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Numerical simulation of pelvic system could lead to a better understanding of com-
mon pathology, through objective and reliable analyses of pelvic mobility, according
to mechanical principles. In clinical context, patient-specific simulation has the
potential for a proper patient-personalized cure. For this purpose, a simulable 3D geo-
metrical model, well suited to patient anatomy, is required. However, the geometric
modelling of pelvic system from medical images (MRI) is a complex operator-
dependent and time-consuming process, not adapted to patient-specific applications.
This paper is addressing this challenging computational problem. The objective is to
develop a technique providing a smooth, consistent and readily usable 3D geomet-
rical model, seamlessly from image to simulation. In this paper, we use a generic
topologically-simplified B-Spline model to represent pelvic organs. The presented
paper develops a Virtual Image Correlation (VIC) method to find the best correla-
tion between the geometry and the image. The final reconstructed geometrical model
is to be compatible with meshing and Finite Element (FE) simulation. Then, a vari-
ety of tests are performed to prove the concept, through both prototypical and pelvic
models. Finally, since the pelvic system is complex, including structures hardly iden-
tifiable in MRI, some feasible solutions to introduce more complex pelvic models
are also discussed.
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1 INTRODUCTION

Common pelvic floor dysfunctions, such as genital prolapse or
endometriosis, correlate strongly with pelvic mobility [4, 7].
In order to better understand the mechanism of pathology
through the mobility, the numerical simulation of the pelvic
system has received much attention in recent years. Such sim-
ulations allow to perform objective and quantitative analyses,
subject to mechanical principles [17, 22]. In addition to the
pelvic system, these numerical techniques have received also

much attention for other structures of the human body, such as
blood flow [35] and the femur [26].
In the clinical context, patient-specific simulations would

help to provide better personalized treatment to patients. The
simulation requires firstly 3D geometrical models correspond-
ing to patient anatomy. The 3D geometric modelling from
medical image data is generally problematic, which becomes a
major challenge in computational biomechanics for medicine.
In [35], a parametric modelling was proposed for isogeomet-
ric analysis [6] of the blood flow. In this paper, we are dealing
with the issue of geometric modelling, taking into account the
particularities of the pelvic system.
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Our objective of geometric modelling consists in creating
consistent and readily usable 3D geometries for Finite Element
(FE) simulations. Because of its high contrast for soft tissue
analysis, Magnetic Resonance Imaging (MRI) has become the
principal choice for the examination of pelvic pathologies [8].
Being consistent with the medical reality, our MRI acquisition
protocols are similar to the ones used in clinical trials, which
include multi-slices 2D static MRI for spatial anatomy infor-
mation and also a sequence of 2D dynamic MRI for temporal
information (motion). Usually, the medium image resolution
and anisotropic voxels are not ideal for processing. The geo-
metric modelling of pelvic organs from static MRIs is highly
influenced by the quality of images. The reconstructed geom-
etry should firstly represent the shape of the organs in images.
Moreover, some suspension devices (fasciae and ligaments)
are difficult to be observed in MRI. In addition to matching
the geometry of multiple organs (bladder, vagina and rectum),
a viable geometrical model must be adapted to satisfy mul-
tiple criteria for FE simulations: smoothness with support of
NURBS (NonUniform Rational B-Spline) surfaces [24] for
meshing, identifiable boundaries on subsets of geometry for
defining loadings and contacts between organs, fasciae and
ligaments etc.
So far, such reconstruction procedure subjects an experi-

enced operator to days of modelling. The procedure includes
two main operator-dependent steps: (i) manual segmentation
on MRI to obtain 3D representation of the pelvic system
(labelled voxels); (ii) manual correction and creation of surface
model using a CAD (Computer-Aided Design) software [21].
Concerning the step (i), a variety of algorithms have been

proposed to extract from original images segmented volumes,
represented by labelled voxels. These techniques vary from
thresholding [18] to more sophisticated mathematical models
(a non-exhaustive survey can be found in [23]). However, such
voxel-based techniques cannot directly create surface models.
Generally, an iso-surface generation algorithm, like March-
ing Cubes or its advanced version [19, 33], is applied to build
3D surfaces, represented by point cloud or raw mesh. This
procedure has become a standard implemented tool in a lot
of image processing software, such as AVIZO (https://www.
fei.com/software/amira-avizo/) and 3DSlicer [13]. However,
the terracing artefact on these triangular meshes has been a
common issue, especially when the image data contain highly
anisotropic voxels as in our case. Thus, the generated surface
models cannot be used directly in FE simulations. For this rea-
son, the step (ii) is necessary to create simulable geometrical
models. This time-consuming and highly human-dependent
process is, nevertheless, not suitable for patient-specific appli-
cations in the clinical routine. Moreover, the smoothing and
repairing involved in step (ii) are performed separately, which
are no longer linked with image data.

