N

N

Specialization of small non-conjugative plasmids in
Escherichia coli according to their family types
Catherine Branger, Alice Ledda, Typhaine Billard-Pomares, Benoit Doublet,
Valérie Barbe, David Roche, Claudine Médigue, Guillaume Arlet, Erick E.

Denamur

» To cite this version:

Catherine Branger, Alice Ledda, Typhaine Billard-Pomares, Benoit Doublet, Valérie Barbe, et al..
Specialization of small non-conjugative plasmids in Escherichia coli according to their family types.
Microbial Genomics, 2019, 5 (9), 13p. 10.1099/mgen.0.000281 . hal-02403160

HAL Id: hal-02403160
https://hal.science/hal-02403160
Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-02403160
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MICROBIAL GENOMICS RESEARCH ARTICLE

Branger et al., Microbial Genomics 2019;5
DOI'10.1099/mgen.0.000281

M MICROBIOLOGY
SOCIETY

'DATA 3 MICROBIOLOGY

Specialization of small non-conjugative plasmids in Escherichia
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Abstract

We undertook a comprehensive comparative analysis of a collection of 30 small (<25kb) non-conjugative Escherichia coli plasmids
previously classified by the gene sharing approach into 10 families, as well as plasmids found in the National Center for Biotechnol-
ogy Information (NCBI) nucleotide database sharing similar genomic sequences. In total, 302 mobilizable (belonging to 2 MOBrep and b
MOB,,, families) and 106 non-transferable/relaxase-negative (belonging to three Rel, families) plasmids were explored. The most
striking feature was the specialization of the plasmid family types that was not related to their transmission mode and replication
system. We observed a range of host strain specificity, from narrow E. coli host specificity to broad host range specificity, including a
wide spectrum of Enterobacteriaceae. We found a wide variety of toxin/antitoxin systems and colicin operons in the plasmids, whose
numbers and types varied according to the plasmid family type. The plasmids carried genes conferring resistance spanning almost
all of the antibiotic classes, from those to which resistance developed early, such as sulphonamides, to those for which resistance
has only developed recently, such as colistin. However, the prevalence of the resistance genes varied greatly according to the family
type, ranging from 0 to 100%. The evolutionary history of the plasmids based on the family type core genes showed variability within
family nucleotide divergences in the range of E. coli chromosomal housekeeping genes, indicating long-term co-evolution between
plasmids and host strains. In rare cases, a low evolutionary divergence suggested the massive spread of an epidemic plasmid.
Overall, the importance of these small non-conjugative plasmids in bacterial adaptation varied greatly according to the type of family
they belonged to, with each plasmid family having specific hosts and genetic traits.

DATA SUMMARY

Individual plasmid accession numbers can be found in Tables
S1 to S11 (available in the online version of this article).

E. coli are known to contain multiple plasmids that allow the
movement of genetic material, including antibiotic resist-
ance genes. Many of them are large conjugative plasmids;

however, small non-conjugative plasmids have also been
described as contributing to antibiotic resistance [3-8].
These small non-conjugative plasmids encompass mobi-
lizable (MOB) plasmids possessing a relaxase gene but no
genes encoding mating pair formation (MPF) at the opposite
of conjugative plasmids, and non-transferable plasmids

INTRODUCTION

Escherichia coli is a commensal inhabitant of the gastrointes-
tinal tract in birds and mammals. It can also cause various
intestinal and extraintestinal diseases [1, 2]. Isolates of
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devoid of MPF and relaxase genes called relaxase-negative
(ReIN) plasmids [8].

Recently, we undertook a comprehensive comparative
analysis of the sequences of a large number of diverse plas-
mids from human and animal E. coli strains isolated over a
period spanning before and after the use of third-generation
cephalosporins using a gene sharing network approach [8].
This study showed that, although extended spectrum beta-
lactamase (ESBL) genes were mainly found on large conju-
gative plasmids present before the use of third-generation
cephalosporins, the small non-conjugative plasmids (<25kb)
also played a role, albeit a modest one, in the diffusion of
the ESBL genes. Although their backbones have few genes,
the gene sharing approach developed in this previous work
showed that these small non-conjugative plasmids belonged
to 10 different plasmid families. Fine-scale analysis of these
plasmids was not presented [8]. In the present study, we (i)
describe the non-conjugative plasmids of our collection
belonging to each of the families identified thoroughly by
investigating their replication and/or mobilization systems,
(ii) use the backbone of each of these 10 plasmid families to
search for plasmids sharing similar genomic sequences in
the National Center for Biotechnology Information (NCBI)
nucleotide database and (iii) undertake a comprehensive
comparative analysis of the gene contents and sequences of
both our plasmid collection and the plasmids found in the
database to obtain a full picture of the evolutionary dynamics
of these small plasmids and their importance in bacterial
adaptation.

