
HAL Id: hal-02403171
https://hal.science/hal-02403171v1

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast decoding of binary quadratic residue codes
Yannick Saouter

To cite this version:
Yannick Saouter. Fast decoding of binary quadratic residue codes. Electronics Letters, 2019, 55 (24),
pp.1292 - 1294. �10.1049/el.2019.2143�. �hal-02403171�

https://hal.science/hal-02403171v1
https://hal.archives-ouvertes.fr


Fast decoding of binary quadratic residue
codes

Y. Saouter

In a recent article, Y. Li et al proposed an algorithm for the decoding of
binary quadratic residue codes with tiny memory requirements. In this
letter, this algorithm is modified in order to dramatically improve the
decoding speed. The case of the (89, 45, 17) binary quadratic residue
code is used to illustrate the new algorithm.

Decoding binary quadratic residue codes: Binary quadratic residue
codes are (n, k, d) cyclic binary codes where n is a prime number
congruent to ±1 modulo 8, k= dn/2e and d≥

√
n. A detailed exposure

of their construction and properties can be found in [2, chap. 16].
These codes have thus an encoding rate close 1/2 and a large minimum
distance, making their decoding especially difficult. There is quite a
large bibliography focusing on this topic. Proposals can be split in two
categories. The first category of decoding algorithms involves algebraic
decoding. The syndromes of codes are computed and the associated
locator polynomial is determined. The situation is complicated by the
fact that, for quadratic residue codes and contrary to the case of BCH
codes, all the required syndromes cannot be computed directly. Then
sophisticated nonlinear techniques are involved in obtaining the missing
syndromes. These algorithms are generally difficult to build and have
a high computational cost. This type of algorithm has been pioneered
in reference [3] to the (23, 12, 7) Golay code. In what concerns our
following illustrating example, say the binary quadratic residue code
(89, 45, 17), reference [4] describes the first complete algebraic decoding
procedure. The second category of decoding algorithms uses the value
of parity check vectors to make a one-to-one correspondence with error
patterns. For instance, by direct lookup table, it is possible to build a
table with 2n−k entries corresponding to all the possible parity check
vectors and containing pointers to all error patterns. This technique
permits fast decoding and may be considered for short codes. If we set
t= b(d− 1)/2c, it could be observed that the number of distinct error
patterns is N =

∑t
i=0

(
n
i

)
. This number is generally much smaller than

2n−k. Using a sorted table and binary search, the memory requirements
can then be reduced. The price to pay is the decoding process involves
then dlog2(N)e accesses to the table. However the memory requirements
are still prohibitive for large codes. Using the pigeonhole principle and
on-the-fly generations of error events, the paper [1] proposes an algorithm
with tiny memory requirements. The drawback is that an eventually
numerous number of error patterns have to be tested, which in turn
penalizes decoding speed.

Speed, memory and hostile environments: Memory limitations at
the present time are far above than in the early times of digital
electronic. Nowadays, digital chips dedicated to server applications have
multimegabyte on-chip caches. This limit can be still overcome by
external DRAM memories which can offer up to hundreds of gigabytes.
Modern microcontrollers also generally possess DRAM controllers. For
FPGA implementations, most of the vendors provide synthesizable IPs
for this type of controller. Non-volatile memories such as mask ROM
or Nand Flash RAM follow the same evolution and are now available
in comparable size. Some emerging technologies like magnetoresistive
RAMs (MRAMs) are even expected to push limit memory further in the
near future. These technologies are even used in difficult environments
like outer space. For instance, the New Horizons data probe launched
in 2006 is equipped with a Moongoose-V 32-bit microprocessor and a
data storage of 16 GB provided by two SSD recorders [5]. However,
these devices have the additional constraint to be radiation hardened.
Although such devices are now easily available, for microprocessors, one
consequence of radiation hardening is to lower clock frequency for safety
of execution. For instance, while the Moongoose-V microprocessor
implements the R3000 instruction set, the clock speed in New Horizons
is lowered to 12 MHz compared to the 33 MHz maximal frequency of
the original R3000 microprocessor. These remarks justify the fact that in
hostile environments, speed constraints are much more restrictive than
memory constraints. Therefore, if a substantial decrease of execution
time is expected, algorithms involving large lookup tables could be
preferable to algorithms with optimized memory cost.

Difference syndrome algorithm: This section briefly describes the
decoding procedure of reference paper [1]. Let then H= (In−k|P) be
a parity check matrix in systematic form of the binary quadratic residue
code (n, k, d), where P is a (n− k)× k binary matrix. Let x be a size
n column vector such that x= c+ e where c represents a codeword of
the code and e represents a perturbation error event whose Hamming
weight is at most t. Then a complete decoding procedure, given x, can
recover c. The parity check vector of x is the size (n− k) row vector
V=H.x=H.e. First, if we suppose that the Hamming weight of V

is such that wH(V)≤ t, since d > 2t, all errors have occurred in the
n− k places of x. Moreover, we have r= x+W, where W is the size
n column vector obtained by adding k null entries at the bottom of Vt.
Now suppose that e′ is a n row vector with possible non-null entries
only in the last k coordinates. Let t′ =wH(e′)≤ t and V′ =H.(x+

