie superalgebras and affine Lie

381f in spite of this argument, someone does want to try to define SO(n), here is a preview of the kind of
difficulties they will have to fight against. For each k one would have to define an antisymmetric morphism
€ :n%" — 1. One would then have to somehow make ¢ vanish at any integer n except at n = k. We don’t
have a no-go theorem that this is impossible, but this certainly does not look easy and we are not aware of

mathematical literature accomplishing this.
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algebras [59-61]. By generalizing the Schur-Weyl duality to F/{\e?)Sn, one can even make
sense of a “non-integer tensor power” of an object in a tensor category [59, 62].3°

10 Discussion and conclusions

As we have explained in this work, Deligne categories put on firm footing the notion
of analytically continued symmetries usually considered in physics at an intuitive level.
They are the algebraic structures which replace groups from the textbook definition of
symmetry. Looking back at section 2, we can see how categories fulfil the symmetry wish
list: (1’) simple objects replace irreducible representations; (2') morphism replace invariant
tensors as the algebraic concept classifying correlators and transfer matrices; (3') categorical
symmetries are preserved under the Wilsonian RG (section 6.2), and thus can be used to
classify universality classes with non-integer n.

We thus dispelled a lot of conceptual fog, and explained the true meaning of computa-
tions in theories with analytically continued symmetries. Interestingly, results of computa-
tions performed in the usual intuitive way remain correct, when reinterpreted categorically.
In particular one can eschew such voodoo notions as spaces of non-integer dimensions in
the intermediate steps. The readers who have done such computations in the past no longer
have to lose any sleep about the validity of their final answers.

We have illustrated how the categorical language works in many situations of interest
to quantum field theory: perturbation theory, conserved currents, explicit and sponta-
neous symmetry breaking etc. We have also developed a theory of continuous categorical
symmetries, and conjectured a natural categorical generalization of the Goldstone theorem.

We hasten to add that information provided by any symmetry, and categorical sym-
metry in particular, is mostly qualitative in nature. Let us take the critical point of the
3d O(n) loop model as an example. Symmetry implies that critical exponents will be the
same for different lattices and different lattice actions with the same symmetry. It also
predicts the existence of the conserved current operator transforming as the adjoint object
of the associated Deligne category and having scaling dimension d — 1 = 2. But symmetry
does not by itself fix values of other critical exponents. Such quantitative predictions would
require explicit calculational techniques such as the RG or the conformal bootstrap.

Of course, categories nowadays appear in many branches of physics, e.g. fusion cate-
gories are the language of topological QFT and of anyonic physics (excitations of topological
states of matter). Our work adds another example where categories provide the needed
language. Deligne categories have symmetric braiding and exhibit superexponential growth

39This theory uses the notion of a unital vector space (vector space with a distinguished non-zero vector),
for which one can define a non-integer tensor power as an object in the category /R-ET)STL, and think of it
as a vector space of non-integer dimension. Now, several times in this article we emphatically stated that
vector spaces of non-integer dimensions do not exist. What we meant by that is that they don’t “exist”
in the usual physical sense, as sets of vectors which can be expanded in a basis etc. The above-mentioned
constructions allow to give abstract algebraic meaning to some operations with “non-integer dimensional
vector spaces”, but they should not be viewed as to imply that such objects are on the same footing as
concrete finite-dimensional vector spaces from linear algebra textbooks.
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of the number of simple objects (see appendix A.4). This makes them rather different from
fusion categories, which have finitely many objects and non-trivial braiding.

In this paper we focused on global symmetries, like O(n) with non-integer n. Such
symmetries can arise both in perturbative context, and non-perturbatively (via loop mod-
els). Clearly, the language of Deligne categories would also work for spacetime symmetries,
like O(d) with non-integer d. Field theories in non-integer dimensions have been considered
in physics since the seminal work of Wilson and Fisher [11, 63], mostly in perturbation the-
ory. Unlike for O(n), it is not yet clear if these theories can be defined non-perturbatively
(see [64] for one attempt). This was one of the reason stopping us from presenting the
corresponding theory (the other being the length of this paper). We mention just some
interesting parallels between the O(n) and O(d) stories. Theories in non-integer spacetime
dimension should violate unitarity, as has already been discussed for free theories and in
the 4—e expansion [64, 65]. Parity-violating theories should not allow analytic continuation
in dimension, since there is no Deligne category for non-integer SO(d) (section 9.4).

Conformally invariant theories may be easier to make sense for non-integer spacetime
dimensions [66]. Indeed, the CFT four point function depends on two cross ratios for
whatever the number of dimensions d > 2. Conformal blocks can be also analytically
continued in d. Perhaps the language of Deligne categories will turn out useful in this
setting, as was hypothesized in [67].

Categorical language may turn out particularly useful when considering the analytic
continuation of fermionic and supersymmetric theories to non-integer dimensions. As one
potential application, consider the Gross-Neveu-Yukawa model. It is believed that this
model with “half” a Majorana fermion in the 4 — ¢ expansion can be analytically continued
to the V' = 1 super-Ising model in 3d [68, 69]. This is evidenced by the relation Ay, = A¢+%
among the scaling dimensions, checked up to O(e?) [69] and suggestive of a supersymmetry.
Whether there is a supersymmetry actually underlying this relation is however obscure, as
both the number of spacetime dimensions and number of fermions is non-integer.*® Our
categorical language should allow one to make precise the sense in which the model is
supersymmetric, and in particular to prove the above relation to all orders in e.

