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HOMOGENEOUS LOCALIZATIONS OF SOME QUANTUM

ENVELOPING SUPERALGEBRAS

JACQUES ALEV AND FRANÇOIS DUMAS

Dedicated to Nicolás Andruskiewitsch on his sixthieth birthday

Abstract. Under suitable conditions the skewfield of fractions of a su-
peralgebra which is a noetherian domain is canonically provided with a
structure of superalgebra. This gives rise to a notion of rational equiva-
lence in the category of superalgebras. We study from the point of view
of this rational equivalence some low dimensional examples of quantum
enveloping algebras of Lie superalgebras.

Introduction

The initial question of the Gelfand-Kirillov problem in the seminal article
[14] is to determine conditions for the skewfield of fractions of the enveloping
algebra of an algebraic finite dimensional Lie algebra to be isomorphic to
the skewfield of fractions of a Weyl algebra over a purely transcendental
extension of the base field. In the case of quantum enveloping algebras, the
algebras of quantum polynomials play the role of Weyl algebras as canonical
models in the rational classification. The literature on these topics is very
wide, see section I of [17] or section 1 of [13] for some recent surveys and
references.

This paper is devoted to a formulation of the Gelfand-Kirillov property
in the category of superalgebras. Two general principles emerge from this
study. According to the first one, we can extend the superalgebra struc-
ture to the skewfield of fractions of the superalgebras under consideration
and then place the questions of rational classification or rational separation
in terms of isomorphisms of superalgebras. The second one is that such
rational isomorphisms, when they exist, are obtained at the level of inter-
mediate localizations (by one element under suitable assumptions) without
having to go to the whole skewfield of fractions. The condition of being a
domain leads naturally to focus on the case of the enveloping algebras of
some orthosymplectic superalgebras and their quantum analogues.
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We summarize in the first part some preliminary general results on lo-
calization processes in superalgebras that are Noetherian domains. Some
of these arguments are more or less implicitly known in the literature (see
[6, 15, 25]) but we give here for the reader’s convenience self-contained formu-
lations and proofs adapted to the forthcoming applications. In particular,
theorem 1.2.2 proves that, for any superalgebra A which is a noetherian
domain such that A is finitely generated as a left module over its even sub-
algebra A0, the skewfield of fractions of A is canonically provided with a
superalgebra structure. Two superalgebras satisfying these conditions are
said to be s-rationally equivalent if their skewfields of fractions are isomor-
phic as superalgebras. This applies in particular to the enveloping algebras
of the finite dimensional Lie superalgebras which are domains, and some
significant examples studied in the previous paper [3] from the point of view
of the ordinary rational equivalence can be revisited from the finer point of
view in the category of superalgebras.

The second and third part are devoted to exploratory examples of quan-
tum enveloping algebras Uq(g) for g a finite dimensional Lie superalgebra.
Defining a suitable notion of q-polynomial superalgebra, we ask when Uq(g)
is rationally equivalent as a superalgebra to a q-polynomial superalgebra
over a center which is a purely transcendental extension of the base field k.
We prove that the answer is positive for g = osp(1, 2), for g = n the nilpotent
positive part of osp(1, 4), for g = b the positive Borel subsuperalgebra of
osp(1, 4), and for g = p a parabolic subsuperalgebra of osp(1, 4). A notable
fact is that in all cases isomorphisms are obtained after localization by one
element.

In addition, the second section details in the case g = osp(1, 2) a paral-
lel study of the enveloping algebra U(g) and its quantum analogue Uq(g).
We prove in particular that Uq(g) contains a subalgebra isomorphic to the
quantum enveloping algebra Uq(g0) of the even part g0 = sl(2). Then ra-
tional separation arguments allow to determine all possible and impossible
embeddings between the skewfields of fractions of the four algebras U(sl(2)),
U(osp(1, 2)), Uq(sl(2)) and Uq(osp(1, 2)).

1. Some preliminary results

Let k be a commutative field. In this paper, algebra always means as-
sociative non necessarily commutative k-algebra with unit. We say that a
k-algebra A is an Ore domain if A is a domain and the multiplicative set
S = A \ {0} is a left and right Ore subset in A. In this case, we denote by
FracA = AS−1 = S−1A the skewfield of fractions of A. In particular if A is
a noetherian domain, then A is an Ore domain.

1.1. Localization results in noetherian domains. We fix in this sub-
section a k-algebra A which is a noetherian domain.

Lemma 1.1.1. Let x be an element of A such that the multiplicative subset
X of A generated by x is a left and right Ore set in A, and denote by A′ the
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localized algebra AX−1 = X−1A. Let B = A[y ; τ, δ] be an Ore extension
of A where τ is a k-automorphism of A and δ is a τ -derivation of A. We
suppose that there exists some element λ ∈ k× such that τ(x) = λx. Then τ
and δ extend to A′, X is a left and right Ore set in B, and the Ore extension
B′ = A′[y ; τ, δ] identifies with the localized algebra BX−1 = X−1B.

Proof. Let us recall that B = A[y ; τ, δ] is the k-algebra of polynomials∑
i aiy

i, ai ∈ A, with product twisted by the commutation relation ya =
τ(a)y + δ(a) for any a ∈ A. It is well known that B inherits from A
the property of being a noetherian domain. In particular the localized
subalgebras considered in the lemma can be identifed with subalgebras of
FracA ⊆ FracB.

The unique way to extend τ and δ to A′ is to define τ(x−1) = λ−1x−1 and
δ(x−1) = −τ(x−1)δ(x)x−1 = −λ−1x−1δ(x)x−1. Then the commutation rule
yx = τ(x)y+δ(x) in B implies x−1y = λyx−1+x−1δ(x)x−1 in B′. We have in
A′ an equality x−1δ(x) = ax−d for some a ∈ A and some integer d ≥ 0, which
implies x−1y = (λyxd + a)x−d−1. Then x−2y = λx−1yx−1 + x−1ax−d−1 =

λ(λyxd + a)x−d−2 + a1x
−d′−d−1 = λ2yx−1 +λax−d−2 + a1x

−d′−d−1 for some

a1 ∈ A and d′ ≥ 0 defined by x−1a = a1x
−d′ . It follows that x−2y = s2x

−d2

for some s2 ∈ B and d2 = max(2, d + 2, d′ + d + 1) ≥ 2, and inductively
x−iy = six

−di for some si ∈ B and some integer di ≥ i for any i ≥ 1. We
deduce that x−iyj = ti,jx

−ei,j for some ti,j ∈ B and some integer ei,j ≥ i for
any i ≥ 1, j ≥ 0.

Let b′ =
∑p

j=0 a
′
jy
j be an element of B′, with a′j ∈ A′ for any 0 ≤ j ≤ p.