e′) =H.e+H.e′. Again, if we suppose that wH(V′)≤ (t− t′), we can
conclude that all errors occurred in the n− k places of x and that we
have r= x+ e′ +W′ where W′ is the size n column vector obtained
by adding k null entries at the bottom of V′t. Since the code is cyclic,
these facts still hold for any vector obtained from r by cyclic shifts. We
define then r← = r<< (n− k) as the size n column vector obtained by
shifting r cyclically of n− k places to the top. Let t2 = bt/2c. If we
suppose that the error perturbation vector has at most t2 non-null entries
in its k coordinates, then by computing Hamming weights of vectors V′

for every vector e′ out of the
∑t2

i=0

(
k
i

)
possible ones, it is then possible

to decode the vector r. If this procedure does not succeed, the same can be
done for the vector r←. If both procedures fail, then necessarily e and e←

have more than t2 non-null entries in their k coordinates. We have then
wH(e)≤ 2(t2 + 1)− en. However, since wH(e)≤ t, then necessarily t
must be odd and en = 1. Therefore, in this case, it is possible to decode
the vector r by enumerating the

∑t2
i=0

(
k−1
i

)
vectors e′ having Hamming

weights equal to 0 (resp. t2, 1) on the first n− k coordinates (resp. the
following n− k coordinates, the last coordinate). All syndromes which
require to be computed can be generated in sequence. As a consequence,
the difference syndrome algorithm can be implemented with only parity
check matrix H in constant memory.

Fast search procedure: The proposed technique for decoding was
initially proposed in [6] for quite a similar problem. Let i be an integer
less than t2. All vectors e′ of Hamming weight i and first n− k
null coordinates are generated and size n− k corresponding syndrome
vectors H.e′ are generated and stored in an array Si. The index values
of the i non-null coordinates of e′ are stored in another array Ii. These
arrays have

(
k
i

)
entries. The elementary task of the decoder of the

previous paragraph is given r, to find, if it exists, an error configuration
e′, such that wH(H.(r+ e′))≤ (t− i). We suppose that each entry of
Si is cut in t− i+ 1 disjoint slices. If a matching configuration e′ exists,
then the two parity vectors H.r and H.e′ necessarily coincide in at
least one slice. We set l= b(n− k)/(t− i+ 1)c and for j between 1
and t− i+ 1, an array Lij is generated. Array Lij contains the

(
k
i

)
addresses of configurations Ii, sorted in increasing order according to
the values of corresponding syndrome vectors along the j-th block.
At this point, it is possible to find candidate e′ vectors by dichotomy.
However, in a sake of speed, direct access has been preferred. To any
array Lij , a new array Aij with 2l entries is associated. The address
s of Aij contains then the least value k, such that the configuration
pointed at by Lij(k) has a value greater or equal to s in its j-th slice.
As a consequence, by construction, given any s value, for all k with
Aij(s)≤ k <Aij(s+ 1), the configuration pointed at by address Lij(k)
has a j-th slice equal to s. Note that this set can empty. This is the case
if s does not appear as possible value for any j-th. In this case, we have
effectively Aij(s+ 1) =Aij(s). The entire decoding procedure is then
as follows. First compute V1 =H.r and V2 =H.r←. If wH(V1)≤ T
or wH(V2)≤ T , then the decoding is immediate using the first criterion
of difference syndrome algorithm. If not, for i ranging from 1 to t2,
compute l= b(n− k)/(t− i+ 1)c and cut V1 and V2 in t− i+ 1

slices of l bits wide. If sj is the j-th slice, for all k such that Aij(sj)≤
k <Aij(sj + 1), compute the parity check vector with address Lij(k)
in the array Ii. Compute the Hamming weight of the sum of this vector
with V1 (or V2 according to the case). If this weight is less or equal
than t− i, then decode according to the difference syndrome algorithm.
If t is odd and the previous procedure fails, compute V3 =H.r+H.en
and perform the procedure for i= t2 with a maximum admissible weight
equal to t− t2 − 1.

ELECTRONICS LETTERS September 26, 2019 Vol. 00 No. 00



Nb. err. ALG [4] DS [1] FS
1 2.3 1.1 1.1
2 180 2.4 1.2
3 2300 4.1 1.6
4 4900 24 2.7
5 8200 48 5.6
6 12000 270 14
7 22000 540 31
8 34000 2400 82

Table 1: Average decoding time for decoding algorithms (in µs)