We finish with a list of some of the open problems and questions to consider:

e Can one prove a categorical version of the Goldstone theorem that we conjectured,
and develop an effective theory of categorical Goldstone bosons?

e Can categorical symmetries be gauged?

e How do categorical symmetries interact with anomalies? More specific, massless QCD
with Ny massless Dirac fermions naively has a U(Ny) x U(Nf) symmetry, but this is
broken to SU(Ny) x SU(Nyf) x U(1) by the axial anomaly. As mentioned, SU(N) does
not admit a continuation to non-integer N. Taken at face value, this suggests that
massless QCD cannot be extended to non-integer Ny. On the other hand, there seems
to be no obstruction for the extension of massive QCD with its U(Ny) symmetry.

40We are grateful to Pavel Etingof for forwarding to us the unpublished construction of categories involving
spinorial representations by Pierre Deligne [70].

— 53 —



e Can one formulate categorical symmetries in terms of topological surface operators?
This seems challenging, especially for the discrete case.

e What is the resolution of the apparent paradox mentioned in footnote 197
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A Tensor categories

The purpose of this appendix is to allow interested reader to quickly pick up some informa-
tion about category theory, before plunging into mathematical literature. Let us mention
some useful resources. The classic book introducing category theory is [71]; a modern text-
book introduction to the basics can be found in [72]. Introductions to the theory of tensor
categories, aimed at mathematicians, can be found in [13] and [73]. More basic introduc-
tions can be found in the papers [74] and [75]. See [76] for a survey of string diagrams,
reviewing the various different types of monoidal categories and their associated diagrams.

A.1 Basic definitions

Broadly speaking, a tensor category is a category which abstracts the notion of vector
spaces and linear operators between them. This involves defining a number of structures,
each of which corresponds to structures appearing the vector spaces:

1. A category abstracts the notion of function composition,
2. A monoidal category is a category with a notion of a tensor product ®.

3. A braiding on a monoidal category gives us morphisms from fap :a®b — b® a.
A symmetric braiding is one such that performing the braiding twice gives us the
identity.
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4. A rigid category is a category where every object a has a dual a.

5. A C-linear category is one for which the set of morphisms is a vector space and for
which morphism composition is linear.

6. An semisimple category is one where we have a direct sum @, and for which objects
can be decomposed into a finite sum of simple objects.

A tensor category is a C-linear semisimple rigid monoidal category, where 1 is simple. A
symmetric tensor category is a tensor category with a symmetric braiding. We should note
that there is no canonical definition of tensor category in the literature. Our definition is a
stronger condition than that given in chapter 4 of [13], where for convenience we require our
categories to be semisimple rather than abelian. We will give more detailed explanations
of each of these terms below.

A.1.1 Categories

A category C consists of:
1. A collection of objects, a, b, ...
2. For any objects a, b, a set Hom(a — b) of morphisms, denoted by arrows f : a — b.

3. Given morphisms f : a — b and g : b — c there is a way to compose them o, to
create a new morphism (go f) :a — c.

4. For every object a there is an identity morphism id, : a — a.

Morphism composition is associative, and the identity morphisms composes trivially:
(fog)oh=fo(goh), and foidya=f=idao f. (A.1)

A simple example of a category is Vec(C), the category of complex vector spaces. The
objects are the vector spaces C" for n = 1,2,3... and the morphisms between C* — C™
are m xn matrices. We compose these morphisms using matrix multiplication. The identity
morphisms on C" is just the n x n identity matrix.

The finite-dimensional complex representations of a group G form a category Rep G,
where the objects are representations and the morphisms are covariant maps between
representations.

A morphism f : a — b is an isomorphism there exists an inverse morphisms f~! :
b — a such that f~'o f =ida and f o f~! =idy. Two objects are isomorphic if there is
an isomorphism between them.

A functor generalizes the notion of group homomorphisms to categories. More pre-
cisely, given two categories C and D, a functor F : C — D is a associates to every object
a € C anobject F(a) € D and every morphism f : a — b amorphisms F(f) : F'(a) — F(b),
such that

F(fog)=F(f)oF(g), and F(ida) = idpa. (A2)
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As an example, given two groups H C G there is a functor F' : Rep(G) — Rep(H).
This functor takes representation a € Rep(G) and turns it into the restricted representation
F(a) € Rep(H). Since any morphism f : a — b preserves G, they also preserve the
restricted representation on the subgroup H and so F'(f) is a morphism in Rep(H).

A functor F' : C — D is faithful if for every a and b in C the function F' : Hom(a —
b) — Hom (F'(a) — F'(b)) is injective. The functor is full if for every a and b in C the
function F' : Hom(a — b) — Hom (F'(a) — F(b)) is surjective.

A.1.2 Linear categories

A linear category is one for which the sets of morphisms Hom(a — b) are vector spaces
(for our purposes, over C) and for which morphism composition is bilinear. The category
Mat(C) is clearly linear, as is Rep G.

A linear category C is additive if there is some abstract notion of a direct sum &. More
precisely, for a pair of objects a and b, the direct sum, if it exists, is defined to be an object
a @ b such that:

1. There exists embedding morphisms 11 :a—a®band 1o :b—>a®b
2. There exists projection morphisms 7 :a®b —aand m:a®b — b

3. These maps satisfy the equations

Mot =idy, mo o1y =idp, L107T1+L207T2=ida@b. (A?})

If such an object exists it is unique up to unique isomorphism (see section 8.2 of [71]).

