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Abstract

Following our previous work focussing on compounds containing up to 3 non-hydrogen
atoms [J. Chem. Theory Comput. 14 (2018) 4360-4379], we present here highly-accurate
vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen
atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen,
cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole,
isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole,
tetrazine, thioacetone, thiophene, thiopropynal, and triazine. To obtain these energies, we use
equation-of-motion coupled cluster theory up to the highest technically possible excitation order

for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ), selected configuration interaction
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(SCI) calculations (with tens of millions of determinants in the reference space), as well as
the multiconfigurational n-electron valence state perturbation theory (NEVPT2) method. All
these approaches are applied in combination with diffuse-containing atomic basis sets. For
all transitions, we report at least CC3/aug-cc-pVQZ vertical excitation energies as well as
CC3/aug-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3
almost systematically delivers transition energies in agreement with higher-level methods with a
typical deviation of +0.04 eV, except for transitions with a dominant double excitation character
where the error is much larger. The present contribution gathers a large, diverse and accurate
set of more than 200 highly-accurate transition energies for states of various natures (valence,
Rydberg, singlet, triplet, n — n*, 7 — n*, ...). We use this series of theoretical best estimates
to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2,
STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, as well as NEVPT2. The results of

these benchmarks are compared to the available literature data.



1 Introduction

Accurately describing transition energies between the electronic ground state (GS) and excited states
(ES) remains an important challenge in quantum chemistry. When dealing with large compounds
in complex environments, one is typically limited to the use of time-dependent density-functional
theory (TD-DFT), !~ a successful yet far from flawless approach. In particular, to perform TD-DFT
calculations, one must choose an “appropriate” exchange-correlation functional, which is difficult
yet primordial as the impact of the exchange-correlation functional is exacerbated within TD-DFT
as compared to DFT.# Such selection can, of course, rely on the intrinsic features of the various
exchange-correlation functional families, e.g., it is well-known that range-separated hybrids provide
a more physically-sound description of long-range charge-transfer transitions than semi-local
exchange-correlation functionals.>® However, to obtain a quantitative assessment of the accuracy
that can be expected from TD-DFT calculations, benchmarks cannot be avoided. This is why so
many assessments of TD-DFT performance for various ES properties are available.*

While several of these benchmarks rely on experimental data as reference (typically band
shapes ~'* or 0-0 energies®!°~2?), using theoretical best estimates (TBE) based on state-of-the-art

computational methods >3-28

are advantageous as they allow comparisons on a perfectly equal footing
(same geometry, vertical transitions, no environmental effects, etc). In such a case, the challenge is
in fact to obtain accurate TBE, as the needed top-notch theoretical models generally come with a
dreadful scaling with system size and, in addition, typically require large atomic basis sets to deliver
transition energies close to the complete basis set (CBS) limit. >

More than 20 years ago, Serrano-Andres, Roos, and collaborators compiled an impressive
series of reference transition energies for several typical conjugated organic molecules (butadiene,
furan, pyrrole, tetrazine, . . .).3*3® To this end, they relied on experimental GS geometries and the
complete-active-space second-order perturbation theory (CASPT?2) approach with the largest active
spaces and basis sets one could dream of at the time. These CASPT2 values were later used to assess

the performance of TD-DFT combined with various exchange-correlation functionals,?**? and

remained for a long time the best theoretical references available on the market. However, beyond



comparisons with experiments, which are always challenging when computing vertical transition
energies, ' there was no approach available at that time to ascertain the accuracy of these transition
energies. Nowadays, it is of common knowledge that CASPT2 has the tendency of underestimating
vertical excitation energies in organic molecules when IPEA shift is not included. It is also known
that the use of a standard value of 0.25 au for this IPEA shift may lead to overestimating of the
transition energies making the use of this shift questionable.*!

A decade ago, Thiel and coworkers defined TBE for 104 singlet and 63 triplet valence ES in
28 small and medium conjugated CNOH organic molecules.>3?>?® These TBE were computed on
MP2/6-31G(d) structures with several levels of theory, notably CASPT?2 and various coupled cluster
(CC) variants (CC2, CCSD, and CC3). Interestingly, while the default theoretical protocol used by
Thiel and coworkers to define their first series of TBE was CASPT2,%3 the vast majority of their most
recent TBE (the so-called “TBE-2" in Ref. 26) were determined at the CC3 level of theory with the
aug-cc-pVTZ (aVTZ) basis set, often using a basis set extrapolation technique. More specifically,
CC3/TZVP values were corrected for basis set incompleteness errors by the difference between
the CC2/aVTZ and CC2/TZVP results.?>>® Many works have exploited Thiel’s TBE for assessing
low-order methods,>**>~%% highlighting further their value for the electronic structure community.
In contrast, the number of extensions/improvements of this original set remains quite limited. For
example, Kdnndr and Szalay computed, in 2014, CCSDT/TZVP reference energies for 17 singlet
states of six molecules.® Three years later, the same authors reported 46 CCSDT/aVTZ transition
energies in small compounds containing two or three non-hydrogen atoms (ethylene, acetylene,
formaldehyde, formaldimine, and formamide).70

Following the same philosophy, two years ago, we reported a set of 106 transition energies for
which it was technically possible to reach the full configuration interaction (FCI) limit by performing
high-order CC (up to CCSDTQP) and selected CI (SCI) calculations on CC3/aVTZ GS structures. 28
We exploited these TBE to benchmark many ES methods.?® Among our conclusions, we found that
CCSDTQ yields near-FCI quality excitation energies, whereas we could not detect any significant

differences between CC3 and CCSDT transition energies, both being very accurate with mean



absolute errors (MAE) as small as 0.03 eV compared to FCI.

Although these conclusions agree well with earlier studies, ®®~!

they obviously only hold for
single excitations, i.e., transitions with %77 in the 80-100% range. Therefore, we also recently
proposed a set of 20 TBE for transitions exhibiting a significant double-excitation character (i.e.,
with %T; typically below 80%).”?> Unsurprisingly, our results clearly evidenced that the error in
CC methods is intimately related to the %77 value. For example, for the ES with a significant yet
not dominant double excitation character [such as the infamous A; ES of butadiene (%7} = 75%)]
CC methods including triples deliver rather accurate estimates (MAE of 0.11 eV with CC3 and
0.06 eV with CCSDT), surprisingly outperforming second-order multi-reference schemes such as
CASPT?2 or the generally robust n-electron valence state perturbation theory (NEVPT2). In contrast,
for ES with a dominant double excitation character, e.g., the low-lying (n,n) — (n*, 7*) excitation
in nitrosomethane (%77 = 2%), single-reference methods (not including quadruples) have been
found to be unsuitable with MAEs of 0.86 and 0.42 eV for CC3 and CCSDT, respectively. In this
case, multiconfigurational methods are in practice required to obtain accurate results.”>

A clear limit of our 2018 work?® was the size of the compounds put together in our set.
These were limited to 1-3 non-hydrogen atoms, hence introducing a potential “chemical” bias.
Therefore, we have decided, in the present contribution, to consider larger molecules with organic
compounds encompassing 4, 5, and 6 non-hydrogen atoms. For such systems, performing CCSDTQ
calculations with large one-electron basis sets is elusive. Moreover, the convergence of the SCI
energy with respect to the number of determinants is obviously slower for these larger compounds,
hence extrapolating to the FCI limit with an error of ~ 0.01 eV is rarely achievable in practice.
Consequently, the “brute-force” determination of FCI/CBS estimates, as in our earlier work, 28 is
definitely out of reach here. Anticipating this problem, we have recently investigated bootstrap CBS
extrapolation techniques.?®’> In particular, we have demonstrated that, following an ONIOM-like

scheme, 73

one can very accurately estimate such limit by correcting high-level values obtained in a
small basis by the difference between CC3 results obtained in a larger basis and in the same small

basis.?® We globally follow such strategy here. In addition, we also perform NEVPT2 calculations



in an effort to check the consistency of our estimates. This is particularly critical for ES with
intermediate %7; values. Using this protocol, we define a set of more than 200 aug-cc-pVQZ
reference transition energies, most being within +0.03 eV of the FCI limit. These reference energies
are obtained on CC3/aVTZ geometries and additional basis set corrections (up to quadruple-{ at
28,72

least) are also provided for CC3. Together with the results obtained in our two earlier works,

the present TBE will hopefully contribute to climb a rung higher on the ES accuracy ladder.

2 Computational Details

Unless otherwise stated, all transition energies are computed in the frozen-core approximation (with
a large core for the sulfur atoms). Pople’s 6-31+G(d) and Dunning’s aug-cc-pVXZ (X = D, T,
Q, and 5) atomic basis sets are systematically employed in our excited-state calculations. In the
following, we employ the aVXZ shorthand notations for these diffuse-containing basis sets. We
note that an alternative family of more compact diffuse basis sets (such as jun-cc-pVTZ) have been
proposed by Truhlar and coworkers.’* Such variants could be better suited to reach CBS-quality
transition energies at a smaller computational cost. As we intend to provide benchmark values
here, we nevertheless stick to the original Dunning’s bases, which are directly available in almost
any quantum chemistry codes. Various statistical quantities are reported in the remaining of this
paper: the mean signed error (MSE), mean absolute error (MAE), root mean square error (RMSE),
standard deviation of the errors (SDE), as well as the positive [Max(+)] and negative [Max(—)]
maximum errors. Here, we globally follow the same procedure as in Ref. 28, so that we only briefly

outline the various theoretical methods that we have employed in the subsections below.

2.1 Geometries

The molecules considered herein are displayed in Scheme 1. Consistently with our previous
work,?® we systematically use CC3/aVTZ GS geometries obtained without applying the frozen-

core approximation. The cartesian coordinates (in bohr) of each compound can be found in the



Supporting Information (SI). Several structures have been extracted from previous contributions, 7>~"’

whereas the missing structures were optimized using DALTON’® and/or CFOUR, 7 applying default

parameters in both cases.
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Scheme 1: Representation of the considered compounds.

2.2 Selected Configuration Interaction

Because SCI methods are less widespread than the other methods mentioned in the Introduction, we
shall detail further their main features. All the SCI calculations have been performed in the frozen-

core approximation with the latest version of QUANTUM PACKAGE® using the Configuration
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Interaction using a Perturbative Selection made Iteratively (CIPSI) algorithm to select the most
important determinants in the FCI space. Instead of generating all possible excited determinants
like a conventional CI calculation, the iterative CIPSI algorithm performs a sparse exploration of
the FCI space via a selection of the most relevant determinants using a second-order perturbative
criterion. At each iteration, the variational (or reference) space is enlarged with new determinants.
CIPSI can be seen as a deterministic version of the FCIQMC algorithm developed by Alavi and
coworkers.®! We refer the interested reader to Ref. 80 where our implementation of the CIPSI
algorithm is detailed.

Excited-state calculations are performed within a state-averaged formalism which means that the
CIPSI algorithm select determinants simultaneously for the GS and ES. Therefore, all electronic
states share the same set of determinants with different CI coeflicients. Our implementation of the
CIPSI algorithm for ES is detailed in Ref. 82. For each system, a preliminary SCI calculation is
performed using Hartree-Fock orbitals in order to generate SCI wavefunctions with at least 5,000,000
determinants. State-averaged natural orbitals are then computed based on this wavefunction, and
a new, larger SCI calculation is performed with this new set of orbitals. This has the advantage
to produce a smoother and faster convergence of the SCI energy towards the FCI limit. For the
largest systems, an additional iteration is sometimes required in order to obtain better quality natural
orbitals and hence well-converged calculations.

The total SCI energy is defined as the sum of the (zeroth-order) variational energy (computed via
diagonalization of the CI matrix in the reference space) and a second-order perturbative correction
which takes into account the external determinants, i.e., the determinants which do not belong to
the variational space but are linked to the reference space via a non-zero matrix element. The
magnitude of this second-order correction, E @), provides a qualitative idea of the “distance” to
the FCI limit. For maximum efficiency, the total SCI energy is linearly extrapolated to E? = 0
(which effectively corresponds to the FCI limit) using the two largest SCI wavefunctions. These
extrapolated total energies (simply labeled as FCI in the remaining of the paper) are then used to

compute vertical excitation energies. Although it is not possible to provide a theoretically-sound



error bar, we estimate the extrapolation error by the difference in excitation energy between the
largest SCI wavefunction and its corresponding extrapolated value. We believe that it provides a
very safe estimate of the extrapolation error. Additional information about the SCI wavefunctions

and excitation energies as well as their extrapolated values can be found in the SI.

2.3 NEVPT2

The NEVPT? calculations have been performed with MOLPRO®? within the partially-contracted
scheme (PC-NEVPT?2), which is theoretically superior to its strongly-contracted version due to the
larger number of perturbers and greater flexibility. 43¢ These NEVPT2 calculations are performed
on top of a state-averaged complete-active-space self-consistent field calculation always including at
least the ground state with the excited state of interest Active spaces carefully chosen and tailored
for the desired transitions have been selected. The definition of the active space considered for each

system as well as the number of states in the state-averaged calculation is provided in the SI.

2.4 Other wavefunction calculations

For the other levels of theory, we apply a variety of programs, namely, CFOUR,”® DALTON, ’®
GAUSSIAN,?” ORCA, # MRCC,?>*° and Q-CHEM.”! CFOUR is used for CC3,°>?3 CCSDT-
3,749 CCSDT?® and CCSDTQ;*’ Dalton for CC2,%%% CCSD, '™ CCSDR(3),'! and CC3;7%%
Gaussian for CIS(D); 192103 ORCA for the similarity-transformed (ST) equation-of-motion (EOM)
CCSD (STEOM-CCSD); %1% MRCC for CCSDT?¢ and CCSDTQ;”” and Q-Chem for ADC(2).!9
Default program settings were applied. We note that for STEOM-CCSD we only report states that
are characterized by an active character percentage of 98% or larger. In all the software mentioned
above, point group symmetry was systematically employed to reduce the computational effort. It
should be noted that we do not perform "GS" CC calculations in a specific symmetry to deduce ES
energies. All the CC results reported below correspond to excited-state calculations within the EOM
or linear-response (LR) formalisms, both delivering strictly identical results for transition energies.

These formalisms are also applied to get the triplet ES energies directly from the closed-shell singlet

9



GS. In other words, all our calculations systematically consider a restricted closed-shell ground state.

Finally, the reported CC3 oscillator strengths have been determined within the LR formalism.

3 Main results

In the following, we present results obtained for molecules containing four, five, and six (non-
hydrogen) atoms. In all cases, we test several atomic basis sets and push the CC excitation order as
high as technically possible. Given that the SCI energy converges rather slowly for these systems, we
provide an estimated error bar for these extrapolated FCI values (vide supra). In most cases, these
extrapolated FCI reference data are used as a “safety net” to demonstrate the overall consistency of
the various approaches rather than as definitive reference values (see next Section). As a further
consistency check, we also report NEVPT2/aVTZ excitation energies for all states. We underline
that, except when specifically discussed, all ES present a dominant single-excitation character (see
also next Section), so that we do not expect serious CC breakdowns. This is especially true for
triplet ES that are known to be characterized by very large %7; values in the vast majority of the
cases.? Consequently, we concentrate most of our computational effort on the obtention of accurate
transition energies for singlet states. To assign the different ES, we use literature data, as well as the
usual criteria, i.e., relative energies, spatial and spin symmetries, compositions from the underlying
molecular orbitals, and oscillator strengths. This allows clear-cut assignments for the vast majority
of the cases. There are however some state/method combinations for which strong mixing between

ES of the same symmetry makes unambiguous assignments almost impossible.