METHODS
Plasmids and parental bacterial strains

In our previously described collection of sequenced plasmids
[8], 30 plasmids were <25kb non-conjugative plasmids. The
sequences of these small plasmids were obtained either by
direct plasmidome sequencing of the parental strains or by
sequencing the plasmid contents of recipient strains after
having transferred the plasmids from the parental strains
either by conjugation in E. coli K-12 J53 Rif" (using a conju-
gative plasmid present in the native cell as helper) or by
electroporation in E. coli K-12 DH10B, using appropriate
antibiotic-selective plates (Table S1). The plasmid sequencing
and annotation methods, comparative genomic analyses of
the sequenced plasmids, global classification of the plasmids
and parental strain chromosome phylotyping are detailed
in [8].

Plasmid searches in the database

BLAST searches (performed in October 2018) for the backbone
sequences of each plasmid family against the NCBI nucleotide
database collection nr/nt were performed with the following
parameters: hit length >90% and identity >90% for the query
sequences. Redundant plasmids from outbreak strains when
documented were discarded.

Impact Statement

Escherichia coli strains contain multiple plasmids that
contribute to the dissemination of antibiotic resist-
ance genes. Many of these plasmids are large conjuga-
tive plasmids that have been well described, but less
is known about the epidemiological contribution of
small non-conjugative plasmids encompassing mobiliz-
able and non-transferable plasmids. By taking a gene
sharing-based approach on plasmids from a recently
published collection and plasmid sequences retrieved
from the National Center for Biotechnology Information
(NCBI) database, we were able to classify small (<25 kb)
non-conjugative plasmids into 10 families and to have
a full picture of their evolutionary dynamics and impor-
tance in bacterial adaptation. The results indicate that the
plasmid families showed host and maintenance system
specificity and that the contribution of the small non-
conjugative plasmids to bacterial adaptation to diverse
and changing environmental conditions such as antibi-
otic resistance or bacteriocin gene acquisition varied and
was specific to the plasmid family they belonged to.

Plasmid evolutionary history analysis

BLAST sequence analysis tools were used to confirm the
identity of proteins encoded on the plasmids. For each family
type of plasmids defined by the comparative genomic analysis
and classification, the set of shared genes were retrieved from
the NBCI database and concatenated. The concatenated sets
of genes were then aligned using BioEdit version 7.2.5 [9]
and a tree was built using the program PhyML [10] under
the general time-reversible evolution model [11]. Molecular
evolutionary analyses including mutational spectrum were
conducted using MEGA version 6 [12].

RESULTS

Characteristics of the 10 plasmid families of non-
conjugative plasmids

In our previous collection of 30 small non-conjugative plas-
mids, 22 were MOB plasmids and 8 were RelN plasmids [8].
These two types of plasmids were further classified according
to their type of replication/control system. Among the
MOB plasmids, 5 had a protein replication/control system
(MOBrep) and 17 had a RNAII/RNAI replication/control
system (MOB,,) like the colE1 plasmid [13, 14]. All eight
RelN plasmids had a RNAII/RNATI replication/control system
(ReIN, ). The gene sharing approach developed in our
previous work followed by a comparative analysis of their
complete circularized sequences and in silico plasmid relaxase
gene typing (PRaseT) [15] allowed us to define 10 families of
plasmids among the 3 groups of plasmids mentioned above.
Each plasmid family had a specific backbone that is not shared
by any other plasmid family [8].
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Fig. 1. Linear representations of the MOBrep plasmids of our collection [8] and maximum-likelihood phylogenetic trees of all the MOBrep
plasmids, including those from the NCBI database (see main text for details regarding their selection) reconstructed as described in the
Methods section. (a) MOBrEDEH plasmids and (b) MOBFEDBZ plasmids. Linear representation: replication genes are grey, mobilization genes
are blue, IS and transposable elements are pink, ESBL genes are red, other antibiotic resistance genes are green and other genes are
white; a horizontal red line indicates genes of the backbones used for phylogenetic analysis. Phylogenetic tree: plasmid IDs are shaded in
yellow for E. coli/Shigella sp., orange for S. enterica ssp. enterica and turquoise for other Enterobacteriaceae, not including K. pneumoniae.
*, plasmids from our collection. Geographical origin and resistance genes are indicated at the right of the trees.

