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REVIEW

Dye removal by biosorption using cross-linked chitosan-based
hydrogels

Grégorio Crini' @ - Giangiacomo Torri? - Eric Lichtfouse®® - George Z. Kyzas* - Lee D. Wilson® - Nadia Morin-Crini’

Abstract

Synthetic dyes are an important class of recalcitrant organic compounds that are often found in the environment as a result
of their wide industrial use. There are estimated to be more than 100,000 commercially available dyes. These substances
are common contaminants, and many of them are known to be toxic or carcinogenic. Colored effluents from the industry
is perceived by the public as an indication of the presence of a dangerous pollution. Even at very low concentrations, dyes
are highly visible—an esthetic pollution—and modify the aquatic life and food chain, as a chemical contamination. Dye
contamination of water is a major problem worldwide, and the treatment of wastewaters before their discharge into the
environment has become a priority. Dyes are difficult to treat due to their complex aromatic structure and synthetic origin.
In general, a combination of different physical, chemical and biological processes is often used to obtain the targeted water
quality. Nonetheless, there is a need to develop new removal strategies and decolorization methods that are more effective,
acceptable for industrial use and ecofriendly. Currently, there is increasing interest in the application of biological materials
as effective adsorbents for dye removal. Among all the materials proposed, cross-linked chitosan-based hydrogels are the
most popular biosorbents. These polymeric matrices are the object of numerous fundamental studies. In this review, after
a brief description of the use of chitosan in wastewater treatment and the basic principles of chitosan-based hydrogels and
biosorption, we focus on some of the work published over the past 5 years. Overall, these polymeric materials have demon-
strated outstanding removal capabilities for some dyes. They might be promising biosorbents for environmental purposes.
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Introduction industries such as chemicals, textiles, pulp and paper, met-

allurgy, leather, paint and coatings industry, food, packaging,
Water pollution by dyes remains a serious environmental ~ pharmacy, and plastics consume considerable amounts of
and public problem (Sharma 2015; Khalaf 2016; Morin-  water and chemical reagents during processing, dyeing and
Crini and Crini 2017; de Andrade et al. 2018; Karimifard  finishing operations. Due to their high solubility, dyes are
and Moghaddam 2018; Katheresan et al. 2018). Many = common water pollutants and may frequently be found in
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trace quantities in their industrial discharge waters. More
than 700,000 tons of synthetic dyes are produced world-
wide every year, e.g., in India, it is close to 80,000 tons, and
5-10% of them are discharged in wastewater (Sinha et al.
2016; Karimifard and Moghaddam 2018; Katheresan et al.
2018; Piaskowski et al. 2018). The textile industry (54%)
discharges the largest amount of dye wastewater, contribut-
ing to more than half of the existing dye effluents observed
in the environment worldwide (Katheresan et al. 2018). The
presence of very small amounts of dyes is highly visible and
the public perception of water quality is greatly influenced
by color. This generates an increasing number of complaints
and concern. Contamination of environmental by dyes also
poses a serious ecological problem, which is enhanced by
the fact that most dyes are difficult to degrade using standard
biological treatments. In addition, over the past two decades,
there have been concerns about the potential toxicity of dyes
and of their precursors, which poses a serious risk to aquatic
living organisms (Liu and Liptak 2000; Khalaf 2016; Kath-
eresan et al. 2018).

The removal of pollutants including dyes and pigments
from wastewaters is a matter of great interest in the field of
water pollution (Forgacs et al. 2004; Pokhrel and Virara-
ghavan 2004; Aksu 2005; Anjaneyulu et al. 2005; Chuah
et al. 2005; Bratby 2006; Crini 2006, 2015; Cox et al. 2007,
Hai et al. 2007; Mohan and Pittman, 2007; Wojnarovits and
Takécs 2008; Gupta and Suhas 2009; Barakat 2011; Sharma
and Sanghi 2012; Sharma 2015; Khalaf 2016; Rathoure
and Dhatwalia 2016; Morin-Crini and Crini 2017; Alaba
et al. 2018; Crini and Lichtfouse 2018). Among the numer-
ous techniques of pollutant removal, adsorption using solid
materials—named adsorbents or biosorbents depending on
their origin—is a simple, useful and effective process (Crini
2005, 2006). The adsorbent may be of mineral, organic or
biological (biosorbent in this case) origin. Activated carbon
is the preferred adsorbent at industrial scale. However, its
widespread use is restricted due to high cost. In the past
three decades, numerous approaches have been studied for
the development of cheaper, ecofriendly and more effec-
tive biosorbents capable to eliminate pollutants present in
synthetic solutions contaminated with a single type of pol-
lutant (Onsoyen and Skaugrud 1990; Peters 1995; Allen
1996; Goosen 1997; Hirano 1997; Ramakrishna and Virara-
ghavan 1997; Cooney 1999; Blackburn 2004; Gavrilescu
2004; Varma et al. 2004; Crini 2005, 2006; Bhatnagar and
Minocha 2006; Oliveira and Franca 2008; Qu 2008; Gadd
2009; Wang and Chen 2009; Elwakeel 2010; Park et al.
2010; Ali 2012; Michalak et al. 2013; Katheresan et al.
2018; Piaskowski et al. 2018). Among the various materials
proposed for water and wastewater treatment by biosorption,
cross-linked chitosan hydrogels are by far the most widely
studied materials, owing not only to their efficiency at elimi-
nating a broad range of pollutants but also to their synthesis

that is straightforward and facile (Ravichandran and Rajesh
2013; Liu and Bai 2014; Vandenbossche et al. 2015; Yong
et al. 2015; Muya et al. 2016; Nechita 2017; Pakdel and
Peighambardoust 2018; Morin-Crini et al. 2019).

In this review, after a brief description of the use of chi-
tosan in wastewater treatment and the basic principles of
chitosan-based hydrogels and biosorption, we have chosen
to focus on some of the work published on this topic over the
past 5 years. The main objectives are to provide a summary
of recent information concerning the use of chitosan-based
hydrogels as biosorbents and to discuss the main interac-
tions involved in the biosorption process. Recently reported
biosorption capacities are also noted to give some idea of
biosorbent effectiveness. This article is an abridged version
of the chapter published by Crini et al. (2019) in the series
Sustainable Agriculture Reviews.

Chitosan for wastewater treatment

In general, conventional wastewater treatment consists of a
combination of mechanical, physical, chemical, and biologi-
cal processes and operations to remove insoluble particles
and soluble pollutants from effluents to reach the decon-
tamination objectives established by legislation. At the pre-
sent time, there is no single method capable of adequate
treatment, mainly due to the complex nature of industrial
wastewaters (Crini and Lichtfouse 2018). Among the vari-
ous treatment processes currently cited for dye removal, only
a few are commonly employed by the industrial sector for
technological and mostly economic reasons (Morin-Crini
and Crini 2017; Crini and Lichtfouse 2018). In practice, a
combination of different physical and chemical processes is
often used to achieve the desired water quality in the most
economical way. Indeed, the main approach used by industry
to treat their wastewater containing dyes involves physico-
chemical methods with, for instance, oxidation, coagulation,
precipitation and flocculation of the pollutants by applying
chemical agents, then separation by physical treatment of
the sludge formed to leave clarified water, and final post-
treatment using filtration/adsorption (Berefield et al. 1982;
Henze 2001). The use of physicochemical treatment gen-
erally enables the legislation concerning liquid industrial
effluent to be respected but this conventional treatment does
not completely remove pollution. However, as it has to cope
with an increasingly strict framework, the industrial sector
continues to look into new treatment methods to decrease the
levels of pollution still present in the effluent, the aim being
to tend toward zero pollution outflow.

In theory, many methods could be suitable to finish
off the work done during the physicochemical treatment.
These include filtration on sand or carbons, adsorption on



activated carbons, ion-exchange on resins, membrane filtra-
tion, electrodialysis, membrane bioreactors, biological acti-
vated sludge, electrocoagulation, electrochemical oxidation,
electrochemical reduction, incineration, advanced oxidation,
photolysis, catalytic or noncatalytic oxidation, liquid-liquid
extraction or evaporation (Liu and Liptak 2000; Henze 2001;
Forgacs et al. 2004; Pokhrel and Viraraghavan 2004; Sharma
and Sanghi 2012; Khalaf 2016; Crini et al. 2017). Currently,
because of the high costs, disposal problems and techni-
cal constraints, many of these methods for treating dyes in
pretreated effluent have not been widely applied on a large
scale. There is a need to develop new removal strategies
and decolorization methods that are effective, acceptable in
industrial use, and ecofriendly (Crini and Lichtfouse 2018).

It is now well-accepted that, among the numerous tech-
niques of dye removal proposed as secondary or tertiary
(final) step in a treatment plant, liquid—solid adsorption-
oriented processing is the procedure of choice and gives
the best results as it can be used to remove different types of
coloring materials (Ravi Kumar 2000; Crini 2006; Gérente
et al. 2007; Li et al. 2008; Kyzas et al. 2013a, b; Sanghi and
Verma 2013; Dolatkhah and Wilson 2016, 2018; Udoetok
et al. 2016). Most commercial systems currently use acti-
vated carbon as adsorbent to remove dyes mainly due to its
excellent adsorption ability. This technology is also simple,
adaptable to many treatment formats, and a large range of
commercial products are available from several manufactur-
ers. Activated carbon is extensively used at industrial scale
not only for removing dyes from wastewaters streams but
also for adsorbing pollutants from drinking water sources,
e.g., rivers, lakes or reservoirs. However, although activated
carbon is a material of choice, its widespread use is limited
due to the high cost of the material and regeneration, par-
ticularly for small- and medium-sized enterprises. Moreover,
this conventional process is not competitive when faced with
very dilute effluents and waters. To overcome this, numer-
ous approaches have been studied for the development of
cheaper and effective new materials such as chitosan-based
materials.

