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Abstract

We prove a recent conjecture of Beisegel et al. that for every positive integer k,
every graph containing an induced Pk also contains an avoidable Pk. Avoidability
generalises the notion of simpliciality best known in the context of chordal graphs.
The conjecture was only established for k ∈ {1, 2} (Ohtsuki et al. 1976, and Beisegel
et al. 2019, respectively). Our result also implies a result of Chvátal et al. 2002,
which assumed cycle restrictions. We provide a constructive and elementary proof,
relying on a single trick regarding the induction hypothesis. In the line of previous
works, we discuss conditions for multiple avoidable paths to exist.

1 Introduction
A graph G is chordal if every induced cycle is of length three. A classical result of
Dirac [Dir61] states that every chordal graph has a simplicial vertex, that is, a vertex
which neighbourhood is a clique. However, not all graphs exhibit the nice structure of
chordal graphs, and the statement does not extend to general graphs.

1.1 From simplicial vertices to avoidable paths

One way to generalise Dirac’s result is through the following more flexible notion.

Definition 1.1 (Avoidable vertex). A vertex v in a graph G is avoidable if every induced
path on three vertices with middle vertex v is contained in an induced cycle in G. a

Note that in a chordal graph, every avoidable vertex is simplicial. The next theorem
can be inferred from [OCF76, BB98, ACTV15]; see also [BCG+19] for a nice introduction.

Theorem 1.2. Every graph has an avoidable vertex.
∗The first author has been supported by the ANR project GrR ANR-18-CE40-0032. The second
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Recently in [BCG+19], the authors considered a generalisation of the concept of avoid-
able vertices to edges, and extended Theorem 1.2 to that notion.

Definition 1.3 (Avoidable edge). An edge uv in a graph G is avoidable if every induced
path on four vertices with middle edge uv is contained in an induced cycle in G. a

Theorem 1.4 (Beisegel et al. [BCG+19]). Every graph has an avoidable edge.

This notion naturally generalises to paths, as follows.

Definition 1.5 (Extension). Given an induced path P in a graph G, an extension of P
is an induced path xPy in G for some vertices x, y. a

Definition 1.6 (Failing). An induced path P in a graph G is failing if there is no induced
cycle of G containing P . a

Definition 1.7 (Avoidable). A path P in a graph G is avoidable if it is induced and has
no failing extension. Given a subgraph G′ of G, we say that P is an avoidable path of G
in G′ if it is avoidable in G and V (P ) ⊆ V (G′). a

A graph G is Pk-free if it does not contain a Pk, that is, an induced path on k vertices.
In [BCG+19] the authors conjecture that for every positive integer k, every graph either
is Pk-free or contains an avoidable path on k vertices. This conjecture is motivated by the
following result of Chvátal et al. [CRS02], which generalises Dirac’s theorem. A C>p-free
graph is a graph where every induced cycle has at most p − 1 vertices. The C>4-free
graphs are exactly the chordal graphs. Unless specified otherwise, we consider cycles to
be induced.

Theorem 1.8 (Chvátal et al. [CRS02]). For every positive integer k, every C>k+3-free
graph either is Pk-free or contains an avoidable path on k vertices.

In fact, Theorem 1.8 originally states the existence of a simplicial path in the class of
C>k+3-free graphs. A simplicial path is an induced path with no extension: it is avoidable
by vacuity. Note that these two definitions coincide in such a class, as no cycle on at most
k + 2 vertices can contain the extension of an induced path on k vertices.

Here, we confirm the aforementioned conjecture [BCG+19, Conjecture 1], as follows.

Theorem 1.9. For every positive integer k, every graph either is Pk-free or contains an
avoidable Pk.

In fact, we prove Theorem 1.9 using a stronger induction hypothesis, in the exact same
flavour as [CRS02], see Theorem 2.4 in Section 2.

1.2 Consequences

We point out that the proof of Theorem 1.9 is self-sufficient, thus this supersedes the
arguments for theorems 1.2, 1.4 and 1.8.