The MOB,_ plasmids were found to belong to two fami-
lies (Fig. 1, Table S1): the MOB__, family of relaxase gene
type (RGT) Qu [16] and the MOB 5, family, which was
not typed by PRaseT. The MOB,_ plasmids were found to
belong to five families (Fig. 2, Table S1): the MOB,_, type 1
family of RGT P5-1 (similar to the colE1 plasmid) [14, 17],
the MOB, , type 2 family not typed by PRaseT, the MOB
type 3 family of RGT P5-2, the MOB,, type 4 family of
RGT CI11 and the MOB_, type 5 family of RGT P5-3,
named by Moran and Hall the ‘NTP16 group’ [18, 19]. The
RelN, ., plasmids were found to belong to three families: the

RNA
ReIN, ., type 1 family, named the p9123 family named by

RNA

RNA

Anantham and Hall [20, 21], the RelN
the RelN

RNA

wa type 2 family and
type 3 family (Fig. 3, Table S1).

Plasmid backbone definitions

The backbones of all the MOB plasmids were considered
to be the sequences that covered the replication/control
system [replication gene or RNAI/RNAII and when present
arepressor of primer (rop) gene involved in the regulation of
copy number [13]] and the mobilization gene systems. This
also included the genes located in between the two systems
on the MOBrepB plasmids and the MOBRNA type 4 family
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Fig. 2. Linear representations of the MOB,, plasmids of our collection [8] and maximum-likelihood phylogenetic trees of all of the
MOB,,,, plasmids, including those from the NCBI database (see main text for their selection) reconstructed as described in the Methods
section. (a) MOB_, plasmids of the type 1 family, (b) MOB_,, plasmids of the type 2 family, (c) MOB,, plasmids of the type 3 family, (d)

MOB,,,, plasmids of he type 4 family and (e) MOB

RNAI p

lasmids of he type 5 family. Linear representation: replication systems (RNAI and

rop gene) are grey, mobilization genes are blue, IS and transposable elements are pink, ESBL genes are red, other antibiotic resistance
genes are green, colicin operons are yellow and other genes are white; a horizontal red line indicates the genes of the backbones used
for phylogenetic analysis. Phylogenetic tree: plasmid IDs are shaded in yellow for E. coli/Shigella sp., orange for S. enterica ssp. enterica,
blue for K. pneumoniae, green for plant pathogen Enterobacteriaceae and turquoise for other Enterobacteriaceae. %, plasmids from our
collection. t, plasmids co-integrated in the chromosome. %, co-integrated in plasmids. Geographical origin, colicin operons, TA systems,
RM systems, resistance genes and others genes are indicated at the right of the trees.
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Fig. 2. (Cont.)
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plasmids (Figs 1 and 2, Table S2). The backbones of the
RelN, ., plasmids were considered to be the sequences that
covered the replication/control system (RNAI/RNAII and rop
gene when present) and for the ReIN, , type 1 family and
RelN_ ., type 2 family plasmids, the shared genes (five genes,
with the sul2 gene being excluded, and two genes, respec-
tively) and for the single ReIN_ , plasmid of type 3 family
the two genes in between the RNAI/RNAII and the rop gene,

excluding the accessory gene fepE (Fig. 3, Table S2).

Plasmids of the 10 families found in the NCBI
database

To obtain a more complete picture of the small plasmid fami-
lies’ distribution and abundance, we searched in the NCBI
nucleotide database for plasmids sharing similar backbone
sequences to those defined above. We found 378 plasmids
with a close hit with the backbones of our 30 plasmids, but
their number varied according to the type of family (Tables 1
and S3-12). For the MOB,_| plasmid families we found 36
MOB,_, plasmids and only 11 MOB_, plasmids. For the
MOB,,, plasmids, we found 54 plasmids of type 1, 23 plas-
mids of type 2, 51 plasmids of type 3, 61 plasmids of type
4 and 44 plasmids of type 5. For the ReIN ., plasmids, we

RNA

found 30 plasmids of type 1, 31 plasmids of type 2 and 37
plasmids of type 3.

Interestingly, we found plasmids integrated on both chro-
mosomes and on other plasmids (Table 1). The plasmids
integrated on chromosomes comprised one MOB,_ , type 1
family and one MOB_, type 5 family (integrated in Klebsiella
pneumoniae strain TGH10 and E. coli strain Nissle, respec-
tively). The plasmids co-integrated on plasmids belonged to
five families and their number varied according to the type of
family: one plasmid of the MOB,_, type 3 family, six plasmids
of the MOB,, type 4 family, including the published plas-
mids ColE-LS6, and pECAZ161_KPC [22, 23], one plasmid
of the MOB,_, type 5 family, one plasmid of the ReIN_ . type
1 family and two plasmids of the ReIN,, type 3 family. The
co-integrated plasmids belonged to all types: conjugative,
mobilizable or non-transferable (Tables S7-10 and S12).