In the past two decades, these materials used as biosor-
bents have received much attention in water and wastewa-
ter treatment, mainly for metal chelation and dye removal
(Kyzas and Kostoglou 2014; Crini 2015; Kos 2016; Muya
et al. 2016; Kanmani et al. 2017; Kyzas et al. 2017; Nechita
2017; de Andrade et al. 2018; Desbrieres and Guibal 2018;
El Halah et al. 2018; Pakdel and Peighambardoust 2018;
Wilson and Tewari 2018). Indeed, chitosan has an extremely
high affinity for metals and metalloids and for many classes
of dyes, including direct, acid, mordant and reactive. In their
comprehensive reviews, Crini (2015), Yong et al. (2015),
Kyzas et al. (2017), Wang and Zhuang (2017), Desbrieres
and Guibal (2018), El Halah et al. (2018) and Pakdel and
Peighambardoust (2018) recently indicated that biosorption

onto chitosan was a promising alternative to replace conven-
tional adsorbents used for decolorization purposes, metal
chelation or recovery, and organic removal. With nutraceu-
ticals and cosmeceuticals, the water and wastewater treat-
ment field seems to be the next market in the development
of chitosan (Morin-Crini et al. 2019).

Chitosan represents an alternative as ecofriendly com-
plexing agent because of its low cost, its intrinsic char-
acteristics, e.g., renewable, nontoxic and biodegradable
resource, and hydrophilicity, and its chemical properties,
e.g., polyelectrolyte at acidic pH, high reactivity, coagula-
tion, flocculation and biosorption properties, resulting from
the presence of reactive hydroxyl and mostly amine groups
in the macromolecular chains (Roberts 1992; Sandford 1989;
Skjak-Braek et al. 1989; de Alvarenga 2011; Teng 2016).
These groups allow chemical modifications yielding differ-
ent derivatives for specific domains of application (Bhatna-
gar and Sillanpad 2009; Sudha 2011; Azarova et al. 2016;
Arfin 2017; Ahmed and Ikram 2017; Sudha et al. 2017;
Wang and Zhuang 2017). In wastewater treatment, its use is
also justified by two other important advantages: firstly, its
outstanding pollutant-binding capacities and excellent selec-
tivity, and secondly, its versatility (No and Meyers 1995,
2000; Peters 1995; Hirano 1997; Houghton and Quarmby
1999; Blackburn 2004; Crini 2005; Crini and Badot 2008;
Honarkar and Barikani 2009). Indeed, chitosan possesses a
strong affinity to interact with pollutants present in concen-
trated or diluted solutions, and even at trace levels.

One of the most important properties of chitosan is its
cationic nature. This aminopolysaccharide is the only natural
cationic polymer in the nature (Roberts 1992; Kurita 1998,
2006; Ujang et al. 2011; Teng 2016). At low pH, usually
less than about 6.3, chitosan’s amine groups are protonated
conferring polycationic behavior to polymer while at higher
pH (above 6.3), chitosan’s amine groups are deprotonated
and reactive. The protonation reaction is useful because,
after dissolution, chitosan can be conditioned under differ-
ent physical forms. It can be precipitated into beads, cast
into films and membranes, spun into fibers, and also cross-
linked to produce gels, fibers or sponges (No and Meyers
2000; Kurita 2006; Pillai et al. 2009; Salehi et al. 2016; Shen
et al. 2016; Teng 2016; Nechita 2017). The material can be
used in solid form for the removal of pollutants from water
and wastewater by filtration or adsorption processes or in
liquid state, i.e., dissolved in acidic media, for applications
in coagulation, flocculation, and membrane filtration (poly-
mer-assisted ultrafiltration) technologies. Among these treat-
ments, biosorption onto cross-linked chitosan hydrogels is
one of the more popular methods for dye removal (Miretzky
and Cirelli 2011; Muzzarelli 2011; Lee et al. 2012; Reddy
and Lee 2013; Lee et al. 2014; Nasef et al. 2014; Vakili
et al. 2014; Boamah et al. 2015; Gupta et al. 2015; Kyzas
and Bikiaris 2015; Oladoja 2015; Tan et al. 2015; Tran et al.



2015; Azarova et al. 2016; Barbusinski et al. 2016; Muya
et al. 2016; Yang et al. 2016a; Vandenbossche et al. 2015;
Zhang et al. 2016; Ahmad et al. 2017; Kyzas et al. 2017;
Sudha et al. 2017; Alaba et al. 2018; Bernardi et al. 2018;
Pakdel and Peighambardoust 2018; Salehizadeh et al. 2018).

Chitosan-based hydrogels

The chitosan-based derivatives can be classified into four
main classes of materials (Crini 2005; Crini and Badot
2008): modified polymers, cross-linked chitosans, chitosan-
based composites, and membranes. An important class of
chitosan derivatives are cross-linked gels/hydrogels (Ahmed
2015; Ullah et al. 2015; Akhtar et al. 2016; Mittal et al.
2016; Shen et al. 2016; Xiao et al. 2016; Yao et al. 2016;
Aminabhavi and Dharupaneedi 2017; Caccavo et al. 2018;
Van Tran et al. 2018). Gels are physically or chemically
cross-linked three-dimensional hydrophilic polymeric net-
works capable of swelling and absorbing large amounts of
water (hydrogels), solvent (organogels) or biological fluids
(gels/hydrogels) in their swollen state. They also have the
ability to interact with a wide range of ions, molecules, oli-
gomers, and polymers. Hydrogels are also versatile materials
as they can self-assemble into a variety of forms includ-
ing microgels/microspheres, beads, nanoparticles/nano-
gels, films and membranes, fibers/nanofibers, and sponges/
nanosponges, thereby resulting in the formation of 2D and
3D networks, e.g., spheres, scaffolds, ribbons, and sheets.
Once freeze-dried or supercritically dried, hydrogels can
also become cryogels or aerogels, respectively.

The different classifications of hydrogels can be found
in the reviews by Ahmed (2015) and Ullah et al. (2015).
Hydrogels are mainly divided into two classes depending on
the types of cross-linking and the nature of their network,
namely physical gels and chemical gels. Physical hydrogels
are formed by various reversible links and chemical hydro-
gels are formed by irreversible covalent links. Physicals
hydrogels are reversible due to the presence of noncovalent
interactions and conformational changes. The hydrogels
interconnected by covalent bonds cannot be redissolved
(they are permanent) and are thermally irreversible. Hydro-
gels are also divided into two categories according to their
natural or synthetic origin: biopolymer-based or synthetic
(Ullah et al. 2015). Due to their hydrophilicity, biocompat-
ibility, biodegradability, “intelligent” swelling behavior,
i.e., as responsive materials, and modifiability, i.e., in their
structure, functionality, appearance, and electrical charge,
biopolymer-based hydrogels have acquired increasing atten-
tion and have found extensive applications ranging from bio-
materials to sensors (Ullah et al. 2015). Natural polymers
such as cellulose, hemicellulose, starch, gelatin, proteins,
hyaluronate, and alginates have been proposed and studied

(Jin et al. 2013; Khan and Lo 2016). Chitosan and chitin also
deserved particular attention (Pakdel and Peighambardoust
2018).

As semi-flexible, hydrophilic, versatile and reactive
biopolymer, chitosan is able to formulate hydrogels in a vari-
ety of physical forms from micro- to nano-scale superstruc-
tures. Its hydrophilicity is due to the presence of hydroxyl
groups. Chitosan-based hydrogels are held together by either
physical interactions such as chain entanglements, van der
Waals forces, hydrogen bonds, crystallite associations and/
or ionic interactions, or chemical cross-links, i.e., covalent
bonding, or a combination of both (Varma et al. 2004; Crini
2005; Tang et al. 2007; Pereira et al. 2017; Sudha et al.
2017). Cross-linking drastically reduces segment mobility
in the polymer and a number of chains are interconnected
by the formation of new interchain linkages. If the degree of
cross-linking is sufficiently high, the product becomes insol-
uble, regardless of pH, but swellable in water. Its structure is
directly dependent on the degree of cross-linking: the higher
the degree, the greater proportion of cross-links, making the
material rigid, and this decrease the ability of the material
to swell in water and/or to interact with pollutants. Crini
(2005, 2015), Akhtar et al. (2016) and Khan and Lo (2016)
pointed out that the cross-linking density and hydrophilicity
of the polymeric chains mainly control the degree of swell-
ing and their ability to absorb and retain a large amount of
water or pollutants. Covalent cross-linking, and therefore the
cross-linking density, is influenced by various parameters,
but mainly dominated by the concentration of cross-linker. It
is favored when chitosan molecular weight and temperature
increased. Moreover, since cross-linking requires mainly
deacetylated reactive units, a high degree of deacetylation
of chitosan is favorable.