3.1 Molecules with four non-hydrogen atoms
3.1.1 Cyanoacetylene, cyanogen, and diacetylene

The ES of these three closely related linear molecules containing two triple bonds have been quite
rarely theoretically investigated, '°%!1%-117 though (rather old) experimental measurements of their

0-0 energies are available for several ES. 7113118 Qur main results are collected in Tables 1 and S1.
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We consider only low-lying valence 7 — n* transitions, which are all characterized by a strongly
dominant single excitation nature (%77 > 90%, vide infra). For cyanoacetylene, the FCI/6-31+G(d)
estimates come with small error bars, and one notices an excellent agreement between these values
and their CCSDTQ counterparts, a statement holding for the Dunning double-{ basis set results
for which the FCI uncertainties are however larger. Using the CCSDTQ values as references, it
appears that the previously obtained CASPT2 estimates '° are, as expected, too low and that the
CC3 transition energies are slightly more accurate than their CCSDT counterparts, although all
CC estimates of Table 1 come, for a given basis set, in a very tight energetic window. There is
also a very neat agreement between the CC/aVTZ and NEVPT2/aVTZ. All these facts provide
strong evidences that the CC estimates can be fully trusted for these three linear systems. The basis
set effects are quite significant for the valence ES of cyanoacetylene with successive drops of the
transition energies by approximately 0.10 eV, when going from 6-31+G(d) to aVDZ, and from aVDZ
to aVTZ. The lowest triplet state appears less basis set sensitive, though. As expected, extending
further the basis set size (to quadruple- and quintuple-{) leaves the results pretty much unchanged.
The same observation holds when adding a second set of diffuse functions, or when correlating the
core electrons (see the SI). Obviously, both cyanogen and diacetylene yield very similar trends, with
limited methodological effects and quite large basis set effects, except for the 12; — 3%F transitions.
We note that all CC3 and CCSDT values are, at worst, within +0.02 eV of the FCI window, i.e.,
all methods presented in Table 1 provide very consistent estimates. For all the states reported in
this Table, the average absolute deviation between NEVPT2/aVTZ and CC3/aVTZ (CCSDT/aVTZ)
is as small as 0.02 (0.03) eV, the lowest absorption and emission energies of cyanogen being the
only two cases showing significant deviations. As a final note, all our vertical absorption (emission)
energies are significantly larger (smaller) than the experimentally measured 0-0 energies, as they
should. We refer the interested reader to previous works, ''*!!7 for comparisons between theoretical

(CASPT?2 and CC3) and experimental 0-0 energies for these three compounds.
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3.1.2 Cyclopropenone, cyclopropenethione, and methylenecyclopropene

These three related compounds present a three-membered sp? carbon cycle conjugated to an external
7 bond. While the ES of methylenecyclopropene have regularly been investigated with theoretical
tools in the past,27-3%37.75:119-123 the only investigations of vertical transitions we could find for the
two other derivatives are a detailed CASPT2 study of Serrano-Andrés and coworkers in 2002, 124
and a more recent work reporting the three lowest-lying singlet states of cyclopropenone at the
CASPT2/6-31G level.'*

Our results are listed in Tables 2 and S2. As above, considering the 6-31+G(d) basis set,
we notice very small differences between CC3, CCSDT, and CCSDTQ, the latter method giving
transition energies systematically falling within the FCI extrapolation incertitude, except in one
case (the lowest totally symmetric state of methylenecyclopropene for which the CCSDTQ value
is “off” by 0.02 eV only). Depending on the state, it is either CC3 or CCSDT that is closest to
CCSDTQ. In fact, considering the CCSDTQ/6-31+G(d) data listed in Table 2 as reference, the MAE
of CC3 and CCSDT are 0.019 and 0.016 eV, respectively, hinting that the improvement brought
by the latter, more expensive method is limited for these three compounds. For the lowest B, state
of methylenecyclopropene, one of the most challenging cases (%7 = 85%), it is clear from the
FCI value that only CCSDTQ is energetically close, the CC3 and CCSDT results being slightly
too large by ~ 0.05 eV. It seems reasonable to believe that the same observation can be made
for the corresponding state of cyclopropenethione, although in this case the FCI error bar is too
large, which prevents any definitive conclusion. Interestingly, at the CC3 level of theory, the rather
small 6-31+G(d) basis set provides data within 0.10 eV of the CBS limit for 80% of the transitions.
There are, of course, exceptions to this rule, e.g., the strongly dipole-allowed 'A;(7 — 7*) ES of
cyclopropenone and the ! B;(r — 3s) ES of methylenecyclopropene which are significantly over
blueshifted with the Pople basis set (Table S2). For cyclopropenone, our CCSDT/aVTZ estimates do
agree reasonably well with the CASPT2 data of Serrano-Andrés, except for the ! Bo(m — n*) state
that we locate significantly higher in energy and the three Rydberg states that our CC calculations

predict at significantly lower energies. The present NEVPT?2 results are globally in better agreement
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Table 2: Vertical transition energies (in V) for cyclopropenone, cyclopropenethione, and methylenecyclo-
propene.

Cyclopropenone

6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Th.4 Exp.t
'Bi(n — n*) 432 4.34 4.36 4.38+0.02 | 4.22 4.23 421 4.24 4.04 425 4.13
YAs(n — %) 5.68 5.65 5.65 5.64+0.06 | 5.59 5.56 557 555 5.85 559 55
'B,(n — 3s) 6.39 6.38 6.41 6.21 6.19 6.32 6.31 6.51 690 6.22
'By(r —» 7*) | 670 6.67 6.68 6.56 6.54 6.54 6.53 6.82 596 6.1
'By(n — 3p) 6.92 691 6.94 6.88 6.86 6.96 6.95 7.07 724 6.88
"Ai(n — 3p) 7.00 7.00 7.03 6.88 6.87 7.00 6.99 7.28 7.28
"Aj(mn —» n*) | 851 8.49 8.51 8.32 8.29 8.28 8.26 8.19 7.80 ~8.1
3Bi(n — 7*) 4.02 4.03 4.00+£0.07 | 3.90 3.92 391 393 3.51 4.05
3By(m — ) | 492 4.92 4.95+0.00 | 4.90 4.89 4.89 4.88 5.10 4.81
3A2(n — 1) 548 5.44 538 535 537 535 5.60 5.56
A1 —» *) | 6.89 6.88 6.79 6.78 6.83 6.79 7.16 6.98

Cyclopropenethione

6-31+G(d) avVDZ avVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Th.“¢
TAy(n — %) 3.46 3.44 3.44 3.45+0.01 | 3.47 345 343 341 3.52 3.23
'Bi(n — n*) 345 3.44 3.45 3.44+0.05 | 342 342 343 3.44 3.50 3.47
'By(n — *) | 4.67 4.64 4.62 4.59+0.09 | 4.66 4.64 4.64 4.62 4.77 4.34
'By(n — 3s) 526 5.24 5.27 523 5.21 534 531 5.35 4.98
"Aj(m > %) | 553 5.52 5.51 5.52 5.50 549 547 5.54 5.52
'By(n — 3p) 5.83 5.81 5.83 586 5.84 593 590 5.99 5.88
3A2(n — 1) 3.33 3.3l 3.29+0.03 | 3.34 3.32 3.30 3.38 3.20
3Bi(n — 1) 334 333 330 3.30 331 3.32 3.40 3.30
3By(m — ) | 401 4.00 4.03+0.03 | 4.03 4.02 4.02 4.17 3.86
3A1(r = %) | 406 4.04 4.09 4.07 4.03 4.13 3.99

Methylenecyclopropene

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Th.c Th? Exp.°
IBy(m — n*) | 438 4.37 4.34 4.32+0.03 | 432 4.31 431 4.31 4.37 413 436 4.01
IB|(m — 35) 5.65 5.66 5.66 535 535 544 5.44 5.49 532 544 512
"Ay(m = 3p) | 597 5.98 5.98 5.92+0.10 | 5.86 5.88 595 5.96 6.00 5.83
"Aj(n = 7*)Y | 6.17 6.18 6.17 6.20+0.01 | 6.15 6.15 6.13 6.13 6.36 6.13  6.02
3By(m — *) | 3.50 3.50 3.44+0.06 | 3.49 3.498 3.50 3.49 3.66 3.24
3A(r - %) | 474 474 4.67+0.10 | 4.74 4.748 4.74 4.87 4.52

4CASPT?2 results from Ref. 124; ?Electron impact experiment from Ref. 126. Note that the 5.5 eV peak was assigned
differently in the original paper, and we follow here the analysis of Serrano-Andrés, '>* whereas the 6.1 eV assignment
was “supposed” in the original paper; experimental A, have been measured at 3.62 eV and 6.52 €V for the ' B,

(n — n*) and ' B, (7 — n*) transitions, respectively; '>’ “CASPT?2 results from Refs. 35 and 37; CC3 results from
Ref. 27; € Amax in pentane at —78°C from Ref. 128; / Significant state mixing with the ' A;(x — 3p) transition, yielding
unambiguous attribution difficult; 8 As can be seen in the SI, our FCI/aVDZ estimates are 3.45 + 0.04 and 4.79 + 0.02
eV for the two lowest triplet states of methylenecyclopropene hinting that the CC3 and CCSDT results might be slightly
too low for the second transition.
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with the CC values, though non-negligible deviations pertain. Even if comparisons with experiment
should be made very cautiously, we note that, for the Rydberg states, the present CC data are
clearly more consistent with the electron impact measurements ' than the original CASPT2 values.
For cyclopropenethione, we typically obtain transition energies in agreement or larger than those
obtained with CASPT2,'?* though there is no obvious relationship between the valence/Rydberg
nature of the ES and the relative CASPT?2 error. The average absolute deviation between our
NEVPT?2 and CC3 results is 0.08 eV only. Finally, in the case of methylenecyclopropene, our
values logically agree very well with the recent estimates of Schwabe and Goerigk,?’ obtained
at the CC3/aVTZ level of theory on a different geometry. As anticipated, the available CASPT2
values,>>37 determined without IPEA shift, appear too low as compared to the present NEVPT2 and
CCSDT values. For this compound, the available experimental data are based on the wavelength of
maximal absorption determined in condensed phase. !?® Hence, only a qualitative match is reached

between theory and experiment.

3.1.3 Acrolein, butadiene, and glyoxal

Let us now turn our attention to the excited states of three pseudo-linear m-conjugated systems

that have been the subject to several investigations in the past, namely, acrolein,?’-!19-121,129-133

23,26,27,72,120,130,134-145 and glyOX&1.27’1 16,120,130,132,146-149 Among these works, it is worth

butadiene,
highlighting the detailed theoretical investigation of Saha, Ehara, and Nakatsuji, who reported
a huge number of ES for these three systems using a coherent theoretical protocol based on the
symmetry-adapted-cluster configuration interaction (SAC-CI) method. '3* In the following, these
three molecules are considered in their most stable trans conformation. Our results are listed in
Tables 3 and S3.

Acrolein, due to its lower symmetry and high density of ES with mixed characters, is challenging
from a theoretical point of view, and CCSDTQ calculations were technically impossible despite

all our efforts. For the lowest n — 7* transitions of both spin symmetry, the FCI estimates come

with a tiny error bar, and it is obvious that the CC excitation energies are slightly too low, especially

15



Table 3: Vertical transition energies (in €V) of acrolein, butadiene, and glyoxal.

Acrolein
6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Th.¢ Th? Exp.c
TA”(n — %) 3.83 3.80 3.85+0.01 | 3.77 3.74 374 373 3.6 3.63 3.83 3.71
YA/ (m — %) 6.83 6.86 6.59+0.05/| 6.67 6.70 6.65 6.69  6.67 6.10 6.92 6.41
YA”(n — 7*) 6.94 6.89 6.75 6.72 6.75 7.16 6.26 7.40
TA'(n — 3s) 722 7.23 6.99 17.00 7.07 7.05 697 7.19 7.08
3A"(n — 1*) 3.55 3.53 3.60+0.01 | 3.47 3.45 3.46 3.46 339 3.6l
A (m - 1) 3.94 3.95 3.98+0.03 | 3.95 3.95 3.94 3.95 3.81 3.87
A (n — %) 6.25 6.23 6.22 6.21 6.19 6.23 6.21
3A”(n — 1) 6.81 6.74 6.60 6.61 6.83 7.36
Butadiene
6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2| Th”? Th? Exp®
"B.(m — n*) 641 643 641 6.41+0.02 | 6.25 6.27 622 624  6.68 633 636 592
'By(m — 3s) 6.53 6.55  6.54 6.26 6.27 633 634 644 6.18 632 621
TAg(m — 7*) 6.73 6.63  6.56 6.55+0.04/| 6.68 6.59 6.67 6.60  6.70 6.56 6.60
'Au(m — 3p) 6.87 6.89  6.87 6.57 6.59 6.64 6.66  6.84 6.45 6.56 6.64
"Au(r — 3p) 693 695  6.94 6.95+0.01 | 6.73 6.74 6.80 6.81 7.01 6.65 6.74 6.80
'B.(m — 3p) 798 8.00  7.98 7.86 7.87 7.68 7.45 7.08 7.02 7.07
3Bu(mr — %) 3.35 3.36 3.37+0.03 | 3.36 3.36 3.36 3.40 3.20 322
3Aq(m — %) 522 522 521 521 5.20 5.30 5.08 491
3Bg(m — 3s) 6.46 6.47 6.40+0.03 | 6.20 6.21 6.28 6.38 6.14
Glyoxal
6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Th.” Th& Exp.!
TA,(n — %) 294 294 294 2.93+0.03 | 2.90 2.90 288 288 290 310 293 28
IBo(n — n*) 434 432 431 4.28+0.06 | 430 4.28 427 425 430 468 439 ~44
TAg(on — n*,7%) | 674 624  5.67 5.60+0.097| 6.70 6.22 6.76 635  5.52 5.66
Bo(n — n*) 6.81 683  6.79 6.59 6.61 6.58 6.61 6.64 7.54 6.63 745
'B.(n — 3p) 772 774 7.76 7.55 1.56 767 7.69  7.84 783 761 ~7.7
3Au(n — 1) 2.55 2.55 2.54+0.04 | 249 2.49 249 249 249 2.63 2.5
3Be(n — 7%) 3.97 3.95 391 3.90 390 389  3.99 4.12 ~3.8
3Bu(mr — %) 522 5.20 520 5.19 517 5.15  5.17 5.35 ~5.2
3Ao(m — %) 6.35 6.35 6.34 6.34 6.30 630  6.33

“CASPT?2 results from Ref. 129; bSAC-CI results from Ref. 130; ¢ Vacuum UV spectra from Ref. 150; for the lowest

state, the same 3.71 eV value is reported in Ref. 151. dMR—AQCC results from Ref. 134, theoretical best estimates

listed for the lowest B,, and A, states; “Electron impact experiment from Refs. 152 and 153 for the singlet states and
from Ref. 154 for the two lowest triplet transitions; note that for the lowest B,, state, there is a vibrational structure with
peaks at 5.76, 5.92, and 6.05 eV; JFrom Ref. 72; 8CC3 results from Ref. 27; "Electron impact experiment from Ref.
155 except for the second lBg ES for which the value is from another work (see Ref. 156); note that for the lowest 1Bg

('B,) ES, arange of 4.2-4.5 (7.4-7.9) eV is given in Ref. 155.

with CCSDT. Nevertheless, at the exception of the second singlet and triplet A” ES, the CC3 and
CCSDT transition energies are within +£0.03 eV of each other. These A” ES are also the only two

transitions for which the discrepancies between CC3 and NEVPT?2 exceed 0.20 eV. This hints at a
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good accuracy for all other transitions. This statement is additionally supported by the fact that the
present CC values are nearly systematically bracketed by previous CASPT2 (lower bound)'?” and
SAC-CI (upper bound) '*° results, consistently with the typical error sign of these two models. For
the two lowest triplet states, the present CC3/aVTZ values are also within +0.05 eV of recent MRCI
estimates (3.50 and 3.89 €V). 3! As can be seen in Table S3, the aVTZ basis set delivers excitation
energies very close to the CBS limit: the largest variation when upgrading from aVTZ to aVQZ
(+0.04 eV) is obtained for the second ' A” Rydberg ES. As experimental data are limited to measured

UV spectra, 150-151

one has to be ultra cautious in establishing TBE for acrolein (vide infra).