Overall characteristics and evolutionary history of
the plasmids of each family

We explored the main characteristics of the plasmids of each
of the family types, combining the data obtained from the
plasmids from our collection and those from the plasmids
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Fig. 3. Linear representations of the RelN_, plasmids from our collection [8] and maximum-likelihood phylogenic trees of all the RelN

RNAI

plasmids, including those from the NCBI database (see the main text for details regarding their selection) reconstructed as described in

the Methods section. (a) RelN

RNAI

plasmids of the type 1 family, (b) RelN

auy Plasmids of he type 2 family and (c) RelN,, plasmids of the

type 3 family. Linear representation: replication systems (RNAI and rop gene) are grey, IS are pink, ESBL genes are red, other antibiotic
resistance genes are green and other genes are white; a horizontal red line indicates genes of the backbones used for phylogenetic
analysis. Phylogenetic tree: plasmid IDs are shaded in yellow for E. coli/Shigella sp., orange for S. enterica ssp. enterica, blue for K.
pneumoniae and turquoise for other Enterobacteriaceae. %, plasmids from our collection. ¥, co-integrated in plasmids. Geographical
origin, colicin operons, TA systems, RM systems, resistance genes and others genes are indicated at the right of the trees.

found in the NCBI nucleotide database, and carried out a
phylogenetic analysis. In total, 408 plasmids, 302 mobiliz-
able and 106 non-transferrable, were explored. All of these
plasmids were small, with the smallest being the MOB .,
plasmids (mean of 4kb) and the largest being the MOB,
plasmids of the type 4 family (mean of 13.2kb) (Table 1). The
plasmids were isolated worldwide and we did not observe
any group of plasmids isolated from a particular country
(Figs 1-3).

To reconstruct the evolutionary history of the plasmids, we
first built a tree based on the concatenated coding sequences
of the backbones of the plasmids (Figs 1-3, Table 1). This
approach allowed the identification of several clades by
family, except in two families, the MOB, , type 4and ReIN_
type 1 families, where very few variations or no variation was
observed.

Estimates of the average evolutionary divergence of all
sequence pairs within each family of plasmids were then
calculated (Table 1). The mean intra-family diversity of the
plasmids (MOB,_ =4.55 %, MOB,,=3.5% and ReIN, =123
%) showed that the MOB__ plasmids have the highest diver-
sity and the ReIN,, the lowest. However, in the MOB_,
plasmid families the plasmids of the type 3 family showed
high diversity (7 %), while the plasmids of the type 2 family
showed low diversity (0.8 %). Among the plasmids of the

RelN, , families, the plasmids of the type 1 family had the
lowest diversity (0.1 %). We compared these data to the
evolutionary divergence of E. coli strains by calculating the
mean diversity of eight chromosomal housekeeping genes
(dinB, icdA, pabB, polB, putB, trpA, trpB and uidA) used
for multilocus sequence typing (MLST) of 89 E. coli host
strains bearing plasmids, including the 30 plasmids from
our collection [8]. The mean diversity obtained was of 2.6%
(0-4.3). To gain insight into the mechanism of mutagenesis,
we characterized the mutational spectrum of the single-
nucleotide polymorphisms (SNPs) of each plasmid family
and compared the results to the mutational spectrum of
the E. coli chromosomal genes cited above (Fig. 4). In each
plasmid family, we found more than a quarter for each type
of transition (25.36-50.66) and <12% (2.2-12) for each of
the transversion types, as in the E. coli chromosome genes.
In sum, we observed a phylogenetic signal in the backbone
of each family type of plasmids that is globally similar to the
E. coli housekeeping chromosomal genes.

Plasmid families have host species specificity

Among the MOB plasmids, 90% of the MOB__ plasmids
were isolated from E. coli/Shigella strains and only 10%
were isolated from S. enterica ssp. enterica strains, while the
MOB_ ., plasmids were isolated almost equally from E. coli



Branger et al., Microbial Genomics 2019;5

Table 1. Characteristics of the 408 plasmids from our collection and the NCBI database classified into 10 MOB and RelN families