To deal with the issue, another approach has been consid-
ered to merge the two steps: Model-to-Image Registration.
Such deformable model-based approach was firstly introduced
in [12]. A geometric contour defined by points was optimized
to find the best correlation with image. This technique was
then improved and developed on different aspects: from geom-
etry representation to cost functions (image energy) [34, 20].
A class of more successful techniques consists in defining the
deformable geometry in an appropriate shape space, named
Statistical Shape Models (SSM), firstly introduced in [5].
These techniques have proved interesting in a multitude of
applications [9]. Particular attention should be paid to the rep-
resentation of shapes and their comparison with images [16].
Building such a complex model as the pelvic system, which
has multiple structures and high inter-variability, would thus
require a large training set and a significant number of extra
works.
Alternatively, a registration method called Virtual Image

Correlation (VIC) has been proposed to detect objects in
2D images captured during mechanical experiments, using a
deformable parametric geometry [31, 25]. The virtual image
is generated as an intensity profile linked with the geometry
and is compared to the real image intensity. The correlated
geometry is smooth and circumvents the deficiency related
to image resolution or noises. A virtual image can be com-
puted with any parametric geometry, such as B-Spline, which
is suitable in our case. In addition, the problem can be written
as a minimization formulation, the same as a classical image
registration problem. By replacing the geometry representa-
tion, the method would allow us to perform a Model-to-Image
Registration with the pelvic model to achieve our objectives.
In [11, 10], we adapted the VIC technique to create the flex-

ible 2D geometrical model of pelvic organs on 2D static MRIs,
and to track these organs on the temporal sequence of 2D
dynamic MRIs. In this paper, we are presenting this technique
in the case of the 3D parametric reconstruction of geometrical
models. Consistent with our objectives, the major contribution
is to perform 3D geometric modelling from MRI to provide
efficiently and directly 3D FEmodels (for meshing and simula-
tion), without extra smoothing and surface creation. However,
at this stage, we use a topologically-simplified B-Spline model
to demonstrate our method. In the remainder of this paper, we
will present the methodology of 3D VIC: parametrization of
geometry, generation of virtual image and optimization. A spe-
cial contribution will then be performed to prove the method,
through a batch of tests with both prototypical and real pelvic
models. In the Discussion part, we will also provide feasi-
ble solutions to compute more complex 3D pelvic geometries,
including structures other than organs, as aforementioned.

https://www.fei.com/software/amira-avizo/
https://www.fei.com/software/amira-avizo/
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2 3D VIRTUAL IMAGE CORRELATION

The methodology of 3D VIC contains five main components:

• input image data (MRI)
• generic geometrical model (B-Spline surfaces to be
deformed)

• virtual image (associated to the geometry)
• cost function (comparison between virtual image and
real one)

• optimization (finding the best correlation between two
images)

Firstly, based on the definition of geometry, its parametriza-
tion should be decided. These are degrees of freedom (DOF) to
be changed while the geometry is being deformed. Secondly,
a virtual image is computed in the neighbourhood of the B-
Spline surface. The variation of intensity of the virtual image
is defined by a continuous level set function, which simulates a
gradual change in gray level from inside to outside of the sur-
faces. Then, a cost function is used to compare the two images,
such as the squared difference of gray levels. Finally, an opti-
mization algorithm is applied to minimize iteratively the cost
function, so that the controlled geometry fits the real image.
The relation between the geometry, DOF and virtual image can
be built analytically, which will be presented later.
Figure 1 illustrates a female pelvic system with an MRI

acquisition according to this area. Intravaginal and intrarec-
tal gel had been introduced to highlight the vagina and
rectum. Meanwhile, the bladder was replete with water
(Figure 1 (b,c)). The presented MRI was performed on a
healthy witness, with a spatial resolution of 0.59 mm pixel−1
and the thickness of the slice is 4 mm. MRI acquisitions on
other patients follow a similar protocol. Multi-slice 2D MRIs
in three directions (sagittal, transverse and coronal) are in our
possession. Usually, the coronal planes are less representative
and more confusing, and are thus not used to apply segmen-
tation. Besides, the uterus is not involved in our numerical
simulation. Whereas, as mentioned in Section 1, the blue parts
in Figure 1 (a) (suspension structures) are modelled for FE
simulation, but they are difficult to be identified in MRI. In
the next sections, we will explain the other four main parts of
registration respectively.