This definition of a direct sum may look a little abstract, so let us unpack it for the case
of Mat(C). In this category the direct sum of C™ and C" is the object C"™ @ C"* = C™*".
In this case the embedding and projection morphisms are

0 = Luxm Ly = Omxn
Onxm ) Lnsxn (A.4)
T = (Imxm Omxn) ) T2 = (Onxm Inxn) )

where I, xm is the m x m identity matrix and 0, x,, is the n X m matrix where all entries
are 0.

A linear*! category is additive if for each pair of objects a and b there exists a direct
sum a @ b, and if there exists a zero object 0 € C such that Hom(0 — 0) = 0.

Given a linear category C, one can always construct a new category C2d9 which is
additive by formally adding objects a® b and a® b @ ¢ and so on to C. This procedure is
the additive completion we made use of to construct ﬁeva(n) in section 5.4. It is a very
general construction, and is detailed in section 16.2 of [73]. The upshot is that we do not

lose much generality by restricting ourself to additive categories.

“1This definition, and the definition of semisimplicity which follows, can be extended to more general
categories where the Hom-sets are merely required to be abelian groups rather than vector spaces. For
simplicity we will only consider linear categories; more general definitions can be found in chapter 1 of [13].
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An additive category C is semisimple if:

1. There exists a set of simple objects a; such that Hom(a; — a;) is a one-dimensional
vector space, and Hom(a; — a;) for i # j contains only the 0 morphism

2. Every object in C is the direct sum of simple objects

Since for a simple object a the space Hom(a — a) is one dimensional every morphism
f a — ais of the form \id, for some A € C. In Rep G the simple objects are precisely the
irreducible representations. For a finite or compact Lie group G, Rep G is always semisim-
ple. For non-compact groups there can be representations which are indecomposable but
not irreducible, and this spoils semisimplicity. These categories are still abelian*? and many
results extend naturally to this more general case. We will however focus on semisimple
categories in this paper.

A.1.3 Monoidal categories and braidings
A monoidal category is a category with a tensor product. More precisely, it is a cate-

gory with:

1. A functor ® : C x C — C. This means that we can form tensor product a ® b of
any two objects a and b. Also, given morphisms f :a — b and g : ¢ — d we can
form their tensor product: f®¢:a®c — b®d. Being a function, ® should respect
morphism composition:

(fiofe)®(g10g2) = (fi®g1)o(f2®g2) (A.5)

2. A special object 1 € C.

The tensor product is required to be associative, and 1 acts as the identity:*3
(a®b)®c=a®((b®c), anda®l=a=1®a. (A.6)

On a linear category, we require the tensor product to be bilinear. Both Mat(C) and Rep G
form linear monoidal categories with the usual tensor products.

A braiding in a monoidal category relates a®@ b to b @ a. More precisely, it is a family
of isomorphisms

ﬂa’b:a®b—>b®a (A?)

satisfying the identities*

ﬁa,b@c = (idb ® ﬁa,c) o (/Ba,b ® idc) , 6a®b,c = (/Ba,c ® idb) o (ida ® ﬁb,c) , (AS)

42 A definition of what this means can again be found in chapter 1 of [13]; it is a stronger notion than

additive but weak than semisimplicity.

43Here we are only describing a strict monoidal category. More generally the associativity and identity
hold only up to a unique isomorphism, and additional axioms need to be introduced. We will not worry
about such subtleties here.

“4The first equation means, in plain language, that to braid a with b ® ¢ we can first braid a with b
doing nothing to ¢ and then with ¢ doing nothing to b. The second is analogous.
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and for any pair of morphisms f:a— b and g:c—d,

Bb,d o(f®g)=(g®f)o Bac - (A.9)

The braiding is symmetric if
Bb,a o Ba,b = ida®b- (A.lO)

A monoidal category with a braiding (resp. symmetric braiding) is called braided (resp.
symmetric).

Both Mat(C) and Rep G have symmetric braidings. In Mat(C), fix some basis egk) of
C* and write vectors in C™ ® C" in the form

m n

v = ZZUU egm) ® egn) . (A.11)

i=1 j=1

The braided vector S, ,(v) € C* ® C™ then corresponds to transposing the matrix (v;;).
The braiding on Rep GG can be defined likewise.

A.1.4 Symmetrizing and antisymmetrizing

Let a be an object in a symmetric tensor category C, and consider the tensor product a®*.
For any ¢ < k we can define the morphism

0; = 1A @ fa 0 @ idZFI71 (A.12)

which interchanges the ¢ and ¢ + 1 copies of a in the tensor product. It follows from the
braiding axioms that the operators o; satisfy the relations
Uiz =1
oio; = ojo; for i — j| > 1 (A.13)
0i0i4+10; = 04107041

which are the generating relations for the group symmetric group Si. Thus in any symmet-
ric tensor category we have a morphism S — Hom(a®* — a®*). We can then decompose
the space Hom(a®k — a®k) into representations of S, so that all morphisms can be
classified by their symmetry properties. We can for instance define the fully symmetric
morphisms to be those that transform trivially under Sy and the fully antisymmetric mor-
phisms to be those that change sign under the braiding. This generalizes the notion of
symmetric and antisymmetric tensors.