By using ingredients of Theorem 2.4 (namely Lemma 2.3), we obtain a way to build
more than one avoidable Pk.

Corollary 1.10. For every positive integer k, graph G and subset X ⊆ V (G) such that
G[X] is connected, either G−N [X] is Pk-free or there is an avoidable Pk of G in G−N [X].
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Corollary 1.11. For every positive integer k and graph G, either G does not contain two
non-adjacent Pk, or it contains two non-adjacent avoidable Pk.

Since Corollary 1.11 is not as straightforward as its predecessor, we include a proof.

Proof. Let Q1 and Q2 be two non-adjacent Pk. By Corollary 1.10, either G − N [Q1] is
Pk-free or there is an avoidable Pk of G in G − N [Q1]. The first outcome is ruled out
by the existence of Q2. Let Q′

2 be an avoidable Pk of G in G − N [Q1]. We repeat the
argument with Q′

2 instead of Q1, and obtain an avoidable Pk of G in G−N [Q′
2], call it Q′

1.
The two paths Q′

1 and Q′
2 are two non-adjacent avoidable Pk, as desired.

We can also wonder:

Question 1.12. For every positive integer k, does every graph G either not contain two
disjoint Pk, or contain two disjoint avoidable Pk?

We know the answer to be positive in the case k ∈ {1, 2}, due to [BCG+19, Theorems
3.3 and 6.4]. The answer turns out to be negative in all other cases, as exhibited in the
following counter-example for k > 3, which consists of a cycle on 2k − 1 vertices with an
added vertex adjacent to two consecutive vertices on the cycle (see Figure 1 for the case
k = 3). This graph contains two disjoint Pk, and it has 2k vertices, so any two disjoint Pk

are in fact complementary in the graph. Suppose that it contains two disjoint avoidable
Pk, and note that each intersects the triangle (otherwise the complement would not be a
path). Since there are three vertices in the triangle, there is an avoidable Pk containing a
single vertex in the triangle. This Pk has a failing extension, a contradiction.

Figure 1: A graph that contains two disjoint P3 (in blue and in red) but no two disjoint
avoidable P3 (there is a unique partition into two disjoint P3, up to symmetry). In green,
a failing extension of the blue path.

In Section 3, we present a concise algorithm which follows the proof of Theorem 2.4.
As discussed there, the algorithm has complexity O(nk+2) which, while naive, is the right
order of magnitude under ETH.

2 A stronger induction hypothesis
All graphs considered in this paper are finite, simple and loopless. Given a graph G, we
denote by V (G) its set of vertices, and by E(G) ⊆ {{x, y} | x, y ∈ V (G), x 6= y} its set of
edges. Edges are denoted by uv (or vu) instead of {u, v}. If uv is an edge, then we say that
u and v are adjacent. Given a vertex u, the neighbourhood N(u) of u is the set of vertices
of G that are adjacent to u. The closed neighbourhood N [u] of u is the set N(u)∪{u}. If
X ⊆ V (G), then we define N [X] :=

⋃
x∈X N [x] and N(X) := N [X] \X. The subgraph of
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G induced by X, denoted by G[X], is the graph (X,E(G) ∩ {{x, y} | x, y ∈ X, x 6= y}),
and G − X is the graph G[V (G) \ X]. Given two adjacent vertices u1 and u2 of G, the
graph obtained by merging u1 and u2 is the graph obtained from G by replacing u1 and
u2 with a new vertex u such that N(u) = N({u1, u2}). Given a graph G and two subsets
X and Y of V (G), we say that X dominates Y if every vertex of Y \X has a neighbour
in X (equivalently, if Y ⊆ N [X]).

We first define two useful properties.

Definition 2.1 (Basic property HB). Given a positive integer k and a graph G, the
property HB(G, k) holds if either G is Pk-free or there is an avoidable Pk in G. a

Definition 2.2 (Refined property HR). Given a positive integer k, a graph G and a
vertex u ∈ V (G), the property HR(G, k, u) holds if either G −N [u] is Pk-free or there is
an avoidable Pk of G in G−N [u].