Due to their reactivity, chitosan-based hydrogels can be
prepared under different chemical and physical forms for
target applications. Their networks can be nonionic, ionic,
or amphoteric in nature and their structure amorphous,
semi-crystalline or crystalline (Crini 2005; Jing et al. 2013;
Ahmed 2015). These materials have gained relevance for
practical applications in pharmacy, e.g., drug carriers, medi-
cine and biomedicine, e.g., wound dressings and tissue engi-
neering scaffolds, cosmetology, hygiene and personal care
(superabsorbents), and agriculture, e.g., for pesticide deliv-
ery or water retention (Zhang et al. 1993; Dash et al. 2009;
Luna-Barcenas et al. 2011; van Vliergerghe et al. 2011;
Ahmadi et al. 2015; Nilsen-Nygaard et al. 2015; Shen et al.
2016; Yao et al. 2016; Zhao 2016; Xiao et al. 2016; Wang
et al. 2016; Aminabhavi and Dharupaneedi 2017; Pereira
et al. 2017; Pakdel and Peighambardoust 2018; Pell4 et al.
2018; Shariatinia and Jalali 2018). They have potential appli-
cations in the biotechnology, bioseparation, oil recovery, and
biosensor fields. Cross-linked chitosan materials, from gel/
hydrogel types to bead types or particles, have also received



much attention in wastewater treatment as biosorbents for
the removal of metals, dyes, pesticides, phenols, polycyclic
aromatic hydrocarbons, polychlorinated biphenyls, pharma-
ceuticals or fluorides from aqueous solutions (Crini 2015;
Yong et al. 2015; Kyzas et al. 2017; Wang and Zhuang 2017;
Desbrieres and Guibal 2018; El Halah et al. 2018; Pakdel
and Peighambardoust 2018; Van Tran et al. 2018). The
abundant literature data showed that they exhibited superior
performance in the adsorptive removal of a wide range of
aqueous pollutants (Pakdel and Peighambardoust 2018; Van
Tran et al. 2018). The major advantages and drawbacks of
biosorption technology using cross-linked chitosan are listed
in Table 1 (Varma et al. 2004; Crini 2005, 2006; Gérente
et al. 2007; Crini et al. 2009; Liu and Bai 2014; Rhazi et al.
2012; Sudha et al. 2017).

Various methods have been developed for the chemical
cross-linking of chitosan, which commonly result in gel
formation (Ahmed 2015; Akhtar et al. 2016; Khan and Lo
2016). These methods are generally divided into three main
classes: (1) cross-linking with chemicals, e.g., single emul-
sion reaction, multiple emulsion, and precipitation/cross-
linking; (2) cross-linking and interactions with charged
ions, molecules or polymers, e.g., ionotropic gelation, wet-
phase inversion, emulsification and ionotropic gelation and

(3) miscellaneous methods including thermal cross-linking,
solvent evaporation method, spray drying, or freeze drying.
Generally, cross-linking with chemicals is an easy method
to prepare chitosan-based hydrogels with relatively inexpen-
sive reagents (Crini 2005). Indeed, the main approach in the
conversion of chitosan into derivatives capable of interact-
ing with dyes from aqueous solutions involves the direct
chemical modification of macromolecules by cross-linking
using a chemical agent to form gel/hydrogel systems. This
reaction involves creating covalent chemical bonds in all
directions in space during a copolymerization reaction that
generates a three-dimensional network. In this chemical type
of reaction, the cross-linking agents are molecules with at
least two reactive functional groups that allow the formation
of bridges between polymer chains. To date, the most com-
mon cross-linkers used with chitosan are dialdehydes such as
glutaraldehyde and epoxides such as epichlorohydrin. Gluta-
raldehyde and epichlorohydrin are the most frequently used
cross-linked agent in chitosan chemistry and their reactions
are very well documented (Crini 2005; Kurita 2006; Akhtar
et al. 2016). Indeed, they are not expensive and their mode
of action is well understood. They react with chitosan chains
and cross-link in inter and intramolecular fashion through
the formation of covalent bonds with the amino and/or

Table 1 Advantages and disadvantages of using chitosan-based hydrogels for dye removal by biosorption-oriented processes

Advantages

Disadvantages

Emerging recovery technology, publicly acceptable (ecofriendly and
nontoxic polymer)

Economically feasible: low-cost resource for applications in pollutant
removal

Raw chitosan: renewable, biodegradable and environmentally friendly
resource; hydrophilic biopolymer with high reactivity and cationic
properties in acidic medium

Bifunctional materials: easy physical and chemical modifications

Versatile materials: can be conditioned under different forms (powders,
gels, beads, fibers)

Technological simple: simple equipment (batch), adaptable to many
treatment formats; can be applied to different flow regimes: batch,
continuous; capable of treating large volumes; useful technology in
combination with physicochemical (coagulation, precipitation, floc-
culation) pretreatments

Outstanding dye-binding capacities; also useful for the recovery of
(valuable) metals

Highly effective for various dyes: acids, direct, mordant, reactive,
disperse, and vat dyes

High efficiency and selectivity in detoxifying both very dilute or con-
centrated effluents with rapid kinetics

Real effluents: a high-quality treated effluent is obtained with simulta-
neous elimination of color, organic load (chemical oxygen demand,
biochemical oxygen demand, total organic content) and metals

Easy regeneration if required (while keeping its initial properties);
regeneration is possible but not necessary; no loss of resin on regen-
eration

Certain materials are biodegradable

Chemisorption mechanism clearly established: complexation, electro-
static attraction, ion-exchange, complex formation

Technologies are still being developed; laboratory stage

Nonporous materials with low surface area (except nanostructures,
hyper-cross-linked beads, composites)

Poor chemical stability (except for hyper-cross-linked beads); low
mechanical strength

Variability in the chitosan characteristics and in the materials used; per-
formances depend on type of materials and of degree of deacetylation

A high affinity for water; a tendency to shrink and/or swell; not appro-
priate for column systems (except for hyper-cross-linked beads):
hydrodynamic limitations, column fouling, technical constraints

Requires chemical modification to improve both its performance and
stability

Important role of the pH of the solution on the biosorption perfor-
mance; influence of salts and sensitive to particle, suspended solids,
and oils

Ineffective against basic (cationic) dyes (except for modified functional
materials)

Functional hydrogels: results depend on the functional groups grafted

Hyper-cross-linked systems: possible clogging of the reactors: requires
physicochemical pretreatment to remove suspended solids

Elimination of the materials after use
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Fig. 1 Synthesis of cross-linked chitosan hydrogels: a epichlorohydrin EPI and b glutaraldehyde GLU

hydroxyl groups of the polymer (Fig. 1). Epichlorohydrin
is highly reactive with hydroxyl groups. Another advantage
is that it does not eliminate the cationic amine function of
chitosan, which is the major adsorption site attracting the
pollutant during biosorption process. The main drawback
of these two cross-linker agents is that they are considered
to be toxic (glutaraldehyde contains cytotoxic chemical spe-
cies and it is known to be neurotoxic; epichlorohydrin is also
considered to hazardous environmental pollutant and poten-
tial carcinogen), even if the presence of free unreacted gluta-
raldehyde and epichlorohydrin is improbable since the mate-
rials are purified before use. Other cross-linkers of chitosan
are other epoxides such as ethylene glycol diglycidyl ether,
carboxylic acids such as citric acid, isocyanates, polyanions
such as tripolyphosphate and genipin (Crini 2005; Jin et al.
2013; Shukla et al. 2013; Ahmed 2015; Ullah et al. 2015;
Akhtar et al. 2016; Khan and Lo 2016). Recently, silicon
oxide polymeric precursors, e.g., tetracthoxysilane, sodium
silicates, aminopropyltriethoxysilane, have been proposed.
These precursors are interesting because they can form
interpenetrated polymers with chitosan after polymeriza-
tion. The active sites of the biopolymer remain intact while
its solubility is diminished and its biosorption capacity is
maintained. Nevertheless, most of these approaches involve
the obtaining of a hybrid material whose main component

is SiO,. Therefore, the overall biosorption capacity of these
materials is, in general, lower than that of pure chitosan but
these materials have the advantages of high stability, recov-
erability, and reutilization. In view of industrial develop-
ments, these advantages are also of utmost importance.
Generally, a cross-linking step is required to improve
mechanical resistance and to reinforce the chemical stability
of the chitosan in acidic solutions, modifying hydrophobicity
and rendering it more stable at drastic pH, which are impor-
tant features to define an efficient biosorbent (Crini 2005).
However, this reaction can decrease the number of free and
available amino groups on the chitosan backbone, and hence
the possible ligand density and the polymer reactivity. It also
decreases the accessibility to internal sites of the material
and leads to a loss in the flexibility of the polymer chains.
Moreover, when the cross-linking degree is high, the mate-
rial is mostly amorphous. So, the chemical step may cause
a significant decrease in dye uptake efficiency and biosorp-
tion capacities, especially in the case of chemical reactions
involving amine groups, since the amino groups of the poly-
mers are much more active than the hydroxyl groups that
can be much more easily attacked by cross-linkers. Conse-
quently, it is important to control and characterize the condi-
tions of the cross-linking reaction since they determine and
allow the modulation of the cross-linking density, which is



the main parameter influencing properties of gels (Ahmed
2015; Ullah et al. 2015; Akhtar et al. 2016; de Luna et al.
2017a). Indeed, the conditions of preparation of hydrogels
used as biosorbents for dye removal play a crucial role in
the determination of their performances and in the better
comprehension of the biosorption mechanisms (Crini 2005,
2015). However, this aspect is often neglected in the litera-
ture (Ahmed 2015; Crini 2015; Mohamed et al. 2015; Ullah
et al. 2015; Akhtar et al. 2016; de Luna et al. 2017a; Pakdel
and Peighambardoust 2018; Van Tran et al. 2018).