By classifying idempotent morphisms by their symmetry properties under Sy, we can
classify the simple objects b; in

K
a®k = @ bz
=1

by their symmetry properties as well. The collection of all simple objects which transform
trivially under Sy together form an (in general not simple) object in a®* which is called
the symmetrized product S*(a). We can likewise define the antisymmetrized product A*(a)
by restricting to objects transforming in the fully antisymmetric representation of Sk.
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A.1.5 Tensor functors

If we have categories with extra structure, then it is natural to define special functors
which preserve these structures. An additive functor is a functor which preserves direct
sums and 0. A strict monoidal functor is a functor which preserves tensor products and 1.
A strict braided monoidal functor is a strict monoidal functor which furthermore preserves
the braiding. We shall define a strict braided tensor functor to be a functor which is both
strict braided monoidal and additive.

A.2 Rigidity, traces and dimensions

In this section we will now define rigidity in the context of a symmetric monoidal category.
Given an object a in a monoidal category, the object a is dual to a if there exists morphisms
d®2:a®a— 1and a5 : 1 — a®a, which satisfy the zig-zag relations

(1®06*) 0 (6az®1) =ida, (62 ®1) 0 (1® 6az) = idz. (A.14)

These morphisms are called the cap and cocap for their graphical representations:

o

532 = £ and daa = a\/ .

a a

The first zig-zag relation can be expressed graphically as:
a a a = s (A15)

and an analogous expression holds for the second zig-zag relation.
If @ is dual to a, then a is dual to a. This is a consequence of the braiding, for we can

define morphisms:
5§,a = 5a,?1 o 55,;1 , 522 = /Bﬁ,a 0§22 ) (A'16)

which also satisfy the zig-zag relations, but with a and a swapped. Proving this is an
exercise in graphical manipulations.

It can be proven (see e.g. section 2.10 of [13]) that for a given object a its dual a is
unique up to unique isomorphism. For this reason we can safely talk about the dual of an
object, without having to worry about which dual we are actually talking about.

A symmetric monoidal category is rigid if every object has a dual.

A.2.1 Dimensions and traces

Let C be a rigid symmetric tensor category, and a an object in C. For any morphism
f :a — a, we define the trace:

M

a

tra(f) = 6™ o (ida @ f) 0 daa = ia] | (A7)
|\

Using string diagrams, the reader may convince themselves that an equivalent definition is
tra(f) = 6% o (f @ ida) © daa (A.18)

so that our choice to place f on the right, rather then the left, in (A.17) was unimportant.

— 59 —



Proposition A.1. The trace satisfies the following identities:
1. tra(Af 4 pg) = Mra(f) + ptra(g) for f,g:a—a and \,up € C
2. tran(f © 9) = tra(f)tru(g) for fia—a andg:b— b
3. tra(go f) =trp(fog) for fra—bandg:b— a

Each of these properties is straightforward to prove, and they generalize the usual
linearity and cyclicity properties of the matrix trace. Further, we define the dimension
of a to be dim(a) = tra(ida). This generalizes the usual notion of the dimension of a

representation.
Proposition A.2. We have the following identities:
dim(a ® b) = dim(a)dim(b), dim(a® b)=dim(a)+ dim(b), dim(a)= dim(a).
(A.19)
A.2.2 Implications of semisimplicity

Semisimplicity places many non-trivial constraints on a tensor category. We will now

explore a few non-trivial consequences of semisimplicity.
Proposition A.3. For any simple object a in a symmetric tensor category C, dim(a) # 0.

Proof. Because a is simple, Hom(a — a) is one-dimensional. From this it follows that both
Hom(1 — a®a) and Hom(a ® a — 1) are also one-dimensional. Using semisimplicity we
then find that

aRa=1®... (A.20)

where the additional simple objects are not isomorphic to 1. Since both Hom(1 — a ® a)
and Hom(a ® a — 1) are one-dimensional, we can deduce that

daa = A1, 02 = umy (A.21)
for non-zero A, p € C. We can then use this to compute:
dim(a) = tra(ida) = 6*® 0 daa = Au(m1 011) = A (A.22)
which is non-zero.
Proposition A.4. I[fb~a; ®...®a, thenbra;®...Da,.

Proof. Tt suffices to prove this for the simpler case b &~ a; ® as. In this case we have a pair
of morphisms
wk:b—>ak, Lk:ak—>b (A.23)

for k = 1,2, satisfying the conditions defining the direct sum. Let us now define

ay b
T = w , U = t’ﬁ] . (A.24)
b ay

It is easy to verify that these maps also satisfy the direct sum conditions, and so
b ~ar @ a;.
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Given any two morphisms f:a — b and g : b — a, we can define the bilinear pairing

(9. f) =tra(go f) =tru(foyg). (A.25)
Proposition A.5. The pairing (-,-) on Hom(a — b) x Hom(b — a) is non-degenerate.

Proof. For any simple object ¢ which appears in the decomposition of an object a we can
choose a basis of projection and embedding morphisms L;C and Wg,c satisfying

7T; ¢ © Lg o = 6Yid,. (A.26)

If ¢ also appears in b we can likewise choose a basis of morphisms Lb and 7rb . We then
construct a basis of Hom(a — b) COHlpI‘lSll’lg of morphlsms P¥ = = © 7). and likewise a

basis of Hom(b — a) of morphisms QY = [,a c© 7rb o~ Now we compute the pairing

(QI, Py = tra(QF 0 PiV') = 6" tra(t o 0 o) = 0" tre(m o 0 1l o) = 067 dim(c).
(A.27)
Since dim(c) # 0 is always non-zero by proposition A.3, the pairing (-, -) is non-degenerate.