The nature and relative energies of the lowest bright B, and dark A, ES of butadiene have
puzzled theoretical chemists for many years. It is beyond the scope of the present study to provide
an exhaustive list of previous calculations and experimental measurements for these two hallmark
ES, and we refer the readers to Refs. 137 and 141 for a general and broader overview. For the B,
transition, we believe that the most solid TBE is the 6.21 eV value obtained by Watson and Chan
using a computational strategy similar to ours.'>” Our CCSDT/aVTZ value of 6.24 eV is obviously
compatible with their reference value, and our TBE/CBS value is actually 6.21 eV as well (vide infra).
For the A, state, we believe that our previous basis set corrected FCI estimate of 6.50 eV 72 remains
the most accurate available to date. These two values are slightly lower than the semi-stochastic
heath-bath CI data obtained by Chien et al. with a double-{ basis and a slightly different geometry:
6.45 and 6.58 eV for B, and Ag, respectively. 143 For these two thoroughly studied ES, one can of
course find many other estimates, e.g., at the SAC-CI, 130 ¢C3,2027 CASPT2,2° and NEVPT2 42
levels. Globally, for butadiene, we find an excellent coherence between the CC3, CCSDT, and
CCSDTQ estimates, that all fall in a £0.02 eV window. Unsurprisingly, this does not apply to the
already mentioned ' A, ES that is 0.2 and 0.1 €V too high with the two former CC methods, a direct
consequence of the large electronic reorganization taking place during this transition. For all the
other butadiene ES listed in Table 3, both CC3 and CCSDT can be trusted. We also note that the
NEVPT?2 estimates are within 0.1-0.2 eV of the CC values, except for the lowest B,, ES for which

the associated excitation energy is highly dependent on the selected active space (see the SI). Finally,
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as can be seen in Table S3, aVTZ produces near-CBS excitation energies for most ES. However, a
significant basis set effect exists for the Rydberg ! B, (7 — 3p) ES with an energy lowering as large
as —0.12 eV when going from aVTZ to aVQZ. For the record, we note that the available electron

impact data 52154

provide the very same ES ordering as our calculations.

Globally, the conclusions obtained for acrolein and butadiene pertain for glyoxal, i.e., highly
consistent CC estimates, reasonable agreement between NEVPT2 and CC3 values, and limited
basis set effects beyond aVTZ, except for the ' B,(n — 3p) Rydberg state (see Tables 3 and S3).
This Rydberg state also exhibits an unexpectedly large deviation of 0.04 eV between CC3 and
CCSDTQ. More interestingly, glyoxal presents a genuine low-lying double ES of 1Ag symmetry.
The corresponding (n, n) — (7*, 7*) transition is totally unseen by approaches that cannot model
double excitations, e.g., TD-DFT, CCSD, or ADC(2). Compared to the FCI values, the CC3 and
CCSDT estimates associated with this transition are too large by ~ 1.0 and ~ 0.5 eV, respectively,
whereas both the CCSDTQ and NEVPT2 approaches are much closer, as already mentioned in our
previous work.’? For the other transitions, the present CC3 estimates are logically consistent with
the values of Ref. 27 obtained with the same approach on a different geometry, and remain slightly

155,156

lower than the SAC-CI estimates of Ref. 130. Once more, the experimental data are unhelpful

in view of the targeted accuracy.

3.1.4 Acetone, cyanoformaldehyde, isobutene, propynal, thioacetone, and thiopropynal

Let us now turn towards six other compounds with four non-hydrogen atoms. There are several earlier

studies reporting estimates of the vertical transition energies for both acetone>3-26-27,36,37,39,121,139,157-161
and isobutene. 139159160 To the best of our knowledge, for the four other compounds, the previous com-

putational efforts were mainly focussed on the 0-0 energies of the lowest-lying states. !16-117:147,148,162

There are also rather few experimental data available for these six derivatives. 63164164172 Qyr
main results are reported in Tables 4 and S4.

For acetone, one should clearly distinguish the valence ES, for which both methodological and

basis set effects are small, and the Rydberg transitions that are both very basis set sensitive, and
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Table 4: Vertical transition energies (in €V) of acetone, cyanonformaldehyde, isobutene, propynal, thioacetone,
and thiopropynal.

Acetone
6-31+G(d) avDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2| Th.® Th?” Exp.c
TAy(n — n*) | 455 452 4.53 4.60+0.05 | 4.50 4.48 448 4.46 4.48 4.18 4.18 448
'By(n — 3s) | 6.65 6.64 6.68 6.31 6.30 6.43 6.42 6.81 6.58 6.58 6.36
'Ay(n — 3p) | 7.83 7.83 7.87 7.37 7.36 745 743 7.65 7.34 734 7.36
'Ai(n—3p) | 7.81 7.81 7.84 7.39 7.38 7.48 7.48 7.75 726 726 741
'By(n — 3p) | 7.87 7.87 7.91 7.56 7.55 7.59 7.58 7.91 748 748 745
3A2(n — %) | 421 4.19 4.18+0.04 | 4.16 4.14 4.15 4.20 390 390 4.15
3A1(r — ) | 632 6.30 6.31 6.28 6.28 6.28 598 598
Cyanoformaldehyde
6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Exp?
TA”(n — 7*) | 3.91 3.89 3.92+0.02 | 3.86 3.84 3.83 3.81 3.98 3.26
'A"(n — n*) | 6.64 6.67 6.60+0.07 | 6.51 6.54 6.42 6.46 6.44
3A"(n — ) | 3.53 3.51 3.48+0.06 | 3.47 3.45 3.46 3.58
3A(m — %) | 5.07 5.07 5.03 5.03 5.01 5.35
Isobutene
6-31+G(d) avDZ aVTZ Litt.
State CC3 CCSDT FCI CC3 CCSDT | CC3 CCSDT NEVPT2| Th.¢ Exp./ Exp.?
'Bi(r — 3s) | 677 6.77 6.78+0.08 | 6.39 6.39 6.45 6.46 6.63 6.40 6.15 6.17
'Ai(n = 3p) | 7.16 7.17 7.16+0.02 | 7.00 7.00 7.00 7.01 7.20 6.96 6.71
3A1(r — %) | 452 453 4.56+0.02 | 4.54 4.54 4.53 4.61 421 43
Propynal
6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Exp”
TA"(n — n*) | 3.90 3.87 3.84+0.06 | 3.85 3.82 3.82 3.80 3.95 3.24
'A"(n — n*) | 5.69 5.73 5.64+£0.08 | 5.59 5.62 551 554 5.50
3A"(n — *) | 3.56 3.54 3.54+0.04 | 3.50 3.48 3.49 3.59 2.99
A/ (n — %) | 446 447 4.44+0.08 | 440 4.44 4.43 4.63
Thioacetone
6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT CCSDTQ FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Exp’
TAy(n — %) | 2.58 256 2.56 2.61+£0.05 | 2.59 2.57 255 253 2.55 2.33
IBy(n — 4s) | 5.65 5.64 5.66 544 543 5.55 5.54 5.72 5.49
"A|(r = n*) | 6.09 6.10 6.07 597 598 590 591 6.24 5.64
'By(n — 4p) | 6.59 6.59 6.59 645 6.44 6.51 6.62 6.40
'Ai(n — 4p) | 695 6.95 6.96 6.54 6.53 6.61 6.60 6.52 6.52
3Ay(n — %) | 236 2.34 2.36+0.00 | 2.36 2.35 2.34 2.32 2.14
3A1(r — %) | 345 345 351 3.50 3.46 3.48
Thiopropynal
6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT FCI CC3 CCSDT | CC3 CCSDT NEVPT2 | Exp/
TA"(n — n*) | 209 2.06 2.08+0.01 | 2.09 2.06 2.05 2.03 2.05 1.82
3A"(n — n*) | 1.84 1.82 1.83 1.82 1.81 1.81 1.64

aCASPT?2 results from Ref. 36; PEOM-CCSD results from Ref. 157; Two lowest singlet states: various experiments
summarized in Ref. 169; three next singlet states: REMPI experiments from Ref. 172; lowest triplet: trapped electron
measurements from Ref. 166; Y0-0 energy reported in Ref. 171; “EOM-CCSD results from Ref. 160; /Energy loss
experiment from Ref. 167; 8VUV experiment from Ref. 170 (we report the lowest of the m1 — 3p state for the 1A, state);
"0-0 energies from Refs. 165 (singlet) and 163 (triplet); ‘0-0 energies from Ref. 164; ‘0-0 energies from Ref. 168.
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upshifted by ca. 0.04 eV with CCSDTQ as compared to CC3 and CCSDT. For this compound, the
1996 CASPT?2 transition energies of Merchdn and coworkers listed on the right panel of Table 4
are clearly too low, especially for the three valence ES.?® As expected, this error can be partially
ascribed to the computational set-up, as the Urban group obtained CASPT?2 excitation energies of
4.40, 4.09 and 6.22 eV for the ' As, 3A,, and 3A; ES, '®! in much better agreement with ours. Their
estimates of the three n — 3p transitions, 7.52, 7.57, and 7.53 eV for the '4,,14,, and ! B, ES, also
systematically fall within 0.10 eV of our current CC values, whereas for these three ES, the current
NEVPT?2 values are clearly too large.

In contrast to acetone, both valence and Rydberg ES of thioacetone are rather insensitive to the
excitation order of the CC expansion as illustrated by the maximal discrepancies of +0.02 eV between
the CC3/6-31+G(d) and CCSDTQ/6-31+G(d) results. While the lowest n — 7* transition of both
spin symmetries are rather basis set insensitive, all the other states need quite large one-electron
bases to be correctly described (Table S4). As expected, our theoretical vertical transition energies
show the same ranking but are systematically larger than the available experimental 0-0 energies.

For the isoelectronic isobutene molecule, we have considered two singlet Rydberg and one triplet
valence ES. For these three cases, we note, for each basis, a very nice agreement between CC3 and
CCSDT, the CC results being also very close to the FCI estimates obtained with the Pople basis set.
The similarity with the CCSD results of Caricato and coworkers ' is also very satisfying.

For the three remaining compounds, namely, cyanoformaldehyde, propynal, and thiopropynal, we
report low-lying valence transitions with a definite single excitation character. The basis set effects
are clearly under control (they are only significant for the second ' A” ES of cyanoformaldehyde)
and we could not detect any variation larger than 0.03 eV between the CC3 and CCSDT values for a
given basis, indicating that the CC values are very accurate. This is further confirmed by the FCI

data.
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3.1.5 Intermediate conclusions

For the 15 molecules with four non-hydrogen atoms considered here, we find extremely consistent
transition energies between CC and FCI estimates in the vast majority of the cases. Importantly,
we confirm our previous conclusions obtained on smaller compounds:?® i) CCSDTQ values
systematically fall within (or are extremely close to) the FCI error bar, ii) both CC3 and CCSDT are
also highly trustable when the considered ES does not exhibit a strong double excitation character.
Indeed, considering the 54 “single” ES cases for which CCSDTQ estimates could be obtained (only
excluding the lowest lAg ES of butadiene and glyoxal), we determined negligible MSE < 0.01
eV, tiny MAE (0.01 and 0.02 eV), and small maximal deviations (0.05 and 0.04 eV) for CC3 and
CCSDT, respectively. This clearly indicates that these two approaches provide chemically-accurate
estimates (errors below 1 kcal.mol™! or 0.043 V) for most electronic transitions. Interestingly,
some of us have shown that CC3 also provides chemically-accurate 0-0 energies as compared to
experimental values for most valence transitions. ''®!17-173 When comparing the NEVPT2 and CC3
(CCSDT) results obtained with aVTZ for the 91 (65) ES for which comparisons are possible (again
excluding only the lowest 1Ag states of butadiene and glyoxal), one obtains a MSE of +0.09 (+0.09)
eV and a MAE of 0.11 (0.12) eV. This seems to indicate that NEVPT?2, as applied here, has a slight
tendency to overestimate the transition energies. This contrasts with CASPT2 that is known to

generally underestimate transition energies, as further illustrated and discussed above and below.

3.2 Five-membered rings

We now consider five-membered rings, and, in particular, five common derivatives that have been
considered in several previous theoretical studies (vide infra): cyclopentadiene, furan, imidazole,
pyrrole, and thiophene. As the most advanced levels of theory employed in the previous section,
namely CCSDTQ and FCI, become beyond reach for these compounds (except in very rare occasions),
one has to rely on the nature of the ES and the consistency between results to deduce TBE.