For any 0 ≤ j ≤ p, we have a′j = x−njaj with nj ∈ N and aj ∈ A. We obtain

b′ = x−nb with notations n = max(nj) and b =
∑p

j=0 x
n−njajy

j ∈ B. On

the other side, we also have for any 0 ≤ j ≤ p an expression a′j = cjx
−mj

with mj ∈ N and cj ∈ A. We denote m = max0≤j≤p(mj). If m = 0,
then b′ ∈ B. Suppose that m ≥ 1. Then b′ =

∑p
j=0 cjx

m−mjx−myj =∑p
j=0 cjx

m−mj tm,jx
−em,j . We introduce f = max0≤j≤p(em,j) in order to

obtain b′ = cx−f where c ∈ B denotes the sum
∑p

j=0 cjx
m−mj tm,jx

f−em,j .

We conclude that, for any b′ ∈ B′, there exist b, c ∈ B and m,n ∈ N such
that b′ = x−nb = cx−m. The converse inclusion X−1B ⊆ B′ is clear and the
proof is complete. �

Lemma 1.1.2. Let x, y be two elements of A such that xy = λyx for some
element λ ∈ k×. We suppose that the multiplicative subsets X and Y re-
spectively generated by x and y are left and right Ore sets in A. Then:

(i) The multiplicative subset Sx,y generated by x and y is a right and
left Ore set in A.

(ii) The subset Y is a right and left Ore set in the localized algebra A′ =
AX−1 = X−1A, and the localized algebra B′ = A′Y −1 satisfies :

B′ = A′Y −1 = AS −1
x,y = S −1

x,y A = Y −1A′.
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(iii) The multiplicative subset Z generated by the product z = xy is a
right and left Ore set in A, and we have B′ = AZ−1 = Z−1A.

Proof. It follows obviously from relation xy = λyx that any element of Sx,y
can be written xnym or ymxn with m,n ∈ N up to multiplication by some
power of λ ∈ k×. We fix a ∈ A and (n,m) ∈ N2. Since Y is an Ore set,
there exist c ∈ A and q ∈ N such that yqa = cym. Then X being an Ore set,
there exist b ∈ A and p ∈ N such that xpc = bxn. Finally xpyqa = bxnym

and, with similar calculations on the right, point (i) is proved.
We consider now an integer m ∈ N and an element a′ = ax−n ∈ A′

with n ∈ N. By point (i), there exist b ∈ A and (p, q) ∈ N2 such that
xpyqa = bxnym = bλmnymxn. Then yq(ax−n) = (x−pλmnb)ym with ax−n

and x−pλmnb in A′. With similar calculations on the right, we conclude that
Y is a left and right Ore set in A′. The last equalities in point (ii) are clear
by the relation xy = λyx.

Denoting z = xy, we have zn = λ−n(n−1)/2xnyn = λn(n+1)/2ynxn for any
n ∈ N. We fix a ∈ A and n ∈ N. Aplying point (i) with m = n, there
exist b ∈ A and (p, q) ∈ N2 such that yqxpa = bzn. If q ≤ p, this implies

ypxpa = yp−qbzn and then zpa = cz−n with c = λp(p+1)/2yp−qb ∈ A. If
p ≤ q, we transform yqxpa = λ−pqxpyq = λ−pqxp−qxqyq and deduce that
zqa = dz−n with d = λpq−q(q+1)/2xp−q ∈ A. With similar calculations on
the right, we conclude that Z is a left and right Ore set in A. It is clear that
AZ−1 ⊆ AS −1

x,y . The above calculation proves that conversely any fraction

a(xnym)−1 with a ∈ A and (n,m) ∈ N2 can be rewritten as bz−k with b ∈ A
and k = min(m,n), and the proof is complete. �

Corollary 1.1.3. The above lemma can be extended by iteration to the case
of n elements x1, . . . , xn ∈ A such that xixj = λijxjxi for a multiplicatively
skew-symmetric matrix (λij)1≤i,j≤n with entries in k× such that λii = 1 for
any 1 ≤ i ≤ n.

Lemma 1.1.4. Let B a k-subalgebra of A which is noetherian, and such that
A is finitely generated as left B-module. If the set S of nonzero elements of
B is a left and right Ore subset in A, then the localized ring AS−1 = S−1A
is equal to FracA.

Proof. Let a be a nonzero element of A. We consider the ascending chain
(Mn)n≥0 of left B-submodules of A defined by Mn = B+Ba+Ba2 · · ·+Ban
for any integer n ≥ 0. The B-module A is noetherian as a finitely generated
module over a noetherian ring, and then ap+1 ∈ Mp for some p ≥ 0. There
exist some elements b0, b1, . . . , bp ∈ B such that ap+1+bpa

p+· · ·+b1a+b0 = 0.
Choosing p minimal we can suppose without restriction (up to simplifying by
a power of a in the domain A) that b0 6= 0. Then (ap+ bpa

p−1 + · · ·+ b1)a =
−b0. It follows that the inverse in FracA of any nonzero element a ∈ A
can be written a−1 = b−1

0 u for some u ∈ A and b0 ∈ S, or equivalently

a−1 = vc−1
0 for some v ∈ A and c0 ∈ S because S is a left and right Ore

subset. We conclude that FracA = AS−1 = S−1A. �
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1.2. The superalgebra structure on the skewfield of fractions of a
superalgebra. We fix in this subsection a superalgebra A. Hence A =
A0⊕A1 is a Z2-graded algebra, where A0 is the subalgebra of even elements
(which contains the base field k), and A1 is the A0-module of odd elements.

Lemma 1.2.1. We suppose that A = A0⊕A1 is a left and right Ore domain.
Then denoting S0 = A0 \ {0}, the following conditions are satisfied:

(R) for any a ∈ A and s ∈ S0, there exist b ∈ A and t ∈ S0 such that
at = sb,

(L) for any a ∈ A and s ∈ S0, there exist c ∈ A and u ∈ S0 such that
ua = cs.

In other words, S0 is a right and left Ore set in A.

Proof. We prove first the result for homogeneous a. We fix ai ∈ Ai and
s ∈ S0. By assumption there exist b ∈ A and t ∈ S such that ait = sb. We
can decompose b = b0 + b1 and t = t0 + t1 with b0, t0 ∈ A0 and b1, t1 ∈ A1.
Then ait0 + ait1 = sb0 + sb1. For i = 0, it follows that a0t0 = sb0 and
a0t1 = sb1. If t0 6= 0, the first equality gives the desired result. If t0 = 0,
then t1 6= 0 and a0t

2
1 = sb1t1 gives the result. For i = 1, we obtain a1t0 = b1

and a1t1 = sb0 and we conclude in the same way.
Now let a be an element of A and s an element of S0. We decompose

a = a0 + a1 with a0 ∈ A0 and a1 ∈ A1. Applying the first step of the proof
to a0 and s, there exist c ∈ A0, u ∈ S0 such that a0u = sc. Similarly there
exist d ∈ A1, v ∈ S0 such that a1v = sd. Applying now the first step to
u, v ∈ S0, there exist x ∈ S0 and y ∈ A0 such that ux = vy. Since A is
a domain, we have more precisely y ∈ S0. Denoting t = ux = vy ∈ S0,
we obtain scx = a0ux = a0t and sdy = a1vy = a1t. Finally the elements
b = cx+ dy ∈ A and t ∈ S0 satisfy sb = scx+ sdy = (a0 + a1)t = at. Hence
property (R) is satisfied. The proof of (L) is similar. �

Theorem 1.2.2. Let A = A0 ⊕ A1 a k-superalgebra which is a noetherian
domain. If A is finitely generated as left A0-module, then:

(i) Any element f ∈ FracA can be written f = as−1 = t−1b with a, b ∈ A
and s, t ∈ A0 \ {0}.