A.2.3 A note on definitions

As in the paper we only consider symmetric tensor categories, we have defined rigidity,
trace and dimensions to be as simple as possible in this context. In a more general tensor
category, if (A.14) is satisfied by a and a then we say that a is a left dual to a, and that a
is a right dual to a. Unlike the symmetric case, in a general tensor category the left dual
of a (which we can denote a~) and the right dual of a (which we can denote ~a) do not
have to be isomorphic.

A pivotal tensor category is a tensor category with a series of isomorphisms “a — a~
satisfying various naturalness conditions. This pivotal structure can be used to define left
and right traces; if these traces are always equal we say that the tensor category is spherical.
Even on symmetric tensor categories there may be multiple inequivalent pivotal structures,
and hence inequivalent traces and dimensions. In some applications (such as to 3d TQFTs)
distinguishing between different structures may be important.

In a symmetric tensor category, the braiding gives rise to a canonical pivotal structure
which is automatically spherical. The potential existence of other pivotal structures is not
important for our purposes.

A.3 Further facts about Deligne categories
A.3.1 Positive tensor categories

A positive symmetric tensor category is one for which all objects have non-negative dimen-
sion. For any group G the category Rep G is clearly positive. On the other hand, as we
have seen already, Deligne categories are in general not positive. To see a general reason,
consider some object a in a symmetric tensor category C with dimension dim(a) = a. We
can then compute that the dimension of the antisymmetrization A*(a) is
ala—1).. (a—k+1)

k!

dim(A*(a)) = (A.28)
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If « is not an integer than this quantity will become negative for some sufficiently large
values of k. So we conclude that all dimensions must be integers in a positive category,
which excludes Deligne categories apart from the integer parameter case when they coincide
with Rep G.

A.3.2 Universal properties of I?e?pU(n), I/?E)O(n), I/?;)Sp(n) and I/?E)Sn

Irreducible representations of a group can be classified as real, pseudoreal, or complex.
This classification generalizes to simple objects in a symmetric tensor category. Since the
dual of a simple object is itself simple, either Hom(a — @) is zero-dimensional, or there
exists an isomorphism i, : a — a, unique up to a scale factor. In the latter case, we can
define a morphism

B*2 = §*2 0 (idy ® ia) € Hom(a®a — 1). (A.29)

Going the other way, given a B*? we can construct i, = (B*? ® ida) o (ida ® daa), so the
two Hom-spaces are isomorphic, in particular Hom(a ® a — 1) is one-dimensional. This
implies that the constructed morphism is either symmetric or antisymmetric:

B*? 0 3y 9 = £B**. (A.30)
We hence have the following tripartite classification of simple objects:

1. If a and @& are not isomorphic, that is, if Hom(a — @) is trivial, then we say that a

is complex.
2. If a and a are isomorphic and B®? is symmetric then we say that a is real.
3. If a and a are isomorphic and B®? is pseudoreal, then we say that a is pseudoreal.

The categories Rep U(n), Rep O(n) and Rep Sp(n) are special in the theory of symmetric
tensor categories:

Theorem A.6 (Deligne [77-79]). Let C be a symmetric tensor category and a € C any
object with dim(a) = n:

1. There is a unique (up to isomorphism) functor F : /R—\eBU(n) — C with F([+]) = a.

2. If there is a symmetric isomorphism a — @, then there is a unique (up to isomor-
phism) functor F : Rep O(n) — C with F([1]) = a.

3. If there is a skew-symmetric isomorphism a — a, then there is a unique (up to
isomorphism) functor F : Rep Sp(n) — C with F([1]) = a.

If n &€ Z these functors are all faithful.’”

Essentially, this says that out of all the tensor categories with an object a of dimension
dim(a) = n ¢ Z, the category /R;T) U(n) is the most symmetric, in the sense that it contains
the minimal space of morphisms in Hom(a®* — a®*). In a similar vein, /R\eBO(n) is the
most symmetric tensor category with a real representation dim(a) = n and /REBSp(n) is
the most symmetric tensor category with a pseudoreal representation.
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The category ﬁg?) Sy also satisfies a universality property; it is the universal category
with a commutative Frobenius algebra of dimension n [78]. To explain the precise meaning
of this statement is beyond the scope of the appendix, so instead we shall simply note that
Frobenius algebras arise naturally as the algebraic structure underlying 2d TQFTs (see [80]
for a pedagogic introduction to this topic). While traditionally defined over vector spaces,

> The universality property of RAeBSn states

they can be generalized to any category.*
that for any category C, functors from Rep.S,, — C are in one-to-one correspondence with

commutative Frobenius algebras in C.

A.4 Deligne’s theorem on classification of tensor categories

We have seen that the representations of any group G are naturally described by a sym-
metric tensor category Rep G. By taking this abstract approach to representation theory,
we then exhibited several families of categories which smoothly interpolate between the
representation categories for various groups such as O(N), U(N) and Sy (section 9). By
inspection, for non-integer n these Deligne categories contain objects of non-integer and
negative dimensions, and so cannot be equivalent to Rep G for some group G.