For furan, ab initio calculations have been performed with almost every available wavefunction

method.?32>-27-32.174-184 However, the present work is, to the best of our knowledge, the first to
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disclose CCSDT values as well as CC3 energies obtained with a quadruple-{ basis set. Our results for
ten low-lying ES states are listed in Tables 5 and S5. All singlet (triplet) transitions are characterized
by %7 values in the 92-94% (97-99%) range. Consistently, the maximal discrepancy between CC3
and CCSDT is small (0.04 eV). In addition, there is a decent consistency between the present data
and the NEVPT?2 results of both Ref. 180 and of the present work, as well as the MR-CC values of
Ref. 182. This holds for almost all transitions, but the ! B, (1 — 3 p) excitation that we predict to
be significantly higher than in most previous works, even after accounting for the quite large basis
set effects (—0.10 eV between the aVTZ and aVQZ estimates, see Table S5). We believe that our
estimate is the most accurate to date for this particularly tricky ES. Interestingly, the recent ADC(3)
values of Ref. 184 are consistently smaller by ca. —0.2 eV as compared to CCSDT (see Table 6), in

).28

agreement with the error sign we observed in smaller compounds for ADC(3).“® Again, we note

156,185,186

that the experimental data provide the same state ordering as our calculations.

Like furan, pyrrole has been extensively investigated in the literature using a large panel of

23,25-27,32,174,178,181-183,187-189,191,194-197 We report six low—lying singlet and

theoretical methods.
four triplet ES in Tables 5 and S5. All these transitions have very large %77 values except for the
totally symmetric 7 — 7* excitation (%7} = 86%). For each state, we found highly consistent CC3
and CCSDT results, often significantly larger than older multi-reference estimates, %3219 but in
nice agreement with the very recent XMS-CASPT?2 results of the Gonzalez group, '3 and the present
NEVPT?2 estimates [at the exception of the !A,(7 — 3p) transition]. The match obtained with
the twenty years old extrapolated CC values of Christiansen and coworkers '®® is quite remarkable.
The only exceptions are the two B, transitions that were reported as significantly mixed in this
venerable work. For the lowest singlet ES, the FCI/6-31+G(d) value is 5.24 + 0.02 eV confirming
the performance of both CC3 and CCSDT for this transition. As can be seen in Table S5, aVTZ
yields basis-set converged transition energies, except, like in furan, for the Rydberg ! By(m — 3p)
transition that is significantly redshifted (—0.09 eV) when pushing to the quadruple-{ basis set.
As mentioned in Thiel’s work,?? the experimental spectra of pyrrole are quite broad, and the rare

185,190-193,195

available experiments can only be considered as general guidelines.
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Table 5: Vertical transition energies (in eV) of furan and pyrrole.

Furan

6-31+G(d) avVDZ avVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th.4 Th? ThC Th¢ The Exp/ Expsf
TAy(m — 3s) | 626 6.28 6.00 6.00 6.08 6.09 6.28 592 6.13 594 591 6.10 5091
'By(m — 7n*) | 6.50 6.52 6.37 6.39 6.34 6.37 6.20 6.04 642 651 6.10 642 6.04 6.06
"A|(n = %) | 671 6.67 6.62 6.58 6.58 6.56 6.77 6.16 6.71 6.89 6.44 6.44
'Bi(m = 3p) | 6.76 6.77 6.55 6.56 6.63 6.64 6.71 646 6.68 646 645 6.66 647
"As(m — 3p) | 6.97 6.99 6.73 6.74 6.80 6.81 6.99 6.59 6.79 6.61 6.60 6.83 6.61
'B)(m — 3p) | 7.53 7.54 7.39 7.40 7.23 7.01 648 691 687 6.72 736 6.75
3By(m — n*) | 428 4.28 425 4.23 4.22 4.42 3.99 4.26 4.0
3A|(m — %) | 556 5.54 5.51 5.49 5.48 5.60 5.15 5.53 5.2
3Ay(r — 3s) | 6.18 6.19 5.94 5.94 6.02 6.08 5.86 5.89
3Bi(r — 3p) | 6.69 6.71 6.51 6.51 6.59 6.68 6.42 6.41

Pyrrole

6-31+G(d) avVDZ avVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th.® Th/ Th¢ Th! Th’/ Exp.! Exp!
TAy(m — 3s) | 525 525 5.15 5.14 524 5.24 5.51 508 545 510 520 527 522
'Bi(m — 3p) | 599 5.98 5.89 5.87 598 6.00 6.32 5.85 621 579 595 6.00
"Ax(m — 3p) | 627 6.27 594 5093 6.01 6.44 5.83 6.14 581 594 7.03 5.87
'B)(m — n*) | 6.33 6.33 6.28 6.28 6.25 6.26 6.48 592 695 596 6.04 6.08 5.98
"A|(m — %) | 643 6.40 6.35 6.32 6.32 6.30 6.53 592 6.59 653 637 6.15
'By(r — 3p) | 720 7.20 7.00 7.00 6.83 6.62 5778 6.26 6.61 6.57
3By(m — n*) | 459 4.58 456 4.54 4.53 4.74 4.27 4.53 4.21
3A)(r — 3s) | 522 5.22 5.12 5.12 5.21 5.49 5.04 5.07 5.1
3A1(m — %) | 554 5.54 549 548 5.46 5.56 5.16 5.53
3Bi(r — 3p) | 591 5.90 5.82 5.81 5.92 6.28 5.82 5.74

2CASPT? results from Ref. 32; P°NEVPT?2 results from Ref. 180; “MR-CC results from Ref. 182; ?ADC(3) results
from Ref. 184; ¢CC3 results from Ref. 27; f Various experiments summarized in Ref. 178; §Electron impact from Ref.
185: for the ! A, state two values (6.44 and 6.61 eV) are reported, whereas for the two lowest triplet states, Two values
(3.99 eV and 5.22 eV) can be found in Ref. 186; hNEVPT?2 results from Ref. 187; ‘Best estimate from Ref. 188, based
on CC calculations; /XMS-CASPT?2 results from Ref. 189; ¥Electron impact from Refs. 185 and 190; Vapour UV
spectra from Refs. 191, 192, and 193.

Although a diverse array of wavefunction studies has been performed on cyclopentadiene
(including CASPT2,%32632 CC, 232327 SAC-CI '8 and various multi-reference approaches 74 181),
this compound has received less attention than other members of the five-membered ring family,
namely furan and pyrrole (vide infra). This is probably due to the presence of the methylene group
that renders computations significantly more expensive. Most transitions listed in Tables 6 and
S6 are characterized by %7} exceeding 93%, the only exception being the 'A;(x — 7*) excitation
that has a similar nature as the lowest A, state of butadiene (%77 = 79%). Consistently, the CC3

and CCSDT results are nearly identical for all ES except for the ' A; ES. By comparing the results

23



Table 6: Vertical transition energies (in €V) of cyclopentadiene, imidazole, and thiophene.

Cyclopentadiene

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th. Th? Th¢ Th4 Exp.¢ Exp/ Exp.®
'By(r = n*) | 579 5.80 559 5.60 554 5.56 5.65 527 554 5.19 558 5.26 5.20
TAy(m = 3s) | 6.08 6.08 570 5.70 577 5.78 5.92 565 558 5.62 579 568 5.63
'Bi(x = 3p) | 6.57 6.58 6.34 6.34 6.40 6.41 6.42 624 6.17 624 643 6.35
TAy(m = 3p) | 6.67 6.67 6.39 6.39 6.45 6.46 6.59 6.30 6.21 6.25 6.47 6.26
'By(r = 3p) | 7.06 7.07 6.55 6.55 6.56 6.56 6.60 625 622 627 6.58 6.31
TAj(n = %) | 6.67 6.60 6.59 6.53 6.57 6.52 6.75 631 6.76 642 6.65 ~6.2
3By(m — 7*) | 3.33 3.33 332 3.31 3.32 3.41 3.15 3.40 3.10
3A1(r > %) | 5.16 5.15 514 5.13 5.12 5.30 490 5.18 >4.7
3Ay(r — 3s) | 6.01 6.02 5.65 5.65 5.73 5.73 5.63 5.56
3Bi(r — 3p) | 651 6.52 6.30 6.30 6.36 6.40 6.25 6.19

Imidazole

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 NEVPT2 | Th.* Th! Exp./
TA"(n = 3s) | 577 5.77 5.60 5.60 571 5.93 571 ~52
"A'(n = )k | 651 6.51 6.43 6.43 6.41 6.73 6.72 6.25 ~6.4
'A”(n — 7*) | 6.66 6.66 6.42 6.42 6.50 6.96 6.52 6.65
TA'(r — 3p)* | 7.04 7.02 6.93 6.89 6.87 7.00 6.49
A/ (n — %) | 4.83 481 478 475 4.86 4.49 4.65
3A"(m — 3s) | 572 572 557 5.56 5.67 5.91 5.68
3A'(m —» n*) | 5.88 5.88 5.78 5.74 5.91 547 5.64
3A"(n — %) | 6.48 6.46 6.37 6.35 6.33 6.48 6.07 6.25

Thiophene

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th! Th™ Th* Th.° Exp? Exp. Exp.”
TA\(n = %) | 579 5.77 570 5.68 5.65 5.64 5.84 533 541 570 5.64 5.16 5.13 5.16
'By(mr — n*) | 623 6.24 6.05 6.06 596 5.98 6.10 572 572 6.10 597 599 583
"Ar(m = 3s) | 626 6.26 6.07 6.06 6.14 6.14 6.20 593 570 6.05 623
'Bi(xr = 3p) | 6.18 6.17 6.19 6.17 6.14 6.14 6.19 6.30 5.87 6.30 6.17 6.71
"As(m = 3p) | 6.32 6.33 6.31 6.25 6.21 6.40 6.35 6.03 6.28 6.33
IBi(m — 3s) | 6.62 6.62 6.42 6.41 6.50 6.49 6.71 6.23 6.12 6.36 6.68 6.47
IBy(r — 3p)* | 745 7.44 7.45 7.44 729 7.29 7.25 6.56 6.41 6.81 697 6.60
"A|(m = n*) | 7.50 17.46 7.41 7.35 7.39 6.69 7.32 7.71 1.74 6.61
3By(m — ) | 3.95 3.94 3.96 3.94 3.94 4.13 375 3.94 3.96 3.74
3A1(r = %) | 490 4.90 4.82 481 477 4.84 450 4.86 4.87 4.62
3Bi(m — 3p) | 6.00 598 6.01 5.99 5.95 5.98 590 5.94 6.01
3Ax(m = 3s) | 620 6.20 6.01 6.00 6.09 6.14 5.88 5.75 5.83

aCASPT?2 results from Ref. 32; ?SAC-CI results from Ref. 198; “MR-MP results from Ref. 174; ¢CC3 results from
Ref. 27; Electron impact from Ref. 199; /Gas phase absorption from Ref. 200; #Energy loss from Ref. 201 for the
two valence states; two-photon resonant experiment from Ref. 202 for the ' A, Rydberg ES; ?CASPT2 results from Ref.
38: {CC3 results from Ref. 26;/ Gas-phase experimental estimates from Ref. 203; kThe assignments of these two states
as valence and Rydberg is based on the oscillator strength, but both have a partial Rydberg character. The CASSCF
spatial extend is in fact larger for the lowest transition and Roos consequently classified both ES as Rydberg
transitions; 38 {CASPT?2 results from Ref. 33; ™SAC-CI results from Ref. 204; "CCSDR(3) results from Ref. 205;
°TBE from Ref. 206, based on EOM-CCSD for singlet and ADC(2) for triplets; 70-0 energies from Ref. 207; 10-0
energies from Ref. 208 for the singlets and energy loss experiment from Ref. 209 for the triplets; "0-0 energies from
Ref. 206; *Non-negligible mixing with a close-lying (x — #*) transition of the same symmetry.
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obtained for this A;(mr — 7*) transition to its butadiene counterpart, one can infer that the CCSDT
estimate is probably too large by roughly 0.04-0.08 eV, and that the NEVPT?2 value is unlikely to be
accurate enough to establish a definitive TBE. This statement is also in line with the results of Ref.
72. For the two By(m — n*) transitions, we could obtain FCI/6-31+G(d) estimates of 5.78 + 0.02
eV (singlet) and 3.33 + 0.05 eV (triplet), the CC3 and CCSDT transition energies falling inside
these energetic windows in both cases. As one can see in Tables 6 and S6, the basis set effects
are rather moderate for the electronic transitions of cyclopentadiene, with no variation larger than
0.10 eV (0.02 eV) between aVDZ and aVTZ (aVTZ and aVQZ). When comparing to literature
data, our values are unsurprisingly consistent with the CC3 values of Schwabe and Goerigk,?’ and
tend to be significantly larger than earlier CASPT22%3? and MR-MP'7# estimates. As expected, a
few gas-phase experiments are available as well for this derivative, '°°2? but they hardly represent
grounds for comparison.

Due to its lower symmetry, imidazole has been less investigated, the most advanced studies
available probably remain the CASPT2 work of Serrano-Andrés and coworkers from 1996,% and
the basis-set extrapolated CC3 results of Silva-Junior et al. for the valence transitions from 2010.%°
The experimental data in gas-phase are also limited.??® Our results are displayed in Tables 6 and
S6. The CC3 and CCSDT values are quite consistent despite the fact that the %7} values of the
two singlet A’ states are slightly smaller than 90%. These two states have indeed, at least partially,
a Rydberg character (see the footnote in Table 6). The agreement between the CC estimates and
previous CASPT2,3® and current NEVPT2 energies is reasonable, the latter being systematically
larger than their CC3 counterparts. For the eight transitions considered here, the basis set effects are
moderate and aVTZ yield results within 0.03 eV of their aVQZ counterparts (Table S6 in the SI).

Finally, the ES of thiophene, which is one of the most important building block in organic elec-

33,204-206,210,211

tronic devices, were the subject of previous theoretical investigations, that unveiled

a series of transitions that were not yet characterized in the available measurements. !36.190,206-210
To the best of our knowledge, the present work is the first to report CC calculations obtained

with (iterative) triples and therefore constitutes the most accurate estimates to date. Indeed, all
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the transitions listed in Tables 6 and S6 are characterized by a largely dominant single excitation
character, with %7, above 90% except for the two LA, transitions for which %7} = 88% and 87%,
respectively. The agreement between CC3 and CCSDT remains nevertheless excellent for these
low-lying totally symmetric transitions. Thiophene is also one of these compounds for which the
unambiguous characterization of the nature of the ES is difficult, with, e.g., a strong mixing between
the second and third singlet ES of B, symmetry. This makes the assignment of the valence (7 — 7*)
or Rydberg (m — 3p) character of this transition particularly tricky at the CC3 level. We note that
contradictory assignments can be found in the literature. 3324205 As for the previously discussed
isostructural systems, we note that the only ES that undergoes significant basis set effects beyond
aVTZ is the Rydberg ! Bo(m — 3p) (=0.09 eV when upgrading to aVQZ, see Table S6) and that the
NEVPT?2 estimates tend to be slightly larger than the CC3 values. The data of Table 6 are globally
in good agreement with the previously reported values with discrepancies that are significant only

for the three highest-lying singlet states.

3.3 Six-membered rings

Let us now turn towards seven six-membered rings which play a key role in chemistry: benzene,
pyrazine, pyridazine, pyridine, pyrimidine, tetrazine, and triazine. To the best of our knowledge,
the present work is the first to propose CCSDT reference energies as well as CC3/aVQZ values for

all these compounds. Of course, these systems have been investigated before, and beyond Thiel’s

23,25,26 2

benchmarks, it is worth pointing out the early investigation of Del Bene and coworkers?!
performed with a CC approach including perturbative corrections for the triples. Following a
theoretically consistent protocol, Nooijen?!? also performed STEOM-CCSD calculations to study

the ES of each of these derivatives. However, these two works only considered singlet ES.