2.1 Geometry definition and parametrization
Generally, for a 3D FE model, the geometry is defined by
NURBS surfaces [24], which is the case of most CAD mod-
ellings for numerical simulation. The complete 3DCADmodel
of pelvic system is quite complex, a topologically-simplified
geometry is thus used to demonstrate our method . Each geom-
etry is defined using a single-patch B-Spline surface. Such

model circumvents the difficulty to ensure continuity along the
edges of multiple patches, and contains a limited number of
control points. Meanwhile, it remains totally consistent with
our Model-to-Image Registration framework.
Given a bidirectional control net {pi,j|(i, j) ∈ {0,⋯ , n} ×

{0,⋯ , m}}, where pi,j denotes a control point, a B-Spline
patch is obtained by computing a tensor product surface.
Hence, a surface point at parameter values (u, v) is given by
the following formulation:

(u, v) =
n
∑

i=0

m
∑

j=0
i,p(u)j,q(v)pi,j ,∀(u, v) ∈ [0, 1]2 (1)

where i,p and j,q are B-Spline basis functions of degree p
and q, respectively. Each organ is modelled by a closed 2D sur-
face embedded in 3D. Figure 2 illustrates how a (n+1)×(m+1)
control net is closed to form a single-patch surface. Additional
constraints should also be applied to ensure continuity at con-
nections. For example, the following conditions imply the 1

continuity on the side (E3 and E4 in Figure 2 ):

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗pn,jp0,j = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗p0,jp1,j ∀j ∈ [0, m].

Figure 3 shows a 3D visual example of the organ’s geom-
etry, control points are joined together to form the top and
lateral connection. p0,6 and p0,0 are repeated 9 times, they must
remain joined during optimization. The control points {p0,j}
corresponding to other j values have the same constraint to
keep the lateral connection closed. In addition, their neigh-
bouring points {pi,5} and {pi,1} should be coplanar to ensure
the smoothness at the top and bottom. For other j value j̄,
p0,j̄ , p1,j̄ and p7,j̄ should remain collinear for the same reason.
The surface normals can be evaluated by using the tangents in
u− and v− direction. However, it becomes problematic at the
poles. Geometrically at the poles, the normal will be perpen-
dicular to the common plane. However, these normals (because
of the singularity) are not used for computing the virtual image.
The virtual image and cost function are evaluated in a subset
of sampled points.
The geometry definition and parametrization are two dif-

ferent concepts. The first was presented in the previous para-
graph, which allows to find geometrical properties, based on
a mathematical model, either discrete, implicit, or parametric.
The second concept consists in using DOFs (or parameters)
to determine the shape of a particular surface, usually in a
reduced dimension space. Hence, the variability of forms is
limited by the space dimension and the value of DOFs will be
computed via an optimization procedure.
Mathematically, a surface embedded in 3D is a set of points

 ⊂ ℝ3, the parametrization of which is such a function  ∶
A → {}, where A is the parameter space. In this paper, we
use two principal parametrizations:
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FIGURE 1 Pelvic system: (a) 3D rendered model (sagittal view) (b,c) T2-weighted static MRI of a healthy witness (sagittal and
transverse plane respectively, spatial resolution = 0.59 mm pixel −1, slice thickness = 4 mm and 512 × 512 pixels). Structures
in blue are involved in simulation, but are not observable in MRI.
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FIGURE 2 Arrangement of the control points for a closed surface: two sides are attached to form a tube-like shape (left) and
two ends of the tube are joined to close (right). The red grid shows the control net. The blue frames indicate the rows and the
columns (left). The blue curves illustrate isolines on surface in u− and v− direction (right).

• a global transformation T ∈ ℝ4×4 applied to an initial
surface: ∗(u, v) = T0(u, v), where 0 is the initial
surface and ∗ the deformed surface with respect to the
parameters of T (12maximum). Let [px, py, pz, 1] be the
homogeneous coordinates of a point p0 on a surface, and
[Tx, Ty, Tz] a translation of rigid body, T is defined with
homogeneous coordinates:

p∗ =

⎡

⎢

⎢

⎢

⎢

⎣

R00 R01 R02 Tx
R10 R11 R12 Ty
R20 R21 R22 Tz
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(p0 − c) + c, (2)

where a local origin c can be used to perform object-
centred transformation;

• control points of the surface: ({pi,j}) = ∗. Obvi-
ously, with this parametrization the surface has more
variability and more DOFs.

In the literature, various types of parametrization have also
been developed, such as FreeformDeformation (FFD) [29] and
space deformation based on Radial Basis Functions (RBFs) [3,
2]. They have the potential for the deformation of complex
geometries. In our application, using the first two types of
parametrization, a multi-scale strategy (global and local) is
implemented to improve the quality of registration.

2.2 Cost function and Optimization
The extension of the method from 2D to 3D does not change
the definition of virtual image and cost function. As given
in [11, 10], a level set function  ∶ d ∈ ℝ → ℝ is defined by
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p0,6 = p1,6 = ... = p8,6

p0,5 = p8,5 

p0,4 = p8,4 

p0,2 = p8,2 

p0,0 = p1,0 = ... = p8,0

surface closed at the top (in u and v
directions)

surface closed in u direction

FIGURE 3 Prototypical models of organ - control points in red.

the following equation:

(d) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Amax if d < 0,
Amin +

Amax−Amin
2

× (1 + cos( �d
�
))

if 0 ≤ d ≤ �,
Amin if d > �.