Removal of dyes from solutions
by chitosan-based hydrogels

There are several types of contacting systems available to
obtain experimental data and for industrial applications
including batch methods, fixed-bed type processes, pulsed
beds, moving mat filters and fluidized beds (Morin-Crini and
Crini 2017; Crini and Lichtfouse 2018). The most frequently
used system applied in biosorption process for dye removal
is the batch-type contact (Fig. 2). This decontamination
approach involves mixing a known volume of water with
known concentrations of dye to be processed with a given
quantity of biosorbent, in previously established conditions
of stirring rate, stirring duration, concentration, pH, ionic
strength, and temperature. The mixture is stirred for a given
contact time and then separated by a physical step involving
centrifugation, sedimentation, or filtration. By determining
the concentrations in the supernatant and in the initial solu-
tion, it is possible to calculate the efficiency of the material,
i.e., its performance in terms of dye elimination. In wastewa-
ter treatment, the batch method is widely used because this
technology is cheap, simple, quick, and easy to set up and,
consequently often favored for small- and medium-sized
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process applications using simple and readily available mix-
ing tank equipment (Morin-Crini and Crini 2017).

In batch systems, the parameters of the solution such as
dye concentration, contact time, pH, strength ionic, tempera-
ture, etc., can be controlled and/or adjusted. For instance,
by varying the quantity of biosorbent, the concentration
of the dye(s) or the contact time, it becomes possible to
experimentally determine various isotherms (biosorption
capacity), kinetics, and the thermochemistry of the process,
and also to model them (Al-Duri 1996; Ho and McKay
1998; Wong et al. 2003, 2004; Ho 2006; Hamdaoui and
Naffrechoux 2007a, b). Batch studies use the fact that the
biosorption phenomenon at the solid/liquid interface leads
to a change in the concentration of the solution. Biosorption
isotherms are then constructed by measuring the concentra-
tion of dye in the medium before and after biosorption at
a fixed temperature. By plotting solid-phase concentration
against liquid-phase concentration graphically, it is possible
to depict an equilibrium adsorption isotherm. This isotherm
represents the relationship existing between the amount of
pollutant adsorbed and the pollutant concentration remain-
ing in solution. Equilibrium is established when the amount
of pollutant being adsorbed onto the material is equal to the
amount being desorbed. Among the numerous theories relat-
ing to adsorption equilibrium, the Langmuir adsorption iso-
therm is the best known of all isotherms describing adsorp-
tion (Wong et al. 2003, 2004; Hamdaoui and Naffrechoux
2007a, b; Crini et al. 2009; Morin-Crini and Crini 2017).
Using an empirical equation introduced by the American
chemist and physicist Irving Langmuir in 1916 (Nobel Prize
in Chemistry in 1932), it is possible to obtain an interesting
parameter widely used in the literature to promote a solid
material as adsorbent, i.e., the theoretical monolayer capac-
ity or the maximum adsorption capacity of an adsorbent
(qmax 1n mg/g). Indeed, the Langmuir isotherm incorporates
an easily interpretable constant which corresponds to the
highest possible adsorbate uptake in terms of performance.

Industrial scale

Fig.2 Schematic representation of batch process used for dye removal from wastewaters



It is important to note that, although this theory is the most
popular, the model was initially developed for the modeling
of the adsorption of gas solutes onto metallic surfaces and
is based on the hypothesis of physical adsorption (Lang-
muir 1916, 1918). The Langmuir equation is represented
by Eq. (1) where x is the amount of dye adsorbed (mg),
m is the amount of biosorbent used (g), C, (mg/L) and g,
(mg/g) are the liquid-phase concentration and solid-phase
concentration of dye at equilibrium, respectively, and K|
(L/g) and a; (L/mg) are the Langmuir isotherm constants.
The Langmuir isotherm constants, K; and q; _are evaluated
through linearization of Eq. (1). By plotting C./g, against
C., it is possible to obtain the value of K; from the intercept
which is 1/K; and the value of a; from the slope which is
a;/K; (Eq. 2). Using these constants, it is then possible to
obtain q,,,,. Its value, numerically equal to K| /a;, permits
to evaluate the maximum biosorption capacity of a mate-
rial for the biosorption of a target pollutant. Of course, the
uptake of a contaminant by two material biosorbents must be
compared not only at the same equilibrium concentration but
also in the same experimental conditions (particularly pH).
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Biosorption capacity

Since the 1990s, a large variety of biosorbents have been
proposed and studied for their ability to remove organic
contaminants, in particular dye molecules (Gadd 2009).
Some of the reported materials include agricultural wastes,
industrial by-products, biomass and biopolymers such as
polysaccharides. However, biosorbent materials with high
adsorption capacities are still under development to reduce
the biosorbent dose and minimize disposal problems (Crini
and Lichtfouse 2018). Among the numerous biosorbents
proposed, much attention has been focused on various chi-
tin-based (Peters 1995; Goosen 1997; Hirano 1997; Li et al.
2008; Bhatnagar and Sillanpdd 2009; Sudha 2011; Khor and
Wan 2014; Anastopoulos et al. 2017; Sudha et al. 2017) and
chitosan-based (Table 2) materials for pollutant removal.
Recent results in terms of biosorption capacities using val-
ues of the monolayer capacity (g,,,, in mg/g) obtained from
batch studies were compiled in Table 2. These reported
biosorption capacities must be taken as an example of values
that can be achieved under specific conditions since biosorp-
tion capacities of the biosorbents presented vary, depend-
ing on the characteristics of the material, the experimental
conditions, and also the extent of chemical modifications.

The reader is encouraged to refer to the original articles for
information on experimental conditions.

Crini (2015), Kyzas et al. (2017), and Wang and Zhuang
(2017) demonstrated that biosorption using nonconventional
cross-linked chitosan hydrogels is an effective and economic
method for water decolorization. These materials had an
extremely high affinity for many classes of dyes commonly
used in industry with outstanding biosorption capacities,
in particular anionic dyes such as acid, reactive and direct
dyes (Table 2). For instance, 1 g of material can adsorb
2498 mg of Reactive Blue 2 present in aqueous solution. In
comparison with commercial activated carbons, these non-
conventional materials exhibited excellent performance for
removal of anionic dyes and the performances were 3—15
times higher at the same pH (Crini 2015; Hadi et al. 2015;
Mohamed et al. 2015; Udoetok et al. 2016).

The only class for which chitosan have low affinity is
basic (cationic) dyes (Crini 2015). Moreover, it is well
known that the uptake is strongly pH-dependent when natu-
ral sorbents are used. This is due to the presence of chemi-
cal functions on the materials. In general, for anionic dye
molecules removal by cross-linked chitosan hydrogels, the
highest biosorption effectiveness was achieved at low pH
values, whereas an opposite tendency was observed for cati-
onic dyes removal where an increase in pH value facilitated
enhanced removal of dye. To overcome, these problems,
several workers suggested the chemical modification of chi-
tosan in order to decrease the sensitivity of biosorption to
environmental conditions, e.g., pH and ionic strength. The
grafting of carboxyl groups, amine functions, and sulfur
compounds has been regarded as an interesting method for
these purposes (Varma et al. 2004; Crini 2005; Bhatnagar
and Sillanpdd 2009; Sudha 2011). Other examples can also
be found in the reviews by Liu and Bai (2014), Vakili et al.
(2014), Azarova et al. (2016), Ahmad et al. (2017), Ahmed
and Ikram (2017), Arfin (2017), and Sudha et al. (2017).

The grafting of various functional groups onto the hydro-
gel network or the chitosan backbone can also improve chi-
tosan’s removal performance and selectivity for dye mol-
ecules, and also used for controlling diffusion properties.
Indeed, these modifications can increase the density of
biosorption sites. The presence of new functional groups on
the surface of the materials results in an increase in surface
polarity and hydrophilicity and this enhances the biosorp-
tion of polar sorbates and improves the biosorption selec-
tivity for the target dye. The conditions of preparation of
hydrogels and their post-functionalization play a crucial role
in the determination of their performances. These perfor-
mances exhibited by each material relates primarily not only
to its chemical properties, e.g., type of functional groups
and degree of grafting but also to textural properties (from
microspheres to nanoparticles). An overview of the literature
data shows that performances strongly depend on the type



Table 2 Maximum adsorption capacities g,,,, (in mg/g) for dye removal obtained on different cross-linked chitosan hydrogels using batch stud-

ies

Cross-linked hydrogel Dye Tinax Reference

Nanoparticles Eosin Y 3333 Du et al. (2008)
Cyclodextrin—chitosan nanoparticles Methyl Blue 2780 Fan et al. (2012)
EPI—chitosan Reactive Blue 2 2498 Crini (2015)

Hydrogel composite Methylene Blue 1968 Melo et al. (2018)
Hydrogel composite Methylene Blue 1952 Vaz et al. (2017)
EPI-chitosan Reactive Yellow 86 1911 Crini (2015)
Edetate—chitosan (pH 4) Reactive Yellow 84 1883.6 Jozwiak et al. (2015)
Hydrogel microbeads Acid Orange 7 1670 Kuroiwa et al. (2017)
Urea diammonium tartrate modified chitosan Congo Red 1597 Zahir et al. (2017)
Chitosan granules Reactive Black 5 1559 Jozwiak et al. (2017a)
Diammonium tartrate modified chitosan Congo Red 1447 Zabhir et al. (2017)
Edetate—chitosan (pH 4) Reactive Black 5 1296.6 Jozwiak et al (2015)
Powder Reactive Red 1250 Subramani and Thinakaran (2017)
Tripolyphosphate-chitosan (pH 4) Reactive Black 5 1125.7 Filipkowska et al. (2016)
Hydrogel composite Methylene Blue 1134 Liu et al. (2018)
Quaternary chitosan Reactive orange 1060 Crini (2015)