One wonder if there exist some tensor categorical symmetries which have all objects
of integer and positive dimensions, and yet which are inequivalent to any group symmetry.
Deligne’s theorem on tensor categories says that this is impossible. This theorem describes
the conditions under which a symmetric tensor category is equivalent to Rep G. More gen-
erally, it classifies all symmetric tensor categories satisfying a certain finiteness condition,
but for positive categories the statement is particularly simple:

Theorem A.7 (Deligne [78, 79]). Any positive symmetric tensor category C is equivalent
to Rep G for some group G. If C is a fusion category,*® then C is equivalent to Rep G for
some unique*” finite group G.

Because any category Rep GG is automatically positive, we see that positivity is both
necessary and sufficient for a symmetric tensor category to be of the form Rep G.

We will now describe Deligne’s theorem more generally. Given an a in a tensor category
C, we define length(a) to be the number of simple objects appearing in a. We say that
C has subexponential growth if for every a € C there exists a Cy such that for all £ > 0,
length(a®%) < (Ca)*.

All positive tensor categories satisfy the subexponential growth condition. Indeed, as
discussed in section A.3.1, in any positive tensor category the dimensions of all objects
must be integers and so:

length(a®*) < dim(a)” . (A.31)

On the other hand, Deligne categories such as ﬁ\e?)O(n) do not satisfy the subexponen-
tial growth condition. For non-integer n the number of linearly independent morphisms

45Gee footnote 17 for further discussion.

46 A fusion category is a tensor category with a finite number of simple objects.

4"There exist isocategorical groups G1 and Gs for which Rep Gy and Rep Gy are equivalent as fusion
categories, but which have different braidings and so are distinct as symmetric fusion categories [81-83].
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n® — n®* grows factorially in k, and this in turn implies that the number of simple
objects in n®* also grows factorially.

Let us begin with fusion categories. These always have subexponential growth, as
proved in section 9.9 of [13]. Given a finite group G, let z € G be in the centre of G and
satisfy 22 = 1. On any irreducible representation of G, z acts either as the identity or
minus the identity. For any simple object a € Rep G we define

+1 if z acts as the identity on a
sgn():{ if z identity on (A.32)

—1 if z acts as the minus the identity on a.
We then define Rep(G, z) to be the category Rep G but with the modified braiding:
Bapla®@b) = (—1)sn@sen®p g 5 (A.33)

We can think of these as representations where if sgn(a) = —1 we use Grassmann rather
than real variables. Indeed the pair (G, z) can be thought of as a finite analogue of a
supergroup [84]. We then have the following result:

Theorem A.8 (Deligne [78, 79]). Any symmetric fusion category C is equivalent to
Rep(G, z) for a unique finite group G and z € G as above.

Deligne’s theorem for arbitrary subexponential symmetric tensor categories is more
technical to state. Broadly speaking it shows that such categories are equivalent to repre-
sentations of supergroups.

A.5 Unitarity

Usually in quantum field theory we have some notion of unitarity. In order to define this
for theories with a more general categorical symmetry we need to introduce some new
structure.

As in section 7.8, conjugation * is a anti-linear braided monoidal functor x : C — C
which is involutive, ** = id¢, and for which a* is dual to a.

Because a* is dual to a, there are cap and cocap maps 62" and 0a* a, and also sasa
and 0q a+, satisfying the zig-zag relations. As in the previous subsections, we can always
choose these maps to satisfy

5a*,a = 5a,a* © ﬁa*,a ’ 5a,a* = Ba*,a o 5a* 2 (A34)

Proposition A.9. For any simple object a, there are cap and cocap maps 6>* and 0a* a
such that
(6%3) =622 (ara)" = daar - (A.35)

Proof. For simple object a, Hom(a ® a* — 1) and Hom(a* ® a — 1) are one-dimensional
and so

(53’3*)* = adf®? (A.36)
for some number «. We thus find that

(5a,a*)** — a(5a,a* ° /Ba,a*)* _ |a|25a,a* o ﬁa,a* o ﬁa*,a — ‘a‘Z(Sa,a* . (A37)
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Because * is involutive, |a| = 1. Repeating the same logic for 0, 2+ implies that

(5a,a*)* = ﬁ(sa*,aa |B| =1. (A38)
Applying * to both sides of the zig-zag relations:
[(ida ®6%2) @ (Jaar ®ida)| = (ida)* (A.39)

we find that a8 = 1. We now define the new cap and cocap morphisms jaa” = gl/25aa

and 5a*,a = a_l/Qéa*,a, which still satisfy the zig-zag relations and also satisfy (A.35).

From now on we shall only work with cap and cocap maps supplied by proposition A.9.
As a consequence, we see that all dimensions in a category with conjugation must be real:

dim(a)* = (6% 0 §aa+)* = 0% 0 far 2 0 faar © Oaar = dim(a). (A.40)

Given a complex conjugation * on a symmetric tensor category C, we can define a
notion of Hermitian adjoint. Given any morphism f : a — b, we can define the adjoint
fT:b — a to be the morphism:

a
f1=(ida ® 6°"P) 0 (ida ® f* ® idp) © (daa+ @ idp) = 17 : (A.41)
b
We use the adjoint to define a sesquilinear form on Hom(a — b): given any two morphisms
f,9:a — b we define

(9" f) = tra(g" o f) = [ ] (A.42)

@
v o

Proposition A.10. The sesquilinear product (-,-) defined above is conjugate symmetric
and non-degenerate. If (-,-) is positive-definite on all Hom-sets then C is positive.