MOB, family type MOB,, RelN_ , family type
Plasmid family type
characteristics
MOB,_,, MOB,_,, Type 1 Type 2 Type3  Type4 Type 5 Type 1 Type 2 Type 3
No. of plasmids 40 12 60 25 54 63 48 35 33 38
Plasmid mean size 4 4.2 6.7 6.8 5.4 13.2 4.9 7.5 6.5 5.2
(range), kb (3.9-5) (3.9-11.9) (4-23.5) (4.2-8.7) (2.9- 9.1- (1.9-19.8) (6-38.9) (2.9-19.8) (2.7-10.3)
15.8) 25.2)
Co-integrated C(1) P(1) P (6) P (1), P (1) P(2)
plasmids (no.)* C (1)
No. of concatenated 3 3 3 3 2 4 2 5 3 3
genes used for (3,123) (3,026) (2,107) (2,409) (1,823) (3,407) (518) (1,662) (579) (920)
molecular analysis
(length of the
sequence, bp)
Estimate of average 5.2 3.9 4.5 0.8 7 2.6 2.6 0.1 1.4 2.2
evolutionary (0-10.2) (0-9.5) (0-7.7) (0-1.7) (0-14.8)  (0-10.1)  (0-6) (0-0.7) (0-3.7) (0-6.5)
divergence over
all sequence pairs
(range, %)
*C, plasmid integrated in a chromosome; P, plasmid integrated in a plasmid.
E. coli chromosome [N - T
MOB epg1 ] - .
MOB pe; — WOMNEEE  "G:C>AT transiion
MOBgytype 1 - om ATrGCtansiton
G:C>T:A transversion
MOBwtype2 .
NGB 5 1 C:G>G:C transversion
type ] s
RNA H
mA:T>T:A transversion
MOBgy, type 4 | s ,
RNA VP ®A:T>C:G transversion
MOBgutype 5 N .
RelNayatype 1 E— o
RelNgya type 2 E— ‘a
RelNgyatype 3 S .

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Frequency

Fig. 4. Mutational spectrum of the SNPs of the shared genes of the plasmids in each of the family types and of the chromosomal
housekeeping genes from a collection of 89 E. coli host strains bearing plamids [8]. Each colour represents a possible substitution.
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Fig. 5. Characteristics of the plasmids according to their family type. The numbers of plasmids in each of the families are indicated above
the columns of each graph. (a) Frequencies of the plasmids according to the host strain species. (b) Frequencies of the plasmids carrying
one of the colicin operon types. (c) Frequencies of the plasmids carrying one of the TA system types, or an RM. (d) Number of resistance
genes carried by the plasmids.
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strains (50 %) and S. enterica ssp. enterica strains (41.6 %)
(Figs 1 and 5a Table S3 and $4).

Among the MOB,,, plasmids, E. coli/Shigella were the
major host species of the plasmids of the type 1 (80%), type
2 (100%) and type 5 (70.8%) families, while S. enterica ssp.
enterica was the second most common host species of the
plasmids of the type 1 (16.6%) and type 5 (25%) families
(Figs 2a, b, e and 5a, Tables S5, S6 and S9). K. pneumo-
niae was the major host species of the plasmids of the type
4 family (80.9 %), while only 6.3% of the plasmids were
isolated from E. coli/Shigella strains and 12.6% were isolated
from various other Enterobacteriaceae (Citrobacter koseri,
Klebsiella aerogenes and Enterobacter cloacae) (Fig. 2d and
Table S8). The plasmids of the type 3 family were ubiquitous.
They were isolated from various Enterobateriaceae, including
S. enterica ssp. enterica, the predominant species (33.3 %),
followed by E. coli/Shigella (18.5 %), K. pneumonia (11.1
%), various other Enterobateriaceae (22.2 %) (E. cloacae,
Enterobacter hormaechei, Citrobacter freundii and Serratia
marcescens) and even plant pathogen Enterobacteriaceae
(14.8%) (Pantoea stewartii, Pectobacterium carotovorum and
Tatumella morbirosei) (Fig. 2c, Table S7).

For the MOB__ and MOB,, plasmids of our collection for
which the background of the E. coli parental strains inferred by
the phylogenic group and the Pasteur Institute MLST scheme
was available, we observed very diverse phylogenetic back-
grounds not linked to plasmid types (Fig. S1 and Table S1).

Among the ReIN, . plasmids, E. coli/Shigella was the most
common host species of the plasmids of the type 1 (94.2%)
and type 2 (69.6%) families, while S. enterica ssp. enterica
was the host species of only 5.7% and 21.2% of the plasmids
of these two families, respectively (Fig. 3a, b and 5a, Table
S10 and S11). K. pneumonia was the major host species of
the plasmids of the type 3 family (86.8 %), while E. coli/
Shigella were the host species for only 7.8% of them (Figs 3¢
and 5a, Table S12). In these three families, the plasmids from
our collection were only isolated from E. coli phylogroup A
strains, but of different sequence types (Fig. S1 and Table S1).
In contrast, the plasmids found in the database were isolated
from E. coli strains of various phylogroups (data not shown)
[5, 24, 25], showing that there was no correlation between
the background of the E. coli host strain and dissemination
of these types of plasmid.

In sum, the plasmids were only found in Enterobacteriaceae,
but, depending on the family type, the plasmids showed
host species specificity. A continuum of host spectrum was
observed from E. coli-specific plasmids (MOB,, type 2) to
broad-range plasmids (MOB,_, type 3), without any link with
the main groups of plasmids (MOB,_, MOB,, and ReIN
(Fig. 5a).