Given a positive integer k and a graph G, the property HR(G, k) holds if HR(G, k, u)
holds for every u ∈ V (G). a

Note that property HR does not directly imply property HB. We also emphasise the
fact that an avoidable path in a subgraph is not necessarily an avoidable path in the whole
graph.

We now prove a form of heredity in HR.

Lemma 2.3. Let k be a positive integer, G a graph and u1u2 an edge of G. Let G′ be
the graph obtained from G by merging the two vertices u1 and u2 into one vertex u. If
G′ −N [u] contains a Pk, then HR(G

′, k, u) implies HR(G, k, u1).

Proof. Suppose G′−N [u] contains a Pk, and that HR(G
′, k, u) holds but not HR(G, k, u1).

Since G′ − N [u] is not Pk-free, there is an avoidable Pk of G′ in G′ − N [u]. Call it Q.
The path Q is contained in G′ − N [u] = G − N [{u1, u2}], so in particular in G − N [u1].
Since HR(G, k, u1) does not hold, Q is not an avoidable Pk of G. Thus, there is a failing
extension xQy of Q in G. Note that x, y, u1, and u2 are all pairwise distinct.

Hence, xQy is an extension of Q in G′, and there is an induced cycle C in G′ containing
the path xQy. If u 6∈ C, then the cycle C is also an induced cycle in G containing xQy,
a contradiction. Therefore, u ∈ C. By replacing u with either u1, u2 or the edge u1u2 as
appropriate, we obtain an induced cycle in G containing xQy, a contradiction.

We are now ready to prove the main technical result of this paper.

Theorem 2.4. For every positive integer k and every graph G, both properties HB(G, k)
and HR(G, k) hold.

Proof. Suppose the statement is false and consider a counter-example G which is minimal
with respect to the number of vertices.

Lemma 2.5. The property HR(G, k) holds for every k.

Proof. We proceed by contradiction. Suppose that HR(G, k, u) does not hold for some
k and some vertex u ∈ V (G), that is, there exists a Pk in G − N [u], and every Pk in
G−N [u] has a failing extension. We prove the following.
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Claim 2.6. Every Pk in G−N [u] dominates N(u).

Proof. Assume towards a contradiction that there is a Pk in G−N [u], call it Q, which is
not adjacent to some vertex v ∈ N(u). Then G−N [{u, v}] contains a Pk. Let G′ be the
graph obtained from G by merging u and v into a vertex u′. Since G′ has fewer vertices
than G, the property HR(G

′, k, u′) holds by minimality of G. By Lemma 2.3, the property
HR(G, k, u) holds, a contradiction. y

Let G′ := G−N [u]. Then G′ contains a Pk. As G′ contains fewer vertices than G, the
property HB(G

′, k) holds. Let Q be an avoidable Pk of G′. By assumption, Q is not an
avoidable Pk of G. So there is a failing extension xQy of Q in G. Since Q has no failing
extension in G′, we can assume without loss of generality that y ∈ N(u). It follows that
x 6∈ N(u): otherwise the cycle xQyu contradicts the fact that xQy is failing. By definition
of an extension, xQy is an induced path. Let z be the only neighbour of y in Q, and let
us now consider the path xQ− z. It is a Pk, and it does not intersect N [u]. However, no
vertex in it is adjacent to y which lies in N(u), contradicting Claim 2.6.

Lemma 2.7. The property HB(G, k) holds for every k.

Proof. Assume towards a contradiction that for some k, the property HB(G, k) does not
hold. By Lemma 2.5, the property HR(G, k, u) holds for every vertex u ∈ V (G). In other
words, the graph G contains a Pk but no avoidable Pk, and for every vertex u ∈ V (G),
either G−N [u] is Pk-free or there is an avoidable Pk of G in G−N [u].

We derive the following claim.

Claim 2.8. Every Pk in G dominates V (G).