Proof. To prove conjugate symmetry we compute

(9", )" =tra (D) 0 ) = [ Bf Y| = tralfTo9) = (/T 9). (A.43)

Non-degeneracy follows from proposition A.5 and the fact that t is idempotent.
Finally, to prove that (-,-) can only be positive-definite if C is positive, we compute

(id},ida) = tra(ids) = dim(a), (A.44)
and so positive-definiteness hence requires dim(a) > 0 for any simple object a.

We have thus seen that conjugation defines a Hermitian form on the Hom-sets of C, but
that this conjugation can only be positive-definite for positive categories. If the Hermitian
form (-, -) is positive-definite on every Hom-set, C is called a unitary category (see e.g. [85]).
Because they are not positive, Deligne categories cannot be unitary for non-integer n.

In section 7.8 we proved that CFTs with a non-integer n Deligne category symmetry
are non-unitary. Note that this does not follow automatically from the non-unitarity of
these categories, but requires a separate argument.
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A.5.1 Another note on definitions

Our definition of conjugation is a little different from that given in the literature, for
instance in [86]. A f-category is a monoidal category with an involutive functor t : C°? — C,
which acts as the identity on objects. In other words, for every morphism f :a — b there
is an adjoint morphism f': b — a such that

idf =ida, (9o )T =fTog", fT=7. (A.45)
If C is a braided tensor category, we say that  is antilinear and braided if
Af+ug)t = NfT+ug", Bl =Bap. (A.46)

As we saw in (A.41), our notion of conjugation in a symmetric tensor category can be
used to define such a map T, and it is straightforward to check that this T is antilinear
and braided. Conversely, given an antilinear, braided, and pivotal  we can define for any
morphism f a conjugate morphism f*:a* — b* by

= (02 @idp) o (ida ® fT @ idp+) 0 (idar @ Sp ) - (A.47)

Hence our notion of a symmetric tensor category with conjugation is the same as that of
a symmetric tensor category with a antilinear, braided f-functor.

B Continuous categories

In this section we shall develop some aspects of the theory of continuous categories. To the
best of our knowledge this is not a concept that has explicitly been studied in the literature,
although it appears to be related to the notion of a fundamental group of a tensor category
as described in [59, 78], with our maximal adjoint being the Lie algebra of that group.*®

Let us recall from section 7.4 that an adjoint (g,7) in a symmetric tensor category C
is an object g and a family of morphisms 7, : g ® a — a satisfying (7.22), (7.23), (7.24),
and (7.28), which we repeat for convenience:

1. (Naturalness) For every morphism f : a — b, the following diagram commutes:

id
g®aﬂ>g®b

[ [ (B.1)

a—7 b

2. For all objects a,b € C the following identities are satisfied:

Tagbh = Ta ® idy, + (ida 02y Tb) o (Bg,a X ldb) s <B2)

Ty @ Bgg = —Tg- (B.3)

3. (Non-degeneracy) If a morphism f : g — g satisfies 7, o (f ® idq) = 0 for every a €
C, then f=0.

If a category has an adjoint object (g,7) we shall say that the category is continuous,
otherwise we say that it is discrete.

48We would like to thank Pavel Etingof for this remark.
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Our definition of an adjoint does not make explicit use of the additive structure on
C, and indeed we could generalize the notion of an adjoint to any symmetric monoidal
category. Semisimplicity will however prove very constraining;:

Proposition B.1. Given an adjoint (g, 7) and any two objects a1, as € C,
Tay@as = U1 0 Tay O (idg ® 1) + 12 0 Ta, 0 (idg @ m2) . (B.4)

Proof. Let m; and ¢; be the projection and embedding morphisms from a; into a; ® as.
Applying naturality to ¢;, we find that

Tay@as © (idg ® 1) = 1,0 Ta;, = Taj@a, 0 (Idg ® (4 07;)) =107y, 0 (idg ® 7). (B.5)
We thus find that
110Ta,; 0 (Idg®@ 1) 4120 Ta, 0 (idg @ T2) = Ta,@a, © (idg @ (L1 0 T1 + 12 0 M2)) = Ta,@ay » (B.6)
which is what we set out to prove.

Proposition B.2. Any adjoint (g, 7) can be decomposed as g ~ay ® --- @ a,,

n

Tb = Z(Uz')b o (m ®idp), (B.7)
i=1
where each a; is a simple object and each (a;,0;) is an adjoint for alli=1,...,n.

Proof. Using semisimplicity we can always decompose g = a; ® - - - @ a,, with project and
embedding morphisms 7; and ¢;. For each 7 we can then define

(0i)b = (mp) © (1, ®idp), so that 7, = Z(ai)b o (m ®idp) . (B.8)
i=1

It is straightforward to check that (a;,o;) satisfies naturality, (B.2) and (B.3). To prove
non-degeneracy, we note that if f : a; — a; satisfies

(0i)b o (f ®ida) =0 (B.9)

for all b € C, then
Tbo((LiOfOWi)(@ida) =0. (BlO)

The non-degeneracy of 7 then implies that
tiofomp=0 = f=mo0004, =0, (B.11)

and so (a;,0;) is an adjoint.