RNA)

Toxin/antitoxin (TA) systems have plasmid family
specificity

We looked for genes implicated in plasmid maintenance,
i.e. TA and restriction modification (RM) systems (Fig. 5b)

[26, 27]. RM systems were rare and found on plasmids
belonging to the MOB,, type 1 (15/60, 25%), type 3 (1/54,
1.8 %) and type 5 (1/48, 2.1 %) families and on plasmids
belonging to the ReIN, , type 2 family (6/33, 18.1 %) (Fig. 5b).
The plasmids carried a type II RM system, except for one
plasmid of the RelN,, type 2 family that carried a type III
RM system (Fig. 3b, Table S10). Each of these plasmids was
devoid of a TA system.

No MOB,_ family plasmid carried a TA system. In the
MOB,_, type 1 family only one plasmid, RCS82_pll, carried
a TA system, a CcdA/B system. This TA system, which is
frequently found in IncF plasmids [28], was part of a 14
900 bp sequence of IncF plasmid origin acquired by means
of an 1S629 (Fig. 2a). All the plasmids (63/63) of the MOB,
type 4 family carried TA systems belonging to the ParE/D
family. These systems encoded two homologous types of
toxin containing the COG3668 domain that we arbitrarily
named ParEl and ParE2. Thereby, among the plasmids of
the MOB, , type 4 family, 53 (84.1%) encoded ParEl and
the last 10 (15.8%) ParE2. In addition to the ParEl system,
RCS49_plV, a plasmid belonging to our collection, carried
an LsoAB system. All but two of the ParEl plasmids clus-
tered closely in a single branch of the phylogenetic tree,
revealing a group of highly conserved plasmids that had
been isolated worldwide (Fig. 2d). Interestingly, a copG
gene coding for a ribbon-helix-helix protein (COG3904),
and a tolA gene coding for a cell envelope integrity protein
(TIGR02794), were found exclusively on all the 10 ParE2
plasmids. Among plasmids of the MOB,, type 5 family,
13/48 (27.1%) carried a TA system: 10 an LsoA/B system, 1
a putative AbiEii system (pfam13304) and 2 a ParE/D system
encoding a ParE toxin containing a COG4679 domain that
we named ParE3. Although they were isolated from distant
areas, most of the LsoA/B plasmids clustered in a main
branch of the phylogenic tree but were not closely related
(Fig. 2e).

All the plasmids of the ReIN , type 1 family carried a MazE
TA system. Among the plasmids of the RelN, , type 2 family,
12/33 (36.3%) carried a TA system: 6 a HigA/B system, 4 an
AbiEii system (pfam08843) and 2 a ToxIN system. Among the
plasmids of the ReIN, , type 3 family, 13/38 (34.2%) carried
a TA system: 4 a MazE system and 9 a putative AbiEii system
(pfam13304) that differed from the one carried by a plasmid
of the MOB__, type 5 family.

RNA

In sum, only the plasmids belonging to three types of family
were devoid of TA and RM systems: the plasmids of the two
MOB_ families and the MOB,, type 2 family. The number
of plasmlds that carry a TA system and the type of TA system
varied according to the family type (Fig. 5b). The plasmids
carried only one TA system, with the exception of one
plasmid of the MOB_, type 4 family that carried two. With
the exception of the MazE and the LsoAB systems that were
each found on plasmids belonging to two different families,
all the other types of TA systems were unique to one family

type (Fig. 5b).
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Plasmids carried accessory genes that give
selective advantage to the host cells

We next looked for genes that give the host strain-selective
advantage and found various colicin operons and antibiotic
determinants (Fig. 5c and d).

Colicin operons have plasmid family specificity

Among the plasmids of the MOB,, type 1 family, 25/48
(41.6%) carried a colicin operon: 21 a colicin E1, 2 a colicin
Js, 1 a colicin R and 1 a colicin N. If the majority of the plas-
mids that carried a colicin E1 operon were clustered in one of
the five main branches of the phylogenetic tree, this operon
was also found on plasmids clustered in three other branches
(Fig. 2a). All but 2 plasmids (23/25, 92 %) of the MOB_, type
2 family carried a colicin operon: 9 a colicin D, 7 a colicin K, 4
a colicin 10 and 3 a colicin S4. No strong association between
the type of colicin and the distribution of the plasmids in the
phylogenetic tree was evidenced (Fig. 2b). All of the plasmids
of the MOB,, type 4 family (63/63) carried a colacin operon
(Figs 2d and 5b). Among the plasmids of the MOB,, type 5
family, 7/48 (14.5%) carried a colicin operon: 6 a colicin E1
operon and 1 a colicin B. All of these colicin plasmids were
found in a cluster of highly conserved plasmids (Fig. 2e). In
each of the ReIlN,  families of type 2 and type 3 only one
plasmid carried a colicin operon, a colicin Y operon and a
klebicin B operon, respectively (Fig. 5¢).