(ii) FracA = F0⊕F1 is a superalgebra, where F0 (respectively F1) is the
subspace of fractions which can be written with homogeneous numer-
ator and denominator of same parity (respectively opposite parity).

(iii) A = A0 ⊕A1 is a subsuperalgebra of FracA = F0 ⊕ F1.
(iv) F0 is equal to the skewfield FracA0.

Proof. We denote by σ the automorphism of the k-algebra A defined by
σ(a0 + a1) = a0 − a1 for all a0 ∈ A0, a1 ∈ A1. Then A0 is the subalgebra
of invariants AG of the noetherian algebra A under the action of the finite
group G generated by σ. Hence A0 is noetherian ([21] corollary 1.12) and
point (i) follows from direct application of lemmas 1.1.4 and 1.2.1

To prove that F0 is a k-subspace of FracA, we consider f = as−1 and
g = bt−1 in F0. We can suppose without lost of generality that a, b ∈ A0
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and s, t ∈ S0. By lemma 1.2.1, there exist c, d ∈ S0 such that sc = td and
the element e = sc = td ∈ S0 satisfies f = ace−1 and g = bde−1. Hence
f + g = (ac + bd)e−1 lies in F0. The proof is similar for F1 and we have
clearly FracA = F0 ⊕ F1 using point (i) of the theorem. Finally, for any
pair of elements f = as−1 ∈ Fi and g = bt−1 ∈ Fj with s, t ∈ S0, a ∈ Ai,
b ∈ Aj , i, j ∈ Z2, we can introduce by lemma 1.2.1 some elements c ∈ Aj
and u ∈ S0 such that sc = bu. Then fg = ac(tu)−1 with ac ∈ Ai+j and
st ∈ S0. In other words FiFj ⊂ Fi+j and the proof of (ii) is complete.

Assertions (iii) and (iv) are then clear. �

We list here some classical situations where the previous theorem applies.

Example 1.2.3. Enveloping algebras of Lie superalgebras. We consider the
case where the superalgebra A is the enveloping algebra U(g) of a finite
dimensional complex Lie superalgebra g = g0 ⊕ g1. It follows from PBW
theorem (see theorem 6.1.2 in [24]) that U(g) is a finitely generated left
module over its even part. The algebra U(g) is always noetherian (see for
instance [7] §3 proposition 1, or [24]). The question of being or not a domain
is more delicate. If there exists in g1 a nonzero element x such that [x, x] = 0,
then x is clearly nilpotent in U(g) and U(g) is not a domain. A nontrivial
key result (see theorem 1 of [5], or theorem 17.1.1 in [24] following [8])
asserts that this condition is also sufficient: U(g) is a domain if and only if
g doesn’t contain any odd element x such that [x, x] = 0. Of all the cases
of the classification of classical simple Lie superalgebras, the only one where
the enveloping algebra is a domain is the orthosymplectic Lie superalgebra
osp(1, 2n), n ≥ 1, see lemma 1 of [23], or pages 17-20 of [7]. We will
come back in the next section to the case of osp(1, 2), and in example 1.3.2
to the cases of the enveloping algebras of some nilpotent or solvable Lie
subsuperalgebras of osp(1, 2n).

Example 1.2.4. Iterated Ore extensions. Let A be an iterated Ore exten-
sion in n variables x1, . . . , xn (in this order) over k. The family of monomials

(xj11 x
j2
2 · · ·x

jn
n )j∈Nn is a k-basis of A. Suppose that A is equipped with a

structure of superalgebra such that xp, . . . , xn are odd for some 1 ≤ p ≤ n
and xi even for 1 ≤ i ≤ p−1 (if p > 1). Then A is generated by 1, xp, . . . , xn
as a left module over its even part A0. Since A is clearly a noetherian
domain, theorem 1.2.2 applies.

This generic situation covers many significant examples. The polynomial

superalgebra Õ(kn) is the superalgebra generated over k by n odd generators
y1, . . . , yn satisfying relations yiyj = −yjyi for any 1 ≤ i 6= j ≤ n. We have

Õ(kn) ' O(k)⊗̂n where ⊗̂ denotes the tensor product in the category of
superalgebras (see (1.1.5) in [10]).

More generally, the polynomial algebra A = kΛ[x1, . . . , xn] generated by
n variables x1, . . . , xn with relations xixj = λijxjxi for all 1 ≤ i, j ≤ n, for
some multiplicatively skew-symmetric matrix Λ = (λij)1≤i,j≤n with entries
in k× satifying λii = 1 for any 1 ≤ i ≤ n, can be equipped with a structure
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of superalgebra assigning parity 1 to some xp, . . . , xn and parity 0 to others.
Theorem 1.2.2 applies.

This is also the case for the Weyl superalgebra Ãn(k), which is the su-
peralgebra generated over k by 2n odd generators y1, . . . , yn and x1, . . . , xn
satisfying relations:

xixj + xjxi = yiyj + yjyi = xiyj + yjxi = 0 and xiyi − yixi = 1

for all 1 ≤ i 6= j ≤ n. We have Ãn(k) ' Ã1(k)⊗̂n.

1.3. Rational equivalence for superalgebras. The sufficient conditions
of theorem 1.2.2 combined with the content of lemma 1.1.2 and corollary
1.1.3 naturally leads to the following definitions.

Definitions 1.3.1. LetA = A0⊕A1 andB = B0⊕B1 be two k-superalgebras.
We suppose that A and B are noetherian domains, and are finitely generated
as left A0-module and B0-module respectively.

We say that the superalgebras A and B are s-rationally equivalent if the
superalgebras FracA and FracB are isomorphic.

We say that the superalgebras A and B are strongly s-rationally equivalent
if there exist homogeneous elements x ∈ A and y ∈ B generating a right
and left Ore subset X = {xn}n≥0 in A and a right and left Ore subset Y =
{yn}n≥0 in B such that the superalgebras AX−1 = BY −1 are isomorphic.

It is clear that the strong s-rational equivalence implies the s-rational
equivalence.