(3)

where d is the distance from a position x to the target sur-
face.Amax,Amin represent the maximum and minimum of gray
level, near the boundary of the surface. In our case, these are
the grey levels inside and outside of the organs. The constant
� represents the width of the region, the gray level of which
varies from Amax to Amin. In fact, the level set function is an
intensity profile that simulates the variation of gray level in the
neighbourhood of the boundary, Figure 4 gives an illustration.
To clarify the concept and computation of the cost function

and its optimization, we illustrate firstly this technique with a
1D example. Figure 5 illustrates the real image intensity and
an associated level set function, located near a point on the
contour. This example will be used to show the optimization
process in 1D manner.
The idea is to find the optimal shifting of the level set func-

tion (red one) so that it best fits the real image intensity (yellow
one). The optimized shifting indicates where the contour is
located. The optimum is obtained by minimizing the cost func-
tion that compares these two functions on a set of sampled
points. Let {xi =

�
n−1

×i|i = 0, ..., n−1} be a uniform sampling
of n points in the region of width �, the following equation
defines the cost function:

 (d) =
n−1
∑

i=0
[IR(xi + d) − IV (xi)]2

=
n−1
∑

i=0
[IR(

�
n − 1

× i + d) − ( �
n − 1

× i)]2, (4)

where IR is the interpolated intensity of the real image and IV
is the virtual one. As shown in Figure 6 , while the level set
function was being shifted along the abscissa, the cost func-
tion can be computed for a given value d. By minimizing the
cost function, the optimal position can be obtained. Compared
to the choice of Amax and Amin, which is determined by each
image data, the value of � influences where the contour is
located, empirically a value between 2 and 3 pixels is suitable
for our data set.
In a similar way to 1D and 2D, to model the surfaces, the

cost function is defined by the difference between the real and
virtual images. It should be noted that the comparison is per-
formed in the neighbourhood of the CAD surface, not in the
whole domain of images. Concretely, let d be the distance from
a neighbouring point to the surface  , a set of discrete points
can be sampled and their coordinates can be given by surface
parameters (u, v) and the distance d:

x(u, v, d) = (u, v) + dn(u, v), (5)

where n is a normal to the surface. The gray level of the virtual
image at position x can be computed directly:

IV (x) = IV (u, v, d) = (d). (6)
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FIGURE 4 Illustration of the intensity profile (level set function). (a,b) The intensity profile is associated to the contour, sim-
ulating the variation of gray level, along the contour. (c) Gray level of the real image, from the inside to the outside (Amax to
Amin).
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FIGURE 5 Definition of the intensity profile (level set function). 1D example: real image intensity (yellow) and level set
function (red), defined in the neighbourhood of the contour.

Thus, the cost function is defined by the following equation:

Eimage =
∑

u

∑

v

∑

d
[IR(x(u, v, d)) − IV (x(u, v, d))]2

=
∑

u

∑

v

∑

d
[IR(x(u, v, d)) − (d)]2, (7)

where IR corresponds to the interpolated gray level of the real
image. As aforementioned, the optimization takes place at two
scales: a global optimization aiming to find the right trans-
formation matrix T and a local optimization varying control
points {pi,j}. The implemented optimization is a gradient-
based algorithm.

2.3 Analysis using prototypical images
To analyse the performance of registration method and evalu-
ate the uncertainty, a generic geometrical model was created

and 3D prototypical images were generated from this geom-
etry. With different initial values of parameters of the matrix
T, the method is able to find the best alignment between the
geometry and image (according to the initial configuration).
To define the prototypical geometry, 9 × 4 control points

are uniformly spaced on a grid, except several joining points.
The computed generic shape is a bell-like open surface. Let
us consider the bidirectional grid {pi,j}, for a fixed value j̄,
the control point in the first row p0,j̄ is rotated about Z-axis
(every 45◦) to form a semi-closed surface (Figure 7 ). The
mean times, for a fixed value ī, pī,j=0,1,2 are uniformly arranged
following Z-axis. Besides p0,3 is repeated 9 times at the top,
the grid has thus 9 × 4 control points.
The position of control points is given by the following for-

mula with a rotation angle dependent on i, � = i ∗ �∕4, i ∈
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FIGURE 6 Illustration of the optimization in 1D manner : Amax = 130.0, Amin = 25.0 and � = 3.0. The cost function on the
right reaches its minimum for a shifting d of 2.6 pixel, which corresponds to the dashed red curve on the left.