Chitosan nanodispersion Reactive Red 120 910 Momenzadeh et al. (2011)
Polyacrylic acid-chitosan Methylene Blue 990 Lietal. (2017)
GLU-chitosan Reactive Black 5 846.9 Filipkowska et al. (2016)
Aerogel Methylene Blue 785 Yang et al. (2016b)
Semi-IPN hydrogel Methylene Blue 750 Driagan et al. (2012)
EPI—chitosan Metanil Yellow 722 Crini (2015)
Hydroxyapatite-based nanocomposite Congo Red 769 Hou et al. (2012)

IPN hydrogel (pH 7) Methyl Violet 411 Mandal and Ray (2014)
IPN hydrogel (pH 7) Congo Red 621 Mandal and Ray (2014)
GLU—chitosan (pH 5) Reactive Black 5 538 Jozwiak et al. (2013)
GLU—chitosan (pH 3) Reactive Black 5 514 Jozwiak et al. (2013)
Semi-IPN hydrogel Acid Red 18 342.5 Zhao et al. (2012)
Graphene oxide/chitosan sponge Methylene Blue 275 Qi et al. (2018)
GLU—chitosan (pH 9) Reactive Black 5 254 Jozwiak et al (2013)
Powder Direct Yellow 250 Subramani and Thinakaran (2017)
Cyanoguanidine-chitosan Food Yellow 4 210 Gongalves et al. (2015)
Chitosan-Fe Acid Red 73 206 Zhou et al. (2017a)
Semi-IPN hydrogel Methyl Orange 185.2 Zhao et al. (2012)
Cyanoguanidine-chitosan Food Blue 2 180 Gongalves et al. (2015)
GLU—chitosan (pH 9) Basic Green 4 137 Jozwiak et al. (2013)
Powder Malachite Green 166 Subramani and Thinakaran (2017)
Hyper-cross-linked hydrogel Indigo Carmine 118 de Luna et al. (2017b)
Hyper-cross-linked hydrogel Rhodamine 6G 78 de Luna et al. (2017b)
Hyper-cross-linked hydrogel Sunset Yellow 72 de Luna et al. (2017b)
N-maleyl chitosan cross-linker Methylene Blue 66.89 Nakhjiri et al. (2018)
N-maleyl chitosan cross-linker Crystal Violet 64.56 Nakhyjiri et al. (2018)
GLU—chitosan (pH 5) Basic Green 4 56 Jozwiak et al (2013)
Oxide-based nanoparticles Acid Black 26 52.6 Salehi et al. (2010)
Acrylamide—chitosan Astrazone Blue 47 Aly (2017)
Terephthaloyl thiourea chitosan Congo Red 44 El-Harby et al. (2017)
GLU—chitosan (pH 3) Basic Green 4 19 Jozwiak et al. (2013)
Semi-IPN hydrogel Rhodamine B 17.5 Al-Mubaddel et al. (2017)
Magnetic hydrogel Methyl Orange 6.936 Wang et al. (2018)

EPI epichlorohydrin, GLU glutaraldehyde, /PN interpenetrating network



of material used (Crini 2015; Yong et al. 2015; Kyzas et al.
2017; Wang and Zhuang 2017; Desbrieres and Guibal 2018).
Indeed, each material has its specific application as well
as inherent advantages and disadvantages in dye removal.
These problems can explain why it is difficult to develop
chitosan-based materials at an industrial scale.

A recent review of the literature on dye removal
by chitosan-based hydrogels

Chitosan-based hydrogels are competitive against conven-
tional sorbents or other biosorbents as recently reported by
Li et al. (2017). The authors proposed a versatile low-cost
material prepared by simple thermal cross-linking chitosan
in the presence of polyacrylic acid. This material (1 g) was
able to remove 990.1 mg of Methylene Blue dye which
was higher than most of conventional materials, in parallel
agreement with a report by Guo and Wilson (2012). The
biosorption properties were reproducible for a wide range
of experimental conditions. The interaction between the dye
molecules and material was driven mainly by electrostatic
attractions. It also presented high selectivity and permitted
to separate dye mixtures. The materials were stable and can
be recycled for 10 times with negligible reduction of effi-
ciency. The biosorption results were reproducible. In view
of industrial development, these features are also of utmost
importance. The regeneration of saturated commercial car-
bon by thermal or chemical procedure is known to be expen-
sive and results in loss of the material. The authors con-
cluded that chitosan complexation was a procedure of choice
for dye removal in terms of cost, efficiency, and reusability.
Zahir et al. (2017), El-Sayed et al. (2017), and Lin et al.
(2017) also reported that cross-linked chitosan hydrogels
were very efficient for the removal of dyes at different con-
centrations and competitive against commercial systems.
The materials exhibited high biosorption capacities toward
various dyes present in monocontaminated solutions and
possessed a high rate of biosorption, high efficiency and
selectivity in detoxifying either very dilute or concentrated
solutions. Indeed, chitosan hydrogels are more selective than
traditional materials and can reduce dye concentrations to
ppb levels. Zahir et al. (2017), El-Sayed et al. (2017), and
Lin et al. (2017) concluded that the use of cross-linked chi-
tosan hydrogels as biosorbents was a promising tool for the
purification of dye-containing textile wastewaters.
However, the choice of the cross-linking agent has a sig-
nificant influence on the biosorption properties because the
chemical structure of the synthesized beads depends on the
nature of the cross-linking agent and the degree of cross-
linking. Despite the large number of papers dedicated to
the removal of dyes by hydrogels, most of them focus on
the evaluation of biosorption performance and only a few
of them aim at gaining a better understanding of the role

of the cross-linking agent. Copello et al. (2014) proposed
chitosan hydrogel beads modified by three different cross-
linking treatments, glutaraldehyde and epichlorohydrin and
tetraethoxysilane. The authors studied and characterized the
behavior of hydrogel cross-linked using a tetraethoxysilane
/chitosan ratio of 1 mmol/g. At this ratio, chitosan was in
excess compared to tetraethoxysilane, which contrasted
with the developments described in the literature where the
alkoxysilane was the main component of the composite.
The three different hydrogels were used as biosorbent for
the removal of an anionic dye, namely Remazol Black. The
tetraethoxysilane cross-linking leads to a safer and environ-
mentally friendly hydrogel stable in acidic media and with
desirable biosorption characteristics. Their results showed
that none of the treatments affected the expected biosorption
tendency in regard to media pH. The uptake rate of Rema-
zol Black showed that the three types of beads followed a
similar kinetic behavior. The pseudo-first-order model fitted
the best for almost all cases, followed by pseudo-second-
order model. The model which showed to have a good fitting
for all systems was the Sips model. The performances were
strongly pH-dependent. The tetraethoxysilane cross-linked
beads demonstrated the higher maximum biosorption capac-
ity, followed by epichlorohydrin and glutaraldehyde cross-
linked beads.

Crini (2015) reported that glutaraldehyde interaction with
chitosan required the consumption of two glucosamine units
to form the corresponding Schiff bases, which leads to a
loss of biosorption sites. Moreover, polymerization of glu-
taraldehyde also occurred forming a greater cross-linking
chain which diminished biosorption capacity in terms of
dye-mass/biosorbent-mass ratio. Filipkowska et al. (2016)
and Udoetok et al. (2016) reported similar conclusions. The
experimental data published demonstrated that, compared
with glutaraldehyde, the use of a tripolyphosphate-based
cross-linking agent increased color removal. The com-
parison of the maximum biosorption capacity at the same
experimental conditions for Reactive Red 5 dye by glutar-
aldehyde—chitosan and tripolyphosphate—chitosan showed
846.9 mg/g for glutaraldehyde and 1125.7 mg/g for pen-
tasodium tripolyphosphate. However, the mechanisms need
to be explored.

de Luna et al. (2017a, b) recently developed new compos-
ite chitosan-based hydrogels containing hyper-cross-linked
polymer particles to be used as broad-spectrum biosorbents.
The hydrogels were obtained by phase inversion method in
order to efficiently combine the dye biosorption ability of
chitosan and the capacity of the porous particles of trap-
ping pollutant molecules. The particles exhibited improved
mechanical properties with possible use in batch or col-
umn procedures (de Luna et al. 2017a). Batch biosorption
experiments revealed a synergistic effect between chitosan
and hydrogels, and the samples are able to remove both



anionic and cationic dyes such as Indigo Carmine (g,,,, =
118 mg/g), Rhodamine 6G (q,,,, = 78 mg/g) and Sunset
Yellow (g,,,x = 72 mg/g) from water (de Luna et al. 2017b).
The maximum dye uptakes were higher than those of com-
parable biosorbents. However, dependencies in relation to
the chemical structure of the dye molecules were not identi-
fied. The mechanical properties of hydrogels were enhanced
respect to pure chitosan, and the samples can be regenerated
and reused keeping their adsorption ability unaltered over
successive cycles of biosorption, desorption, and washing.
The authors, focusing on the structure-property relation-
ships of chitosan hydrogels, also showed that the conditions
of preparations played a crucial role in their performances.
The concentration of the starting solution determined the
density and strength of intermolecular interactions, and
that the gelation kinetics dictated the hydrogel structure at
the microscale. Consequently, even subtle changes in the
preparation protocol can cause significant differences in the
performances of chitosan hydrogels in terms of mechanical
properties and dye biosorption capacity. The observed trends
can be interpreted looking at the chitosan network structure,
which can be inferred by rheological measurements.