Remark 1.3.2. In order to illustrate the above notions, we end this section
by revisiting the main theorem of a precedent paper [3] devoted to the en-
veloping algebras of the nilpotent positive subsuperalgebra n+ and the solv-
able Borel subsuperalgebra b+ of the orthosymplectic complex Lie superal-
gebra. It was proved that the skewfields of fractions of U(n+) and U(b+) are

isomorphic as algebras to the skewfields of fractions of An(n−1)/2(C)⊗Õ(Cn)

and An(n−1)/2(C)⊗ Ãn(Cn) respectively.
The interested reader could verify that the proofs detailed in section 3

of [3] establish the existence of the desired isomorphisms at the level of
localizations only by the multiplicative set generated by n homogeneous el-
ements y1, . . . , yn satisfying yiyj = ±yjyi (see [3] notations 3.2.2 and lemma
3.2.3), and then applying corollary 1.1.3 by the multiplicative set generated
by their product. Moreover the arguments explained in examples 1.2.3 and
1.2.4 show that theorem 1.2.2 applies to the superalgebras under consid-
eration. Thus we can finally formulate on the basis of the same proof a
reinforced version of the theorem in the category of superalgebras:

(1) the superalgebra U(n+) is strongly s-rationally equivalent to the su-

peralgebra A1(C)⊗n(n−1)/2⊗̂Õ(C)⊗̂n,
(2) the superalgebra U(b+) is strongly s-rationally equivalent to the su-

peralgebra A1(C)⊗n(n−1)/2⊗̂Ã1(C)⊗̂n,
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with the natural convention that A1(C) denotes the superalgebra defined on
the Weyl algebra A1(C) assigning parity 0 to the generators.

2. From enveloping algebra to quantum enveloping algebra of
osp(1, 2)

2.1. Rational equivalence for the classical enveloping algebra of
osp(1, 2). We return briefly here to the case of the classical enveloping al-
gebra of the superalgebra osp(1, 2). The goal is dual: to deepen in terms of
strongly s-rational equivalence in the category of superalgebras the results
of [2], and to introduce some parallel with the properties of the quantum
analog studied in the next paragraph. We suppose in part 2.1 that k is of
characteristic zero.

Definition 2.1.1. The orthosymplectic Lie superalgebra osp(1, 2) is gener-
ated over k by x, y, k, e, f with nonzero brackets:

[k, x] = x, [k, y] = −y, [x, y] = 2k, [x, x] = 4e, [y, y] = −4f, (1)

where the generators x, y are odd and k, e, f are even. This is a simple
classical Lie superalgebra and one of the rare cases where the enveloping
algebra is a domain, see example 1.2.3.

Notation 2.1.2. Let S3(k) be the superalgebra generated over k by three
generators x, y, z satisfying:

xy − yx = 1, xz = −zx, yz = −zy, (2)

where x and y are odd, and z is even. As an algebra, S3(k) is the iterated
Ore extension k[y][x ; ∂y][z ; τ ], where τ is the automorphism of k[y][x ; ∂y]
defined by τ(x) = −x and τ(y) = −y. Using lemma 1.1.1 we also consider
the localization S′3 = k[y±1][x ; ∂y][z ; τ ].

With the notations introduced in example 1.2.4, the superalgebras S3(k)

and Ã1(k)⊗̂ Õ(k) are isomorphic in the category of associative algebras. The
difference is about the grading: x and y are odd in both superalgebras but
z is even in the first one and odd in the second one. We will see in the
following theorem that they are not isomorphic as superalgebras nor even
s-rationally equivalent.

Theorem 2.1.3.

(i) The superalgebra U(osp(1, 2)) is strongly s-rationally equivalent to
the superalgebra S3(k).

(ii) The superalgebras U(osp(1, 2)) and Ã1(k)⊗̂ Õ(k) are rationally equiv-
alent in the category of associative algebras, but are not s-rationally
equivalent.

Proof. Point (i) is a graded improvement of proposition 2.2 in [2]. The
algebra U := U(osp(1, 2)) is generated by x, y, k with relations:

kx− xk = x, ky − yk = −y, yx = −xy + 2k, (3)
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and the superalgebra structure is defined assigning parity zero to k and par-
ity 1 to x and y. It is clearly an iterated Ore extension U = k[x][k ; δ][y ; τ, d],
where δ is the derivation x∂x in k[x], τ is the automorphism of k[x][k ; δ]
defined by τ(x) = −x and τ(k) = k + 1, and d is the τ -derivation of
k[x][k ; δ] defined by d(x) = 2k and d(k) = 0. By lemma 1.1.1, we can
extend canonically δ, τ and d to the Laurent polynomial algebra k[x±1]
and consider the localization U ′ := k[x±1][k ; δ][y ; τ, d] of U . The even el-
ement z := xy − yx + 1 = 2xy − 2k + 1 satisfies zx = −xz and zk = kz.
Since y = 1

2(x)−1(z + 2k − 1) in U ′, we have U ′ = k[x±1][k ; δ][z ; τ ′] with
kx − xk = x, zk = kz and zx = −xz. We introduce the odd element
h := x−1k and obtain U ′ = k[x±1][h; ∂x][z ; τ ′] with hx− xh = 1, zx = −xz
and zh = −hz. Hence the superalgebras U ′ and S′3(k) are isomorphic and
point (i) is proved.

We consider now the separation result (ii). By point (i) we have FracU =
Frac S3(k) as superalgebras. This skewfield F can be described as an iterated
skewfield of rational functions F = k(z)(y ; τ)(x ; τ, d) where the automor-
phism τ is defined by τ(z) = −z and τ(y) = y and the τ -derivation d
is defined by d(z) = 0 and d(y) = 1. Using the classical embedding of
F into the Laurent series skewfield k(z)(y ; τ)((x−1 ; τ−1,−dτ−1)), see [12]
paragraph 1.4 or [16] exercise 1ZB, we can prove by direct calculations that
an element f ∈ F satisfying yf = −fy necessarily satisfies f ∈ k(z)(y ;σ).
Similarly xf = −fx implies f ∈ k(z)(x ;σ). Consider now the superalgebra
structure on Frac S3(k) extending that of S3(k) (see theorem 1.2.2). Assume
that there exists in Frac (S3(k)) an odd element f which is supercentral; that
means that fg = −gf for any odd element g in Frac (S3(k)) and fh = hf for
any even element h in Frac (S3(k)). In particular, fx = −xf and fy = −yf
which implies f ∈ k(z) by the previous calculation. This is impossible be-
cause all elements of k(z) are even in Frac (S3(k)). On the contrary the

superalgebra Ã1(k)⊗̂ Õ(k) contains supercentral odd elements, for instance

the generator z of Õ(k) = k[z] in the presentation (2). Then the algebras

S3(k) and Ã1(k)⊗̂ Õ(k) are isomorphic as algebras but their skewfield of
fractions are not isomorphic as superalgebras. �

Remark 2.1.4. Point (ii) of the theorem shows that, while tensor prod-
ucts of Weyl superalgebras and polynomial superalgebras were sufficient to
describe the superalgebra structure on the skewfield of fractions in the nilpo-
tent or solvable situations of the examples in 1.3.2, this is no longer the case
for the simple classical Lie superalgebra osp(1, 2).

Remarks 2.1.5 (embedding problems). (i) There exists a canonical embed-
ding of U(sl(2)) into U(osp(1, 2)). More precisely, the even part of osp(1, 2)
being the Lie algebra sl(2), the enveloping algebra V := U(sl(2)) embeds
into the even part U0 of U(osp(1, 2). Explicitly, the even elements e := 1

2x
2,

f := −1
2y

2 and k satisfy [k, e] = 2e, [k, f ] = −2f and [e, f ] = k, and generate
a copy of V in U0. The inclusion V ⊂ U0 is strict: xy ∈ U0 and xy /∈ V .
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(ii) Conversely, there is no embedding of U(osp(1, 2)) into U(sl(2)). This
follows from the fact that U(osp(2)) contains two elements x and z such
that xz = −zx; by theorem 3.10.(a) of [1] using the rational invariant G
introduced in definition 3.8 of [1], this is impossible in U(sl(2)) because its
skewfield of fractions is a Weyl skewfield D1 over the center k(ω), with ω
the Casimir operator.