3.3.1 Benzene, pyrazine, and tetrazine

These three highly-symmetric systems allow to directly perform CCSDT/aVTZ calculations for

singlet states without the need of basis set extrapolations. Benzene was studied many times
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before 23,25-27,34,66,69,72,120,136,183,212-220

and we report in Tables 7 and S7 estimates obtained for five
singlet and three triplet ES, all characterized by %7, exceeding 90% except for the lowest singlet
(86%). As one can see, the two CC approaches are again yielding very consistent transition energies
with variations in the 0.00-0.03 eV range. Besides, aVTZ is essentially providing basis set converged
transition energies (Table S7). The present CC estimates are also very consistent with earlier CC3
results?!> and are compatible with both the very recent RASPT22? and our NEVPT?2 values. For
states of both spin symmetries, the CC3 and CCSDT transitions energies are slightly larger than the

available electron impact/multi-photon measurements,>>'~22% but do provide energetic gaps between

ES very similar to the measured ones.

Table 7: Vertical transition energies (in V) of benzene.

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th.4 Th? Th¢ Th4 Exp.¢ Exp/
"Byu(m — %) [ 5.13 5.10 511 5.08 5.09 5.06 532 484 508 5.06 5.03 4.90
'Biu(m — 7*) | 6.68 6.69 6.50 6.50 6.44 6.45 6.43 6.30 6.54 622 6.23 6.20
'Ejg(m — 3s) | 6.75 6.76 6.46 6.46 6.52 6.52 6.75 6.38 6.51 6.42 6.33
"Ay(m — 3p) | 724 17.25 7.02 7.02 7.08 17.08 7.40 6.86 6.97 7.06 6.93
YEs(m — 3p) | 7.34 735 7.09 7.09 7.15 17.15 7.45 691 7.03 7.12 6.95
3Biu(m — n*) | 4.18 4.16 419 4.17 4.18 4.32 3.89 4.15 3.88 4.11 3.95
3SEw(n — %) | 495 4.94 489 4.88 4.86 4.92 449 486 4.72 475 475
3Bou(m — 7*) | 6.06 6.06 5.86 5.86 5.81 5.51 549 588 5.54 5.67 5.60

aCASPT? results from Ref. 34; ?CC3 results from Ref. 215; ¢SAC-CI results from Ref. 218; dRASPT2(18,18) results
from Ref. 220; “Electron impact from Ref. 221; fJet-cooled experiment from Ref. 225 for the two lowest states,

multi-photon experiments from Refs. 223 and 224 for the Rydberg states.

There are many available studies of the ES of pyrazine, >3-2426,27,30,66,69,120,160,183,212,213,218,226,227
and tetrazine, >3-27:66:69,120,160.212,213,228-233 1 which the D,;, symmetry helps distinguishing the
different ES. Our results are collected in Tables 8 and S8. In pyrazine, all transitions are characterized
by %T; > 85% at the exception of the !B, ¢(n — m*) transition (84%). The excitation energies
are basically unchanged going from CC3 to CCSDT except possibly for the highest-lying singlet
state considered here. Going from triple- to quadruple-{ basis, the variations do not exceed 0.04
eV, even for the four Rydberg ES treated here. This indicates that one can be highly confident

in the present estimates except for the highest-lying singlet ES. Again, the previous CASPT2

23,30,183,226 227

estimates appear to be globally too low, while the (unconventional) CASPT3 results
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218 and our

seem too high. A similar overestimation can be noticed in previous SAC-CI results
NEVPT2 values, the latter showing a mean absolute deviation of 0.11 eV compared to CC3. In fact,
the most satisfying agreement between the current estimates and previous works is reached with
Nooijen’s STEOM-CCSD values (except for the highest ES),?!? and the recent Schwabe-Goerigk’s

CC3 estimates.?’ The available experimental data?3*+-23"

do not include all theoretically-predicted
transitions, but provide a similar energetic ranking for both singlets and triplets.

For tetrazine, we consider valence ES only, including three transitions exhibiting a true double
excitation nature (%77 < 10%). Of course, for these double excitations, CC3 and CCSDT cannot
be considered as reliable. This is illustrated by the large change in excitation energies between
these two CC models. The theoretical best estimates are likely obtained with NEVPT2.7? For all
the other transitions, the %77 values are in the 80-90% range for singlets and larger than 95% for
triplets. Consequently, the CC3 and CCSDT results are very consistent, the sole exception being the
lowest 3By, (m — 7*) transition for which we note a shift of —0.05 eV when upgrading the level of
theory to CCSDT. In all other cases, there is a global consistency between our CC values. Moreover,
the basis set effects are very small beyond aVTZ with a maximal variation of 0.02 eV going to
aVQZ (Table S8). The present values are almost systematically larger than previous CASPT2,%%
STEOM-CCSD,?*! and GVVPT22!? estimates. Our NEVPT?2 values are also globally consistent
with the CC3 values with a maximal discrepancy of 0.22 eV for the ES with a dominant single
excitation character. One finds a global agreement with Thiel’s CC3/aVTZ values, S although we
note variations of approximately 0.20 eV for specific excitations like the B, transitions. This feature
might be due to the use of distinct geometries in the two studies. The experimental EEL values from

k238

Palmer’s wor show a reasonable agreement with our estimates.

3.3.2 Pyridazine, pyridine, pyrimidine, and triazine

Those four azabenzenes with Cy, or Dsj, spatial symmetry are also popular molecules in terms

of ES calculations 23,25-27,30,66,69,104,120,160,183,212,213,239,241,244-247 Our results for pyridazine and

pyridine are gathered in Tables 9 and S9. For the former compound, the available wavefunction
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Table 8: Vertical transition energies (in €V) of pyrazine and tetrazine.

Pyrazine

6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th.* Th? Th¢ Th4 Exp.¢ Exp./
"By, (n — n*) | 428 428 419 4.19 4.14 4.15 4.17 3.83 4.12 425 4.19 3.93
"A,(n - n*) | 508 5.08 498 4.98 497 4.98 4.77 436 493 524 493
'Byu(m — n*) | 5.10 5.08 5.07 5.05 5.03 5.02 5.32 479 475 4.84 519 48 481
'Byg(n — n*) | 5.86 5.85 578 5.77 571 5.71 5.88 550 5.85 6.04 581 5.19
TAg(n — 3s) 6.74 6.73 6.54 6.53 6.66 6.65 6.70 6.83 7.07 6.46
'Big(n — n*) | 6.87 6.87 6.75 6.75 6.73 6.74 6.75 6.26 6.73 6.73 6.10
'Biu(mr = %) | 7.10 7.11 6.92 6.93 6.86 6.88 6.81 6.60 6.89 6.68 699 6.5 651
'Big(mr — 3s) | 7.36 7.37 7.13 7.14 720 721 7.33 731 17.08
'Byu(n—3p) | 739 7.39 7.14 713 7.25 7.25 745 7.67 7.06
'Biu(n—3p) | 756 17.55 7.38 17.37 7.45 7.42 728 750 7.73 7.31 7.67
"Bl (mr = 7*) | 8.19 823 7.99 8.03 7.94 8.25 743 796 824 8.08
3By (n — 7*) | 3.68 3.68 3.60 3.60 3.59 3.56 3.16 333
3Biu(m — n*) | 439 4.36 4.40 4.36 4.39 4.57 4.15 4.04
3Byu(nr — *) | 4.56 4.55 4.46 4.45 4.40 4.42 4.28 ~4.4
3Au(n — *) | 5.05 5.05 493 493 4.93 475 4.19 4.2
3Byo(n — %) | 518 5.17 511 5.11 5.08 5.21 4.81 4.49
3Biu(m — n*) | 538 537 532 5.31 5.29 5.35 4.98

Tetrazine

6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th.& Th/ Th! Th/ ThK Exp!
"By, (n — n*) | 253 2.54 249 2.50 246 247 235 196 222 201 229 246 235
"Ay(n - n*) | 375 3.75 3.69 3.70 3.67 3.69 3.58 3.06 3.62 3.09 341 3.78 3.6
'Ag(double)™ | 6.22 5.86 6.22 5.86 6.21 5.96 4.61 437 506 434 4.66
'Big(n — n*) | 5.01 5.02 497 4.98 491 493 4.95 451 473 447 453 487
'Byu(m — 7*) | 529 526 527 525 523 521 5.56 4.89 4.90 559 5.08 4.97
'Byg(n — n*) | 5.56 5.52 553 5.50 5.46 5.45 5.63 505 5.09 492 559 528
"A,(n - 7*) | 561 5.61 559 5.59 552 553 5.62 528 523 532 595 539 55
!B34(double)™ | 7.64 7.62 7.62 6.15 5.16 6.30 5.26 6.01 5.92
'Byg(n — n*) | 624 6.22 6.17 6.16 6.13 6.13 548 6.16 578 6.05 6.16
'Big(n — n*) | 7.04 7.04 6.98 6.98 6.92 6.76 599 6.73 620 6.92 6.80
3By, (n — 7*) | 1.87 1.88 1.86 1.86 1.85 1.73 145 1.71 187 1.7
3Au(n —» *) | 348 3.49 343 3.44 3.44 3.36 2.81 3.47 3.49 290
3Big(n > n*) | 425 425 423 423 4.20 4.24 3.76 3.97 4.18
3Biu(m — n*) | 454 4.49 4.54 4.49 4.54 4.70 425 3.67 4.36
3Bou(m — n*) | 465 4.64 4.58 4.58 4.52 4.58 429 435 4.39
3Boe(n — %) | 511 5.11 5.09 5.08 5.05 5.27 4.67 4.78 4.89
A (n— *) | 517 517 515 5.15 5.11 5.13 4.85 4.89 4.96
3By (double)™ | 7.35 7.33 7.35 5.51 5.08
3Biu(m — n*) | 551 5.50 546 5.46 5.42 5.56 509 5.31 5.32

4CASPT? results from Ref. 226; °STEOM-CCSD results from Ref. 213; ¢SAC-CI results from Ref. 218: 4CC3 results
from Ref. 27; Double resonance dip spectroscopy from Ref. 235 (B3, and B, ES) and EEL from Ref. 236 (others);
SUV max from Ref. 234; SCASPT?2 results from Ref. 229; "Ext-STEOM-CCSD results from Ref. 231; {GVVPT2
results from Ref. 219; /NEVPT? results from Ref. 232; KCC3 results from Ref. 26; ‘From Ref. 238, the singlets are
from EEL, except for the 4.97 and 5.92 eV values that are from VUYV; the triplets are from EEL, additional (unassigned)
triplet peaks are found at 4.21, 4.6, and 5.2 €V, ™all these three doubly ES have a (n,n — n*, 7*) character.
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Table 9: Vertical transition energies (in €V) of pyridazine and pyridine.

Pyridazine

6-31+G(d) avDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 NEVPT2| Th.4 Th? Th¢ Th¢ Exp.¢ Exp/
'Bi(n — n*) | 3.95 3.95 3.86 3.86 3.83 3.80 348 376 3.65 3.85 3.36
YAy(n — n*) | 449 4.48 439 439 437 4.40 3.66 4.46 428 4.44 4.02
"A(r = %) | 536 5.32 533 5.30 529 5.58 486 492 486 520 50 5.01
"Ay(n — n*) | 5.88 5.86 5.80 5.78 5.74 5.88 509 5.66 5.52 5.66 5.61
'By(n — 3s) | 626 6.27 6.06 6.06 6.17 6.21 6.45
'Bi(n —» n*) | 651 6.51 6.41 6.41 6.37 6.64 580 6.41 620 6.33 6.00
'By(m — n*) | 6.96 6.97 6.79 6.80 6.74 7.10 6.61 6.77 6.44 6.68 6.50
3Bi(n — n*) | 327 3.26 320 3.20 3.19 3.13 3.06
3Ay(n — %) | 419 4.19 411 4.11 411 4.14 3.55
3Bo(m — *) | 439 4.36 439 435 438 4.49 40 433
3Ai(m > %) | 493 4.94 487 4.86 4.83 4.94 44 468

Pyridine

6-31+G(d) avDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 NEVPT2| Thf Th? Th¢ Th¢ Exp. Exp.
'Bi(n — n*) [ 5.12 5.10 5.01 5.00 496 5.15 491 490 4.80 495 524 478
'By(m — 7*) | 523 5.20 521 5.18 517 5.31 484 482 481 512 499 499
"Ay(n — n*) | 555 5.54 541 5.41 540 5.29 517 531 524 541 543 540
"A|(r = %) | 6.84 6.84 6.64 6.63 6.63 6.69 6.42 6.62 636 6.60 6.38
"Ai(n — 3s) | 692 6.92 6.71 6.71 6.76 6.99 6.70 6.96 6.64 6.28 6.25
"Ay(r — 3s) | 6.98 6.99 6.74 6.75 6.81 6.86 6.75 6.90 6.53
'By(m — n*yY | 7.50 7.52 740 7.42 7.38 7.83 748 729 7.4 733 722 1720
'Bi(r = 3p) | 754 7.5 732 7.32 7.38 7.45 725 742 17.10
"Ai(r — 7*) | 7.56 734 7.34 739 6.97 723 737 726 739 722 6.39
3Ai(m = %) | 433 431 434 431 433 4.60 4.05 4.28 3.86
3Bi(n — n*) | 457 456 447 447 4.46 4.58 4.41 4.42 4.12
3Bo(m — *) | 492 491 483 4.83 479 4.88 4.56 472 4.47
3Ai(r > *) | 5.14 513 5.08 505 5.19 473 4.96
3Ay(n - %) | 551 5.49 537 5.36 535 5.33 5.10 5.53 5.40
3Bo(m — *) | 6.46 6.45 6.30 6.29 6.25 6.29 6.02 6.22 6.09

2CASPT2 results from Ref. 30; °STEOM-CCSD results from Ref. 213; CEOM-CCSD(T) from Ref. 212;

4CC3-ext. from Ref. 26; °EEL from Ref. 239; /EEL from Ref. 240; §CASPT2 from Ref. 241; "EEL from Ref. 242;
"EEL from Ref. 243; /Significant state mixing with a close-lying Rydberg transition rendering unambiguous attribution
difficult. At the CC3/aVDZ level, the Rydberg state is at 7.26 eV and has a small f, so attribution is rather clear.
However, at the CC3/aVTZ level, the two B, transitions are at 7.35 and 7.38 eV (hence strongly mixed), so that the
attribution has been made using the f of 0.174 and 0.319, respectively.

results 2325-27,30.66,69,212,213,239.245 fcyssed on singlet transitions, at the exception of rather old
MRCI,** and CASPT? investigations.?*> Again, the %7} values are larger than 85% (95%) for
the singlet (triplet) transitions, and the only state for which there is a variation larger than 0.03
eV between the CC3/aVDZ and CCSDT/aVDZ energies is the B, (m — 7*) transition. As in the

previous six-membered cycles, the basis set effects are rather small and aVTZ provides values
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close to the CBS limit for the considered transitions. For the singlet valence ES, we find again a
rather good match with the results of previous STEOM-CCSD?!? and CC?%2!2 calculations. Yet
again, these values are significantly higher than the CASPT?2 estimates reported in Refs. 30 and
26. For the triplets, the present data represent the most accurate results published to date. Our
NEVPT?2 values are very close to their CC3 analogues for the lowest-lying singlet and triplet, but

positively deviate for the higher-lying ES. Interestingly, beyond the popular twenty-year old reference

239,248 240

measurements, there is a very recent experimental EEL analysis for pyridazine,~* that locates
almost all ES. The transition energies reported in this very recent work are systematically smaller
than our CC estimates by approximately —0.20 eV. Nonetheless, this study provides exactly the same
ES ranking as our theoretical protocol.