[0, 8]:

pi,j = [x(�), y(�), z(j)]. (8)

The coordinates x and y have value −0.5, 0.0 or 0.5, with
respect to the rotation angle �. The z value depends on the

index of column j. For the control points {pi,j|j < 3},

x(�) =

⎧

⎪

⎨

⎪

⎩

−0.5 if cos(�) < 0,
0.0 if cos(�) = 0,
0.5 if cos(�) > 0

y(�) =

⎧

⎪

⎨

⎪

⎩

−0.5 if sin(�) < 0,
0.0 if sin(�) = 0,
0.5 if sin(�) > 0

z(j) = −0.5 + 0.5 ∗ j. (9)

p0,3 p1,3 p8,3= =...=

p0,2 p8,2=

p1,2

p1,1

p1,0

p2,1

p3,1

p0,1 p8,1=

p0,0 p8,0=

S(u, v)

u

v

FIGURE 7 Definition of the prototypical geometry.
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a b c d

FIGURE 8 Generation of the 3D prototypical image of 100 × 100 × 100 pixels and 1 mm pixel−1: (a) X-axis view (b) Z-axis
view (c) Perspective view (d) The image volume.

For the joining points on the top {pi,3|∀i ∈ [0, 8]}: pi,3 =
[0.0, 0.0, 0.5]. Figure 7 shows the geometry definition.
The corresponding 3D image is then generated from the

geometry. The image is defined in the vicinity of the surface
with a thickness of 6 mm, its gray level varies from 1 to 0
(Figure 8 ). Thus, we can dismiss initially problems related
to initialization, image artefact and the complexity of shapes.
However, it is useful to validate the method in a controllable
way: the inputs and theoretical values are known a priori.
Three test cases have been carried out: a scaling, a transla-

tion and an affine transformation, their parameters have been
optimized respectively. The global transformation (4×4matrix
T) is applied to all the control points of the surface. The origin
c = [cx, cy, cz, 1] is the center of the image, and the parame-
ters Rij , Tk are optimized using a gradient descent algorithm
in each case.

2.3.1 Scaling
The first test case relates to the diagonal values of a transform
matrix. The following values were imposed to obtain the initial
model: R00 = 2.0, R11 = 2.0, R22 = 1.5. Thus, beginning
with the identity matrix, the theoretical values of R00, R11 and
R22 should correspond to the diagonal values of the inverse
of imposed transformation once the optimization reaches its
convergence:

T0 =

⎡

⎢

⎢

⎢

⎢

⎣

R00 = 0.5 0 0 0
0 R11 = 0.5 0 0
0 0 R22 = 0.67 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (10)

As shown in Figure 9 and 10 , the obtained experimental
values are [0.52, 0.52, 0.70].

2.3.2 Translation
The second test consists in applying only a rigid body
translation to the prototypical model. The following val-
ues of [Tx, Ty, Tz] were imposed to obtain the initial model:
[−10.0,−15.0, 10.0]. At the end of the optimization, the theo-
retical values should be

T0 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 Tx = 10.0
0 1 0 Ty = 15.0
0 0 1 Tz = −10.0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (11)

As shown in Figure 11 and 12 , the experimental values are
[9.36, 15.01,−8.79]. These results will be discussed later in
this section.

2.3.3 Scaling and rotation
The last test is to apply a scaling combined with a rotation
to the prototypical model. 9 parameters of the transformation
matrix are taken into account. We omit the translation in the
following for two reasons:

• In our application, the initial model is positioned at
the center of mass of the target volume (detailed in
Section 3.1.1). The extra three degrees of freedom are
not needed;

• A parameter normalization is essential for including
translation, which is not evident, especially when the ini-
tial model is not close to the prototypical image. And
this is not the concern of our method.

To define the initial model, the prototypical one is first rotated
around the X-axis by 20◦, and then scaled in the three direc-
tions.
The following values are applied to the prototypical model:

R00 = 1.5, R11 = 1.5 cos(20◦), R12 = −1.2 ∗ sin(20◦), R21 =
1.5 sin(20◦), R22 = 1.2 cos(20◦). The theoretical values at the
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Errors Scaling Translation Scaling+Rotation Resolution

R00 R01 R02 Tx 0.02 - - - - - - 0.64 mm 0.01 0.01 0.04 - 0.01 0.01 0.04 -
R10 R11 R12 Ty - 0.02 - - - - - 0.01 mm 0.00 0.03 0.01 - 0.00 0.03 0.01 -
R20 R21 R22 Tz - - 0.03 - - - - 1.21 mm 0.05 0.02 0.04 - 0.05 0.02 0.05 -

TABLE 1 Table of absolute errors of the presented three tests.