2.2. Quantum polynomial superalgebra. We will use in all forthcom-
ing results the following particular case of the superalgebras kΛ[x1, . . . , xn]
previously mentionned in 1.2.4.

Definition 2.2.1. Let q be an element of k×, q 6= ±1. A q-polynomial
superalgebra is a polynomial superalgebra in n variables x1, . . . , xn where
the xj ’s are homogeneous (even or odd) and satisfy for all 1 ≤ i, j ≤ n com-
mutation relations xixj = xjxi, anticommutation relations xjxj = −xjxi,
or quantum commutation relations xjxj = qαijxjxi, αij ∈ Z, αij 6= 0.

Notation 2.2.2. In order to have a synthetic view of these polynomial
algebras, we use a graphical representation by diagrams. The vertices refer
to the generators, with a white circle for an even generator and a gray circle
for an odd one. The edges refer to the relations between the generators they
connect: an oriented qα-weighted solid edge for a qα-commutation, a dotted
edge for an anticommutation, and no edge for a commutation. The first
examples appear in 2.3.3 or 3.1.2 below.

2.3. Quantum enveloping algebra of osp(1, 2). Just as there is a well-
known quantum version Uq(sl(2)) of the enveloping algebra U(sl(2)) of the
Lie algebra sl(2), many authors have considered in the literature a superal-
gebra Uq(osp(1, 2)) as a quantization of the enveloping algebra U(osp(1, 2))
considered in 2.1. This give rise to the following general picture:

U(sl(2))

quantization

��

superization
// U(osp(1, 2))

quantization

��
Uq(sl(2))

superization // Uq(osp(1, 2))

(4)

Definition 2.3.1 ([4, 22, 26, 28]). Let q be an element of k×, q 6= ±1.
The quantum enveloping algebra of the Lie superalgebra osp(1, 2) is the
superalgebra Uq(osp(1, 2)) generated over k by e, f, k±1 with relations:

kk−1 = k−1k = 1, ke = qek, kf = q−1fk, ef + fe =
k − k−1

q − q−1
(5)

and Z2-grading such that e and f are odd, and k±1 is even.

In view of a quantum analogue of proposition 2.1.3, we introduce the
following multiplicative version of the algebra defined in 2.1.2
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Notation 2.3.2. For any element q ∈ k×, q 6= ±1, we denote by Sq3(k)
the q-polynomial superalgebra generated over k by three generators x, y, z
satisfying:

xy = qyx, xz = −zx, yz = −zy, x and y are odd, z is even.

It can be seen as an iterated Ore extension k[y][x ; σ][z ; τ ], where σ is the
automorphism of k[y] defined by σ(y) = qy and τ is the automorphism of
k[y][x ; σ] defined by τ(x) = −x and τ(y) = −y. By lemma 1.1.1, we also
consider the localization S′′q3 = k[y±1][x±1 ; σ][z ; τ ].

Proposition 2.3.3. The superalgebra Uq(osp(1, 2)) is strongly s-rationally
equivalent to the q-polynomial superalgebra Sq3(k), represented by the dia-
gram:

z

x q // y

Proof. We denote Uq := Uq(osp(1, 2)). It follows from the definition that

Uq = k[k±1][e ; σ][f ; τ, δ], (6)

with a PBW basis B = (kaebf c)a∈Z,,b,c∈N (see [4] proposition 2), where σ is
the automorphism of k[k±1] defined by σ(k) = q−1k, τ is the automorphism
of k[k±1][e ; σ] defined by τ(k) = qk and τ(e) = −e, and δ is the τ -derivation
of k[k±1][e ; σ] defined by δ(k) = 0 and δ(e) = 1

q−q−1 (k − k−1). We are in

the context of example 1.2.4. Following [4], we introduce the super Casimir
element, that is the even element:

s := q−1/2k − q1/2k−1 − (q1/2 + q−1/2)(q − q−1)ef (7)

= −q1/2k + q−1/2k−1 + (q1/2 + q−1/2)(q − q−1)fe. (8)

By elementary calculations using relations (6) we show that:

sk±1 = k±1s, se = −es, sf = −fs.
Then s commutes with any even element and anticommutes with any odd
element. In particular s2 lies in the center of Uq. Using lemma 1.1.1, we
consider the localization U ′q = k[k±1][e±1 ; σ][f ; τ, δ] of Uq with respect to
the powers of the odd generator e. By (7), we have in U ′q:

f = − 1
(q1/2+q−1/2)(q−q−1)

e−1s+ e−1 1
(q1/2+q−1/2)(q−q−1)

[q−1/2k − q1/2k−1].

Then, by change of generator, U ′q appears as the iterated Laurent extension:

U ′q = k[k±1][e±1 ; σ][s ; γ], (9)

where the k-automorphism γ is the involution k 7→ k and e 7→ −e cor-
responding to the relations: ke = qek, se = −es and sk = ks. In the
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expression (9) of U ′q, we can replace the even generator k by the odd gener-

ator k0 := e−1k. The relations become k0e = qek0, se = −es, sk0 = −sk0.
We conclude that the superalgebra U ′q = k[k±1

0 ][e±1 ; σ][s ; γ] is isomorphic

to the superalgebra S′′q3(k) introduced in 2.3.2. �

We obtain as an immediate consequence the following description of the
center of Uq(osp(1, 2)), already proved in [4] proposition 3, and of the center
of its superskewfield of fractions.

Corollary 2.3.4. We suppose that q is not a root of one and denote by
s the super Casimir element defined by (7). The center of Uq(osp(1, 2)) is
the polynomial algebra k[s2]. The center of Frac (Uq(osp(1, 2))) is the purely
transcendental extension k(s2).

Proof. With the notations used in the proof of the proposition, the skewfield
of fractions F := FracUq = FracU ′q is the skewfield of rational functions
F = k(s)(k0 ; γ)(e ; σ) where the automorphisms γ and σ are defined by
γ : s 7→ −s and σ : s 7→ −s, k0 7→ q−1k0. By classical methods of embeddings
in skewfields of Laurent series (see for instance [1] section 1.1, or [16] exercise
1ZA) and because q is not a root of one, we easily see that an element f ∈ F
commutes with k0 and e if and only if f ∈ k(s2). It follows that the center
of F and the center of Frac (Uq) are equal to k(s2). Since s is an element of
Uq, we deduce that the center of Uq is k[s2]. �

We have seen in 2.1.5 that in the classical case the enveloping algebra
U(sl(2)) appears as a subalgebra of the even part of the enveloping alge-
bra U(osp(1, 2)). A similar question can be asked for Uq(osp(1, 2)) and the
quantum algebra Uq(sl(2)).