Pyridine, the hallmark heterocycle, has been more scrutinized than pyridazine and many wavefunc-
tion approaches have been applied to estimate its ES energies. 23:25-27-30,66,69,104,160,183,212,213,241,246,247
Besides, two detailed EEL experiments are also available for pyridine.?**?* The general trends
described above for other six-membered cycles do pertain with: i) large %77 values and consistency
between CC3 and CCSDT estimates for all transitions listed in Table 9; ii) small basis set effects
beyond aVTZ even for the Rydberg transitions; iii) qualitative agreement with past CC results; iv)
NEVPT?2 transitions energies that are, on average, larger than their CC counterparts; and v) same ES
ranking as in the most recent measurements.>*> Beyond these aspects, it is worth mentioning that
the second ! By(m — #*) ES is strongly mixed with a nearby Rydberg transition that is separated by
only 0.03 eV at the CC3/aVTZ level. This obviously makes the analysis particularly challenging for
that specific transition.

The results obtained for both pyrimidine and triazine are listed in Tables 10 and S10.

Because the former derivative can be viewed as the smallest model of DNA bases, previ-

123,25—27,30,66,69, 160,183,212,213,218,249-251 1234,252,253

ous theoretica and experimenta studies are rather

extensive. For triazine, which belongs to a non-abelian point group, theoretical studies are

23,25-27,30,66,69,212,213,244,254,255 244,254,255

scarcer, especially for the triplets, whereas the experimental

data are also limited.?**?* As in pyridazine and pyridine, all the ES listed in Table 10 show %7}
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values larger than 85% for singlets and 95% for triplets, so that CC3 and CCSDT are highly coherent,
except maybe for the 3A; (1 — 7*) transitions in pyrimidine. The basis set effects are also small,
with no variation larger than 0.10 (0.03) eV between double- and triple-{ (triple- and quadruple-¢)
for valence transitions and only slightly larger variations for the two Rydberg transitions (+0.04 eV
between aVTZ and aVQZ). For both compounds, the current values are almost systematically larger
than previously published data, with our CC3 values being typically bracketed by the published
CASPT2 and our NEVPT?2 estimates. For the triplets of triazine, the three lowest ES previously

estimated by CASPT22> are too low by roughly half an eV.

4 Theoretical Best Estimates

Table 11 reports our two sets of TBE: a set obtained with the aVTZ basis set and one set including
an additional correction for the one-electron basis set incompleteness error. The details of our
protocol employed to generate these TBE are also provided in Table 11. For all states with a
dominant single-excitation character (that is when %77 > 80%), we rely on CC results using an
incremental strategy to generate these TBE. As explained in the footnotes of Table 11, this means
that we add the basis set correction (i.e., the excitation energy difference between two calculations
performed with a large and a small basis set) obtained with a “lower” level of theory, e.g., CC3, to
correct the result obtained at a “higher” level of theory, e.g., CCSDTQ, but with the smaller basis

28 we have extensively tested this protocol for small compounds

set. In our previous contribution,
for which CCSDTQ/aug-cc-pVTZ calculations were achievable. It turned out that correcting
CCSDTQ/6-31+G(d) with CC3 or CCSDT basis set effect was very effective with a MAE of 0.01
eV as compared to the true value. There are only two exceptions for which we eschew to use this
CC incremental strategy: two ES in acrolein for which nicely converged FCI values indicated
non-negligible CCSDT errors. For ES with %77 values between 70% and 80%, our previous works

indicated that CCSDT tends to overshoot the transition energies by roughly 0.05-0.10 eV, and that

NEVPT?2 errors tend to be, on average, slightly larger.”> Therefore, if CCSDTQ or FCI results are
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Table 10: Vertical transition energies (in eV) of pyrimidine and triazine.

Pyrimidine

6-31+G(d) avVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 NEVPT2 | Th.¢ Th? Th¢ Th¢ Exp.° Exp./
IBi(n — n*) | 458 4.57 448 4.48 4.44 4.55 426 440 432 424 42  4.18
TAy(n — %) | 499 4.99 4.89 4.88 4.86 4.84 449 472 474 474 4.69
IBy(m — n*) | 547 5.44 544 541 5.41 5.53 547 504 529 501 512 5.18
"Ay(n —> %) | 6.07 6.06 5.98 5.97 5.93 6.02 594 598 5.84 6.05 5.67
'Bi(n — n*) | 6.39 6.29 6.29 6.26 6.40 6.03 6.18 635 6.11 6.02
'By(n — 3s) | 6.81 6.80 6.61 6.59 6.72 6.77 6.85 6.84 6.57
"A|(r - %) | 7.08 7.09 6.93 6.94 6.87 7.11 7.10 6.87 6.86 6.57 6.7 6.69
3Bi(n — ) | 420 4.20 412 4.11 4.10 4.17 3.81 4.11 3.85
3A1(r — %) | 455 4.52 456 4.52 4.55 4.67 435 4.39 4.42
3As(n — %) | 477 476 467 4.67 4.66 4.72 4.24 471 4.18
3By(m — ) | 5.08 5.08 5.00 5.00 4.96 5.01 4.83 481 493

Triazine

6-31+G(d) aVDZ aVTZ Litt.
State CC3 CCSDT| CC3 CCSDT| CC3 CCSDT NEVPT2| Th Th? Th? Th' Exp.c
TA”(n > n*) | 485 484 476 4.74 473 4.72 4.61 411 458 449 470
TAY(n - %) | 484 4.84 478 4.78 474 475 4.89 430 474 454 471 4.59
VE"(n — n*) | 4.89 4.89 482 481 478 4.78 4.88 432 4.69 456 4.75 3.97
TAj(n —> n*) | 5.84 5.80 5.81 5.78 578 5.75 5.95 559 535 5.36 571 5.70
TAl(n - n*) | 745 745 731 731 724 7.24 7.30 721 690 7.18 6.86
'E'(n — 3s) | 744 741 7.24 7.1 735 7.32 7.45 7.38 7.16
VE"(n — n*) | 7.89 7.86 7.82 7.80 7.79 7.78 7.98 7.78 7.78
'E'(n > n*) | 8.12 8.13 7.97 792 7.94 8.34 7.82 772 7.84 7.6
3AY(n— %) | 440 4.40 435 4.35 433 4.51 3.87
3E"(n — %) | 459 4.59 452 452 451 4.61 4.04
3AY(n— %) | 4.87 478 4.76 4.75 4.71 4.15
3Al(n > %) | 488 485 4.88 4.85 4.88 5.05
3E'(m — ) | 5.70 5.68 5.64 5.61 5.73
3A(n - %) | 6.85 6.84 6.69 6.68 6.63 6.36 4.76

4CASPT?2 results from Ref. 251; ?STEOM-CCSD results from Ref. 213; *SAC-CI results from Ref. 218;
dEOM-CCSD(T) results from Ref. 212; UV max from Ref. 234; fEEL from Ref. 253; €CASPT?2 results from Ref.
255; "CC3-ext. results from Ref. 26.

not available, it is extremely difficult to make the final call. For the other transitions, we relied either
on the current or previous FCI data or the NEVPT2 values as reference. The italicized transition
energies in Table 11 are believed to be (relatively) less accurate. This is the case when: i) the
NEVPT?2 result has to be selected; ii) the CC calculations yield quite large changes in excitation
energies while incrementing the excitation order by one unit despite large %77; and iii) there is a
very strong ES mixing making hard to follow a specific transition from one method (or one basis) to

another.
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To determine the basis set corrections beyond augmented triple-{, we use the CC3/aVQZ or
CC3/aV5Z results. For several compounds, we also provide in the SI, CC3/d-aVQZ transition
energies (i.e., with an additional set of diffuse functions). However, we do not consider such values
as reference because the addition of a second set of diffuse orbitals only significantly modifies the
transition energies while also inducing a stronger ES mixing. We also stick to the frozen-core
approximation for two reasons: i) the effect of correlating the core electrons is generally negligible
(typically £0.02 eV) for the compounds under study (see the SI for examples); and ii) it would be, in
principle, necessary to add core polarization functions in such a case.

Table 11 encompasses 238 ES, each of them obtained, at least, at the CCSDT level. This
set can be decomposed as follows: 144 singlet and 94 triplet transitions, or 174 valence (99
n — n*,71 n — n* and 4 double excitations) and 64 Rydberg transitions. Among these transition
energies, fourteen can be considered as “unsafe” and are reported in italics accordingly. This
definitely corresponds to a very significant extension of our previous ES data sets (see Introduction).
Taken all together, they offer a consistent, diverse and accurate ensemble of transition energies for
approximately 350 electronic transitions of various natures in small and medium-sized organic
molecules. Table 11 also reports 90 oscillator strengths, f, which makes it, to the best of our
knowledge, the largest set of CC3/aVTZ oscillator strengths reported to date, the previous effort
being mostly performed at the CC3/TZVP level for Thiel’s set.% It should also be pointed out that

all these data are obtained on CC3/aVTZ geometries, consistently with our previous works. %72

Table 11: TBE values (in €V) for all considered states alongside their corresponding oscillator strength,
f, and percentage of single excitations, %77, obtained at the CC3/aVTZ level. The composite protocol
to generate these TBE is also reported (see footnotes). In the right-most column, we list the TBE values
obtained by including an additional correction (obtained at the CC3 level) for basis set incompleteness error.

Values displayed in italics are likely to be relatively less accurate. All values are obtained in the frozen-core
approximation.

TBE/aVTZ TBE/CBS
State f %T; Value Protocol® Value Corr.
Acetone TA,(V;n — %) 91.1 447 B 448 avQZz
'B)(R;n — 3s) 0.000 90.5 6.46 B 6.51 avVQZzZ
TA>y(R;n — 3p) 90.9 7.47 B 7.44 avQzZ
TA1(R;n — 3p) 0.004 90.6 7.51 B 7.55 avQz
'B)(R;n — 3p) 0.029 912 7.62 B 7.63 avVQZ
3A2(Vin — %) 97.8 4.13 D 415 avQz
A1V — 1) 98.7 6.25 D 6.27 avVQZ