FIGURE 9 Visual illustration of the scaling optimization:(a) X-axis view (b) Z-axis view (c) Perspective view.
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FIGURE 10 Illustration of the convergence of the scaling optimization: cost function and parameter values with respect to the
iteration (initial value = 2137.2 and final one = 56.3).

end of optimization should be

T0 =

⎡

⎢

⎢

⎢

⎢

⎣

0.67 0 0 0
0 0.63 0.23 0
0 −0.28 0.78 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (12)

The obtained experimental values are

⎡

⎢

⎢

⎢

⎢

⎣

0.68 −0.01 0.04 0
0 0.66 0.24 0

−0.05 −0.30 0.82 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(see Figure 13 and 14 for the illustrations).
Table 1 shows the absolute errors between theoretical and

experimental results. Being used in these tests, the prototypical
image is generated from the prototypical model in a discrete
way : discrete points are sampled in the vicinity of the surface
to identify the virtual image intensity. However, a Gaussian fil-
ter is applied to smooth out the 3D image and to fill in missing
voxels, therefore it is not exactly the same as the virtual image
defined by level set function  (which is usually the case in
real applications). This explains the slight difference between
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FIGURE 11 Visual illustration of the translation optimization:(a) X-axis view (b) Z-axis view (c) Perspective view.
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FIGURE 12 Illustration of the convergence of the translation optimization: cost function and parameter values with respect to
the iteration (initial value = 2008.8 and final one = 83.3).
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FIGURE 13 Visual illustration of the rotation optimization:(a) X-axis view (b) Z-axis view (c) Perspective view.

theoretical and experimental values. The amplitude and thick-
ness of a defined level set have also some influence on optimal
values. Moreover, in the case of translation, the initial model is

quite far from the final position. On the other hand, thanks to
our method, we can show the influence of image resolution is
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FIGURE 14 Illustration of the convergence of the rotation optimization: cost function and parameter values with respect to the
iteration (initial value = 1915.4 and final one = 59.2).

not preponderant. In this example, the image resolution is mul-
tiplied by 2, and the same optimization is performed with the
finer image (200 × 200 × 200 pixels, 0.5 mm pixel−1). Finally,
the experimental values have slightly changed in the order of
10−3 (last column of Table 1 ). In fact, the optimization is
based on virtual image, which is linked with the geometry. It
can have a higher resolution than the real image and the gray
level in the real image is interpolatory. Thus, the algorithm has
a sub-voxel precision.

3 RESULTS AND DISCUSSIONS

3.1 Application to the geometric modelling of
the vagina
In this section, we will apply the previous validation tests to
clinical data (MRI) to reconstruct a 3Dmodel of pelvic organs.
Generally, the robustness of detection algorithms depends
strongly on the initialization and the quality of images. Thus,
pre-processing and initialization are necessary. Concerning the
pre-processing, thresholding and mathematical morphology
operators are applied to extract the organ volumes from the
raw images. With regard to initialization, it is important to bet-
ter position the generic model s to obtain the initial model
i. For these purposes, s is first oriented along the prin-
cipal axes of the volume containing the target organ. Then, a
global transformation is applied and optimized to align as best
as possible the model with the volume to obtain a well-defined
i.

3.1.1 Image pre-processing
This part introduces briefly the thresholding and morpholog-
ical operation [32] applied to the raw image data. Practically,

the choice of threshold is manually defined for each organ (by
click in the median plane of MRI). Then an erosion results in a
better isolated target, in every slice. Once a separated volume
is obtained, a dilatation is used again to minimize the deviation
from the raw image data. Lastly, the principal orientation of the
organ can be computed using 3D image moments of different
orders.

3.1.2 Global scaling for initialization
Asmentioned in Section 2.3, the geometry of organs is defined
by closed B-Spline surfaces, similar to the prototypical model.
Only the arrangement of control points is modified so that the
surface is closed. Figure 3 illustrates a 9 × 7 control points
net to define the generic models.
The global scaling permits to get a better initialization (i)

before locally adjusting control points. Once the orientation of
the model has been performed, a change of scales is applied to
align the model and the separated volume as close as possible.
This scaling is optimized by varying the diagonal values of
the transformation matrix. The gradient descent algorithm is
stopped once the variation of the parameters becomes stable
(less than 0.01). The choice of threshold (0.01) is not of critical
importance because the shape ofs is generic, which cannot
be aligned perfectly with the volume. Thus, a fast approximate
global scaling is sufficient to obtain a desired initial modeli.

3.1.3 Local registration
The local registration consists in deforming the initial model
i locally by modifying the positions of its control points.
This step continues to minimize the cost function (Equation 1
and 7), which makes it capable of obtaining a finer geometrical
reconstruction of organs.
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During the optimization, control points move independently
and in 3-Dimension.Meanwhile, some constraints are imposed
to ensure geometric continuity. In Figure 3 , control points
joined together at the lateral side, are removed from the degrees
of freedom. They are recomputed as the middle of the adjacent
two points: p0,j̄ = p8,j̄ = (p1,j̄ + p7,j̄)∕2. At the top, because
p0,6 and p0,0 are repeated 9 times, and their neighbouring points
{pi,5} should be coplanar. The average displacement of these
points is imposed.
Figure 15 and 16 illustrate the global initialization and

local registration performed on the volume of the vagina (512×
512 pixels, 0.59 mm pixel−1 and 4 mm between slices). With
a close initialization, the Model-to-Image Registration can
be convergent to the separated volume. The choice of gradi-
ent descent factors is usually highly problematic, especially
with the anisotropic voxels, the cost function is relatively not
a smooth and convex one. A gradient descent algorithm is
used to execute the optimization. We decided to use the max-
imal displacement of all the control points (DOFs) as a stop
criterion for the optimization.