Theorem 2.3.5. The subalgebra generated in Uq(osp(1, 2)) by the elements:

X := (q−1k + qk−1)e+ (q−1 + 2 + q)e2f, Y := −f, K := k2

is isomorphic to Uq(sl(2)).

Proof. First step. It is clear by (5) that KX = q2XK and KY = q−2Y K.
We introduce the notations λ := q−1 + 2 + q ∈ k× and c := q−1k + qk−1 ∈
k[k±1], so that X = ce + λe2f . Then the products XY = −cef − λe2f2

and Y X = −σ−1(c)fe − λ(fe)(ef) appear as elements of the even part
of Uq, which is the k-subalgebra of Uq generated by k±1, e2, f2, ef . Some
preliminary calculations in this even part involving the semi-Casimir element
are necessary.

Second step: calculations in k[k±1][s]. We introduce the scalar:

q̂ =
1

(q1/2 + q−1/2)(q − q−1)
(10)

and the following elements in k[k±]:

k′ = q−1/2k − q1/2k−1, k′′ = q1/2k − q−1/2k−1. (11)
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Then identities (7) and (8) can be rewritten:

ef = −q̂s+ q̂k′ and fe = q̂s+ q̂k′′. (12)

Recalling that σ and τ are the automorphisms of k[k±1] defined by σ(k) =
q−1k and τ(k) = qk, see (6), we compute:

e2f2 = −q̂2s2 + q̂2(k′ − σ(k′))s+ q̂2k′σ(k′), (13)

f2e2 = −q̂2s2 + q̂2(τ(k′′)− k′′)s+ q̂2k′′τ(k′′). (14)

Third step: expression of the commutator XY −Y X. We can now resume
the calculation of XY and Y X using identities (13) and (14):

−XY = cef + λe2f2

= −λq̂2s2 + [−cq̂ + λq̂2(k′ − σ(k′)]s+ q̂ck′ + λq̂2k′σ(k′),

−Y X = σ−1(c)fe+ λ(fe)(ef)

= σ−1(c)(q̂s+ q̂k′′) + λ(q̂s+ q̂k′′)(−q̂s+ q̂k′)

= −λq̂2s2 + [σ−1(c)q̂ + λq̂2(k′ − k′′)]s+ σ−1(c)q̂k′′ + λq̂2k′k′′.

Then the difference XY − Y X is of degree ≤ 1 in k[k±1][s] with leading
coefficient u1 := q̂[c+ σ−1(c) + λq̂(σ(k′)− k′′)]. On one hand:

c+ σ−1(c) = (1 + q−1)k + (1 + q)k−1.

On the other hand by (11):

σ(k′)− k′′ = (q−3/2k − q3/2k−1)− (q1/2k − q−1/2k−1)

= (q−3/2 − q1/2)k + (q−1/2 − q3/2)k−1

= (q−1/2 − q1/2)[(1 + q−1)k + (1 + q)k−1].

Then u1 = q̂[1 + λq̂(q−1/2 − q1/2)][(1 + q−1)k + (1 + q)k−1]. An auxiliary
calculation using (10) gives:

λq̂(q−1/2 − q1/2) =
λ(q−1/2 − q1/2)

(q1/2 + q−1/2)(q − q−1)
=

−λ
(q1/2 + q−1/2)2

= −1,

and we conclude that u1 = 0. Therefore

XY − Y X = q̂(σ−1(c)k′′ − ck′))− λq̂2k′(σ(k′)− k′′).

It follows from the above calculations that λq̂(σ(k′) − k′′) = −c − σ−1(c),
then:

XY − Y X = q̂(σ−1(c)k′′ − ck′)− q̂k′(−c− σ−1(c))

= q̂σ−1(c)(k′′ + k′)

= q̂(k + k−1)(q−1/2 + q1/2)(k − k−1)

=
k2 − k−2

q − q−1
.
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Fourth step: conclusion. It is clear by the definition of X,Y,K that the
monomials (KpY mXn)p∈Z,m,n∈N are linearly independent in the iterated Ore
extension (6). They satisfy the relations KX = q2XK, KY = q−2Y K and

XY − Y X = K−K−1

q−q−1 . By definition of Uq(sl(2)) (see for instance [19] VI.1.1

or [9] 1.3.1), the proof is complete. �

Remarks 2.3.6. (i) The following question remains still open to the best of
our knowledge: do we have an embedding of the quantum algebra Uq(sl(2))
in the even part of the superalgebra Uq(osp(1, 2)) ?

(ii) In view of remark 2.1.5 and proposition 2.3.5, the question arises
naturally of the possible embeddings between the four algebras considered
in (4). The following proposition answers the question at the higher level of
their skewfields of fractions.

Proposition 2.3.7. We suppose that k is of characteritic zero and that q is
not a root of one in k×. Then we have the following possible and impossible
algebra embeddings between the skewfields of fractions K(sl(2)), K(osp(1, 2))
Kq(sl(2)) and Kq(osp(1, 2)) of the four algebras considered in (4):

K(sl(2))
OO

no embedding

��

� � embedding // K(osp(1, 2))
no embeddingoo

Kq(sl(2)) �
� embedding // Kq(osp(1, 2))

��

no embedding

OO

no embeddingoo

(15)

Proof. The canonical embedding of U(sl(2)) into U(osp(1, 2)) trivially in-
duces an embedding of K(sl(2)) into K(osp(1, 2)). Conversely, we have
already seen in remark 2.1.5.(ii) that K(sl(2)) cannot contain a copy of
U(osp(1, 2)) and then a fortiori a copy of K(osp(1, 2)). In the same way,
proposition 2.3.5 implies the existence of a canonical embedding of Kq(sl(2))
into Kq(osp(1, 2)). By [1] proposition 4.3, Kq(sl(2)) is a quantum Weyl skew-
field; then by [1] theorem 3.10.b, it cannot contain pairs of elements a, b
satisfying ab = −ba when q is not a root of one. We deduce that there is no
embedding of Kq(osp(1, 2)) in Kq(sl(2)).

Similarly, using proposition 3.9 and theorem 3.10 of [1], the two upward
arrows may be justified by the fact that there are no pairs of elements
a, b satisfying ab = qnba for n 6= 0 in K(sl(2)) and K(osp(1, 2)), and the
two downward arrows by the fact that there are no pairs of elements a, b
satisfying ab− ba = 1 in Kq(sl(2)) and Kq(osp(1, 2)). �

3. Some subsuperalgebras of the quantum enveloping algebra
of osp(1, 4)

We fix an element q ∈ k×, q 6= ±1.
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3.1. Quantum enveloping algebra of the nilpotent positive part of
osp(1, 4). For any n ≥ 2, the superalgebra Uq(osp+(1, 2n)) is defined as
the subsuperalgebra of Uq(osp(1, 2n)) generated by n − 1 even generators
e1, . . . , en−1 and one odd generator en satisfying the quantum super Serre
relations: see for instance [26] relations (9)-(12), [27] relations (3.2), [28]
relations (3)-(4). Taking q = 1 in the quantum super Serre relations gives
exactly the super Serre relations (see (2.30), (2.31), (2.32) in [1]). We study
here the case n = 2 denoting n = osp+(1, 4).