Continued on next page
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TBE/aVTZ TBE/CBS
State f %T;  Value Protocol ¢ Value  Corr.
Acrolein TA"(Vin — %) 0.000 87.6 3.78 G 379 avQz
YA'(Vym — %) 0.344 912 6.69 CCSDT/aVTZ 6.69 avVQZ
TA”(Vin — 1) 0.000 794 6.72 D 6.74 avVQZ
TA'(R;n — 3s) 0.109 894 7.08 D 7.12 avVQZ
3A"(Vin — %) 97.0 3.1 H 350 avQz
3A' (Vi — %) 98.6 3.94 D 395 avQz
3A' (Vi — %) 984 6.18 D 6.19 avVQz
3A"(Vin — 7*) 92.7 6.54 E 6.55 avQZ
Benzene 1By (Vir — %) 86.3 5.06 CCSDT/aVTZ 506 avQZ
'B1.(V;m — %) 929 645 CCSDT/aVTZ 644 avVQZ
YE1,(Rym — 3s) 92.8 6.52 CCSDT/aVTZ 6.54 aVQZ
'A5,(R;m — 3p) 0.066 934 7.08 CCSDT/avTZ 7.10 avVQZz
'Eru(Rym — 3p) 92.8 7.15 CCSDT/aVTZ 7.16 aVQZ
3Bl (Vi — %) 98.6 4.16 D 417 avQz
3E(Vim — %) 97.1 4385 D 486 avQZ
3By (Vi — 7*) 98.1 5.81 D 5.81 avVQz
Butadiene 'B.(Vim — 7%) 0.664 933 6.22 B 6.21 avVQZz
'By(R;m — 3s) 94.1 6.33 B 6.35 avQz
TAg(Vim — %) 75.1  6.50 F 6.50 avQz
'A,(R; 7 — 3p) 0.001 94.1 6.64 B 6.66 avVQZ
TA,(R;m — 3p) 0.049 941 6.80 B 6.82 avVQZz
'B,(R;m — 3p) 0.055 938 7.68 C 7.54 avVQZ
3Bu(Vim — %) 984 3.36 D 337 avQz
3A(Vim — 7*) 98.7 5.20 D 521 avQz
3Bo(R;m — 3s) 979 6.29 D 6.31 avVQZ
Cyanoacetylene 'S°(Vim — 7*) 943 5.80 A 5.79 aVs5Z
AV, — %) 94.0 6.07 A 6.05 aV5Z
3RV — %) 98.5 444 CCSDT/aVTZ 446 aV5Z
AV, — %) 982 521 CCSDT/aVTZ 521 aV5Z
YA”[F|(V; m — %) 0.004 936 354 A 354 avQz
Cyanoformaldehyde YA"(Vin — %) 0.001 89.8 381 CCSDT/avVTZ 3.82 aVQZ
YA”(Vym — 7*) 0.000 919 646 CCSDT/aVTZ 645 avVQZz
3A"(Vin — %) 97.6 3.44 D 345 avQz
SA' (Vi — %) 984 5.01 D 5.02 avQz
Cyanogen IS (Vi — %) 94.1 6.39 A 6.38 aVs5Z
Ay (Vs — 7%) 934  6.66 A 6.64 aV5Z
3TEVim — %) 98.5 4091 B 493 avVsZ
IS [FI(V;m — %) 934 5.05 A 5.03 aVs5Z
Cyclopentadiene 'B)(Vim — 7*) 0.084 938 556 CCSDT/aVTZ 555 avQZzZ
AR, 7 — 3s) 940 578 CCSDT/aVIZ 5.80 aVQZ
'Bi(R;m — 3p) 0.037 942 641 CCSDT/aVTZ 642 avVQZ
TAy(R;m — 3p) 93.8 646 CCSDT/aVTZ 647 aVQZ
'B)(R; 7 — 3p) 0.046 942 656 CCSDT/aVTZ 655 avQZzZ
YAV m — %) 0.001 789 6.52 CCSDT/aVTZ 6.52 aVQZ
3By(Vim — 1%) 98.4 331 D 331 avQz
3A1(Vim — %) 98.6 5.11 D 5.12  avQZz
3A>(R;m — 3s) 979 5.73 D 575 avQZ
3Bi(R;m — 3p) 979 6.36 D 6.38 avQz
Cyclopropenone 'Bi(Vin — %) 0.000 87.7 4.26 B 428 aV5Z
YA (Vin — %) 91.0 5.5 B 556 aV5Z
'B)(R;n — 3s) 0.003 90.8 6.34 B 640 aV5Z
IB, (Vi — %) 0.047 86.5 6.54 B 6.56 aV5Z
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TBE/aVTZ TBE/CBS
State f %T;  Value Protocol ¢ Value  Corr.
TB,(R;n — 3p) 0.018 91.1 6.98 B 701 aV5Z
TAI(R;n — 3p) 0.003 912 7.02 B 7.08 aV5Z
YA(V; 7 — %) 0.320 90.8 8.28 B 826 aV5Z
3Bi(Vin — 1) 96.0 393 CCSDT/aVTZ 3.96 aV5Z
3By(Vim — %) 97.9 488 CCSDT/aVIZ 491 aV5Z
3A>(Vin — %) 97.5 535 CCSDT/aVIZ 537 aV5Z
3AI(Vim — %) 98.1 6.79 CCSDT/aVIZ 681 aV5Z
Cyclopropenethione YAy (Vin — %) 89.6 341 B 341 aV5Z
'Bi(Vin — %) 0.000 84.8 3.45 B 348 aV5Z
IB,(Vim — 7*) 0.007 83.0 4.60 B 462 avVszZ
'By(R;n — 3s) 0.048 91.8 534 B 540 aV5Z
TA(V;m = %) 0228 89.0 5.46 B 546 aVsZ
'By(R;n — 3p) 0.084 913 592 B 594 avsz
3A>(Vin — %) 972 328 D 328 aVszZ
3Bi(Vin — 7*) 945 332 CCSDT/aVTZ 336 aV5Z
3By(Vim — %) 96.5 4.01 D 4.04 aV5Z
3A1(Vim — %) 982 4.01 D 401 aVszZ
Diacetylene IZ; (V;mr — %) 944 533 A 532 aV5Z
"Au(Vir — %) 94.1 5.6l A 560 aVs5Z
XMV — %) 98.5  4.10 C 413 aV5Z
ALV — %) 982 4.78 B 478  aV5Z
Furan LA>(R; 7w — 3s) 938 6.09 CCSDT/aVTZ 6.11 aVQZ
IBy(Vim — 7*) 0.163 930 637 CCSDT/aVTZ 637 aVQZ
TA((Vs 7 — %) 0.000 924 656 CCSDT/aVTZ 6.56 aVQZ
'Bi(R; 7 — 3p) 0.038 939 6.64 CCSDT/aVIZ 6.66 aVQZ
ARy — 3p) 93.6 6.81 CCSDT/aVIZ 6.83 aVQZ
'B,(R;m — 3p) 0.008 935 7.24 D 7.14 avQZzZ
3By(Vym — %) 98.4 420 D 420 avQz
3AI(Vym = 7%) 98.1 5.46 D 547 avQZ
3A,(R;t — 3s) 97.9  6.02 D 6.05 avQZ
3Bi(R; — 3p) 979 6.59 D 6.61 avQZ
Glyoxal YA, (Vin — %) 0.000 91.0 2.88 B 2.88 aVsZ
'Bo(V;n — %) 88.3 4.24 B 425 aVsZ
VAg(Vinn — n*, %) 05 5.61 F 560 aVsZ
'Bo(Vin — %) 83.9 6.57 B 6.58 aVsZ
'B.(R;n — 3p) 0.095 91.7 17.71 B 7.78  aV5Z
3A.(Vin — %) 97.6 249 CCSDT/aVTZ 250 aV5Z
3Be(Vin — 1*) 97.4 3.89 CCSDT/aVTZ 391 aV5Z
3Bu(V;m — %) 98.5 5.15 CCSDT/aVTZ 5.17 aV5Z
3A, (Vi — %) 98.8 6.30 CCSDT/aVTZ 6.31 aV5Z
Imidazole TA"(R;m — 35) 0.001 93.0 5.71 D 573 avQzZ
YA (V;m — %) 0.124 89.6 6.41 D 6.41 avQZ
YA”(Vin — %) 0.028 93.6 6.50 D 6.53 avVQZ
TA'(R; 7 — 3p) 0.035 889 6.83 D 6.82 avQZ
SA/(Vim — 1) 983 4.73 E 474 avQZ
AR — 3s) 976 5.66 D 569 avQZ
ANV — %) 97.9 5.74 E 575 avQZ
3A”(Vin — 7*) 973  6.31 D 631 avQz
Isobutene 'Bi(R;m — 3s5) 0.006 94.1 646 CCSDT/aVIZ 6.48 aVQZ
"AI(R;m — 3p) 0228 942 7.01 CCSDT/aVTZ 7.00 aVQZ
ALV (r = %) 989 453 D 454 avQz
Methylenecyclopropene ! By(V; 7 — %) 0.011 854 4.28 B 429 aV5Z
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TBE/aVTZ TBE/CBS
State f %T;  Value Protocol ¢ Value  Corr.
TBI(R;m — 3s5) 0.005 93.6 544 B 547 aV5Z
TAy(R;m — 3p) 933 5.96 B 598 aV5Z
TA(V; 7 — %) 0224 928 6.12 B 6.03 aV5Z
3By(Vimt — 1*) 972 349 CCSDT/aVTZ 3.50 aV5Z
3A1(Vim — %) 98.6 4.74 D 475 aV5Z
Propynal TA"(Vin — 7*) 0.000 89.0 3.80 CCSDT/aVTZ 3.81 aVQZ
TA”(Vym — 7*) 0.000 929 554 CCSDT/aVTZ 553 avVQZ
3A"(Vin — 1*) 97.4 347 D 348 avQz
A/ (Vi — %) 98.3  4.47 D 448 avQzZ
Pyrazine 'B3,(Vin — %) 0.006 90.1 4.15 CCSDT/aVTZ  4.15 avVQZz
YA, (Vin — %) 88.6 498 CCSDT/aVTZ 499 aVQZ
"By (Vs — %) 0.078 869 5.02 CCSDT/aVTZ 501 avVQZ
IByo(Vin — %) 85.6 571 CCSDT/aVTZ 571 avVQZ
TAg(R;n — 3s) 91.1 6.65 CCSDT/aVTZ 6.69 aVQZ
'B1g(Vin — 1%) 842 6.74 CCSDT/aVTZ 6.74 aVQZ
"Bl (Vim — %) 0.063 928 688 CCSDT/aVTZ 6.87 aVQZ
'B1g(R;r — 3s) 938 7.21 CCSDT/aVTZ 7.24 aVQZ
"By, (R;n — 3p) 0.037 90.8 7.24 D 728 avVQZ
'Bi.(R;n — 3p) 0.128 914 7.44 D 747 avQZ
"B (Vim — %) 0285 90.5 7.98 D 7.97 avVQZ
3By, (Vin — %) 97.3  3.59 D 3.59 avQz
3Biu (Vi — 7*) 98.5 435 D 436 avVQZ
3Bou(V; (m — ) 97.6  4.39 D 439 avQz
3A,(Vin — %) 96.1 4.93 D 494 avQZ
3Brg(Vin — %) 97.0 5.08 D 509 avQZz
3Biu(Vimr — %) 97.0 528 D 528 avQZ
Pyridazine 'BI(Vin — %) 0.005 89.0 3.83 D 3.83 avQz
YA (Vin — %) 86.9  4.37 D 438 avQz
TA((V;m — %) 0.016 858 526 D 526 avVQZ
YA (Vin — %) 86.2 5.72 D 572 avQZ
'B,(R;n — 3s) 0.001 885 6.17 D 621 avQZ
'BI(V;n — %) 0.004 87.0 6.37 D 6.37 avQZ
1B, (Vi — 7%) 0.010 90.6 6.75 D 6.74 avQZ
3Bi(Vin — 7*) 97.1 3.19 D 320 avQz
34,(Vin — ) 96.2 4.11 D 412 avQz
3By(Vim — %) 98.5 4.34 D 435 avQZ
A1V — %) 973  4.82 D 481 avQz
Pyridine IBI(V;n — %) 0.004 884 495 D 495 avQz
IB,(Vim — 7*) 0.028 86.5 5.14 D 5.14  avQz
LAy (Vin — %) 87.9 540 D 541 avQz
TA((V;m — %) 0.010 92.1 6.62 D 6.61 avQZ
TAI(R;n — 35) 0.011 89.7 6.76 D 6.80 aVvQZ
TAy(R; 7 — 35) 932 6.82 D 6.84 avQz
'By(Vim — 7*) 0.319 90.0 7.40 D 7.42  avQZ
'Bi(R;m — 3p) 0.045 936 7.38 D 740 avQZ
YA((Vi 7 — %) 0291 90.5 7.39 D 740 avQZ
3A1(Vim — %) 98.5 430 D 431 avQz
3Bi(Vin — 1) 97.0 4.46 D 447 avQzZ
3By(Vim — %) 973  4.79 D 479 avQzZ
3AI(Vym — 1) 97.1 5.04 E 5.04 avQz
3A2(Vin — %) 95.8 5.36 D 538 avQZzZ
3By(Vim — 7%) 977 6.24 D 6.24 avQZ

37

Continued on next page



TBE/aVTZ TBE/CBS
State f %T;  Value Protocol ¢ Value  Corr.
Pyrimidine TBi(Vin — %) 0.005 88.6 4.44 D 445 avQzZ
YAy (Vin — %) 88.5 485 D 486 avQZ
IB,(V;m — 7*) 0.028 863 5.38 D 537 avQZ
LA (Vin — %) 86.7 5.92 D 592 avQz
'Bi(Vin — %) 0.005 86.7 6.26 D 627 avQZ
'By(R;n — 3s) 0.005 90.3 6.70 D 6.74 avQZ
"A(V;m — %) 0.036 91.5 6.88 D 6.87 avVQZ
3Bi(Vin — 7*) 96.8 4.09 D 410 avQZ
A1V — %) 98.3  4.51 D 4.52 avQz
3A2(Vin — %) 96.5 4.66 D 467 avQZ
3By (Vi — 1*) 97.4  4.96 D 496 avQZ
Pyrrole AR, 7 — 3s) 929 524 CCSDT/aVTZ 5.27 avVQZ
'Bi(R;m — 3p) 0.015 924 6.00 CCSDT/aVTZ 6.03 aVQZ
ARy — 3p) 93.0  6.00 D 6.02 avQZ
'By(V; (m — %) 0.164 925 626 CCSDT/aVTZ 623 aVQZ
YA((Vi 7 — %) 0.001 863 630 CCSDT/aVTZ 629 aVQZ
'B,(R;m — 3p) 0.003 926 6.83 D 6.74 avQZ
3By(Vimr — 1*) 983 451 D 451 avQz
3A>(R;m — 3s) 97.6 521 D 524 avQZ
AV — %) 97.8 545 D 546 avQZ
3Bi(R;m — 3p) 97.4 591 D 594 avQz
Tetrazine B3, (Vin — 7*) 0.006 89.8 247 CCSDT/aVTZ 246 avVQZ
YA, (Vin — %) 879 3.69 CCSDT/aVTZ 3.70 aVQZ
YAg(Vin,n — n*, %) 0.7 4.61 NEVPT2/aVTZ 4.59 aVQZ
'Big(Vin — 1%) 83.1 493 CCSDT/aVTZ 492 aVQZ
"By (Vs — %) 0.055 854 521 CCSDT/aVTZ 520 avVQZzZ
Byo(Vin — %) 81.7 545 CCSDT/aVTZ 545 aVQZ
YA, (Vin — %) 87.7 553 CCSDT/aVTZ 553 avQZz
'B3g(Vin,n — n*, %) 0.7 6.15 NEVPT2/aVTZ 6.13 aVQZ
'Bg(Vin — 7%) 80.2  6.12 D 6.12 avVQZ
'B1g(Vin — 1%) 85.1 691 D 691 avQZzZ
3By, (Vin — %) 97.1 1.85 D 1.86 avVQZ
3Au(Vin — 7%) 96.3 345 D 346 avQZ
3B14(Vin — %) 97.0 4.20 D 421 avQz
3Biu(Vim — %) 98.5  4.49 D 449 avQz
3B (Vi — 7*) 975 452 D 452 avQzZ
3B (Vin — %) 9.4 5.04 D 504 avQZ
3A(Vin — %) 96.6 5.11 D 5.11 avQZzZ
3Bsg(Vin,n — %, %) 57 551 NEVPT2/aVTZ 5.50 aVQZ
3Biu (Vi — 1) 96.6 5.42 D 543  avQz
Thioacetone YAy (Vin — %) 88.9 253 B 2.54 avQz
'B,(R;n — 4s) 0.052 913 556 B 561 avQZ
"A(V;m — %) 0242 90.6 5.88 B 5.86 avVQZ
'B,(R;n — 4p) 0.028 924 6.51 C 6.52 avVQZ
TAI(R;n — 4p) 0.023 916 6.61 B 6.64 avVQZ
3A2(Vin — %) 97.4 233 D 234 avQz
3A(Vim — %) 98.7 345 D 346 avQZ
Thiophene TA|(V;m — %) 0.070 87.6 5.64 CCSDT/aVTZ 563 avVQZ
'By(V;m — 7*) 0.079 91.5 598 CCSDT/aVIZ 596 aVQZ
A Ry — 3s) 92.6 6.14 CCSDT/aVTZ 6.16 aVQZ
'Bi(R; 7w — 3p) 0.010 90.1 6.14 CCSDT/aVTZ 6.11 avVQZ
ARy — 3p) 918 621 CCSDT/aVTZ 6.18 aVQZ
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TBE/aVTZ TBE/CBS

State f %T;  Value Protocol ¢ Value  Corr.
'BIR; 7 — 3s) 0.000 92.8 649 CCSDT/aVTZ 6.52 avQZzZ
'B)(R;m — 3p) 0.082 924 729 CCSDT/aVTZ 7.18 aVvVQZ
YAVt — %) 0.314 86.5 731 E 7.29 avQZzZ
3By(Vim — %) 98.2 392 D 391 avQz
3AI(Vim — 1) 977 4.76 D 476 avQZ
3Bi(R;m — 3p) 96.6 593 D 590 avQz
3A Ry — 35) 975 6.08 D 598 avQz
Thiopropynal TA”(V;n — 7%) 0.000 87.5 2.03 CCSDT/aVTZ 2.04 avVQZ
3A"(Vin — 7*) 972 1.80 D 1.81 avVQZz
Triazine 1Ai’(V; n— n*) 88.3 472 CCSDT/aVTZ 472 avVQZ
1Aé’(V; n— %) 0.014 883 475 CCSDT/aVTZ 4774 avVQZ
YVE"(Vin — %) 88.3 478 CCSDT/aVTZ 478 avVQZ
IAé(V; T —*) 85.7 5775 CCSDT/aVTZ 575 avVQZ
1A’I(V; T —*) 904 7.24 CCSDT/aVTZ 7.23 aVQZ
'E'(R;n — 3s) 0.016 909 732 CCSDT/aVTZ 736 avVQZ
YE"(Vin — %) 82.6 7.78 CCSDT/aVTZ 7.76 aVQZ
'E"(Vym — 7%) 0451 900 794 CCSDT/aVTZ 793 avVQZzZ
3Aé’(V; n— 1*) 96.7 4.33 D 434 avQZz
3E"(Vin — %) 9.6 4.1 D 451 avQz
3A;’(V; n— n*) 96.2 4.73 D 474 avQZzZ
3Ai(V; T — %) 98.2 4.85 D 486 avQZzZ
SE"(Vym — %) 969 5.59 E 5.59 avQz
3Aé(V; (m - ™) 97.6 6.62 D 6.61 avQz

4 Protocol A: CCSDT/aVTZ value corrected by the difference between CCSDTQ/aVDZ and CCSDT/aVDZ; Protocol
B: CCSDT/aVTZ value corrected by the difference between CCSDTQ/6-31+G(d) and CCSDT/6-31+G(d); Protocol C:
CC3/aVTZ value corrected by the difference between CCSDTQ/6-31+G(d) and CC3/6-31+G(d); Protocol D:
CC3/aVTZ value corrected by the difference between CCSDT/aVDZ and CC3/aVDZ; Protocol E: CC3/aVTZ value
corrected by the difference between CCSDT/6-31+G(d) and CC3/6-31+G(d); Protocol F: FCI/aVDZ value (from Ref.
72) corrected by the difference between CCSDT/aVTZ and CCSDT/aVDZ. Protocol G: FCI/6-31+G(d) value corrected
by the difference between CCSDT/aVTZ and CCSDT/6-31+G(d); Protocol H: FCI/6-31+G(d) value corrected by the
difference between CC3/aVTZ and CC3/6-31+G(d).