In sum, colicin operons were found almost exclusively in
MOB,, plasmids (except MOB,, plasmids of the type 3
family) and their number varied according to the type of
family. Only the colicin E1 operon was found on plasmids
of two different families. Each of the other types of colicin
operon was unique to one family and the MOB,, type 4
family had specificity for the cloacin operon (Fig. 5c).

MOB,, , plasmids of the type 4 family and RelN_,,
plasmids of the type 1 family are highly implicated in the
dissemination of antibiotic resistance determinants

In 4 families the plasmids carried few antibiotic resistance
determinants: 1/40 (2.5%) of the MOB,_ plasmids, 1/12
(8.3%) of the MOB, epb2 plasmids, 2/60 (3. 2%) of the plasmids
of the MOB, type 1 family and 1/33 (2.6%) of the plas-
mids of the RelN , type 3 family. In 3 families the number
of plasmids carrying antibiotic resistance determinants was
higher: 9/48 (18.7%) of the plasmids of the MOB,, type 5
family, 11/54 (20.3%) of the plasmids of the MOB,, type 3
family and 8/33 (24.2%) of the plasmids of the ReIN,, type 2
family. In the last two other families, the number of plasmids
carrying antibiotic resistance determinants was the highest:
36/63 (57.1%) of the plasmids of the MOB_, type 4 family
and 35/35 (100%) of the plasmids of the RelN_ , type 1 family
(Fig. 5d and S2).
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Opverall, the plasmids carried various genes encoding resist-
ance to almost all the classes of antibiotics used to treat
human infections: aminoglycosides, f-lactams (including
3GC and carbapenems), quinolones, colistin, tetracycline,
sulphonamides and trimethoprim. (Figs 1-3 and 5d). The
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aminoglycoside resistance genes were the most frequently
found, followed by the -lactam resistance genes (Fig. 5d and
S3). However, the frequency of each of the resistance determi-
nants varied according to the type of plasmids (Figs 1-3 and
5d). We next focused on the two plasmid families carrying the
highest number of resistance determinants, the MOB, , type
4 family and the RelN, , type 1 family, and on the plasmid
families carrying resistance genes implicated in therapeutic
challenges (ESBL genes, carbapenemase genes and resist-
ance genes conferring resistance to fluoroquinolones and to
colistin).

In the MOB,_, type 4 family, of the 36 plasmids carrying
antibiotic determinants, 29 carried an aac6’-Ib-Tn1331
transposon [29, 30], associated 4 times with a bla, . gene.
These aac6'-1b-Tn1331 plasmids and the seven other plas-
mids of this family that carried other resistance determinants
(bla, bla,, , blag,  andbla, genes)belonged a cluster
of highly conserved ParEl plasmids isolated worldwide as
described above (Fig. 2d), suggesting clonal dissemination

of these plasmids.

All the plasmids of the RelN, , type 1 family carried a sul2
gene (sul2-ISVsa3 configuration) [31] and most of these
plasmids (28/35, 80%) also carried streptomycin resistance
genes, strA/B (sul2-strA-strB-AISVsa3 configuration) [3, 21]
(Fig. 3a). The sul2-1SVsa3 configuration has been predicted to
be the precursor of the sul2-strA-strB-AISVsa3 configuration
by Anantham and Hall [20]. In addition, these plasmids had
acquired various other resistance genes: tet(A) (n=9) [32],
dfrA14 cassette (n=2) [20], aph(3")-Ib (n=4), aph(6)-1d (n=>5),
bla (n=2) and bla (n=1) [8] (Fig. 3a).

AMPC
We found ESBL genes (2 bla., . 4 blay, and 2 bla . ) on
eight plasmids distributed in five families belonging to the
three groups of families (Figs 1a-3a) and eight carbapenemase
genes of the bla,, . type on plasmids distributed in three of
the MOB, , families, most of them belonging to the MOB_

type 4 family, as seen above (Fig. 2a, c and d).

CTX-M-14

The gene encoding fluoroquinolone resistance, gnrS1 (Fig. 2c)
was only found in six plasmids of the MOB,, type 3 family
(Fig. 2¢). These plasmids, all originating from S. enterica
serovar Typhimurium isolated in distant geographical areas,
were clustered closely in the phylogenetic tree, showing the
worldwide clonal dissemination of these plasmids, as previ-
ously observed [33-36].

The genes encoding colistin resistance, mcr-5 and the mcr-
5.2 variant [37, 38], were only found on four plasmids of the
ReIN, , type 2 family. These plasmids clustered in the same
branch of the tree independently of the host strain species (E.
coli or S. enterica serovar paratyphi B), showing the dissemi-
nation of this plasmid among different species (Fig. 3b).