Proof. Suppose there is a Pk, call it Q, that does not dominate some vertex u of G. Since
HR(G, k) holds, either G−N [u] is Pk-free or there is an avoidable Pk of G in G−N [u].
The first case contradicts the existence of Q, and the second contradicts the fact that
HB(G, k) does not hold. y

Since HB(G, k) does not hold, G contains a Pk, say Q, that is not avoidable. So it has
a failing extension xQy. Let z be the only neighbour of y in Q, and consider the path
xQ − z. It is an induced Pk and none of its vertices is adjacent to y. This contradicts
Claim 2.8.

Finally, lemmas 2.5 and 2.7 together contradict G being a counter-example.

Theorem 1.9 directly follows from Theorem 2.4.

3 An algorithm for Theorem 2.4
By going through the proof and extracting the key ingredients, we obtain a straightforward
algorithm verifying both properties (see Algorithm 1).

The algorithm uses the subprocedure InducedPath that, given a graph G and a
positive integer k, decides whether G contains a Pk. If it does, the procedure returns one,
otherwise it returns null. The naive algorithm for that (testing all subsets of size k) has
complexity O(nk). However, this is nearly optimal. Indeed, the problem of finding a Pk

in a given graph is W[1]-hard1 when parametrised by k (see [CFK+15, Ex. 13.16, p. 460]).
1see e.g. [CFK+15] for definitions around complexity
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Algorithm 1 finds an avoidable path of given length in a given graph, if any.
1: procedure FindAvoidablePathRefined(G, k, u)
2: for all v ∈ N(u) do
3: if InducedPath(G−N [{u, v}], k) 6= null then
4: G′ ← G with u and v merged into u′

5: return FindAvoidablePathRefined(G′, k, u′)
6: return FindAvoidablePath(G−N [u], k)

7: procedure FindAvoidablePath(G, k)
8: for all u ∈ V (G) do
9: if InducedPath(G−N [u], k) 6= null then
10: return FindAvoidablePathRefined(G, k, u)
11: return InducedPath(G, k)

In fact, the hinted reduction has a linear blow-up, so it follows that there is no f(k) ·no(k)

algorithm under ETH.
Let k be a positive integer, and let B(n) (resp. R(n)) be the worst case complexity

of FindAvoidablePath (resp. FindAvoidablePathRefined) on an n-vertex graph
with parameter k. We have B(n) 6 n·nk+max(R(n), nk), and R(n) 6 n·nk+max(R(n−
1), B(n− 2)). We obtain R(n) 6 nk+2 and B(n) 6 nk+2 + nk+1. While this may well be
improved, the known limitations for finding an induced path on k vertices also apply for
an induced avoidable path on k vertices (by Theorem 1.9, if the first exists, then so does
the second). Therefore, the order of magnitude of this naive algorithm is correct.

Note that there is a yet more naive algorithm blindly checking for every subset of size
k if it corresponds to an avoidable path. That algorithm has comparable complexity to
ours (though slightly worse, at least at first sight). However, we wanted to emphasise
that our proof of Theorem 2.4 is constructive and yields an elementary algorithm. Also,
we believe that it provides an outline of the proof which might be helpful to the reader.

4 Conclusion
Given the discussions in Section 1.2, it is tempting to ask when a graph admits three (or
more) disjoint (resp. pairwise non-adjacent) avoidable paths. Note that though Corol-
lary 1.10 arms us with sufficient conditions for there to be more than two avoidable Pk,
we do not believe that the corresponding sufficient conditions are necessary. However, it
seems the picture is murky already for chordal graphs.

It is tempting to wonder whether we can obtain another avoidable structure. Though
in some cases the very notion of extension becomes unclear (what should an extension of
a clique be?), it does not seem like any other structure survives the test of chordal graphs
or simple ad hoc constructions—even when allowing a family of graphs instead of fixing
a single pattern (like a path on k vertices). This motivates us to formulate the following
question.

Question 4.1. Does there exist a family H of connected graphs, not containing any path,
such that any graph is either H-free or contains an avoidable element of H?

The notion of avoidability in this context is deliberately left up to interpretation.
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