In a series of works, J6zwiak et al. (2013, 2015, 2017a,
b) also focused on the structure-property relationships of
chitosan hydrogels. Their works compared properties of
hydrogel chitosan biosorbents cross-linked with nine agents
(Jozwiak et al. 2017b), including five ionic ones (sodium
citrate, sodium tripolyphosphate, sodium edetate, sulfos-
uccinic acid, and oxalic acid) and four covalent ones (glu-
taraldehyde, epichlorohydrin, trimethylpropane triglycidyl
ether, and ethylene glycol diglycidyl ether). The effect of
cross-linking process conditions (pH, temperature) and
dose of the cross-linking agent on material stability during
biosorption and on the effectiveness of Reactive Black 5
dye biosorption were examined. The influence of chemical
nature of chitosan, e.g., degree of deacetylation, was also
studied (J6Zwiak et al. 2017a). The optimal parameters of
cross-linking ensuring biosorbent stability in acidic solu-
tions and high biosorption capability were established for
each cross-linking agent tested. The susceptibility of cross-
linked biosorbents to mechanical damages was analyzed as
well. The process of ionic cross-linking was the most effec-
tive at the pH value below which hydrogel chitosan biosorb-
ent began to dissolve (pH 4). The cross-linking temperature
ranging from 25 to 60 °C had no effect upon biosorbent
stability. The higher temperature during ionic cross-linking,
however, slightly decreased Reactive Black 5 biosorption
effectiveness. The ionic cross-linking significantly decreased
the susceptibility of hydrogels to mechanical damages. In the
case of covalent cross-linking of chitosan hydrogel beads,
the effect of process conditions, e.g., pH and temperature,
on the properties of the cross-linked biosorbent depended on
the type of cross-linking agent. The biosorbents cross-linked

with covalent agents were usually harder but also more frag-
ile, and therefore more susceptible to mechanical damages.
The authors showed that increasing the degree of deacety-
lation, ranging from 75 to 90%, involved an increase in the
relative proportion of amine groups, which were able to be
protonated, favoring dye biosorption. The higher degree of
deacetylation chitosan provided a better biosorption. The
highest biosorption capacity (¢, = 1559.7 mg/g) was
obtained for the hydrogel in the form of granules (degree
of deacetylation = 90%). Due to a loose structure and an
easy access to biosorption centers, chitosan hydrogel gran-
ules may ensure up to 224% higher biosorption capacity (for
degree of deacetylation = 75%, ¢,,,x = 1307.5 mg/g) than
chitosan in the form of flakes (for degree of deacetylation =
75%, qmax = 403.4 mg/g). The results were also found to be
strongly dependent on the pH of the solution. The authors
concluded that biosorption onto hydrogels was a promis-
ing alternative to replace conventional materials used for
decolorization purposes. These materials were efficient in
dye removal with the additional advantage of being cheap
and nontoxic. However, their performances were strongly
depended on their structure. In particular, the extent of
cross-linking was accompanied by a decrease in dye uptake.
Moreover, which cross-linking agent is better? There is no
direct answer to this question.

El-Harby et al. (2017) investigated the biosorption capac-
ity of three antimicrobial terephthaloyl thiourea cross-
linked chitosan hydrogels for Congo Red dye removal. The
hydrogels were prepared by reacting chitosan with various
amounts of terephthaloyl diisothiocyanate cross-linker in
order to study the structure-property relationships of chi-
tosan hydrogels. The results showed that the cross-linking
ratio slightly affected the equilibrium biosorption capacity
and the performance decreased with an increase in cross-
linking density under the range studied. An optimum tereph-
thaloyl thiourea/amine ratio was found for dye biosorption.
This decrease in biosorption was interpreted in terms of the
decrease in hydrophilicity and accessibility of complexing
groups. The cross-linking reaction also decreased the avail-
ability of amine groups for the complexation of dyes. The
biosorption isotherms and kinetics showed that the experi-
mental data were better fitted by the Langmuir equation and
the pseudo-second-order equation, respectively. Isotherms
were characterized by a steep increase in the biosorption
capacity, indicating a great affinity of the hydrogel for the
dye, followed by a plateau representing the maximum capac-
ity at saturation of the monolayer (g,,,, = 44.2 mg/g). The
biosorption phenomena were most likely to be controlled by
chemisorption process. It was spontaneous in nature, indi-
cated by the negative value for the Gibbs energy change AG,
more favorable at lower concentrations of dye molecules
compared with higher concentrations, and was most likely
to be controlled by chemisorption. The positive values of



enthalpy change AH and entropy change AS suggested the
endothermic nature of biosorption and increased random-
ness at the solid/solution interface during the biosorption
of dye on chitosan derivatives. The authors concluded that
cross-linked chitosan hydrogels may be promising biosorb-
ents in wastewater treatment.

Recently, some novel procedures such as irradiation-
based techniques, e.g., ionizing radiation, gamma rays, and
electron beam, have been reported for cross-linking poly-
saccharides. The preparation of gels by radiation treatment
carries some advantages over the conventional methods.
The reaction can be initiated at ambient temperature and,
in certain cases, it does not require the presence of cross-
linking agents. The method is also relatively simple and the
process control is easy. The degree of cross-linking, which
strongly determines the extent of properties in gels, can be
easily controlled by varying the irradiation dose. In the syn-
thesis of gels by chemical methods, cross-linking density is
controlled by the concentration of the cross-linker, reaction
time, temperature and other factors. While for the radia-
tion method it is determined by the absorbed dose, which
means by the irradiation time. Moreover, cross-linking by
the chemical methods is generally performed mainly in the
liquid state. Since the ionizing radiation is highly penetrat-
ing, it is possible to initiate chemical reactions in liquid or in
solid state. Piatkowski et al. (2017) proposed a novel, waste-
free method for obtaining multifunctional chitosan hydrogels
under microwave irradiation without the presence of a cross-
linking agent. Their chemical and morphological structure,
swelling properties, and biosorption capability of a model
dye were described. Bifunctional materials containing both
negative and positive surface charges were fully biodegrad-
able, and capable to absorb high amounts of water, as well
as to remove various water contaminants.

Wach’s group has applied electron beam irradiation to
prepare gels from chitosan. They synthesized a series of
novel gels of carboxymethylated chitosan derivatives by
electron beam for biomedical applications and their char-
acteristics are being studied in detail (Mozalewska et al.
2017; Czechowska-Biskup et al. 2016). Solutions of chitosan
and carboxymethyl-chitosan were subjected to irradiation
by electron beam in the presence of poly(ethylene glycol)
diacrylate in order to produce carboxymethyl-chitosan- and
chitosan-based hydrogels. Poly(ethylene glycol) diacrylate
monomer itself undergoes simultaneous polymerization and
cross-linking either in neutral water or in acidic medium.
Acidic solutions of chitosan of 0.5, 1 and 2% can be effec-
tively cross-linked with poly(ethylene glycol) diacrylate to
form a gel. Although carboxymethyl-chitosan undergoes
radiation-initiated cross-linking only at high concentration
in water (over 10%), the presence of poly(ethylene glycol)
diacrylate in solution facilitated hydrogel formation even
at lower concentration of carboxymethyl-chitosan. The

formation of chitosan and carboxymethyl-chitosan hydro-
gels required irradiation doses lower than those needed
for sterilization, i.e., 25 kGy, in some cases even as low as
200 Gy. Sol—gel analysis revealed relatively high gel fraction
of obtained hydrogels, up to 80%, and good swelling ability.
Both parameters can be easily controlled by composition
of the initial solution and irradiation dose. Possible mecha-
nisms of cross-linking reactions were proposed, involving
addition of the polysaccharide macro-radicals to a termi-
nal double bond of poly(ethylene glycol) diacrylate. Even
though the polymer chains may be partly degraded during
irradiation, the authors concluded that ionizing radiation was
a convenient tool to synthetize hydrogels based on chitosan
for potential applications not only in the biomedical field but
also in water and wastewater treatment.

Practical industrial applications of hydrogels in column-
based biosorption processes are limited due to hydrodynamic
limitations (Esquerdo et al. 2014, 2015). Certain hydrogels
are also too soft and degrade at fast rates which can pose
major handling difficulties during their applications. Various
hyper-cross-linked chitosan gels/beads, chitosan scaffolds,
sponges, and chitosan-based composites have been designed
to overcome these problems. Different techniques such as
blending between two or more polymers, copolymerization
with (hydrophobic) synthetic monomers, synthesis of inter-
penetrating network and semi-interpenetrating network have
been proposed. These techniques are useful because they
improve the mechanical strength, enhance swelling/deswell-
ing response and avoid the loosening of their structure in wet
environments. Dragan (2014) reviewed the main synthesis
strategies of fully- and semi-interpenetrating network hydro-
gels and their potential applications.