In sum, antibiotic resistance determinants were found in plas-
mids of all the families, except plasmids of the MOB,, type
2 family. These plasmids are able to acquire genes of resist-
ance to various antibiotic classes as they are marketed. Two
groups of plasmids that seemed to easily acquire resistance
genes were identified: a highly conserved cluster of plasmids
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of the MOB,, type 4 family and the plasmids of the ReIN
type 1 family.

DISCUSSION

In this study, we provided a framework for the classification
of small non-conjugative plasmids in E. coli. Thanks to a
previous work using the gene sharing approach on a limited
number of plasmids [8] coupled to the increasing number of
plasmid nucleotide sequences in public databases, we gained
insights into the main characteristics and evolutionary history
of these plasmids.

The most striking feature of our work was the specificity of
each of the plasmid family types. All of the plasmids were
only found in Enterobacteriaceae. However, among this family
of bacteria, they showed host range specificity according to
the plasmid family type they belonged to. We found plasmid
family types with a narrow host range that seemed to be
well adapted to E. coli or K. pneumoniae and family plasmid
types with a broad host range including a wide spectrum of
species of Enterobacteriaceae, even plant pathogen species,
as described for the MOB_ , plasmids of the type 3 family.

RNA

Among the accessory genes carried by plasmids, we found
maintenance systems, RM and TA systems, and genes that
conferred a selective advantage to the bacterial host, such as
colicin operons and determinants of resistance to antibiotics.
The various types of TA systems and colicin operons that we
identified were not present in all plasmid families, but when
present, in most cases they were specific to a plasmid family
type. The plasmids carried various genes conferring resistance
to almost all the antibiotic classes, from those to which resist-
ance developed early, such as sulphonamides and tetracycline,
to those to which resistance has only developed recently, such
as colistin (mcr genes) [39]. As for the previous accessory
genes, we observed plasmid family specificity. Indeed, the
prevalence of the resistant plasmids varied according to the
family type from 0 to 100%. Two types of plasmids highly
implicated in the dissemination of antibiotic resistance
determinants were highlighted: a cluster of highly conserved
aac6'-1b-Tn1331 plasmids in the MOB_ , plasmids of the type
4 family and the ReIN, , plasmids of the type 1 family all
carried at least a sul2 gene, with both the resistance markers,
aac6'-1b-Tn1331 and the sul2 gene, being specific to the two
types of plasmids, respectively. For both family types, all the
plasmids carried a specific TA system, and these systems are
known to play a crucial role in the dissemination and evolu-
tion of antibiotic resistance by maintaining multi-resistant
plasmids [40].

The plasmids were able to disseminate other adaptive genes
specific to a family type, as illustrated by the presence of a
gene fepE coding for a ferric enterobactin transport gene,
on plasmids of the ReIN, . type 2 and 3 families (Fig. 3b
and ¢), or the presence of a gene copG coding for a ribbon-
helix-helix protein, and a gene tolA coding for a cell envelope
integrity protein on plasmids of the MOB_, type 4 family
(Fig. 2d). Many other genes were carried by the plasmids,
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possibly with a role in the adaptation of the host strains to
changing environmental conditions, but most of them were
of unknown function or had functions that are not yet well
described in these plasmids.

The evolutionary history of the plasmid families showed
variable nucleotide divergence that was however globally in
line with the divergence observed in E. coli housekeeping
chromosomal genes. Similarly, the mutational spectrum
did not reveal a high mutation rate footprint in any of the
families and it was similar to the chromosomal one. Taken
together, these data indicated long-term co-evolution of the
small plasmids with bacteria, not at the strain level, but at the
species, genus or family level, according to the host range.
Rarely, we observed low evolutionary divergence, suggesting
the massive spread of an epidemic plasmid, as illustrated by
the aac6’-Ib-Tn1331 plasmid cluster of the MOB,, type 4
family (Fig. 2d).

Our work showed some limitations. First, the diversity of the
type of plasmids that we found is far from being exhaustive,
as the classification was based on the characterization of a
set of only 30 E. coli non-conjugative plasmids of <25kb
identified during a comparative analysis of the sequences of a
plasmid collection [8]. Other small non-conjugative plasmids,
mobilizable or non-transferrable, have been described in E.
coli strains [41-44] that were not present in our collection.
Second, as the backbones of these small plasmids contain
few genes, the evolutionary history was based on a limited
number of genes — as few as two for some types of plasmids
— which could hinder the signal. Nevertheless, our data will
be helpful to expand knowledge on the diversity of these small
non-conjugative plasmids and our approach can be applied
to large epidemiological studies.

Overall, the importance of the role of these small non-
conjugative plasmids in bacterial adaptation varied greatly
according to the type of family they belong to. Furthermore,
when they play a role, each of the plasmid families has its own
host and genetic traits.
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