Application to the (89, 45, 17) binary quadratic residue code: This
procedure has been applied successfully to each binary quadratic residue
code of length less than 100. In this paragraph, our attention will
be focused on the (89, 45, 17) binary quadratic residue code. A full
description of this code can be found in [4]. This code is able to correct up
to t= 8 errors and is unique with this property amongst binary quadratic
residue codes of length less than 100. This code is also the only one with
t2 = 4. Thus configurations up to weight 4 have to be stored which is
clearly a disadvantage for the difference syndrome algorithm as well as
for the presented algorithm. On the contrary, the working Galois field of
this code is GF (211), like the Golay code. This field is much smaller
than that of other binary quadratic residue codes. This particularity was
used in [4] to design an efficient algebraic decoder which is faster than
algebraic decoders of other binary quadratic residue code of comparable
length. The three decoding algorithms have been implemented and have
been tested for decoding speed on a recent Intel-i7 computer. Each
algorithm is able to correct error patterns up to half the minimum
distance. Therefore decoding performance is identical for all the three
algorithms and is depicted in [4, p. 5011]. Average decoding time has
been computed according to error weights. Up to 5 errors, the global set
of configurations was tested. For 6 error patterns and more, configurations
were generated in a pseudo-random way. In any cases, several millions
of configurations were decoded in order to obtain representative timing
performance. Table 1 summarizes the average decoding time obtained. It
can be seen that the fast search algorithm provides a speedup of up to
29 with respect to the difference syndrome algorithm, and up to 414 for
the algebraic decoder. The size of the require arrays is now estimated.
Although these arrays could be packed, we will suppose that they are
in fact byte-aligned. This avoids the need for extraction procedures.
Arrays Si are not stored. Syndromes are in fact regenerated from data
of Ii arrays. These latter arrays require

(
k
i

)
× i bytes for storage. For

each possible value i, exactly l= b(n− k)/(t− i+ 1)c arrays Lij are
required. Each of these arrays requires

(
k
i

)
×K bytes for storage with

K = dlog256
(
k
i

)
e. Finally, l arrays Aij of size (2l)×K bytes are also

required. Using these formulas for our working case gives a global
memory cost of 3070368 bytes (see table 2). At this point, following a
remark of [6], an additional speedup can be obtained. In the case i= 4,
the syndrome is cut in 5 slices, so that syndromes should coincide in at
least 9 consecutive bits. If we suppose that bit expansions are distributed
at random, syndromes have on average 1 chance out of 29 to match.
Therefore, for each Lij table, we have on average 148995/29 candidates
to test. Suppose now that syndromes are cut in 3 slices of 14 bits. In
this case, syndromes should coincide on at least 13 bits of the 14 bits
wide section. Therefore, in order to enumerate all possible candidates,
given the syndrome of the received vector, we have to enumerate all
possible candidates matching with one of the 15 sections differing at
most with one bit with the section of the received syndrome. For each
Lij table, the average number of candidates decrease then to 148995×
15/214. Moreover, since the corresponding l value decreases from 5 to
3, the number of tables Lij decreases in turn giving an additional speed
improvement. The average decoding time of 8 error patterns decrease
then to 78 µs. Morever, in table 2, for i= 3, we have then L3j = 1340955
and A3j = 147456. The memory requirement of the entire algorithm
decreases then to 2316174 bytes. The final speedups of this solution are
then equal to 435 with respect to the algebraic decoding and 30 with
respect to the difference syndrome algorithm.

Conclusion: In this paper, the author described an algorithm to perform
decoding of cyclic error correcting codes of near-half rate 1/2 applied to
binary quadratic code. This algorithm exhibits a large speedup in regard

i Ii Lij Aij

1 45 360 256
2 1980 13860 896
3 42570 170280 1536
4 595980 2234925 7680

Table 2: Memory requirements for fast search algorithm (in bytes)

of classical algorithms. The price to be paid is the implementation of
lookup tables whose size is less than 4 MB and can easily be implemented
with current technologies. With some slight modifications, it can also be
applied to other codes with large automorphism groups like quasi-cyclic
codes.

Y. Saouter (Lab-STICC, Brest, France)
E-mail: Yannick.Saouter@imt-atlantique.fr

References

1 Y. Li, Y. Duan, H.-C. Chang, H. Liu, and T.-K. Truong.
Using the difference of syndromes to decode quadratic residue codes.
IEEE Trans. Information Theory, 64(7):5179–5190, 2018.
DOI: 10.1109/TIT.2018.2830327.

2 F.J. MacWilliams and N.J.A. Sloane.
The Theory of Error-Correcting Codes.
North-Holland, 1977.

3 M. Elia.
Algebraic decoding of the (23, 12, 7) Golay code.
IEEE Transactions on Information Theory, 33(1):150–151, 1987.
DOI: 10.1109/TIT.1987.1057262.

4 T.-K. Truong, P.-Y. Shih, W.-K. Su, C.-D. Lee, and Y. Chang.
Algebraic decoding of the (89, 45, 17) quadratic residue code.
IEEE Transactions on Information Theory, 54(11):5005–5011, 2008.
DOI: 10.1109/TIT.2008.929956.

5 New Horizons. The first mission to Pluto and the Kuiper Belt: Exploring
frontier worlds.
Launch Press Kit.
https://www.nasa.gov/pdf/
139889main_PressKit12_05.pdf.

6 J.F. Voloch.
Computing the minimal distance of cyclic codes.
Computational and Applied Mathematics, (24):393–398, 2005.
https://web.ma.utexas.edu/users/voloch/Preprints/
quad2.pdf.

2