Hyper-cross-linked hydrogel beads were prepared from
monodisperse water-in-oil emulsions using a microchannel
emulsification technique for the first time and proposed for
Acid Orange 7 removal by Kuroiwa et al. (2017). Mono-
disperse emulsion droplets can be generated spontaneously
via an interfacial tension-driven process without generating
severe shear force and heat by a two-step gelation process.
They were formed by physical gelation of chitosan-contain-
ing water droplets by alkali treatment followed by chemi-
cal cross-linking treatment using ethylene glycol diglycidyl
ether. To clarify the effect of various process parameters
such as chitosan concentration and flow rate of chitosan
solution on the emulsification, microchannel emulsifica-
tion was performed under various conditions. The mean
diameter and diameter distribution were affected by the vis-
cosity and flow rate of the chitosan solution pressed into
microchannels. The biosorption results showed that chi-
tosan gel microbeads exhibited high biosorption capacities
toward Acid Orange 7 (g, = 1670 mg/g). Electrostatic
attractions between the positively charged polymer chains
(-NH;" groups) and the negatively charged anionic dye



molecules (—SO;~ groups) were the most prevalent mecha-
nism with the pH as the main factor affecting performances.
Although these properties were pH responsive, the micro-
beads can be applied under acidic and neutral pH condi-
tions. The high value of ¢, suggested that the molar ratio
of -NH;*/-SO;~ was 1.0/0.82 at maximum biosorption,
i.e., 82% of -NH;* groups in chitosan hydrogel would be
bound to —SO;. This result indicated that the biosorption
was achieved by electrostatic interactions. The microbeads
were also stable for more than 120 days and could be reused
in repetitive adsorption-desorption cycles (at least 10 times)
without decrease in performance. The authors concluded
that these new hydrogels would be interesting in wastewater
treatment for the removal of anionic organic dyes due to
their intrinsic properties (small diameter < 20 pum, high size
uniformity with coefficient of variation < 10%), outstanding
biosorption performance, high stability under various condi-
tions, and reusability. The preparation of chitosan-containing
emulsions and chitosan gel microbeads using the microchan-
nel emulsification technique represents an innovative and
easy method of preparation.

Esquerdo et al. (2014) prepared a chitosan scaffold with
a mega-porous structure as an alternative biosorbent to
remove food dyes from solutions. The new material was
characterized by infrared spectroscopy, scanning electron
microscopy and other structural tools. It presented pore sizes
from 50 to 200 pum, porosity of 92.2 + 1.2% and specific
surface area of 1135 + 2 m*/g. Its potential to remove five
food dyes from solutions was investigated by equilibrium
isotherms and thermodynamic studies. The chitosan mega-
porous scaffold showed both good structural characteristics
and high biosorption capacities (788-3316 mg/g) at 298 K.
The two-step Langmuir model was suitable to represent the
equilibrium data. The process was spontaneous, favorable,
exothermic and an enthalpy-controlled process. Results were
explained by the presence of electrostatic interactions that
occurred the between chitosan scaffold and dye species. This
was demonstrated from infrared spectroscopy, and scanning
electron microscopy with energy dispersive X-ray mappings.

New interpenetrating network hydrogels were prepared
by Mandal and Ray (2014) from chitosan and cross-linked
copolymers of acrylic acid, sodium acrylate and hydroxy-
ethyl methacrylate. Acrylic acid, sodium acrylate, hydrox-
yethyl methacrylate and N’N’-methylenebisacrylamide
monomers were free radically copolymerized and then
cross-linked in aqueous solutions of chitosan. Several inter-
penetrating network hydrogels were prepared by varying the
concentration of initiator and weight (%) of chitosan. The
biosorption of cationic Methyl Violet and anionic Congo
Red dyes by these hydrogels were studied. The materials
showed high abatement expressed in % (98-73% for Congo
Red and 94-66% for Methyl Violet) over the feed concentra-
tion of 10-140 mg/L of dye in water. The materials were pH

responsive and the performances depended on the type of
hydrogel. Hydrogels prepared with 1 wt.% initiator, 1 wt.%
cross-linker and 12 wt.% chitosan showed the best swelling
characteristics and performances. The good reusability of
the materials was another cited advantage (Mandal and Ray
2014).

Semi-interpenetrating network technology is a feasi-
ble route to produce new hydrogels as recently reported
by Al-Mubaddel et al. (2017). It is a combination of two
or more polymers in which one forms a network and the
other remains in a linear form. The linear polymer remains
physically bonded to the network via various interactions
such as electrostatic forces, hydrophobic interactions, and
van der Waals forces. Using this technology, the authors
prepared chitosan/polyacrylonitrile semi-interpenetrating
network hydrogel via glutaraldehyde vapors for Rhodamine
B removal from aqueous solutions. The main advantages
of these hydrogels as biosorbents include ease in loading,
chelation complex formation, semi-continuous operation,
wettability and high swelling, and reusability. Wettability
and swelling facilitate the biosorption of target molecules
since swelling provides more specific surface area and
expose more functional groups for biosorption.

Cross-linked hydrogels with glutaraldehyde and hydro-
gels with activated carbon were developed, characterized
and applied for the biosorption of Food Blue 2 and Food Red
17 from aqueous binary system by Gongalves et al. (2017).
Their results revealed that the insertion of activated carbon
on the chitosan hydrogel structure provided an improvement
in the biosorption performance. The materials can be eas-
ily regenerated by alkaline solutions and were reusable for
more than 5 cycles. The biosorption capacities remained
unchanged after regeneration, showing that both the chemi-
cal stability of the composites and reproducibility of the
biosorption process.

The interaction between a new hydrogel composite (chi-
tosan-poly(acrylic acid)/rice husk ash hydrogel) and Methyl-
ene Blue was investigated by Vaz et al. (2017). Their studies
clearly indicated that the hydrogel had a natural selectiv-
ity for dye molecules and was very useful for the treatment
of wastewater. Biosorption capacities ranged from 1450 to
1950 mg/g with increasing the initial Methylene Blue con-
centration from 1500 to 2500 mg/L at pH > 5. The removal
efficiency was higher than 90% for all samples. The dye
biosorption onto the composite material was spontaneous
in nature and the kinetic measurements showed that the pro-
cess was rapid (the equilibrium time was found to be 60 min
in all the experiments). The biosorption system obeyed the
pseudo-second-order kinetic model for the entire biosorp-
tion period studied. Using kinetic studies, the authors also
showed that the mechanism of action was chemisorption
rather than physisorption. After saturation, the hydrogels are
easily regenerated in acidic solution and after five cycles of



biosorption/desorption, they maintained their dye removal
efficiency (> 91%).

Zhou et al. (2017b) proposed new nano-TiO,/chitosan/
poly(N-isopropylacrylamide) composite hydrogels by using
a two-step polymerization synthetic method. The hydrogels
exhibited both high biosorption capacity and efficiency
of photocatalytic degradation for Acid Fuchsin dye. The
mechanism was clearly established for the interpretation
of experimental data. Dye elimination is assumed to occur
through chemisorption with the pH as the main factor affect-
ing the process. Amine sites were the main reactive groups
for dyes even though hydroxyl groups may also contribute
to the biosorption process. The biosorption performance was
observed to be pH-dependent. An accurate mathematical
description of biosorption capacity at equilibrium was indis-
pensable for reliable prediction of biosorption parameters
and quantitative comparison of adsorption behavior for dif-
ferent materials and/or for varied experimental conditions.

Liu et al. (2018) synthesized a three-dimensional porous
beta-cyclodextrin/chitosan functionalized graphene oxide
hydrogel by a simple and facile chemical reduction method
in the presence of sodium ascorbate which acted as a reduc-
ing agent. This new hydrogel was used as biosorbent to
remove Methylene Blue from aqueous solutions. The mate-
rial showed an ultrahigh biosorption capacity (1134 mg/g)
for this dye. The unique 3D structure enabled the rapid reuse
and recyclability of hydrogel without a complicated filtra-
tion system. The biosorption process was well fitted with the
pseudo-second-order equation and Freundlich model. The
simulation of the intraparticle diffusion model illustrated
that both film diffusion and intraparticle diffusion were
involved in the process. The characteristics of hydrogels
were expressed in thermodynamic parameters, indicating
that the biosorption process was spontaneous and endother-
mic. The authors concluded that this new material could be
a cost-effective and promising biosorbent for dye removal.

Graphene oxide-based materials were recently proposed
for potential application in water treatment. Although these
materials have shown high performance in both concen-
trated and diluted solutions, their separation from water for
reuse remains a challenge. Qi et al. (2018) investigated the
self-assembly of graphene oxide sheets in the presence of
chitosan into sponges. The results showed that about 93%
of added chitosan could be combined with graphene oxide,
regardless of the chitosan concentration. Upon freeze dry-
ing, a stable sponge was generated only at a chitosan content
of > 9%. The q,,,, for Methylene Blue was determined to
be 275.5 of dye per gram of material. The performances
increased with the chitosan content between 9 and 41%.
From X-ray diffraction, scanning electron microscopy and
transform infrared spectroscopy data, both electrostatic
attraction and hydrophobic interactions were responsible for
Methylene Blue biosorption by sponges. Another advantage

was the use of fixed-bed column and the easy recycling of
the materials after biosorption. Indeed, desorption can be
carried out in the same column using an alkaline solution.
This regeneration step restored the material close to the
original condition for effective reuse with undiminished dye
uptake and no physical change or damage. Sabzevari et al.
(2018) similarly demonstrated the utility of cross-linking
chitosan with graphene oxide to yield adsorbent materials
with greater adsorption over that of colloidal graphene oxide
with Methylene Blue. The facile cross-linking strategy of
graphene oxide reveals that such polymer composites display
tunable physicochemical properties and functional versatil-
ity for a wider fields of application versus graphene oxide,
especially for contaminant removal over multiple adsorp-
tion-desorption cycles.