Definition 3.1.1. The quantum enveloping algebra of the positive nilpotent
part n of the Lie superalgebra osp(1, 4) is the superalgebra Uq(n) generated
over k by two elements e1, e2 satisfying the Serre relations:

e2
1e2 − (q + q−1)e1e2e1 + e2e

2
1 = 0, (16)

e3
2e1 + (1− q − q−1)(e2

2e1e2 + e2e1e
2
2) + e1e

3
2 = 0, (17)

and Z2-grading such that e1 is even and e2 is odd.

Proposition 3.1.2. The superalgebra Uq(n) is strongly s-rationally equiv-

alent to the q-polynomial superalgebra Sq3(k) ⊗̂ O(k), represented by the
diagram:

t
q // x

z y

Proof. We denote Nq := Uq(n). A natural way to transform relation (16) is
to introduce the odd element:

x := e1e2 − q−1e2e1, (18)

so that (16) becomes simply e1x− qxe1 = 0. Then we consider relation (17)
under the form e2y + ye2 = 0 where y is even defined by:

y := xe2 − qe2x = e2
2e1 − (q + q−1)e2e1e2 + e1e

2
2. (19)

Straightforward calculations show that e1y = ye1 and yx = −xy. Hence we
obtain a description of Nq as an iterated Ore extension

Nq = k[e1, y][x ; σ][e2 ; τ, δ], (20)

with PBW basis B = (ea1y
bxced2)a,b,c,d∈N, where σ, τ and δ correspond to the

commutation relations:

e1y = ye1, xe1 = q−1e1x, e1e2 − q−1e2e1 = x,

xy = −yx, e2y = −ye2, xe2 − qe2x = y.
(21)
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In this description e1 and y are even, x and e2 are odd. In particular we are
in the context of example 1.2.4. Observe that it follows from (21) and (20)
that y2 lies in the center Z(Nq) of Nq.

Another way to transform relation (17) is to introduce the even element

u := xe2 + e2x = −q−1y + (1 + q−1)xe2 (22)

in order to rewrite (17) under the form: e2u = q−1ue2. We check that
ux = q−1xu = and ue1 = e1u − (1 + q)x2 and straightforward calculations
show that the even element

z := e1u− q2ue1 (23)

commutes with e1, e2, x and y. Then z ∈ Z(Nq). We have the following
explicit developments:

z = (1− q2)e1u+ q2(1 + q)x2 (24)

= (1− q2)(1 + q−1)e1xe2 + (q − q−1)e1y + q2(1 + q)x2 (25)

We denote by N ′q the localization of Nq with respect to the multiplicative
set generated by the homogeneous generators e1 and x. By (25), we can
replace in N ′q the generator e2 by the central generator z, hence:

N ′q = k[y, e±1 ][x± ; σ][e2 ; τ, δ] = k[y, e±1 ][x± ; σ][z]. (26)

Finally we replace the even generator e1 by the odd one:

t := x−1e1 = qe1x
−1 (27)

to obtain:

N ′q = k[z][t±][x± ; σ][y ; γ]. (28)

By construction y and z are even, x and t are odd, z is central, tx = qxt and
y satisfies yx+ xy = yt+ ty = 0. With the notations of 2.3.2 and denoting
O(k) = k[z] for even z, the superalgebras N ′q and S′′q3(k) ⊗̂ O(k) are isomor-
phic. Since the localizations are with respect to the powers of homogeneous
q-commuting elements, the result follows from direct application of lemma
1.1.2. �

Corollary 3.1.3. We suppose that q is not a root of one and denote by y
and z the generators defined by (19) and (25). The center of Uq(n) is the
polynomial algebra k[z, y2]. The center of Frac (Uq(n)) is the purely tran-
scendental extension k(y, z2).

Proof. With the notations used in the proof of the proposition, the skewfield
of fractions F := FracNq = FracN ′q is the skewfield of rational functions
F = k(z, y)(t ; γ)(x ; σ) where the automorphisms γ and σ are defined by
γ : z 7→ z, y 7→ −y and σ : z 7→ z, y 7→ −y, t 7→ q−1t. The proof is then
similar to that of corollary 2.3.4. �



QUANTUM ENVELOPING SUPERALGEBRAS 17

3.2. Quantum enveloping algebra of the positive Borel subsuper-
algebra of osp(1, 4). We summarize all notations of part 3.1.

Definition 3.2.1. The quantum enveloping algebra of the positive Borel
subsuperalgebra b of the Lie superalgebra osp(1, 4) is the superalgebra Uq(b)

generated by Uq(n) and the commutative Cartan subsuperalgebra k[k±1
1 , k±1

2 ],
where k1 and k2 are even and act on the Chevalley generators e1, e2 by:

k1e1 = q2e1k1, k1e2 = q−1e2k1, k2e1 = q−1e1k2, k2e2 = qe2k2, (29)

see for instance [26, 27, 28].

Proposition 3.2.2. The superalgebra Uq(b) is strongly s-rationally equiva-
lent to the q-polynomial superalgebra represented by the diagram:

k2
q−1

//

q

��

t

q

��

k1
qoo

q

yy

q2

��

y x z

Proof. Starting from (20),we obtain a description of Bq := Uq(b) as an
iterated Ore extension:

Bq = k[e1, y][x ; σ][e2 ; τ, δ][k±1
1 , θ1][k±1

2 , γ2] (30)

where the automorphisms θ1 and γ2 correspond to the relations

k1y = yk1, k2y = qyk2, k1x = qxk1, k2x = xk2 (31)

deduced from (18), (19) and (29). This action of k1 and k2 extends to the
localization N ′q = k[z][t±][x± ; σ][y ; γ] described by (28). By definitions
(23) and (27) of z and t, we have:

k1z = q2zk1, k2z = zk2 k1t = qtk1, k2t = q−1tk2. (32)

Then the localized superalgebra

B′q := N ′q[k
±1
1 , θ1][k±1

2 , θ2] (33)

is s-rationally equivalent to the q-polynomial superalgebra described by the
diagram above, and the result follows from the application of corollary 1.1.3
to the multiplicative subset generated by x, t, k1, k2. �

Up to further localizations by homogeneous elements, there are of course
many ways to reduce the commutation diagram to more simple forms. In
addition to the question of which ones are the most significant, some re-
ductions may facilitate calculations to show some properties, such as the
determination of the center in the following corollary.