5 Benchmarks

Having at hand such a large set of accurate transition energies, it seems natural to pursue previous
benchmarking efforts. More specifically, we assess here the performance of eight popular wavefunc-
tion approaches, namely, CIS(D), ADC(2), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3,
and CC3. The complete list of results can be found in Table S40 of the SI. To identify the ES for all
approaches, we have made, as for the TBE above choices based on the usual criteria (symmetry,
oscillator strength, ordering, and nature of the involved orbitals). Except for a few cases (see above),
assignments are unambiguous. In addition, because all tested approaches are single-reference

methods, we have removed from the reference set the “unsafe” transition energies (in italics in Table
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11), as well as the four transitions with a dominant double excitation character (with %717 < 50%
as listed in Table 12). For the latter transitions, only CCSDT-3 and CC3 are able to detect their
presence, but with, of course, extremely large errors. A comprehensive list of results are collected
in Table 12 which, more specifically, gathers the MSE, MAE, RMSE, SDE, Max(+), and Max(-).
As benchmarks of the NEVPT2 method are quite rare, we have also considered the above-listed
NEVPT?2 values in our method evaluation. Of course, the results of such multi-configurational
approaches significantly depend on the active space, but our main purpose is to know what typical
error one can expect with such a model when reasonable, yet “chemically-meaningful” active
spaces are considered. Figure 1 shows histograms of the error distributions for these nine methods.
Before discussing these, let us stress two obvious biases of this molecular set: i) it encompasses
only conjugated organic molecules containing 4 to 6 non-hydrogen atoms; and ii) we mainly used
CCSDTQ (4 atoms) or CCSDT (5-6 atoms) reference values. As discussed in Section 3.1.5 and in
our previous work,?® the MAE obtained with these two methods are of the order of 0.01 and 0.03
eV, respectively. This means that any statistical quantity smaller than ~ 0.02-0.03 €V is very likely
to be irrelevant.

Table 12: Mean signed error (MSE), mean absolute error (MAE), root-mean square error (RMSE),
standard deviation of the errors (SDE), as well as the positive [Max(+)] and negative [Max(—)]
maximal errors with respect to the TBE/aVTZ reported in Table 11. All these statistical quantities
are reported in eV and have been obtained with the aVTZ basis set. “Count” refers to the number of
states.

Method Count MSE MAE RMSE SDE Max(+) Max(-)
CIS(D) 221 0.16 0.23 029 0.24 0.96 -0.69
ADC(2) 218 0.01 0.14 0.20 0.19 0.64 -0.73
cC2 223 0.03 0.15 0.21  0.20 0.59 -0.68
STEOM-CCSD 190 0.01 0.12 0.15 0.14 0.59 -0.42
CCSD 223 0.11 0.13 0.16 0.12 0.62 -0.16
CCSDR(3) 134 0.05 0.05 0.07  0.05 0.36 -0.03
CCSDT-3 127 0.05 0.05 0.07  0.04 0.26 0.00
CC3 223 0.00 0.01 0.02 0.02 0.17 -0.05
NEVPT2 223 0.09 0.13 0.17 0.14 0.46 -0.42

Let us analyze the global performance of all these methods, starting with the most accurate and

computationally demanding single-reference models. The relative accuracies of CC3 and CCSDT-3
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Figure 1: Histograms of the error distribution obtained with various levels of theory, taking the
TBE/aVTZ of Table 11 as references. Note the difference of scaling in the vertical axes.

as compared to CCSDT remains an open question in the literature.”®’! Indeed, to the best of our
knowledge, the only two previous studies discussing this specific aspect are limited to very small
compounds.?®7% According to the results gathered in Table 12, it appears that CC3 has a slight edge
over CCSDT-3, although CCSDT-3 is closer to CCSDT in terms of formalism. Indeed, CCSDT-3
seems to provide slightly too large transition energies (MSE of +0.05 eV). These conclusions are
qualitatively consistent with the analyses performed on smaller derivatives,?®’" but the amplitude
of the CCSDT-3 errors is larger in the present set. Although the performance of CC3 might be
unduly inflated by the use of CCSDT and CCSDTQ reference values, it is also clear that CC3
very rarely fails (Figure 1). Consequently, CC3 transition energies can be viewed as extremely

solid references for any transition with a dominant single-excitation character. This conclusion is
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28,70.148 45 well as with

again consistent with previous analyses performed on smaller compounds,
recent comparisons between theoretical and experimental 0-0 energies performed by some of us on
medium-sized molecules. !'%!117-173 To state it more boldly: it appears likely that CC3 is even more
accurate than previously thought. In addition, thanks to the exhaustive and detailed comparisons
made in the present work, we can safely conclude that CC3 regularly outperforms CASPT2 and
NEVPT2, even when these methods are combined with relatively large active spaces. This statement
seems to hold as long as the considered ES does not show a strong multiple excitation character, that
is, when %T; < 70%.

The perturbative inclusion of triples as in CCSDR(3) yields a very small MAE (0.05 eV) for
a much lighter computational cost as compared to CCSDT. Nevertheless, as with CCSDT-3, the
CCSDR(3) transition energies have a clear tendency of being too large, an error sign likely inherited
from the parent CCSD model. The 0.05 eV MAE for CCSDR(3) is rather similar to the one

),28 and is also inline with the

obtained for smaller compounds when comparing to FCI (0.04 eV
2009 benchmark study of Sauer et al.?*

CCSD provides an interesting case study. The calculated MSE (+0.11 eV), indicating an
overestimation of the transition energies, fits well with several previous reports, 23-28:66.69-71,76,160,256
It is, nonetheless, larger than the one determined for smaller molecules (+0.05 eV),28 hinting that
the performance of CCSD deteriorates for larger compounds. Moreover, the CCSD MAE of 0.13 eV
is much smaller than the one reported by Thiel in his original work (0.49 eV)?? but of the same
order of magnitude as in the more recent study of Kdnnar and Szalay performed on Thiel’s set
(0.18 eV for transitions with %T; > 90%).% Retrospectively, it is pretty obvious that Thiel’s much
larger MAE is very likely due to the CASPT2 reference values.>* Indeed, as we have shown several
times in the present study, CASPT?2 transitions energies tend to be significantly too low, therefore
exacerbating the usual CCSD overestimation.

With a single detailed benchmark study to date,% the STEOM-CCSD approach has received

relatively little attention and its overall accuracy still needs to be corroborated. It is noteworthy that

STEOM-CCSD provides a smaller MSE than CCSD and comparable MAE and RMSE. The spread
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of the error is however slightly larger as evidenced by Figure 1 and the SDE values reported in Table
12. These trends are the same as for smaller compounds.28 For Thiel’s set, Dutta and coworkers also
reported a rather good performance for STEOM-CCSD with respect to the CC3/TZVP reference
data, though a slightly negative MSE is obtained in their case.% This could well be due to the
different basis set considered in these two studies. It should be nevertheless stressed that we only
consider “clean” STEOM-CCSD results in the present work (see Computational Details), therefore
removing several difficult cases that are included in the CCSD statistics, e.g., the A, excitation in
butadiene, which can slightly bias the relative performance of STEOM-CCSD and CCSD.

For the three second-order methods, namely CIS(D), ADC(2), and CC2, that are often used as
reference to benchmark TD-DFT for “real-life” applications, the performance of the former method
is clearly worse compared to the latter two which exhibit very similar statistical behaviors. These
trends were also reported in previous works, '8:21,23.26.28,59,70,76,148 Tnterestingly, the CC2 MAE
obtained here (0.15 eV) is significantly smaller than the one we found for smaller compounds (0.22
eV).?8 Therefore, in contrast to CCSD, CC2 performance seems to improve with molecular size. As
above, Thiel’s original MAE for CC2 (0.29 eV) was likely too large due to the selection of CASPT2
reference values.>> As already noticed by Szalay’s group,®*7° although the MSE of CC2 is smaller
than the one of CCSD, the standard deviation is significantly larger with the former model, i.e., CC2
is less consistent in terms of trends than CCSD.

Finally, one obtains a reasonably tight distribution with NEVPT2, with a net overestimation
trend (MSE of 0.09 eV) and a general behavior that is in fact quite comparable to (STEOM-)CCSD
in terms of average and maximal deviations. Nonetheless, we wish to point out that NEVPT?2 has the
obvious advantage over CCSD to be able to treat accurately ES characterized by a dominant double
excitation character. As mentioned above, these were not included in the present benchmark set.

In Table 13, we report a MAE decomposition for different subsets of ES. Note that, due to
implementational limitations, only singlet ES could be computed with CCSDR(3) and CCSDT-3
which explains the lack of data for triplet ES. A few interesting conclusions emerge from these

results. First, the errors for singlet and triplet transitions are rather similar with all models, except
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for CCSD that is significantly more effective for triplets. Dutta and coworkers observed the same
trend for Thiel’s set with MAE of 0.20 eV and 0.11 eV for the singlet and triplet ES, respectively. ®
Turning to the comparison between valence and Rydberg states, we find that CC2 provides a better
description of the former, whereas CCSD (and higher-order methods) yields the opposite trend. In
fact, CC2 has the clear tendency to overestimate valence ES energies (MSE of +0.10 V), and to
underestimate Rydberg ES energies (MSE of —0.17 eV). CCSD is found to be much more consistent
with MSE of 0.12 and 0.09 eV, respectively (see the SI). This relatively poorer performance of CC2
as compared to CCSD for Rydberg ES is again perfectly consistent with other benchmarks, °6:70
although the MAE for CC2 (0.18 eV) reported in Table 13 remains relatively small as compared
to the one given in Ref. 70. We believe that it is likely due to the distinct types of Rydberg states
considered in these two studies. Indeed, we consider here (relatively) low-lying Rydberg transitions
in medium-sized molecules, while Kdnnér and Szalay (mostly) investigated higher-lying Rydberg
states in smaller compounds. CIS(D), ADC(2), CC2, and STEOM-CCSD better describe n — 7*
transitions, whereas CCSD seems more suited for 7 — n* transitions. The variations between the
two subsets are probably not significant for the higher-order approaches. The former observation

t,23:%9 whereas

agrees well with previous results obtained for smaller compounds?® and for Thiel’s se
the latter, less expected observation is likely dependent on the selected ES subset.?>’? Finally, the

average errors obtained with NEVPT?2 are rather uniform for all subsets.

Table 13: MAE (in eV) obtained with different methods for various classes of excited states.

Method Singlet Triplet Valence Rydberg n — n* n — n*
CIS(D) 0.21 0.25 0.26 0.15 0.22 0.28
ADC(2) 0.15 0.13 0.13 0.17 0.08 0.17
CcC2 0.16 0.14 0.14 0.18 0.08 0.19
STEOM-CCSD  0.11 0.13 0.11 0.12 0.08 0.15
CCSD 0.16 0.09 0.14 0.09 0.19 0.11
CCSDR(3) 0.05 0.07 0.02 0.08 0.06
CCSDT-3 0.05 0.06 0.03 0.08 0.04
CC3 0.01 0.01 0.01 0.01 0.01 0.02
NEVPT2 0.15 0.12 0.13 0.15 0.11 0.14
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6 Concluding remarks

We have computed highly-accurate vertical transition energies for a set of 27 organic molecules
containing from 4 to 6 (non-hydrogen) atoms. To this end, we employed several state-of-the-art
theoretical models with increasingly large diffuse basis sets. Most of our theoretical best estimates
are based on CCSDTQ (4 atoms) or CCSDT (5 and 6 atoms) excitation energies. For the vast
majority of the listed excited states, the present contribution is the very first to disclose (sometimes
basis-set extrapolated) CCSDT/aVTZ and (true) CC3/aVQZ transition energies as well as CC3/aVTZ
oscillator strengths for each dipole-allowed transition. Our set contains a total of 238 transition
energies and 90 oscillator strengths, with a reasonably good balance between singlet, triplet, valence,
and Rydberg states. Among these 238 transitions, we believe that 224 are “solid” TBE, i.e., they are
chemically accurate (MAE below 0.043 eV or 1 kcal.mol™!) for the considered geometry. It allowed
us to establish a reasonable error bar for several popular ES models with lower computational cost:
CIS(D), ADC(2), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, CC3 and NEVPT2. It turns
out that CC3 is extremely accurate, and, very likely should be considered as globally more robust
and trustworthy than CASPT2 or NEVPT2, except for ES with a predominant double excitation
character. Other methods including corrections for the triples yield a mean absolute deviation
around 0.05 eV, whereas none of the second-order approaches has been found to be chemically
accurate with MAE in the 0.12-0.23 €V range.

Paraphrasing Thiel and coworkers,>® we hope that this new set of vertical transition energies,

combined or not with the ones described in our previous works, 28:72

will be useful for the community,
will stimulate further developments and analyses in the field, and will provide new grounds for
appraising the pros and cons of ES models already available or currently under development. We
can crystal-ball that the emergence of new SCI algorithms optimized for modern supercomputer

architectures will likely lead to the revision of some the present TBE, allowing to climb even higher

on the accuracy ladder.>’
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