Melo et al. (2018) proposed the use of cellulose nano-
whiskers to enhance the biosorption capacity of chitosan-
g-poly(acrylic acid) hydrogel. The composites contained up
to 20 w/w-% cellulose nanowhiskers showed an improved
biosorption capacity toward Methylene Blue as compared to
the pristine hydrogel. At 5 w/w-% cellulose nanowhiskers,
the biosorbent presented the highest performance (q,,,, =
1968 mg/g). The maximum removal of Methylene Blue (>
98% of initial concentration 2 g/L) was achieved at the fol-
lowing conditions: contact time 60 min, pH 6, ionic strength
0.1 M, and room temperature. The biosorption mechanism
was explained with the Langmuir type I model suggesting
the formation of a Methylene Blue monolayer on the mate-
rial surface. Using kinetic data, the interaction between the
biosorbent and dye molecules was explained by chemisorp-
tion. The regeneration step was easy and the materials were
regenerated at low cost by a simple immersion with an acidic
solution. They were reusable more than 5 cycles without
any loss of mechanical or chemical efficacy. This change in
the pH of the solution reversed the biosorption because the
electrostatic attraction mechanism was very sensible to pH.

Yang et al. (2016b) developed a novel green biopoly-
mer-based aerogel by freeze drying a hydrogel from cross-
linking bifunctional hairy nanocrystalline cellulose and
carboxymethylated chitosan through a Schiff base reac-
tion. The authors used a sequential periodate and partial
chlorite oxidation of cellulose, followed by a hot water
treatment. The nanocelluloses, bearing aldehyde and car-
boxylic acid groups, facilitated the cross-linking with
chitosan through imine bond formation while providing
negatively charged functional groups, where chitosan was
modified to accommodate carboxylic acid. The material
was highly porous (pore size in the range of 35-70 um)
and negatively charged (the carboxyl group content was
3.2 mmol/g). It showed excellent biosorption performance
over a wide range of pH. At pH = 7.5, the maximum
Methylene Blue dye biosorption capacity of the aerogel
was 785 mg/g, obtained by fitting the equilibrium data to



the Langmuir isotherm, yielding the highest biosorption
capacity for any reported reusable biosorbents prepared
from biopolymers. The performance was also comparable
to commercial activated carbon (980.3 mg/g) and an as-
received starch microparticle (716.3 mg/g), reported by
Karoyo et al. (2018). The maximum biosorption is about
86% of the amount calculated from charge stoichiometry,
i.e., in reference to the chitosan carboxylated materials.
The mechanism was explained by electrostatic complexa-
tion between acidic groups on the anionic aerogel with
the cationic dye. At pH = 3, the ¢,,,, was about 192 mg/g,
which was about 25% of the maximum biosorption at pH
= 7.5. This decrease was due to the protonation of car-
boxylic acid groups. Dynamics of biosorption was mod-
eled by numerically solving the unsteady-state diffusion-
sorption mass balance in a 1D spherical coordinate, which
attested to a diffusion-controlled process. The aerogel can
be regenerated using acidic solution (pH < 2) in 60 min.
Successful biosorption-regeneration cycles proved an
excellent reusability (at least six cycles), and the biosorp-
tion capacity remained constant over a wide pH range.

Biosorption mechanisms

In the context of adsorption technology, the major challenge
is to select the most promising types of adsorbent, mainly
in terms of high capacity, often expressed by the g,,,, value.
The next real challenge is to clearly identify the mechanism.

For chitosan hydrogels used for the removal of dyes, the
mechanisms have been demonstrated (Crini and Badot
2008; Elwakeel 2010; Sudha 2011). Biosorption involves
similar binding mechanisms than those used with commer-
cial synthetic organic resins, where dye binding takes place
essentially on amine groups, although the contribution of
hydroxyl groups is also possible. In general, dye elimination
by chitosan involves two different mechanisms, complexa-
tion versus ion-exchange, depending on the pH since this
parameter may affect the protonation of the macromolecule
chains. Amine groups are susceptible to ionization as a func-
tion of pH (pk, values in the range 6.3-6.5), that allow chi-
tosan to form a polycation species. Hence, the protonated
amine groups can form complexes with anionic species by
electrostatic attractions and/or ion-exchange (Guo and Wil-
son 2012; Olivera et al. 2016; Salehi et al. 2016; Kyzas et al.
2017; Subramani and Thinakaran 2017; Wang and Zhuang
2017; Karimi et al. 2018). Figure 3 illustrates the mechanism
of anionic dye adsorption by a cross-linked chitosan hydro-
gel under acidic conditions. In this case, the main interaction
is electrostatic attraction.

It is also possible that these two interactions can occur
simultaneously depending on the composition of the mate-
rial, the dye structure and its properties, and the solution
conditions, e.g., pH, ionic strength and temperature. In
neutral or alkaline solutions, chitosan is a weakly alkaline
material due to the fact that amino groups are deprotonated.
These reactive groups can bind dye species by complexation

OH OH
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Fig. 3 Mechanism of anionic dye adsorption by a cross-linked chitosan hydrogel under acidic conditions



including chelation and coordination. Some of other reported
interactions cited in other studies also include surface
adsorption, physical adsorption and diffusion in the mac-
romolecular network, hydrogen bonding (hydroxyl groups
contribute to stabilizing dye binding on amine groups), and
acid-base interactions.

Personal comment

Future research needs to explore some of the following
aspects. To date, despite the large number of papers devoted
to the biosorption of dyes onto chitosan hydrogels, the out-
standing removal capabilities reported reveal unquestionable
progress. However, biosorption processes of such materials
are often limited by laboratory-based studies (Crini 2015).
Indeed, the materials have already been shown to be effec-
tive in laboratory experiments, but no pilot-scale demonstra-
tion has yet been carried out.

As industrial production of cross-linked chitosan hydro-
gels has not started, the biosorbents produced at lab-scale
suffer from variability in their characteristics and lack of
reproducibility, e.g., difficulty to produce materials at the
same cross-linking density. Indeed, although various labo-
ratories and a few companies can synthesize these materials
to order, it is very difficult to find commercial sources of
cross-linked hydrogels with guaranteed reproducible proper-
ties. Yet, the performance can vary depending on the condi-
tions and the mode of preparation of hydrogels. However,
this aspect is often neglected in the literature (Ahmed 2015;
Ullah et al. 2015; Akhtar et al. 2016; de Luna et al. 2017a;
Pakdel and Peighambardoust 2018; Van Tran et al. 2018).
A more detailed study appears to be necessary to show how
the chemical structure of the hydrogels affects the biosorp-
tion performance.

Most studies focused on solutions contaminated with a
single type of dye using standard conditions. Studies involv-
ing treatment of polycontaminated solutions and real efflu-
ents are indeed scarce. The experimental conditions should
be chosen to simulate real wastewater on the basis of ther-
modynamics and studies of reaction kinetics. Much work
in this area is necessary to demonstrate the possibilities on
an industrial scale. Moreover, in spite of the abundance of
literature reports, there is yet little information that details
comprehensive studies that compare various biosorbents and
conventional commercial adsorbents at similar conditions.
Comparisons of different materials are however difficult
because of inconsistencies in the manner of data presen-
tation. Due to scarcity of consistent cost information, cost
comparisons are also difficult to make. This economic aspect
is often neglected.

In addition, there is no systematic and comparative study
taking into account the physicochemical properties of the
different kind of dyes. Recently, some investigators have

focused on studying the influence of the chemical structure
of dyes on biosorption capacity. These studies would help in
optimizing the type and amount of chitosan, i.e., in reference
to material dosage and/or the manner in which composite
materials are prepared. The development of mechanistic
and mathematical models in order to simulate the biosorp-
tion process are also important aspects in future studies that
should be further developed.

Finally, most studies have focused on the evaluation of
biosorption performance, where only a few aim at gain-
ing a greater understanding of the desorption strategy. On
this topic, Kyzas et al. (2014) developed a phenomenologi-
cal model which was capable of describing the data for all
the initial dye concentrations. The model was extended
to repeated batch biosorption/desorption cycles. Results
showed that the decrease in biosorption efficiency during
the cycles can be attributed to the requirement for total
adsorbate mass conservation during each step, rather than
thermodynamic irreversibility of the process. The inherent
irreversibility cannot be identified by the biosorption /des-
orption cycle only, but requires advanced diagnostic tools
such as spectroscopic techniques to show any changes in the
structure and functional groups of the biosorbent.

Conclusion

The past two decades have shown an explosion in the devel-
opment of new hydrogels that contain chitosan for use as
biosorbents in dye removal from solution. Their potential
use in biosorption-oriented processes is now recognized.
However, in spite of numerous results, publications, and
patents, cross-linked chitosan hydrogels are not yet pro-
duced on an industrial scale and are still not widely used
for water treatment. Nevertheless, they will find industrial
environmental applications due to their outstanding biosorp-
tion capacities and efficiency to treat either concentrated
or diluted solutions of contaminants in aqueous media. In
Europe, the tightening of regulations concerning effluent
implies a better level of treatment of waste to tend toward
zero pollution. With most types of conventional water treat-
ment, it is difficult to remove pollutants including dyes pre-
sent at low or very low levels in heterogeneous and variable
effluents. Cross-linked chitosan hydrogels are shown to have
efficacy to remove pollution present at trace levels. Further
efforts will be necessary to convince industry to use these
materials as part of the treatment strategy in their wastewater
treatment plants.
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