3.2 Reconstruction of pelvic system of
multiple patients
In this part, the same registration algorithm is applied to recon-
struct three principal organs (bladder, vagina and rectum) from
the MRI of four patients. We would like to demonstrate the
following points through these datasets:

• stability and reproducibility of the algorithm

• direct usage of the model with meshing tool

• evaluation of uncertainties.

With the empirical thresholds, the algorithm succeeds in
finding the final models corresponding to the volumes. The
most important one is that they are consistent, smooth and
compatible to be imported into other tools for meshing and
simulation. Figure 17 shows the reconstructed models of
4 witnesses, which are converted directly into regular mesh
(NETGEN [27]). We can observe that pelvic organs have large
inter-variability; however, the quality of geometry is ensured.
Then, we are interested in the accuracy of the geometry by
evaluating its deviation from the MRI.
This results in a quantitative comparison: the reconstructed

model is confronted with the geometry in the form of a point
cloud obtained by manual MRI segmentation, performed by
doctors. Manual segmentation is performed with the AVIZO
software. Then, the models were imported into the CAD soft-
ware CATIA (https://www.3ds.com/fr/produits-et-services/
catia/), which allows us to perform an accurate analysis of the
deviation.

The analysis involves themeasurement of point-to-point dis-
tances. All the points on the manually segmented surface are
projected to the reconstructed model. Each organ is evaluated
on approximately 10, 000 points (Figure 18 ). We show the
average and standard deviations of each organ and patient in
Table 2 .
In these examples, as can be seen, the ends of the vagina

and rectum are difficult to identify by the proposed algorithm.
There are such fine and sometimes blurred areas that only the
doctor manages to identify them manually. Other difficulties
are encountered, caused by the presence of wrinkles and spots
in the rectum [11]. The model of the rectum is thus restricted
to correspond to the lower part in contact with the vagina.
However, this missing upper part does not lead to deficiency
in the numerical simulation. We would like to mention other
limitations of the registration method in the next section.

3.3 Discussions
It should be emphasized that in an FE simulation, the point
cloud or raw mesh is not usable. An operator must manu-
ally perform time-consuming surface creation and repairing to
obtain a functional geometry which would not correspond to
the original image data. At this stage, we are able to have a
relatively simple, image-guided smooth geometric model that
is usable for remeshing and prospective FE analysis. As men-
tioned in Section 1, the standard technique Marching Cubes
[19] cannot be suitable for the FE analysis in a straight way.
Despite the fact that the extended Marching Cubes [15] has
succeeded in eliminating the terracing artefact and generat-
ing feature-sensitive triangle meshes, the triangle complexity
depends on the volume resolution. More importantly, it is dif-
ficult to perform adaptive remeshing with the surface mesh.
A parametric CAD model will be a better support for creating
tetrahedron meshes for FE simulation.
The pelvic system is complex, which implies the main issue

of the presented B-Spline model: it does not meet the need
for defining highly complex boundary conditions, in order to
perform a meaningful simulation. These boundaries consist
of many different parts: the zones subject to displacements,
or a distribution of pressure; the zones where a structure can
contact another one. These contacts involve some missing sus-
pension devices hardly visible in MRI : ligaments and fasciae
(the blue parts in Figure 19 ).
To deal with this issue, a more complex generic geometrical

model is required. For example, we used 3D geometry created
manually in CATIA for the numerical simulation, which con-
tains multi-patch structures (Figure 19 ). On this model, the
attachment of fasciae and ligaments is well defined thanks to
specific patches.

https://www.3ds.com/fr/produits-et-services/catia/
https://www.3ds.com/fr/produits-et-services/catia/
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FIGURE 15 Visual illustration of the local registration on the volume of vagina : initial model in white and final model in
green. (a) X-axis view (b) Y-axis view (c) Z-axis view (d) Perspective view.
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FIGURE 16 Illustration of the convergence of the global and local registration : (a) Cost function (b) Optimized parameters
during global scaling (c) Maximum displacement of control points in mm. The first 140 iterations correspond to the global
scaling.

Organ Average deviation (mm) Standard deviation (mm)

Witness 1
Bladder 2.67 1.76
Vagina 1.62 1.35
Rectum 3.33 2.56

Witness 2
Bladder 2.43 2.27
Vagina 1.64 1.38
Rectum 2.73 2.30

Witness 3
Bladder 1.59 1.28
Vagina 1.23 1.04
Rectum 2.73 2.12

Witness 4
Bladder 2.76 2.27
Vagina 2.73 2.39
Rectum 2.79 2.71

TABLE 2 Table of deviation measurements based on point-wise distances. The resolution of used MRI is 0.59 mm pixel−1 or
0.73 mm pixel−1, and the thickness between slices is from 3 to 4 mm.