Corollary 3.2.3. If q is not a root of one, the center of Uq(b) and the center
of Frac (Uq(b)) are equal to k.
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Proof. With the notations used in the proof of the preceding proposition,
we introduce using lemma 1.1.1 the localization B′′q of B′q with respect to
the powers of the even element z. We introduce in B′′q the homogeneous

changes of variables: x′ := k−1
2 x and t′ := z−1xt, then z′ = (x′)−2z and

y′ = t′k−1
2 y. By straightforward calculations, we check that the superalgebra

B′′q is s-rationally equivalent to the q-polynomial superalgebra represented
by the diagram:

k1

q

��

z′

q2

��

t′

q

��

x′ y′ k2

The skewfield of fractions F := FracBq = FracB′′q can be canonically em-
bedded in an iterated skewfield of Laurent series

F = k((x′))((y′ ; σ′))((z′ ; τ ′))((t′))((k1 ; θ1))((k2 ; θ2))

for suitable automorphism corresponding to the above commutation picture.
A nonzero element f ∈ F is central if and only if any monomial

fn = λnx
′n1y′n2z′n3t′n4kn5

1 kn6
2 , n = (n1, . . . , n6) ∈ Z6, λn ∈ k, λn 6= 0

in the development of f in F commutes with each variable x′, y′, z′, t′, k1

and k2. We have fnk1 = k1fn if and only if qn1 = 1 or equivalently n1 = 0.
Similarly fnk2 = k2fn is equivalent to n4 = 0. We deduce step by step that
f ∈ k. We conclude that Z(FracBq) = k and then Z(Uq(b)) = k. �

3.3. Quantum enveloping algebra of a positive parabolic subsuper-
algebra of osp(1, 4). We summarize all notations of the parts 3.1 and 3.2.

Definition 3.3.1. The quantum enveloping algebra of the positive para-
bolic subsuperalgebra p of the Lie superalgebra osp(1, 4) is the superalgebra
Uq(p) generated by Uq(b) and the odd generator f2 acting on the Chevalley
generators e1, e2 and the Cartan generators k±1 , k

±
2 by:

f2e1 = e1f2, f2e2 = −e2f2 + 1
q−q−1 (k2 − k−1

2 ),

f2k1 = q−1k1f2, f2k2 = qk2f2,
(34)

see for instance [26, 27, 28].

Theorem 3.3.2. The superalgebra Uq(p) is s-rationally equivalent to the
q-polynomial superalgebra represented by the diagram:
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k2
q−1

//

q

��

t

q

��

k1
qoo

q

yy

q2

��

wqoo

y x z

Proof. We denote Pq := Uq(p). By direct calculations, we deduce from (34)
the action of f2 on the elements x, u, z of Nq introduced in (18), (22), (23):

f2x = −xf2 + q−1e1k2, f2t = −tf2 + k2t
2, f2z = zf2. (35)

The relation for the generator y defined by (19) is more complicated:

f2y = yf2 − (1 + q−1)e2e1k2 + 2q+1+q−1

q−q−1 xk2 + 1+q
q−q−1xk

−1
2 . (36)

Starting with the description (30) of Bq, we have the Ore extension Pq =
Bq[f2 ; α, d] where the automorphism α and the α-derivation d of Bq cor-
respond to relations (34), (35) and (36). By localization, we have similarly
P ′q := B′q[f2 ; α, d] where B′q is defined by (33) and (28). In order to simplify
the first relation in (35), we can replace f2 by:

f ′2 := (q + 1)f2 − e1x
−1k2 = (q + 1)f2 − k2t, (37)

which satisfies:

f ′2x = −xf ′2, f ′2z = zf ′2, f ′2t = −tf ′2, f ′2k2 = qk2f
′
2. (38)

Relation (36) becomes:

f ′2y = yf ′2 + q(q+1)
q−1 k−1

2 x+ 1
1−qx

−1zk2. (39)

Then P ′q = B′q[f
′
2 ; α′ ; d′] where the automorphism α′ and the α′-derivation

d′ correspond to these transformed relations. We observe that (38) and
(39) allow in particular to consider between N ′q defined by (28) and P ′q the
intermediate superalgebra

Hq := k[z][t±][x± ; σ][k±2 ; θ2][y ; γ][f ′2 ; α′ ; d′]. (40)

A key observation is that in this description α′(z) = z = γ−1(z), α′(t) =
−t = γ−1(t), α′(x) = −x = γ−1(x), α′(k2) = qk2 = γ−1(k2). Hence the
automorphism α′ is equal to γ−1 on k[z][t±][x± ; σ][k±2 ; θ2] and satisfies
α′(y) = y. Then we can apply the method introduced in section 2.1 of [18]
and write the value of the γ−1-derivation d′ in y under the form:

d′(y) = q(q+1)
q−1 k−1

2 x+ 1
1−qx

−1zk2 = h− γ(h) (41)

with notation:

h :=
q

1− q
k−1

2 x− q

(1− q)2
x−1zk2. (42)

By construction, the odd element:

w := yf ′2 + γ(h) = f ′2y + h (43)
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commutes with y. Moreover it follows from the commutation relations in B′q
(see diagram in proposition 3.2.2) that h commutes in B′q with x, y, z, t and
k2. Then by (38) the same is true for w. Finally we can by (43) replace the
generator f ′2 by the generator w in the localization H ′q of Hq with respect
to the powers of y, and we obtain:

H ′q := k[z][t±][x± ; σ][k±2 ; θ2][y± ; γ][w]. (44)

The next step consists in introducing the localization P ′′q of P ′q with respect
to the powers of y. We obtain:

P ′′q := k[z][t±][x± ; σ][k±2 ; θ2][y± ; γ][w][k±1 ; θ1]. (45)

It is clear by (32), (34) and (37) that k1f
′
2 = q−1f ′2k1 and then k1w = q−1wk1

by (43). We conclude that the superalgebra P ′′q is s-rationally equivalent
to the q-polynomial superalgebra generated over k by the even generators
y, z, k1, k2 and the odd generators x, t, w. Using corollary 1.1.3, the proof is
complete. �

Corollary 3.3.3. We suppose that q is not a root of one. Then the center
of Uq(p) is k and the center of Frac (Uq(p)) is the purely transcendental
extension k(z′), where z′ := w−2z with z, w defined by (25) and (43).

Proof. It is clear by (45) and the associated commutation picture that any
central element f 6= 0 in the superalgebra P ′′q is a finite sum of central
monomials fn of the form:

fn = λnx
n1yn2zn3tn4kn5

1 kn6
2 wn7 , n = (n1, . . . , n7) ∈ Z7, λn ∈ k, λn 6= 0,

where n3 and n7 are nonnegative. By writing successively that fn commutes
with z, x, y, t and k2 (in this order) we obtain that the integers n5, n4, n6

n1 and n2 are zero. Hence fn = λnz
n3wn7 . The commutation k1fn = fnk1

implies 2n3 + n7 = 0, then n3 = n7 = 0. We conclude that the center of P ′′q
is k and so the center of Pq is k. It is clear that in the localization P ′′′q of
P ′′q with respect to the powers of w, we can replace the generator z by the

central generator z′ := w−2z to conclude that the center of P ′′′q is k[z′]. The
center of Frac (Pq) is then obtained by embedding FracPq = FracP ′′′q in a
suitable skewfield of Laurent series as in the proof of 3.2.3. �
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Laurent. In Topics in invariant theory (Paris, 1989/1990), volume 1478 of Lecture
Notes in Math., pages 192–214. Springer, Berlin, 1991.

[13] Vyacheslav Futorny and Jonas T. Hartwig. Solution of a q-difference Noether problem
and the quantum Gelfand-Kirillov conjecture for glN . Math. Z., 276(1-2):1–37, 2014.

[14] I. M. Gelfand and A. A. Kirillov. Sur les corps liés aux algèbres enveloppantes des
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