— 67 —



Taken together, these two propositions allows us to restrict our attention to simple
objects. To specify an adjoint (g, 7) we need only specify 7, for each simple object a, and
to find all possible adjoints in a category we can restrict our search to simple adjoints.

We can introduce a partial ordering on the collection of adjoints in a category C, writing
(g,7) = (h,0) if there exists a morphism f : h — g such that

Oa=Tao (f®idy) for allaeC. (B.12)

We shall say that two adjoints are isomorphic, (g,7) =~ (h,0), if both (g,7) = (h,0) and
(h,0) = (g,7).

Proposition B.3. Given isomorphic adjoints (g,7) =~ (h,0), there ezists a unique isomor-
phism f:g — b such that

Ta=0a0(f®ida), Oa=Tao(f ' ®ida). (B.13)
Proof. Let f:g— b and g: h — g be morphisms satisfying
Ta=0a0(f®ida),  ca=Tao(g®ida), (B.14)
for all a € C. We can then compute
Tao ((idg —go f)®ida) =Ta —0ao (f ®ida) =0. (B.15)

and so the non-degeneracy condition on (g,7) implies that g o f = idg. An identical
argument implies that f o g = idy and thus that g = f —1. As inverses in a category are
unique, it follows that f and g are the unique morphisms satisfying (B.14).

Let us now consider the task of finding all adjoints, up to isomorphism, in a category
which is finitely generated. Recall that, as defined in section 7.7, an object g generates
a category C if any simple object in C appears in g®* for sufficiently large k. If such an
object exists we say that C is finitely generated. The Deligne categories we have considered
in this paper are all finitely generated, and so are the representation categories of finite
group and of semisimple Lie algebras, so this condition is not very restrictive.

Proposition B.4. If a continuous category C is generated by an object g and (h,7) is an
adjoint in C, then the morphism

N = (Tg ®idg) o (idy ® dg 5) (B.16)
embeds b into gR E.

Proof. We will prove this by contradiction, assuming that 7 is not an embedding morphism,
i.e. has a non-trivial kernel. In this case there must exist a simple object j in h (with 7
and ¢ projection and embedding morphisms) such that

noy =0 = 7go(;;®idg) =0. (B.17)
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We can then use (B.2) to show that for any k,
Tg®k O (Lj ® idg®k) =0. (B18)

Now consider any other simple object a € C. Because g generates C there exists
embedding and projection operators iy : @ — g®* and 7, : g®F — a for some sufficiently
large value of k. Applying (B.1) to 7, and then (B.18) we find that

Ta © (idy @ 7a) 0 (1) ® idgek) = Ta © Teak 0 (1) ®@ idgek) 0 (1) ® idger) = 0. (B.19)

If we now contract the Lh.s. sides of this equation with 7 ® ¢, we find that
Ta© (idy ® Ta) 0 (1§ @ idger ) o (M@ ta) = Ta 0 (1j0mj) @ (Taota) = Tao ((tjo7) ®ida), (B.20)
and so conclude that for every a € C,
Ta © ((¢jo ) ®ida) = 0. (B.21)

Because ¢ o 7rj is a non-zero morphism from § — b, we find that non-degeneracy condition
for (h, 7) has been violated, and so we have a contradiction.

By this proposition, to find all adjoints we may simply go through the list of all simple
objects in g ® g. As a simple application, /RET)O(n) is generated by the object n. Since
n® ~S® A @1, to find all of the adjoints in /R;T)O(n) we can simply check these three
possibilities, and find that A is the only adjoint (for S and 1 the category does not contain
morphisms 7, with the needed properties).

In a symmetric tensor category C we will define the maximal adjoint object (m,T), if
it exists, to be an adjoint such that for any other adjoint (g,7), (m,T) = (g,7). Due to
proposition B.3, if a maximal adjoint exists, it is unique up to unique isomorphism.

Proposition B.5. In a finitely generated tensor category C there exists a unique maximal
adjoint.

Proof. We will begin with the following easy observation. Given any two adjoints (b, 77)
and (h, 72) where b is simple, then any linear combination (h, A\;71 + A272) is also an adjoint
so long as A\171 + Aam # 0.

Let g generate C and let a; be a simple object in g®g~a; @& - - @ a,. We can then
define U; to be the set of morphisms f : a; —» g ® g such that

[ = (7 ®1dg) o (ida; ® dg5) (B.22)

for some adjoint (a;, 7). Note that if such an adjoint exists it is unique; for if there were
two such adjoints (a;,71) and (a;, 72) then the (a;, 71 — 72) would be an adjoint but would
violate proposition B.4.

Since any linear combinations of adjoints is an adjoint, the set U; is a vector space.
Choose a basis f1,..., fy, of U;, corresponding to adjoints (a;,71),..., (a;, ;). We can
then define an adjoint (al@ki, 0;) with

k;
(0i)b =Y 150 ()b 0 (1 ®idp), (B.23)
=1
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S

where ¢; and m; are the embedding and projection morphisms into a; ki By construction

( aéBki

.t oq) = (a, ) for any adjoint (a;, 7).

Repeating this construction for each a; € g®g, we can then define m = @ ; a?ki and
n

Tp =Y ta, 0 (03)p o (Ta, @idp). (B.24)
i=1

It is straightforward to verify that (m,T") is an adjoint, and, using propositions B.4 and B.2,
that for any adjoint (h,7) in C, (m,T) = (b, 7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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