14 Z. JIANG ET AL

Witness 1 Witness 2

Witness 3 Witness 4

FIGURE 17 Reconstruction of pelvic organs (bladder, vagina, rectum).The final geometrical model is exported to STEP file
and then processed bymeshing tool NETGEN [27]. The concave shape at the top of the vagina is due to the absence of the uterus.

The first intuition is to use all the control points as DOFs
for the registration. However, contrary to the simplified model,
thismodel has a large number of control points. Table 3 shows
the complexity of this model. Hence, it is more reasonable to
find a DOF reduction and refinement technique.
In 2D version [11], control points were adaptively added

and removed during the optimization of B-Spline contours.It
was possible to detect fine details of geometry, by avoid-
ing meanwhile unnecessary control points. Unfortunately, this
technique cannot be applied to the current 3D model, due
to the properties of B-Spline surface. Indeed, an insertion or
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a b c
a b c

FIGURE 18 Comparison between two models (deviation measured by point-wise distances): (a) manually segmented model
(b) reconstructed model by registration method (c) cartography shows the distances point-to-point in mm between (a) and (b)
(red color represents high deviation and the average value for the three organs is 2.48 mm).

removal of control points will affect the entire line (or column)
of the control net grid.We cannot arrange a single control point
locally in an exact position because their form should remain
bidirectional. This forced us to find a fixed number of con-
trol points, which is a trade-off between accuracy in terms of
"geometry" and functionality of the model (compatible to sim-
ulation). An alternative approach has been proposed, which
enables the local refinement of the control grid [1]. In [14], an
adaptive refinement technique was performed in a hierarchical
manner to describe geometries and displacements.
Another approach to enrich a simplified model to achieve

the model shown in Figure 19 , is to use the T-spline surfaces.
This concept was introduced by [30, 28] and overcomes the
limitations of B-Spline or NURBS model. The control grid is
less well structured and more flexible: the number of points
in rows (or columns) may be different. In fact, a row and a
column may have an intersection of "T" form. Hence, local
refinement would be possible with this modelling. However, it
is not evident to implement a T-spline model. Moreover, the
boundaries should be defined more clearly using meaningful
patches.
The third approach consists in using some space deforma-

tion techniques, such as Radial Basis Functions (RBF) [3, 2].
The idea is to deform all the structures well-defined simul-
taneously and the deformation is deduced from a few DOFs.
Moreover, the DOFs themselves can be added during the reg-
istration. Combining RBF-based deformation and VICmethod
may bring promising results for complex geometry reconstruc-
tion from images. Let us reconsider the missing suspension
structures mentioned at the beginning of this section. In the
medical reality, there exists no way to identify these suspen-
sion devices by imaging techniques. Even in books of anatomy
there are few common agreements on the position of these

structures. Thus, anatomically it is impossible to define these
positions precisely and adapted to each patient. However, we
created a mechanically consistent model including these struc-
tures, after taking into account the description in an anatomy
book (Figure 19 ). To ensure the plausibility of the boundary
conditions with maximum precaution, the invisible structures
would follow the space deformation, so that they would still
be suitable for numerical simulation and adapted for a set of
patients.

Organs

Ligaments

Fascias

Pelvic floor

FIGURE 19 The complex generic 3D model.

Organ Bladder Vagina Rectum
No. of patches 14 14 20

No. of control points 4608 1017 1098

TABLE 3 Statistics of geometry entities of the complex
generic model.
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4 CONCLUSION AND PERSPECTIVES

In the presented paper, we present an approach to reconstruct
the 3D geometrical model of pelvic organs from MRI. The
main contribution is to obtain smooth, consistent and simula-
ble 3D models by deforming an existed generic model, so it
corresponds to the image data. The presented method allows
us to obtain good results with a simplified 3D model (a single-
patch B-Spline surface). A two-step strategy (global and local)
has been developed for the optimization. Moreover, a major
effort has been made to validate or compare these results with
either prototypical cases or manual segmentation results.
By combining CAD modelling with VIC, the presented

work is an important step forward for the VIC and for the
Model-to-Image Registration. Thanks to the combination, the
geometry modelling problem could be solved with flexible
geometry parametrization and in a similar way to the Image
Registration framework.
However, as discussed above, the principal challenge is now

to introduce more complex geometry, and thus define where
the organs, ligaments, fasciae should be connected and where
the loadings should be applied. For this purpose, a geometri-
cal morphing of all the structures based on RBF could be a
promising approach.
Regarding the technical aspect, we would like to finalize the

development to provide a user-friendly application, which can
be easy-to-use in the clinical routine. Then, it would be pos-
sible to apply the method on more patient data to ensure the
stability and robustness of the algorithm. The purpose of these
enhancements is to reduce the gap between medical images
and numerical simulation in real patient-specific cases.
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